**Research Article** 

# An investigation into the adverse effects of $O_2$ , $SO_2$ , and $NO_x$ on polyethyleneimine functional $CO_2$ adsorbents

Kaimin Li<sup>1</sup> · Jianguo Jiang<sup>2</sup>

Received: 5 December 2020 / Accepted: 9 February 2021 / Published online: 18 February 2021 © The Author(s) 2021 OPEN

#### Abstract

In this study, we investigated the influence of  $O_2$ ,  $SO_2$ , and  $NO_x$  on branched and linear polyethyleneimine (PEI) functional silica  $CO_2$  adsorbents (BPEI-SiO\_2 and LPEI-SiO\_2, respectively).  $O_2$  was much more likely to oxidize BPEI-SiO\_2, compared with LPEI-SiO\_2, to form C=O and C=N groups and led to a 23.0% decrease in the  $CO_2$  adsorption capacity after 990 min of cumulative contact with  $10\% O_2$ . In contrast, LPEI-SiO\_2 lost only approximately 3.6% of its  $CO_2$  adsorption capacity, although  $O_2$  oxidized LPEI-SiO\_2 to form C=O groups.  $SO_2$  can cause severe degradation of BPEI-SiO\_2 and LPEI-SiO\_2 by forming heat-stable  $NH_3^+$ —and/or  $NH_2^+$ —containing adducts and by promoting the formation of urea linkages. After cumulative contact with 10, 50, and 200 ppm  $SO_2$  for 990 min, BPEI-SiO\_2 lost 18.2%, 61.4%, and 89.0% of its  $CO_2$  adsorption capacity, and NO at 200 ppm caused almost no loss in  $CO_2$  adsorption capacity after cumulative contact for 990 min, but both led to degradation of adsorbents.  $NO_2$  can cause irreversible formation of  $NH_3^+$ —and/or  $NH_2^+$ —containing adducts, acid products, N-nitro compounds (N–NO<sub>2</sub>), C-nitroso compounds (C–N=O), and C-nitro (C–NO<sub>2</sub>) compounds, and can promote the formation of urea linkages. NO can lead to the formation of  $NH_3^+$ —and/or  $NH_2^+$ —containing adducts and N-nitroso (N–N=O) compounds.

Keywords Carbon capture · Chemical degradation · Flue gas · Polyethyleneimine · Solid amine adsorbents

# 1 Introduction

 $CO_2$  capture, utilization, and storage is a critical technology for realizing net-zero emissions [1]. Over the past decades,  $CO_2$  adsorbents, such as zeolite [2, 3], porous carbon [4, 5], metal–organic frameworks [6, 7], calcium looping technology [8, 9], and solid amine adsorbents [10–12], have attracted much attention for capturing  $CO_2$  from flue gas. Of the various adsorbents, solid amine has been considered a good choice for trapping  $CO_2$  directly from flue gas due to its excellent  $CO_2$  adsorption performance and low energy penalty [13–16]. To protect solid amine adsorbents from high concentrations of SO<sub>2</sub> (500–2500 ppm) and NO<sub>x</sub> (1500–2500 ppm) [17–24] during post-combustion CO<sub>2</sub> capture, the best location of the CO<sub>2</sub> capture unit is after flue gas denitrification and desulfurization [23, 25–27]. However, a certain amount of SO<sub>2</sub> (50–200 ppm), NO<sub>x</sub> (100–400 ppm) [16, 27–32], and O<sub>2</sub> (3–10%) [21, 33–36], which can cause degradation of solid amine sorbents, are still present in the flue gas after denitrification and desulfurization.

According to previous studies,  $O_2$  can oxidize the organic components of solid amine sorbents by forming C=O [21, 37–42], N=O [40–42], C=N [37, 40, 42, 43],

Kaimin Li, likaimin16@gmail.com; Jianguo Jiang, jianguoj@tsinghua.edu.cn | <sup>1</sup>Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China. <sup>2</sup>School of Environment, Tsinghua University, Beijing 100084, China.



SN Applied Sciences (2021) 3:346 | https://doi.org/10.1007/s42452-021-04352-7

**Supplementary Information** The online version contains supplementary material available at https://doi.org/10.1007/s42452-021-04352 -7.

and aliphatic C=C/heterocyclic C-N/aromatic C=C [23]. Furthermore, SO<sub>2</sub> can lead to degradation of solid amine adsorbents by forming sulfate [17, 22, 44], sulfite [17, 22, 44, 45], bisulfite (under humid conditions) [45], and even nitro- and quinone-type compounds (aromatic amine) [22]. NO<sub>2</sub> can result in degradation of solid amine adsorbents by forming nitrate and nitro-compounds [46, 47]. Although it has been reported that NO has no apparent adverse effects on solid amine sorbents [27, 31, 44, 46, 48, 49], a few researchers found that NO can lead to the loss of CO<sub>2</sub> adsorption capacity in solid amine sorbents [28, 50].

