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Abstract
This paper builds on the machine learning research to propose two new algo-
rithms based on optimizing theAdaptiveNeuro Fuzzy Inference System (ANFIS)
with a dual-polarization antenna to predict pseudorange errors by consider-
ing multiple variables including the right-hand circular polarized (RHCP) sig-
nal strength, signal strength difference between the left-hand circular polarized
(LHCP) and RHCP outputs, satellites’ elevation angle, and pseudorange residu-
als. The final antenna position is calculated following the application of the pre-
dicted pseudorange errors to correct for the effects of non-line-of-sight (NLOS)
and multipath signal reception. The results show that the proposed algorithm
results in a 30% improvement in the root mean square error (RMSE) in the 2D
(horizontal) component for static applicationswhen the training and testing data
are collected at the same location. This corresponds to 13% to 20% when the test-
ing data is from locations away from that of the training dataset.
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1 INTRODUCTION

Location-based services (LBS) underpinned by position-
ing, navigation, and timing (PNT) information are essen-
tial for the provision of services in urban areas. However,
the de-facto system formost PNTapplications’, GlobalNav-
igation Satellite Systems (GNSS) such asGPS, performance
could be significantly degraded in urban canyons, due to
the effects of non-line-of-sight (NLOS) and multipath sig-
nal reception. NLOS and multipath can lead to code phase
(or pseudorange) measurement errors in turn resulting in
a single point positioning error of several tens of meters,
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unsuitable for many LBS applications (Groves & Jiang,
2013; Jiang & Groves, 2014). Several methods have been
proposed to mitigate errors caused by NLOS and multi-
path effects including signal processing, antenna design,
measurement-based modeling, and their combinations.
Signal processing methods exploit the fact that the char-

acteristics of correlation functions of line-of-sight (LOS),
NLOS, and multipath signals are different. Correlators
are aimed at estimating the optimal approximation of
the signal range (Groves, 2013; Heinrichs et al., 2004;
Weill & Fisher, 2002). Some correlator-related and delay-
locked loop (DLL) technologies have been proposed for
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medium- to long-rangemultipath error mitigation, includ-
ing the narrow correlator, high-resolution correlator,
strobe correlator, shaping correlator, and multipath esti-
mating delay lock loop (MEDLL) (Lee, 2002; McGraw &
Braasch, 1999; Townsend & Fenton, 1994; Van Dieren-
donck et al., 1992; Van Nee et al., 1994; Weill & Fisher,
2002). However, short-range multipath error mitigation
is difficult, and signal processing cannot mitigate NLOS
effects.
Antenna design methods include using antenna array,

choke-ring antenna, and other types of antennas to
directly mitigate multipath effects at low elevation angles.
Thornberg et al. (2003) combined multipath-limiting
antenna with a high-zenith antenna to improve the rejec-
tion of ground multipath by the proposed antenna array
system in dense urban areas. Choke-ring antenna can also
attenuate those signals due to its special architecture (i.e.,
using a set of concentric rings around the antenna ele-
ment). However, the approach does not work for indirect
signals with high elevation angles (Groves et al., 2013).
Besides, their bulky size and heavymassmake them incon-
venient for applications.
Integrating GNSS observables, measurements, and

satellite and signal information with other information
sources is considered a measurement-based method.
Soloviev et al. (2008) proposed an integrated algorithm of
inertial measurement unit (IMU), laser scanner, and GPS
to identify multipath affected GPS signals in the urban
environment. Meguro et al. (2009) utilized an omnidi-
rectional infrared camera with GNSS for environment
detection to eliminate the invisible satellites caught by
the receiver. However, visual sensors are also vulnerable
to the impact of urban landscape obstacles and weather,
resulting in reduced image recognition. Apart from sensor
integration, recent research has explored the use of spatial
information (e.g., 3D city models) to mitigate the effects of
NLOS and multipath. Groves et al. (2011) have developed
the shadow matching technique, in which a 3D city
model is used to assist the detection of NLOS reception
and then to improve positioning accuracy. The shadow
matching technique is able to avoid the lack of available
satellites caused by excluding NLOS signals and therefore
to simulate the visibility of each satellite to find the best
matching candidate location (Wang et al., 2013). Other
research has addressed the calculation of an optimized
user position based on the weighted average of the esti-
mated candidate positions obtained from a comparison
of the simulated and measured pseudoranges based on
3D city models (Gu et al., 2015; Hsu et al., 2016; Miura
et al., 2015). These methods can improve the positioning
accuracy by reducing the errors caused by NLOS to a
certain extent with transferability and generic validity still
to be demonstrated.

The quality of a signal received depends to a large extent
on the physical environment proximate to the antenna.
Combining the antenna-based with measurement-based
methods could also be feasible to mitigate the effects
of NLOS and multipath. Jiang and Groves (2014) used
the variable signal strength difference, obtained from
the left-hand circular polarized (LHCP) outputs and
the right-hand circular polarized (RHCP) counterpart
of the dual polarization antenna as a classifier for the
NLOS/multipath signals. NLOS signals are determined
based on the output value of the signal strength differ-
ence. The affectedmeasurements are then excluded result-
ing (geometry permitting) in higher single point posi-
tioning accuracy. In this method, it is critical to deter-
mine the appropriate threshold for classification. Similarly,
these single or multiple variables, including the carrier to
noise ratio (C/N0), elevation angle, pseudorange residuals,
and the other derivatives or combinations, are used also
to determine the status of pseudorange measurements in
recent research (Deng, 2010; Hsu, 2017; Wang et al., 2015;
Yozevitch et al., 2016).
Applying machine learning in the process of mitigating

pseudorange measurement errors in GNSS positioning
has been shown to have the potential to improve posi-
tioning accuracy by considering the factors that influence
measurement errors. The machine learning methods
used include support vector machine (SVM), decision
tree, logistic regression, Naïve Bayes, Artificial Neuro
Fuzzy Inference System (ANFIS), etc. (Phan et al., 2013;
Socharoentum et al., 2016; Sun et al., 2020; Yozevitch et al.,
2016). By considering the signal reception classification
as a decision problem, Guermaha et al. (2018) used the
dual-polarization antenna with the related variables to
improve positioning accuracy. They proposed a decision
tree-based GNSS signal classifier with the inputs of satel-
lite elevation and signal strength difference obtained from
RHCP and LHCP antennas. The paper claims, based on
tests in urban environments, that the decision tree-based
classifier employed delivers a classification accuracy
of 99%.
However, to date, machine learning methods have been

used for signal reception classification only in urban GNSS
positioning applications (Hsu, 2017; Phan et al., 2013; Sun
et al., 2020). Given that positioning accuracy is highly
dependent on correct classification, it is important that
the sources of error in the classification process are under-
stood. This includes errors introduced from the other infor-
mation sources used in the offline labeling phase of the
machine learning algorithms (e.g., 3D city model, cam-
era, or compass, etc.) (Hsu, 2017; Sun et al., 2019; Yoze-
vitch et al., 2016). For example, the accuracy of the label-
ing with a camera or compass often depends on the cost
(and thus quality) of the hardware, in addition to the fact
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that camera-based approaches also have the weakness of
attitude determination accuracy. Using the 3D city model
in the offline labeling phase also has some weaknesses,
including the: (i) need for significant computational
resources for storage, updating, and offline processing; (ii)
difficulty of generating accurate building borders for some
special building shapes; and (iii) out-of-date mapping and
omission of temporary signal obstructions, such as buses
and lorries. The error introduced by using 3D city models,
cameras, compasses, or other sensors in the labeling pro-
cess for signal reception classification will inevitably result
in final positioning errors. Clearly, in addition to geometry,
a key issue in positioning accuracy is the ability to mitigate
the corresponding measurement errors.
Building on the above, this paper develops new algo-

rithms using dual-polarization GPS antenna with an
optimized adaptive neuro-fuzzy inference system to
improve single point positioning accuracy in urban
canyons by employing the RHCP signal strength, signal
strength difference between the LHCP and RHCP outputs,
elevation angle, and pseudorange residuals as the algo-
rithm’s inputs. The dual-polarization antenna used in this
paper is the ZYACP-L004 from Zhongyu Instrumentation
Co., Ltd (specification in Appendix A to C). Unlike the tra-
ditional methods, which use machine learning algorithms
to predict the signal reception classification (classification
function of the machine learning), we use machine
learning algorithms to predict the pseudorange errors
(regression function of the machine learning). Single
point positioning accuracy is then improved by applying
the predicted corrections to pseudorange measurements
before computing the position solution. The proposed
positioning method avoids the errors arising from addi-
tional hardware or geospatial information during the
labeling process and therefore addresses the limitations of
current signal reception classification-based positioning
approaches using machine learning. The contributions of
the research are summarized as follows:

∙ Development of two improved ANFIS-based pseu-
dorange error prediction models, including Genetic
Algorithm-Adaptive Neuro-Fuzzy Inference System
(GA-ANFIS) and Firefly Algorithm-ANFIS (FA-ANFIS),
using RHCP signal strength, signal strength difference
obtained from a RHCP and LHCP antenna, elevation
angle, and pseudorange residual as the input variables.