Overall, the degradation of solid amine adsorbents induced by  $O_2$ ,  $SO_2$ , and  $NO_x$  has been investigated relatively comprehensively by past studies. However, there is still a lack of information on the degradation of PEI functional adsorbents when interacting with  $O_2$ ,  $SO_2$ , and  $NO_x$ , which is the focus of this study. BPEI and LPEI functional adsorbents were evaluated during long-term interactions with  $O_2$ ,  $SO_2$ , and  $NO_x$ . Their degradation mechanisms were explored in more detail to clarify the degradation pathways of PEI molecules.

# 2 Experimental work

## 2.1 Chemicals

BPEI (molecular weight [MW] 25,000) and potassium bromide (KBr, IR grade) were purchased from Alfa Aesar (Tewksbury, MA, USA). LPEI (MW 25,000) was purchased from Polysciences (Warrington, PA, USA). The molecular structures of BPEI and LPEI are shown in Scheme S1 in the Supplementary Information. Methanol (HPLC grade) was purchased from Fisher Scientific (Waltham, MA, USA). Nano silica used as support was synthesized in lab, its surface area and pore volume respectively were 418 m<sup>2</sup>/g and 0.84 cm<sup>3</sup>/g [51]. All of the gases, including 99.999% N<sub>2</sub>, 15% CO<sub>2</sub> balanced with N<sub>2</sub>, 15% CO<sub>2</sub> and 10% O<sub>2</sub> balanced with N<sub>2</sub>, 15% CO<sub>2</sub> and 200 ppm NO balanced with N<sub>2</sub>, 15% CO<sub>2</sub> and 10 or 200 ppm NO<sub>2</sub> balanced with N<sub>2</sub>, 15% CO<sub>2</sub> and 10, 50, or 200 ppm SO<sub>2</sub> balanced with N<sub>2</sub>, were provided by ZG Special Gases (Beijing, China).

## 2.2 Preparation of PEI functional adsorbents

First, BPEI or LPEI was dissolved into 25 ml methanol and stirred for 30 min using a magnetic mixer. Second, 2 g nano-silica was added to the solution. The silica had been dried in an oven at 105 °C under vacuum conditions (< 1 mm Hg) for 3 h. Third, another 5 ml methanol was added to the solution with stirring at ambient temperature until all of the methanol evaporated. Finally, the sample was dried at 50 °C under vacuum conditions (< 1 mm Hg) for 2 h. The products were named BPEI-SiO<sub>2</sub> and LPEI-SiO<sub>2</sub>.

## 2.3 Characterizations

CO<sub>2</sub> cyclic adsorption-desorption tests were conducted using the TGA/DSC 2 thermogravimetric analyzer (Mettler Toledo, Greifensee, Switzerland). First, 15–20 mg adsorbents were placed into an aluminum oxide pan and pretreated at 120 °C for 30 min under a N<sub>2</sub> atmosphere. Second, the samples were cooled to 75  $^{\circ}$ C, and the N<sub>2</sub> gas was substituted with gas 1 (15% CO<sub>2</sub> balanced with N<sub>2</sub>) for a 10-min adsorption period. The temperature was elevated, and gas 1 was switched to N<sub>2</sub> for 10 min desorption at 120 °C. Third, the samples were cooled to 75 °C, and the gas was switched from  $N_2$  to gas 2 (15% CO<sub>2</sub> with some  $O_2$ , NO, NO<sub>2</sub>, or SO<sub>2</sub> in N<sub>2</sub>) for 10 min adsorption. The temperature was elevated, and gas 2 was switched to N<sub>2</sub> for 10 min desorption at 120 °C. Finally, the second and third steps were repeated 100 times. A reference test was also performed in which the second step was repeated 200 times. At the end of each test, the samples were stabilized for 2 h at 75 °C under a N<sub>2</sub> atmosphere. For the analysis, the CO<sub>2</sub> adsorption capacity of the 1st, 3rd, 5th, ..., and 199th cycles were used. The samples used for cyclic adsorption-desorption tests under different conditions were denoted as BPEI-SiO<sub>2</sub> or LPEI-SiO<sub>2</sub>, followed by the volumetric concentration of  $CO_2$ ,  $O_2$ ,  $SO_2$ , or  $NO_x$  in brackets. For example, BPEI-SiO<sub>2</sub>(200 ppm NO) refers to BPEI-SiO<sub>2</sub> samples exposed to 200 ppm NO (15% CO<sub>2</sub> and 200 ppm NO balanced with  $N_2$ ) in the adsorption–desorption cycles.  $BPEI-SiO_2(15\% CO_2)$  or  $LPEI-SiO_2(15\% CO_2)$  indicate that no O<sub>2</sub>, SO<sub>2</sub>, or NO<sub>x</sub> was present during the adsorption-desorption tests.