∙ The two models are in turn used to improve positioning
accuracy by applying the predicted corrections to pseu-
dorange measurements before computing the position
solution.

Based on static field tests in urban canyons, the results
show that the proposed algorithm results in a 30%

F IGURE 1 Algorithm framework of the proposed method
[Color figure can be viewed in the online issue, which is available
at wileyonlinelibrary.com and www.ion.org]

improvement in the Root Mean Square Error (RMSE) in
the horizontal when the training and testing data are col-
lected in the same location. This corresponds to 13% to 20%
when the testing data is from locations away from that of
the training dataset.

2 ALGORITHMDESIGN

2.1 Algorithm framework

The framework of the proposed pseudorange correction
algorithm with GA-ANFIS/FA-ANFIS and dual polariza-
tion antenna is presented in Figure 1. The framework
includes an offline training phase and an online testing
phase.
In the offline phase, the data used are GPS raw pseu-

dorange measurements collected by the RHCP antenna
of the dual-polarization antenna from a known point in
the urban canyon. Some of the data from the known loca-
tion in the urban canyon contain NLOS and/or multipath
effects resulting in relatively large pseudorange errors.
These errors are computed from the difference between
the raw pseudoranges and the corresponding geometric
ranges from the known station coordinates and satellite
ephemeris.
Every set of variables at each epoch, includingRHCP sig-

nal strength (𝐶∕𝑁(𝑅)
0
), signal strength difference obtained

from the RHCP and LHCP antenna (𝐶∕𝑁(𝑅−𝐿)
0

), elevation
angle (𝜃𝑒), and pseudorange residual (𝛿), is then mapped
to, or labeled with, the corresponding pseudorange error.
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Here, the pseudorange error can be calculated by Equa-
tion (8) in Section 2.3. The details on training and testing
datasets are given in Section 3. Training is used to extract
the rules for different values of the input variables and the
corresponding pseudorange errors accounting for the tem-
poral changes in the visible satellites. The GA-ANFIS and
FA-ANFIS algorithms are then used to fit the calculated
pseudorange error by means of an offline dataset train-
ing process, thereby obtaining the rules, respectively, that
is, the relationship between the input variables (𝐶∕𝑁(𝑅)

0
,

𝐶∕𝑁
(𝑅−𝐿)
0

, 𝜃𝑒, 𝛿) and the corresponding labeled pseudo-
range errors. The main parts of the offline training pro-
cess, including variable selection, details for the labeling
process, and the GA-ANFIS and FA-ANFIS-based training
process, are explained further in the subsequent sections.
In the online phase, new GPS variables from raw mea-

surements of the dual polarization antenna in urban
canyons, including 𝐶∕𝑁(𝑅)

0
, 𝐶∕𝑁(𝑅−𝐿)

0
, elevation angle 𝜃𝑒,

and pseudorange residuals 𝛿, are used together with the
rules extracted from the offline phase to predict the pseu-
dorange errors. Based on the predicted pseudorange errors,
the positioning solutions are calculated based on the appli-
cation of the predicted pseudorange errors as corrections to
the new raw pseudoranges from the RHCP antenna.

2.2 Variable determination

The raw measurements of GPS contain a variety of vari-
ables that can be used to determine the pseudorange error.
Considering computational cost and training accuracy, we
use the following four variables as the inputs for the pro-
posed algorithms:

1. RHCP signal strength (𝐶∕𝑁(𝑅)
0
). The strength of the sig-

nal can be determined by the C/N0 value of the sig-
nal received by RHCP with measurements affected by
NLOS/multipath exhibiting lower signal strength com-
pared to LOS signals (Gu et al., 2015). The GNSS satel-
lite signal is RHCP with LOS signals received by RHCP
antenna generally having high C/N0 values. However,
signals reflected by objects like glass walls also exhibit
high C/N0 values (Yozevitch et al., 2016). Therefore,
more variables are needed to determine the pseudor-
ange errors.

2. Signal strength difference between the LHCP and
RHCP outputs (𝐶∕𝑁(𝑅−𝐿)

0
). RHCP is more sensitive

with LOS signals while LHCP is more sensitive with
reflected ones. Therefore, reflected signals, in theory,
have negative 𝐶∕𝑁(𝑅−𝐿)

0
values. Jiang & Groves (2014)

note that although it is possible for theNLOS/multipath
signals to have positive 𝐶∕𝑁(𝑅−𝐿)

0
, this is usually lower

than the required threshold. However, the probability
of error at a higher elevation angle is low (Groves et al.,
2013). Therefore, 𝐶∕𝑁(𝑅−𝐿)

0
could also be used as an

indicator for the pseudorange error prediction.
3. Elevation angle (𝜃𝑒). Reflected signals often are at a low

or negative elevation angle (𝜃𝑒). According to Teunissen
& Montenbruck (2017), 𝜃𝑒 is calculated by

𝜃𝑒(𝑖) = 𝑎𝑟𝑐𝑡𝑎𝑛
cos𝛼𝑅

𝑙𝑎
cos

(
𝛼𝑆
𝑙𝑜𝑛(𝑖)

− 𝛼𝑅
𝑙𝑜𝑛

)
− 𝑟𝐸∕𝑟𝑆

(𝑖)√
1 −

[
cos𝛼𝑅

𝑙𝑎
cos

(
𝛼𝑆
𝑙𝑜𝑛(𝑖)

− 𝛼𝑅
𝑙𝑜𝑛

)]2 ,
(1)

where 𝛼𝑆
𝑙𝑜𝑛(𝑖)

is the longtitude of satellite (i), 𝛼𝑅
𝑙𝑎
and

𝛼𝑆
𝑙𝑜𝑛

are the latitude and longitude of receiver, respec-
tively, 𝑟𝐸 represents the earth’s radius, and 𝑟𝑆

(𝑖)
repre-

sents the orbital radius. In general, signals from satel-
lites at a higher elevation are less likely to be blocked
or reflected by buildings and are more likely to reach
the receiver directly. Therefore, the elevation angle can
be used as a feature to mitigate the NLOS/multipath.
Weighting the measurements based on the elevation
angle to reduce the effect of multipath is used widely
for position determination. Therefore, the satellite ele-
vation angle is adopted in this paper for pseudorange
error prediction.

4. Pseudorange residual (𝛿). The relationship between the
unknowns and pseudorange measurements is nonlin-
ear. Hence, nonlinear least squares (NLSQ) estimation
is used in which linearization is undertaken around
approximate values of the unknowns (𝒙𝒐). The result-
ing lineriazed observation equation is expressed as
𝑮Δ𝒙 = 𝒃 + 𝛿 with Δ𝒙 being the corrections applied to
𝒙𝒐 to determine the final position and time. G is the
designmatrix, and b is the difference between observed
and computed pseudoranges. The solution for Δ𝒙 for
unweighted measurements is expressed as

Δ𝒙 = (𝑮𝑇𝑮)−1𝑮𝑇𝒃. (2)

The final position and time 𝒙 is computed as

𝒙 = 𝒙𝒐 + Δ𝒙. (3)

The measurement residual (𝛿), in effect representing
the contribution of a measurement to the position solu-
tion is determined a posteriori as Equation (4):

𝜹 = 𝐺Δ𝒙 − 𝒃. (4)

In urban canyons, most signals are contaminated by
NLOS and/or multipath. In theory, the magnitude of
the absolute value of the pseudorange residual is related
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TABLE 1 Correlation strength between variables and
pseudorange error

Variable 𝑪∕𝑵
(𝑹)

𝟎
𝑪∕𝑵

(𝑹−𝑳)

𝟎

Elevation
angle 𝜽𝒆

Pseudorange
residuals 𝜹

𝐶𝑆𝑝𝑒𝑎𝑟 −0.4934 −0.4318 −0.1523 0.4107
Correlation Moderate Moderate Very Low Moderate

to the degree of signal contamination. This property is
exploited in this paper to augment those from the other
three variables.

The strength of association between two variables can
be measured according to the rank correlation coefficient.
One of the most popular methods is the Spearman’s cor-
relation coefficient. It’s not necessary for the Spearman’s
correlation coefficient to assume that the relationship
between variables is linear (Hauke & Kossowski, 2011).
Therefore, the correlation coefficient was chosen to mea-
sure the correlation between the input feature information
and pseudorange errors.

𝐶𝑆𝑝𝑒𝑎𝑟 =

∑𝑄

𝑖=1 (𝑉𝑖 − �̄�)
(
Δ𝜌𝑖 − Δ𝜌

)
√∑𝑄

𝑖=1 (𝑉𝑖 − �̄�)
2∑𝑄

𝑖=1

(
Δ𝜌𝑖 − Δ𝜌

)2 . (5)

The Spearman’s correlation coefficient of the four vari-
ables determined above can be calculated using Equation
(5), where 𝑉 represents the variable, �̄� and Δ𝜌 are the
means of the variable and pseudorange errors, respectively,
and 𝑄 represents the size of the whole dataset. The corre-
spondence between its absolute value and the strength of
association can be expressed as (Weir, 2016):

0.00-0.19: “Very Weak”
0.20-0.39: “Weak”
0.40-0.59: “Moderate”
0.60-0.79: “Strong”
0.80-1.00: “Very Strong”

The 𝐶𝑆𝑝𝑒𝑎𝑟 results are shown in Table 1; a minus sign
indicates a negative correlation while a plus sign indicates
a positive correlation. The scatter plot with marginal dis-
tributions of the variables and pseudorange errors can be
seen in Figure 2.
From the distributions in Figure 2, it is indicated that the

correlation between any single variable and the pseudor-
ange error is not very high and some 2D distributions even
look bimodal. This may be due to the fast changing and
scattering characteristics of multipath and NLOS in urban
environments. Meanwhile, from the perspective of the cor-
relation coefficient, the variable with the strongest correla-

tion (𝐶∕𝑁(𝑅)
0
) is only “moderately correlated.” According

to the results, it is probably not reliable to use a single vari-
able to predict the pseudorange error. Besides, as discuss
earlier in the paper, the relationship between each variable
and the actual type of signal received may also be inaccu-
rate, which is inconsistent with the signal type obtained by
numerical reasoning based on each single variable. There-
fore, in order to address this problem and exploit any syn-
ergies and/or complementarities, this paper uses multiple
variables to predict the pseudorange error.

2.3 Pseudorange error labeling process

The labeling of the pseudorange error is critical in the
offline training. The ranging errors result from the fact that
the contaminated signal (i.e., multipath or NLOS) travels
an additional route due to being reflected in the surround-
ing environment. These errors are typically a few tens of
meters in urban canyons but can be larger if the signal is
reflected by a remote tall building. With the knowledge of
the ground truth, the pseudorange errors of the received
signals can be calculated and the set of signal features or
variables labeled with the psedorange error values.
The pseudorange observation equation �̃�(𝑖) for receiver

R and satellite S(i) is given by

�̃�(𝑖) = 𝑟(𝑖) +
(
𝜏𝑅 − 𝜏𝑆

(𝑖)

)
𝑐 + 𝐷𝑡𝑟𝑜𝑝(𝑖)

+ 𝐷𝑖𝑜𝑛𝑜(𝑖) + 𝐷𝑜𝑟𝑏(𝑖)

+ 𝜌𝑠𝑎𝑐(𝑖) + 𝜀𝑖, (6)

where the geometric range, 𝑟(𝑖) =√
(𝑋𝑆
(𝑖)
− 𝑋𝑅)

2
+ (𝑌𝑆

(𝑖)
− 𝑌𝑅)

2
+ (𝑍𝑆

(𝑖)
− 𝑍𝑅)

2
;

(𝑋𝑆
(𝑖)
, 𝑌𝑆
(𝑖)
, 𝑍𝑆
(𝑖)
) is the position of the satellite (i), and the

(𝑋𝑅, 𝑌𝑅, 𝑍𝑅) is the position of the GPS receiver. 𝜀𝑖 consists
of the contribution to the range error of the effects of NLOS
signal reception andmultipath and observation noise. The
receiver clock offset is calculated in the position solution
as the fourth unknown. Satellite clock error can be cor-
rected by using the corrections in the navigation message.
𝜌𝑠𝑎𝑐 is the satellite position error caused by earth’s rota-
tion, which is corrected using the Sagnac correction and
its residual is negligible. 𝐷𝑜𝑟𝑏 reflects the error of broad-
cast ephemeris in the case of single point positioning. Iono-
spheric delay𝐷𝑖𝑜𝑛𝑜and tropospheric delay𝐷𝑡𝑟𝑜𝑝 can be cor-
rected by the Klobuchar model and Saastamoinen model,
respectively; then Equation (6) is rewritten as follows:

𝜌𝑐
(𝑖)
= 𝑟(𝑖) +

(
Δ𝜏𝑅 − Δ𝜏𝑆

(𝑖)

)
𝑐 + Δ𝐷𝐾𝑡𝑟𝑜𝑝 + Δ𝐷

𝑆
𝑖𝑜𝑛𝑜

+ Δ𝐷𝑜𝑟𝑏 + 𝜀𝑖, (7)
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F IGURE 2 Scatter plot with marginal distributions [Color figure can be viewed in the online issue, which is available at wileyonlineli-
brary.com and www.ion.org]

whereΔ𝜏𝑅,Δ𝜏𝑆
(𝑖)
,Δ𝐷𝐾𝑡𝑟𝑜𝑝,Δ𝐷

𝑆
𝑖𝑜𝑛𝑜

, Δ𝐷𝑜𝑟𝑏 are the errors that
remain in turn included in pseudorange residuals. From
Equation (7), pseudorange error Δ𝜌 can be expressed by

Δ𝜌(𝑖) = 𝜌
𝑐
(𝑖)
− 𝑟(𝑖) =

(
Δ𝜏𝑅 − Δ𝜏𝑆

(𝑖)

)
𝑐 + Δ𝐷𝐾𝑡𝑟𝑜𝑝 + Δ𝐷

𝑆
𝑖𝑜𝑛𝑜

+ Δ𝐷𝑜𝑟𝑏 + 𝜀𝑖. (8)

The rest of the terms in Equation (8) can be mitigated
or reduced by using more accurate data and models (e.g.,
multiple frequencies and precise ephemeris). However,
given the limitations of the current mitigation methods,
the error caused by multipath/NLOS can reach tens of
meters (Jiang &Groves, 2014) particularly in built environ-
ments, making it dominant.

Through an offline labeling process, we can then relate
a pseudorange error Δ𝜌 to the corresponding set of vari-
ables 𝐶∕𝑁(𝑅)

0
, 𝐶∕𝑁(𝑅−𝐿)

0
, elevation angle 𝜃𝑒, and pseudor-

ange residuals 𝛿 in the offline labeling phase.

2.4 Positioning with ANFIS and
pseudorange correction

The performance of the ANFIS method is critical for the
pseudorange error prediction and therefore final position-
ing accuracy. ANFIS is the adaptive integration of neural
network (NN) and fuzzy logic, which maintains the inter-
pretability of fuzzy interference systems while enhancing
the feedforward calculation and backpropagation learning
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F IGURE 3 Architecture of ANFIS

capabilities of the system output (Ghomsheh et al., 2007;
Jang et al., 1997). It has been demonstrated from our pre-
vious work that ANFIS could provide high accuracy in
decision problems, such as signal reception classification
(Sun et al., 2019). However, the nondeterministic design
features of ANFIS make it difficult through a trial-and-
error process to obtain a suitable architecture for a spe-
cific model, which can be resource intensive (Sun et al.,
2020). Thus, combining ANFIS with other optimization
algorithms such as Genetic Algorithm (GA) and Firefly
Algorithm (FA) should enable a reduction in the process-
ing time and increase prediction accuracy.
GA is a heuristic algorithm employing a search tech-

nique to arrive at optimal solutions by simulating the natu-
ral evolution process. Recently, the combination of genetic
with machine learning algorithms has been applied in a
wide range of applications, such as medical image regis-
tration and prediction of map expansion, modeling laser
brazing (Goldberg & Holland, 1988; N’Diaye et al., 2017;
Rong et al., 2016). The firefly algorithm is a swarm intelli-
gence algorithm thatmimics the flashing behaviour of fire-
flies. Chahnasir et al. (2018) combined FAwith the support
vectormachine (SVM) for the shearing capacity estimation
of angular shearing connectors. The work showed that FA
could be used to optimize the prediction results of SVM.
With these potential benefits, GA-ANFIS- and FA-

ANFIS-based algorithms for classification and pseudo-
range error prediction are proposed in this paper for
the GPS single point positioning. The proposed GA/FA-
ANFIS-based training structure is presented in Fig-
ure 3, where [𝐴1𝐴2⋯𝐴𝑛], [𝐵1𝐵2 ⋯𝐵𝑛], [𝐶1𝐶2⋯𝐶𝑛],
and [𝐷1𝐷2⋯𝐷𝑛] are the inputs of each variable, 𝑛
is the number of semantic labels (e.g., high, medium,

and low). 𝑎ℎ, 𝑏ℎ, 𝑔ℎ represent the neurons of differ-
ent layers, where ℎ = 1, 2, … , 𝑛. Layer 1 is the input
layer, and the input training sample is represented
as 𝐼𝑙 = (𝐶∕𝑁

(𝑅)
0 𝑙
, 𝐶∕𝑁

(𝑅−𝑙)
0 𝑙

, 𝜃𝑒𝑙, 𝛿𝑙), where 𝑙 = 1, 2, …𝑁,
𝑁 is determined by the size of the input training
dataset. The training dataset labeled with the cor-
responding pseudorange errors is represented as 𝑆 =
[(𝐼1, Δ𝜌(1)), (𝐼2, Δ𝜌(2)), … , (𝐼𝑛, Δ𝜌(𝑛))]. The input training
data is to be fuzzed in Layer 1, the input layer. In this
layer, each input dimension is split by fuzzy membership
functions (MF), which are usually Gaussian. The shape
parameters of MFs are called the antecedent parameters
of ANFIS (Ghomsheh et al., 2007). Layer 5 is the out-
put layer - the total output of all input features informa-
tion is de-fuzzed to obtain the exact output value in this
layer. Layers 2 to 4 are the middle layers (also referred to
as hidden layers) of ANFIS. In these layers, the rules are
extracted from the fuzzed input data, and the correspond-
ing firing strength of each rule is calculated and normal-
ized. The conclusion parameters consist of each rule given
to birth in these layers. 𝜔(2)

1
is the output vector of neu-

ron 𝑎1, the subscript denotes the neuron, and the super-
script represents the number of layers, e.g., (2) means Layer
2. 𝜃𝑙 is the output of the extracted rule while �̄�𝑙 is the
corresponding normalized firing strength. The product of
𝜃𝑙 and �̄�𝑙 of each rule can be added to obtain

∑
. The output

of ANFIS 𝜃 corresponding to the input feature information
is then obtained after the de-fuzzing process. Using a back-
propagation algorithm, ANFIS can adjust the antecedent
parameters and the conclusion parameters while learning.
An intelligent algorithm, such as FA and GA, can be uti-
lized to optimize the parameter tuning process (Ghomsheh
et al., 2007). Therefore, the optimization problemof FAand
GA for ANFIS rule extraction is also transformed into the
optimization problem of ANFIS parameter set tuning. The
flow of the two algorithms proposed are:

1. Step 1: Training dataset pre-processing. In order to
facilitate the calculation of proposed algorithms and
improve the accuracy of prediction, it is necessary to
pre-process the dataset. In this paper, we use the vari-
able normalization method. Each variable is normal-
ized to have zero mean and unit variance. The function
normalized is

𝑤′ =
𝑤 − 𝜇

𝜎
, (9)

where 𝑤 is a variable vector, and 𝜇 and 𝜎 are the corre-
sponding mean and variance.

2. Step 2: Generate initial fuzzy rules using the Fuzzy
C-Means (FCM) clustering method. The advantage of
FCM is the ability to model complex systems with
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limited data (Dabbagh & Yousefi, 2019). Compared
to the traditional cluster analysis, which is to strictly
divide each element into a specific class, the fuzzy
clustering method treats each cluster as a fuzzy set
and determines the clustering relationship through the
degree ofmembership, which ismore flexible and accu-
rate. The objective function of FCM clustering is

𝑓𝑜𝑏𝑗 =

𝑁∑
𝑡=1

𝑘∑
𝑠=1

[𝑑 (𝑥𝑡, 𝐶𝑠)]
2 × (𝑀𝑠𝑡)

𝜎, (10)

where 𝑁 is determined by the size of the dataset, 𝑘
is the number of cluster centers, 𝑑(𝑥𝑡, 𝐶𝑠) denotes the
distance from t-th data 𝑥𝑡 to the s-th cluster center
𝐶𝑠. Cluster centers are determined by finding the opti-
mal data points in input data to define cluster centers
based on the density of surrounding data points. All
data points within the cluster influence range of a cen-
ter are removed in order to determine the next data clus-
ter and its center. This process is repeated until all of the
data points fall within the influence range of a cluster
center, then we can determine the magnitude of 𝑘.𝑀𝑠𝑡
is themembershipmatrix, which determines the degree
of membership, and 𝜎 is the corresponding weighted
index. Besides, the membership matrix satisfies the fol-
lowing conditions:

𝑘∑
𝑠=1

𝑀𝑠𝑡 = 1. (11)

The membership matrix can be obtained by using the
Lagrange method and the constraint condition (11):

𝑀𝑠𝑡 =
1

∑𝑘

𝑚=1

[
𝑑(𝑥𝑡,𝐶𝑠)

𝑑(𝑥𝑚,𝐶𝑠)

]− 2

𝜎−1

. (12)

Letting the the partial derivative 𝑓𝑜𝑏𝑗 with respect to
cluster center 𝐶𝑠 be

𝜕𝑓

𝜕𝐶𝑠
=0, the cluster center can be

obtained using

𝐶𝑠 =

∑𝑁

𝑡=1 (𝑀𝑠𝑡)
𝜎
𝑥𝑡∑𝑁

𝑡=1 (𝑀𝑠𝑡)
𝜎
. (13)

The objective function then represents the weighted
sumof squares from each data point to each cluster cen-
ter.

3. Step 3: Rules extraction based on GA-ANFIS/FA-
ANFIS. In this step, GA and FA are separately used to
optimize the initial rules obtained in the previous step
for best fuzzy inference rules, i.e., obtained the tuned
parameter set.

1. GA-ANFIS
(1) Generate initial population according to the

parameter set of the initial Fuzzy Inference Sys-
tem (FIS) generated in step 2. Based on the
input sample, give every individual a position
and evaluate its cost by the cost functions 𝑓𝑜𝑏𝑗 ,
which are obtained from initial FIS, as shown in
Equation (14). The concept of “the initial popu-
lation” is similar to the one in the particle swarm
optimization algorithm (PSO). And the concept
of “individual” is similar to the one of a particle
in the PSO. Position here refers to the location
of individuals in the search space, whose mean-
ing is different from the concept of the posi-
tion obtained by GNSS positioning. Represent
the 𝑖-th individual in the population as

⇀

𝑝𝑜𝑝(𝑖) =

(𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑝𝑜𝑝(𝑖), 𝑐𝑜𝑠𝑡𝑝𝑜𝑝(𝑖)), where 𝑖 = 1, 2, … ,𝑀,
𝑀 is the size of population. Each individual
of the population is given a randomly assigned
position (denoted by𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑝𝑜𝑝(𝑖)) according to
the search space, which is determined by the
parameter bounds of the initial FIS.

𝑐𝑜𝑠𝑡𝑝𝑜𝑝(𝑖) = 𝑓𝑜𝑏𝑗
[
𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑝𝑜𝑝(𝑖)

]
. (14)

Save the cost value of each individual denoted by
𝒄𝒐𝒔𝒕, and sort the individuals in ascending order
based on the cost value.

𝐜𝐨𝐬𝐭 =
(
costpop(1), costpop(2), … , costpop(𝑖), … ,

costpop(𝑀)
)
. (15)

Let the first individual 𝑝𝑜𝑝(1) be the current
optimal solution, denoted by 𝑏𝑒𝑠𝑡𝑠𝑜𝑙, and the
worst cost is from the last individual 𝑝𝑜𝑝(𝑛),
that is

𝑏𝑒𝑠𝑡𝑠𝑜𝑙 = 𝑝𝑜𝑝 (1) (16)

𝑤𝑜𝑟𝑠𝑡𝑐𝑜𝑠𝑡 = 𝑓𝑜𝑏𝑗
[
𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑝𝑜𝑝(𝑀)

]
= 𝑐𝑜𝑠𝑡𝑝𝑜𝑝(𝑀),

(17)
where𝑀 is the quantity of individuals.

(2) Calculate the fitness value by

𝑉𝑓𝑖𝑡𝑝𝑜𝑝(𝑖)
= −

𝛽 × 𝑐𝑜𝑠𝑡𝑝𝑜𝑝(𝑖)

𝑤𝑜𝑟𝑠𝑡𝑐𝑜𝑠𝑡
, 𝑽𝑓𝑖𝑡

=
(
𝑉𝑓𝑖𝑡𝑝𝑜𝑝(1)

, … , 𝑉𝑓𝑖𝑡𝑝𝑜𝑝(𝑛)

)
, (18)

where
⇀

𝑉𝑓𝑖𝑡 is the fitness value of the population,
and 𝛽 is the selection pressure parameter. Then
normalize the vector 𝑽𝑓𝑖𝑡.
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(3) Select parents using the principle of roulette
based on the calculated fitness value. Perform-
ing a single crossover operation will select two
individuals from the original population. The
number of selected parents 𝑀𝑐depends on the
crossover percentage 𝑝𝑐:

𝑀𝑐 = 2 × round

(
𝑀 × 𝑝𝑐
2

)
. (19)

The basic idea of the roulette principle is that the
probability 𝑃𝑖 of the individual being selected is
proportional to its fitness value 𝑉𝑓𝑖𝑡𝑝𝑜𝑝(𝑖):

𝑃𝑖 =
𝑉𝑓𝑖𝑡𝑝𝑜𝑝(𝑖)|||𝑽𝑓𝑖𝑡|||

. (20)

Calculate the cumulative probability according
to the order of individuals. Simulate the selec-
tion process of a roulette wheel by generat-
ing a random number of ranges from zero to
one, which can be regarded as a pointer to the
roulette wheel.

(4) Execute a crossover process on the selected par-
ents and create new individuals.

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑐
𝑝𝑜𝑝(𝑖1)

=
⇀

𝛼Δ𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛+
𝑝𝑜𝑝(𝑖1)(

1 −
⇀

𝛼
)
𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑝𝑜𝑝(𝑖2) (21)

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑐
𝑝𝑜𝑝(𝑖2)

=
⇀

𝛼Δ𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛+
𝑝𝑜𝑝(𝑖2)(

1 −
⇀

𝛼
)
𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑝𝑜𝑝(𝑖1), (22)

where
⇀

𝑝𝑜𝑝(𝑖1) and
⇀

𝑝𝑜𝑝(𝑖2) are the selected par-
ents, and

⇀

𝛼 is an array of random numbers cho-
sen from the continuous uniform distribution
on the interval from −𝛾 to 𝛾 + 1, where 𝛾 is the
crossover index. Then evaluate the cost value of
crossover individuals.

(5) Randomly select individuals to execute the
mutation process and create new individuals.
All individuals in a population are judged to be
mutated with a predetermined probability, the
mutation percentage 𝑝𝑚.
The total number of mutated individuals can be
obtained using Equation (23):

𝑀𝑚 = 𝑟𝑜𝑢𝑛𝑑 (𝑀𝑝𝑚) . (23)

Based on 𝑝𝑚 and the bounds of initial FIS
parameters, the mutation process is performed

by changing several randomly chosen elements
of the selected individual 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑝𝑜𝑝(𝑖3).

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑚
𝑝𝑜𝑝(𝑖3)

(𝑥) = 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛
(𝑥)

𝑝𝑜𝑝(𝑖3)

+𝑠 ∗ 𝑟𝑎𝑛𝑑 (𝑠𝑖𝑧𝑒 (𝑥)) (24)

𝑠 = 0.1 × (𝐵𝑚𝑎𝑥 − 𝐵𝑚𝑖𝑛) . (25)

𝑥 represents the array made up by the ordi-
nal numbers of the randomly selected elements.
𝑟𝑎𝑛𝑑(𝑠𝑖𝑧𝑒(𝑥)) is used to return an array that con-
tains values drawn from the standard normal
distribution. The size of the array is subject to
the quantity of the selected elements. 𝐵𝑚𝑎𝑥 and
𝐵𝑚𝑖𝑛 are the upper and lower bounds of initial
FIS parameters. Then evaluate the cost value of
mutated individuals.

(6) Merge population. Merge new individuals from
crossover and mutation with the original pop-
ulation, as shown in Equation (26). Accord-
ing to the cost value, sort the individuals in
𝑛𝑒𝑤𝑝𝑜𝑝 from smallest to largest. Then update
the 𝑤𝑜𝑟𝑠𝑡𝑐𝑜𝑠𝑡 (cost value of the last individual
that has the largest value among the new popu-
lation) after sorting.

𝑛𝑒𝑤𝑝𝑜𝑝 = [𝑝𝑜𝑝 𝑝𝑜𝑝𝑐 𝑝𝑜𝑝𝑚] , (26)

where 𝑝𝑜𝑝𝑐 and 𝑝𝑜𝑝𝑚 are the new individ-
uals produced by the crossover and muta-
tion process, respectively. At the sorted new
population 𝑠𝑜𝑟𝑡𝑒𝑑𝑝𝑜𝑝, the number of individu-
als𝑀′ is

𝑀′ = 𝑀 +𝑀𝑐 +𝑀𝑚. (27)

(7) Truncate the 𝑠𝑜𝑟𝑡𝑒𝑑𝑝𝑜𝑝 to the original amount
𝑀 and update the 𝑏𝑒𝑠𝑡𝑠𝑜𝑙 (the individ-
ual that has the smallest cost value, i.e.,
𝑠𝑜𝑟𝑡𝑒𝑑𝑝𝑜𝑝(1))for the current iteration.

(8) Repeat steps ② to ⑦ until the iteration ends. The
iteration number is set to 300 due to experience.

2. FA-ANFIS
(1) Generate the initial fireflies (which is similar

to the “individual” in GA) according to the
parameter set of the initial FIS generated in
step 2. Based on the input sample, give every
firefly a random position and evaluate its cost
by the cost functions 𝑓𝑜𝑏𝑗 , which is obtained
from initial FIS (see GA-ANFIS). The position
and cost value of the j-th firefly in the m-th
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iteration is denoted as 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑗(𝑚) and
𝑐𝑜𝑠𝑡𝑗(𝑚), respectively, 𝑗 = 1, 2, … ,𝑀. Let the
cost value of the initial optimal solution 𝑏𝑒𝑠𝑡𝑠𝑜𝑙
be infinite, which is denoted by 𝑏𝑒𝑠𝑡𝑐𝑜𝑠𝑡.

(2) Calculate the distance between fireflies. For
example, the distance from the i-th firefly to the
j-th firefly is

𝑟𝑖𝑗 =
||||||𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖 − 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑗|||||| . (28)

(3) Attraction coefficient calculation.

𝛽 = 𝛽0 × 𝑒
−Γ⋅𝑟𝑖𝑗

2
, (29)

where 𝛽0 is the attraction coefficient base value,
and Γ is the light absorption coefficient.

(4) If 𝑐𝑜𝑠𝑡(
𝑗
𝑚) < 𝑐𝑜𝑠𝑡

(
𝑖
𝑚), then: update the firefly’s

position using

𝑥𝑖
′ (𝑚) = 𝑥𝑖 (𝑚) + 𝛽 ×

(
𝑥𝑗 (𝑚) − 𝑥𝑖 (𝑚)

)
+ 𝜀.

(30)
𝜀 depends on the bounds of FIS parameters and
can be obtained using Equation (31):

𝜀 = 0.05𝑟 × (𝐵𝑚𝑎𝑥 − 𝐵𝑚𝑖𝑛) . (31)

𝑟 is a random number chosen from the continu-
ous uniform distribution on the interval from -1
to 1.

(5) Calculate the corresponding cost value 𝑦𝑗′(𝑚)
and compare it with the current best cost.
If 𝑦′

𝑗
(𝑚) < 𝑏𝑒𝑠𝑡𝑐𝑜𝑠𝑡, then

𝑏𝑒𝑠𝑡𝑐𝑜𝑠𝑡 = 𝑦′
𝑗
(𝑚). (32)

(6) Repeat steps ② to ⑤ until the iteration ends. The
iteration number is set to 300 from experience.
Set the ultimate bestcost to be the bestsol.

The bestsol, consisting of a series of parameters, of the
population (GA-based) or firefly (FA-based), is chosen
as the ultimate parameter set to create the optimized
FIS model for the purpose of pseudorange error pre-
diction. The setting of GA parameters is determined by
parameter testing, which, for example, is made byman-
ually specifying the value of 𝛽 to obtain the most suit-
able one. Many parameters in the GA are also obtained
by this method, so are the 𝛾, 𝑝𝑐, and 𝑝𝑚. The FA param-
eters, Γ and 𝛽0, are also determined by this way.

4. Step 4: pseudorange error prediction. Once the final
predictor 𝑓𝑀(𝒙) (representing the FIS model optimized
by the GA/FA-ANFIS method) is obtained, the cor-
responding pseudorange errors of the newly collected

variables from GPS measurements can be predicted.

𝑓𝑀(𝒙) = 𝜃, (33)

where the definition of 𝜃 is already given in Sec-
tion 2.4. The input 𝒙 = (𝐶∕𝑁(𝑅)

0
, 𝐶∕𝑁

(𝑅−𝐿)
0

, 𝜃𝑒, 𝛿) is
used together under the rules to predict the pseudor-
ange errors for each observed satellite.

5. Step 5: position calculation with pseudorange correc-
tion. The newly collected pseudorange measurements
are corrected in Equation (33) by subtracting the pre-
dicted pseudorange error by GA-ANFIS or FA-ANFIS
in step 4.

𝜌𝑐
(𝑖)
= 𝜌(𝑖) − Δ𝜌(𝑖), (34)

where 𝜌𝑐
(𝑖)
is the corrected pseudorange of the ith signal,

and Δ𝜌(𝑖) is the predicted pseudorange error of the 𝑖-th
signal. With the corrected pseudorange measurements,
the NLSQ is used to compute the antenna position (see
Section 2.2).

3 TEST AND RESULT ANALYSIS

To test and validate the proposed algorithm, we col-
lected 24 hours of data using two NovAtel OEM6 geode-
tic receivers with a Zhongyu ZYACF-L004 dual polariza-
tion antenna in urban canyons in Hong Kong for a static
case. During the labeling process, the pseudorange errors
are calculated using Equation (8) and labeled with their
values. In particular, the pseudorange errors within 5m are
considered as small and therefore from LOS signals. The
others are considered as large pseudorange errors, mainly
from NLOS/multipath signals. The 5m threshold is deter-
mined from experience. The 24-hour data (noted as D0)
was collected from 13:13 on 16 May to 14:11 on 17 May (Bei-
jing Time), containing a total of 388,022 samples. The test-
ing dataset (noted as Dtesting), containing 46,805 samples
with large pseudorange errors and 8,689 with small pseu-
dorange errors within the dataset captured from 14:00 to
17:00 on 16 May, were extracted from D0. With Dtesting
excluded, the training dataset (noted as Dtraining), contain-
ing randomly chosen 30,000 samples with large pseudo-
range errors and 12,000 samples with small pseudorange
errors, was extracted from D0.
Based on the pseudorange errors predicted by GA-

ANFIS and FA-ANFIS with the dual polarization antenna
(noted as GADP and FADP in the following tables and fig-
ures), the positioning results from the proposed methods
are compared with the following four methods with the
abbreviations noted in the following brackets, respectively:
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TABLE 2 Comparison of positioning accuracy in Scenario 1

RMSE (m) E N U 2D 3D
CSPP 33.46 28.57 112.14 44.00 120.46
CSPP-LR 27.31 31.54 143.49 41.72 149.44
FAR 29.86 21.61 95.21 36.86 102.10
GAR 29.09 21.90 98.52 36.42 105.03
FADP 26.90 19.22 82.92 33.06 89.27
GADP 25.29 16.65 76.19 30.28 81.99

F IGURE 4 Positioning results of Scenario 1 [Color figure can
be viewed in the online issue, which is available at wileyonlineli-
brary.com and www.ion.org]

∙ Conventional single point positioning (CSPP) method,
i.e., positioning with outlier detection and exclusion
from Biagi & Caldera (2013), which uses the efficient
leave one block out (ELOBO) approach to identify out-
liers and exclude them from the positioning process.

∙ Conventional single point positioning using the LHCP-
RHCP C/N0 difference and satellite elevation angle to
select and weight the measurements. (CSPP-LR)

∙ FA-ANFIS using RHCP measurement data only. (FAR)
∙ GA-ANFIS using RHCP measurement data only. (GAR)

RMSE is used as the metric to evaluate the positioning
accuracy of positioning methods proposed; see Table 2 and
Figure 4.
The results of CSPP, FADP, GADP, CSPP-LR, FAR, and

GARare depicted in Figure4. It is clear that the positioning
results for the proposed algorithms are much closer to the
ground truth than the conventional positioning results in
the testing case.
It can be seen from the results shown in Figure 5 that,

in partial epochs, the positioning results of the CSPP-LR
(orange) are even worse than the one of CSPP (red). This

may be due to the insufficient number of satellites in the
urban environment, which make the CSPP-LR not work
well. The interplay betweenmeasurement error and geom-
etry built environments may also cause this problem. FAR
and GAR performed a little better than CSPP, but are infe-
rior to the multi-feature methods. In general, the GADP-
based one performed best. Figure 6 shows the number
of satellites received by each dual-polarized antenna. In
most epochs, the number of satellites received in the LHCP
antenna is less than the RHCP antenna. But it is not small,
which implies that the degree of contamination of satellite
signals by multipath effects is serious in this environment;
the C/N0 curves of RHCP and LHCP shown in Figure 8 can
also illustrate this.
However, in terms of vertical positioning accuracy,

almost all the RMSE results of the methods exceed 50m.
According to the document on “Explanatory Notes on
Geodetic Datums in Hong Kong” issued by the Lands
Department of Hong Kong, the difference of semi-major
axis between HK80 and WGS84 is more than 200m, and
the coordinate origin selected by the two is also different.
Considering that GPS takes WGS84 as the reference ellip-
soid, the reason for the unsatisfactory elevation positioning
results may be related to the different reference ellipsoid
and elevation datum.
In the case of single feature information input (i.e.,

RHCP only), GA and FA showed similar performance in
positioning accuracy optimization. However, GA performs
better under multiple features, which may be caused by
the defect of the FA algorithm. According to Equation (30),
when two fireflies get too close, a large number of fireflies
will gather in the local optimum and easily miss the global
optimum. Therefore, it may lead to the consequence that
the FA had an inferior effect on FIS parameter optimiza-
tion than the GAwhen the feature dimension is increased.
From the results, GADP and FADP can deliver overall

2D positioning accuracies (RMSE) of about 30m and 33m,
respectively, corresponding to the improvement of 31.2%
and 24.9% on the conventional positioning method. It can
also be seen from Figure 7 that the PDOP value is gener-
ally higher than the HDOP one, which also indicates that
the accuracy of the 3D positioning result will be relatively
weaker than that of the 2D. In particular, due to the street
direction and tall buildings on the north part of the test-
ing point, the improvement in the northing is significantly
higher than the easting, which indicates that the impact of
the physical environment is accounted for by the proposed
algorithms.
For this testing dataset, positioning improvements using

the proposed algorithm are also shown in Figure 10. Using
the proposed GA-ANFIS algorithm, most of the position-
ing results are concentrated around 15m, while the results
using CSPP are mostly above 27m. Although CSPP-LR
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F IGURE 5 Example of 2D positioning error of the candidate methods [Color figure can be viewed in the online issue, which is available
at wileyonlinelibrary.com and www.ion.org]

F IGURE 6 Number of satellites [Color figure can be viewed
in the online issue, which is available at wileyonlinelibrary.com and
www.ion.org]

reduces the proportion of errors over 36m, the error is still
concentrated at about 30m. The improvement from FADP
is similar to that of GADP, but slightly inferior to that
of GADP. FAR and GAR methods, although more primi-
tive than the rest, compared with the conventional meth-
ods, their results are still significantly improved. Overall,
the results positioning accuracy is improved by the pro-

F IGURE 7 HDOP and PDOP values of Scenario 1 [Color figure
can be viewed in the online issue, which is available at wileyonlineli-
brary.com and www.ion.org]

posed methods compared with the conventional position-
ing methods, especially the GADP.
In order to further investigate the performance of the

proposed algorithms, the positioning accuracy compared
with the conventional method is analyzed according to
each epoch in Table 3. This shows that about 85% and
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F IGURE 8 C/N0 distribution of Scenario 1 [Color figure can
be viewed in the online issue, which is available at wileyonlineli-
brary.com and www.ion.org]

F IGURE 9 The test environment of Scenario 1 (3D city model)
[Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com and www.ion.org]

77% of the epochs are improved in the 2D- and 3D-
positioning results based on the proposed algorithms. The
general improvement from GA-ANFIS is better than FA-
ANFIS. For 2D positioning, although around 14% to 21%
of the epochs deteriorated due to the GA-ANFIS predic-
tion errors, the proposed algorithm is still effective formost
of the epochs. In addition, from the experiments, we find
that the computation time of FA-ANFIS is longer thanGA-

TABLE 3 Algorithm performance evaluation with proportion
of epochs (Scenario 1)

3D 2D
Proportion of
epochs (%) Better Worse Better Worse
FADP 76.56 23.44 84.67 15.33
GADP 78.61 21.39 85.58 14.42

TABLE 4 Time required for training and testing

Execution content Time consumed /s
GA-ANFIS Training 1058.552
GA-ANFIS Testing (Single Sample) 0.018
FA-ANFIS Training 1648.236
FA-ANFIS Testing (Single Sample) 0.005

ANFIS (see Table 4). This is due to theweakness of the fire-
fly algorithmas the objective function informationmaynot
be fully used during the optimization due to the uncon-
trolled moving distance of fireflies. Moreover, FA-ANFIS
need a shorter time in conducting pseudorange error pre-
diction of a single epoch, only one-third of the one required
by GA-ANFIS. If other algorithms are used to optimize FA
and improve its training speed in future research, then this
may become an advantage of FA-ANFIS in practical appli-
cation.
To analyze the spatial transferability of the proposed

method away from the training location, data from two dif-
ferent locations in the urban environment of Hong Kong
were captured and processed. The environments for Sce-
nario 2 and 3 are shown in Figures 13 and 17, respec-
tively. The corresponding positioning results are shown
in Figures 14 and 18. The DOP values are shown in Fig-
ures 11 and 15. C/N0 distribution are shown in Figures 12
and 16.
As can be seen from the 3D model of the city in Fig-

ures 13 and 17, both Scenario 2 and Scenario 3 are typi-
cal urban environments. In Scenario 2, occlusion exists on
all sides, but the height of the occlusion is obviously lower
than the counterpart in Scenario 3. In Scenario 3, there is
a wide driveway in the east direction, so occlusion in the
north direction is more severe.
From Figure 19, it can be seen that the distance between

Scenarios 1 and 2 are closer than the one between Scenar-
ios 1 and 3. Under the environments of Scenario 2, the 2D
positioning accuracy improvement is around 15% while 3D
is around 24%. As for Scenario 3, it is 12% and 5%. Com-
pared to CSPP-LR, the proposed algorithm is worse in the
U-axis, resulting in a worse performance in 3D position-
ing. However, in terms of 2D RMSE improvement, the pro-
posed algorithm is better than the other candidate algo-
rithms in both scenarios. It is notable that the CSPP-LRhas
a much smaller vertical error than the other methods in
Scenarios 2 and 3, but a significantly larger vertical error in
Scenario 1. The CSPP-LR is essentially based on weighting
based on C/N0 and the elevation angle. In general, in open
sky, the higher the elevation angle, the smaller the pseudo-
range error. Therefore, positioning accuracy is improved by
considering the elevation angle as a variable. However, in
the city areas, the relationship between the elevation angle
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F IGURE 10 Positioning accuracy histogram of Scenario 1 [Color figure can be viewed in the online issue, which is available at wileyon-
linelibrary.com and www.ion.org]

TABLE 5 Comparison of positioning accuracy for Scenario 2

RMSE (m) E N U 2D 3D
CSPP 40.92 17.90 79.01 44.67 90.76
CSPP-LR 27.57 23.92 24.12 36.50 43.75
FAR 38.30 16.21 59.38 41.59 72.50
GAR 36.64 15.89 59.86 39.94 71.96
FADP 36.27 15.11 56.98 39.30 69.21
GADP 33.13 13.70 58.61 35.85 68.96

and the corresponding pseudorange error is less determin-
istic. A decrease of a 5-degree elevation angle could intro-
duce a pseudorange error of more than 100m, due to the
NLOS in the urban areas. In addition, the relationship
between C/N0 and the pseudurorange error is not deter-
ministic either in urban areas. The range error due to signal
reflection could result in large errors. Therefore, weighting
based on the combination of C/N0 and the elevation angle
is less effective in heavily built urban environments. In Sce-
nario 1, the obstruction due to the tall buildings in a narrow
street is the most severe of the three scenarios, reflecting
the most severe NLOS signals. From Figures 7, 11, and 15,
the VDOP (estimated from PDOP and HDOP) is the worst

for Scenario 1. Therefore, the vertical error estimated from
CSPP-LR is the largest of the three scenarios.
In addition, the performance of FAR and GAR is infe-

rior to FADP and GADP on both 2D and 3D. Although in
these scenarios, the positioning accuracy is not improved
as much as in Scenario 1, overall positioning accuracy is
better nonetheless. This shows that the proposed algo-
rithm can improve positioning accuracy in the cases
where the locations for training and testing are differ-
ent. In the future work, we will consider integrating the
weighted method with machine learning and comple-
menting each other to obtain more accurate positioning
solutions.

TABLE 6 Comparison of positioning accuracy for Scenario 3

RMSE (m) E N U 2D 3D
CSPP 36.45 55.27 40.52 66.21 77.62
CSPP-LR 20.51 60.92 25.84 64.28 69.28
FAR 34.87 53.06 37.02 63.49 73.49
GAR 34.66 53.43 37.36 63.69 73.84
FADP 32.65 48.89 42.03 58.79 72.27
GADP 31.73 47.92 48.38 57.48 75.12
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F IGURE 11 HDOP and PDOP Values of Scenario 2 [Color fig-
ure can be viewed in the online issue, which is available at wileyon-
linelibrary.com and www.ion.org]

F IGURE 1 2 C/N0 Distribution of Scenario 2 [Color figure can
be viewed in the online issue, which is available at wileyonlineli-
brary.com and www.ion.org]

F IGURE 13 Experimental environment of Scenario 2 [Color
figure can be viewed in the online issue, which is available at wiley-
onlinelibrary.com and www.ion.org]

F IGURE 14 Positioning results for Scenario 2 [Color figure can
be viewed in the online issue, which is available at wileyonlineli-
brary.com and www.ion.org]

F IGURE 15 HDOP and PDOP values of Scenario 3 [Color fig-
ure can be viewed in the online issue, which is available at wileyon-
linelibrary.com and www.ion.org]

F IGURE 16 C/N0 Distribution of Scenario 3 [Color figure can
be viewed in the online issue, which is available at wileyonlineli-
brary.com and www.ion.org]
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F IGURE 17 Experimental environment of Scenario 3 [Color
figure can be viewed in the online issue, which is available at wiley-
onlinelibrary.com and www.ion.org]

F IGURE 18 Positioning results for Scenario 3 [Color figure can
be viewed in the online issue, which is available at wileyonlineli-
brary.com and www.ion.org]

F IGURE 19 Location of three scenarios [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com and
www.ion.org]

4 CONCLUSIONS

This paper has proposed a pseudorange error correc-
tion algorithm based on GA-ANFIS/FA-ANFIS using the
dual-polarization antenna to improve positioning accu-
racy in built environments. The pseudorange error fea-
tures or variables of signal strength, signal strength dif-
ference between RHCP and LHCP, elevation angle, and
pseudorange residual are used to classify signal reception
and predict pseudorange errors. The predicted errors are
in turn employed as corrections to new measurements to
improve positioning accuracy. The results show that the
algorithms proposed outperform the conventional least
squares-based all-in-view solutions. The results also show
an overall improvement in the 3D-positioning accuracy
(RMSE) from about 120 m with conventional positioning
approaches to about 89m using the proposed FA-ANFIS-
based pseudorange correction approach, an improvement
about of 26%. The corresponding values for GA-ANFIS are
120m to 82m, an improvement of more than 30%. The 2D
positioning accuracy (RMSE) for the pseudorange error
correction-based positioning with GA-ANFIS (compared
with the conventional) is from about 44 m to 30 m, an
improvement over 30%.
Further research is exploring the application of the

methods proposed in dynamic applications in urban envi-
ronments. With the training data obtained from the ref-
erence points offline, users will automatically obtain the
rules online via communication links to nearby refer-
ence points for the accurate pseudorange error correc-
tion to improve positioning accuracy. This online data
training mechanism, i.e., with frequently updated rules,
will also be developed for users with real-time or post-
processing applications, including robust ground vehicle
or pedestrian trajectory estimation. We are also exploring
the added value of various aspects of multi-constellation,
multi-frequency, and multi-sensor/system solutions.
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APPENDIX A: The Performance Evaluations of ZYACF-L004 in Terms of the Axial Ratio, the Axial Ratio (dB),
and the Cross-Polarization Discrimination (dB) against Various Frequencies

Frequency 1207 MHz 1227 MHz 1246 MHz 1561 MHz 1575 MHz 1602 MHz
𝐴𝑅 1.0823 1.0777 1.0727 1.052 1.1272 1.226
𝐴𝑅 (dB) 0.687 0.65 0.61 0.44 1.04 1.77
𝑋𝑃𝐷 (dB) 28.06 28.54 29.09 31.93 24.46 19.84

Note: the Axial Ratio (AR) of the antenna is calculated by the ratio of major axis 𝑎 and minor axis 𝑏, i.e., 𝐴𝑅 = 𝑎∕𝑏. Using dB as the unit, it can be written
as:𝐴𝑅 (dB) = 20log(𝑎∕𝑏). Cross-Polarization Discrimination (𝑋𝑃𝐷) is calculated by: 𝑋𝑃𝐷 (dB) = 24.8 − 20log(𝐴𝑅(dB)).

APPENDIX B: The Performance of ZYACF-L004 in Terms of RHCP Antenna Gain with Respect to Elevation
Angles and Various Frequencies
Gain Frequency Elevation angle 1207 MHz 1227 MHz 1246 MHz 1561 MHz 1575 MHz 1602 MHz
0◦ -5.56 -6.9 -7.68 -5.61 -5.64 -6.09
5◦ -4.53 -5.54 -6.19 -4.04 -4.21 -4.92
10◦ -3.24 -4.47 -5.61 -3.19 -3.54 -4.01
15◦ -2.53 -3.99 -5.45 -2.83 -3.11 -3.62
20◦ -2.04 -3.51 -4.41 -2.83 -2.26 -2.37
25◦ -1.14 -2 -1.09 -2.01 -1.04 -1.33
30◦ -0.17 -0.59 -1.09 -0.74 -0.18 -0.54
35◦ 0.66 0.04 -0.6 0.27 0.7 0.12
40◦ 1.13 0.33 -0.66 0.96 1.6 1.08
45◦ 1.64 0.80 -0.22 1.75 2.23 1.91
50◦ 2.07 1.23 0.5 2.62 2.9 2.51
55◦ 2.59 2.04 1.73 3.15 3.44 3.25
60◦ 3.09 2.75 2.56 3.94 4.24 3.77
65◦ 3.75 3.32 3 4.37 4.8 4.3
70◦ 4.15 3.80 3.41 4.96 5.19 4.67
75◦ 4.57 4.12 3.82 5.39 5.57 5.07
80◦ 4.87 4.46 4.04 5.71 6 5.48
85◦ 5.10 4.57 4.09 6.01 6.15 5.52
90◦ 5.12 4.75 4.28 6.12 6.36 5.75
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APPENDIX C: The Performance of ZYACF-L004 in Terms of RHCP Antenna Gain with Respect to Elevation
Angles and Various Frequencies

Frequency Gain
Elevation angle 1207 MHz 1227 MHz 1246 MHz 1561 MHz 1575 MHz 1602 MHz
0◦ -7.46 -7.39 -8.25 -5.62 -6.55 -6.7
5◦ -5.44 -5.48 -6.17 -4.29 -5.29 -5.18
10◦ -4.08 -4.17 -5.07 -3.48 -4.45 -4.99
15◦ -2.99 -3.41 -4.05 -3.01 -4 -4.11
20◦ -2.14 -2.31 -2.99 -2.04 -3.04 -2.49
25◦ -0.92 -1.01 -1.9 -0.86 -1.69 -1.6
30◦ 0.09 -0.11 -1.08 -0.1 -0.79 -0.76
35◦ 0.77 0.13 -0.6 0.63 -0.07 -0.17
40◦ 1.03 0.71 -0.09 1.2 0.48 0.93
45◦ 1.63 1.31 0.82 2.13 1.52 1.79
50◦ 2.26 1.93 1.42 2.94 2.38 2.43
55◦ 2.99 2.74 2.31 3.82 3.01 3.17
60◦ 3.51 3.21 3.94 4.21 3.69 3.81
65◦ 4 3.68 3.27 4.68 4.33 4.23
70◦ 4.36 3.89 3.52 5.15 4.82 4.65
75◦ 4.55 4.04 3.68 5.47 5.25 5.04
80◦ 4.56 4.08 3.79 5.73 4.63 5.3
85◦ 4.64 4.15 3.85 5.91 5.83 5.38
90◦ 4.77 4.36 4.01 6.08 6.11 5.55
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