Diffuse reflectance infrared Fourier transform (DRIFT) spectra for fresh adsorbents and samples from cyclic adsorption-desorption tests were collected by the Nicolet 6700 spectrometer coupled with an in situ reaction cell (Thermo Fisher Scientific, Waltham, MA, USA). The resolution and scan time were set as  $4 \text{ cm}^{-1}$  and 32, respectively. The spectra were recorded in the range of  $400-4000 \text{ cm}^{-1}$ . The spectrum of KBr under N<sub>2</sub> was used as the background. In situ DRIFT spectra of BPEI-SiO<sub>2</sub> and LPEI-SiO<sub>2</sub> during interaction with different gas mixtures were also recorded using the Nicolet 6700 spectrometer. First, fresh samples of BPEI-SiO<sub>2</sub> and LPEI-SiO<sub>2</sub> were placed in the in situ reaction cell, the cell was sealed, and the sample was degassed for 2 h at 120 °C under N<sub>2</sub>. The spectra were recorded and denoted as spectrum 1. Second, the samples were cooled to 75 °C under N<sub>2</sub>, and the spectra were collected and used as the background for recording the test spectra in the presence of gases 1 or 2. Third, the N<sub>2</sub> was switched to gas 1 or gas 2, and simultaneously start to record infrared

(IR) spectra at certain time points. Finally, after 10 or 24 h of interaction with gas 1 or gas 2, the temperature was increased and the atmosphere simultaneously switched to N<sub>2</sub>. Samples were regenerated at 120 °C under N<sub>2</sub> for 1 h, and the IR spectra were recorded (using spectrum 1 as a background).

# **3** Results and discussion

# 3.1 The adverse effects of O<sub>2</sub>

Figure 1 shows the CO<sub>2</sub> adsorption capacity for BPEI-SiO<sub>2</sub>(10% O<sub>2</sub>) and LPEI-SiO<sub>2</sub>(10% O<sub>2</sub>), as well as BPEI-SiO<sub>2</sub>(15% CO<sub>2</sub>) and LPEI-SiO<sub>2</sub>(15% CO<sub>2</sub>). BPEI-SiO<sub>2</sub>(15% CO<sub>2</sub>) and LPEI-SiO<sub>2</sub>(15% CO<sub>2</sub>) exhibited a relatively stable CO<sub>2</sub> adsorption performance during the tests. However, BPEI-SiO<sub>2</sub>(10% O<sub>2</sub>) lost 23.0% of its original CO<sub>2</sub> adsorption capacity by the 199th cycle. In contrast, LPEI-SiO<sub>2</sub>(10% O<sub>2</sub>) displayed almost the same stable performance as LPEI-SiO<sub>2</sub>(15% CO<sub>2</sub>) and only lost approximately 3.6% of its original CO<sub>2</sub> adsorption capacity by the 199th cycle. The CO<sub>2</sub> cyclic adsorption–desorption results demonstrate that LPEI is much more resistant to oxidation by O<sub>2</sub> than BPEI, which is consistent with previous research [37].

Figure 2a shows the DRIFT spectra of BPEI-SiO<sub>2</sub>, BPEI-SiO<sub>2</sub>(15% CO<sub>2</sub>), and BPEI-SiO<sub>2</sub>(10% O<sub>2</sub>), and Fig. 2b shows the DRIFT spectra of LPEI-SiO<sub>2</sub>, LPEI-SiO<sub>2</sub>(15% CO<sub>2</sub>), and LPEI-SiO<sub>2</sub>(10% O<sub>2</sub>). Among the DRIFT spectra of BPEI-SiO<sub>2</sub>, BPEI-SiO<sub>2</sub>(15% CO<sub>2</sub>), and BPEI-SiO<sub>2</sub>(10% O<sub>2</sub>), the most apparent difference is the peak at 1666 cm<sup>-1</sup>. The weak peak in the case of BPEI-SiO<sub>2</sub> represents the C=O stretching

vibration in carbamate and carbamic acid formed by adsorbing  $CO_2$  from the atmosphere [13, 52–56]. The peak's absorption intensity in BPEI-SiO<sub>2</sub>(15% CO<sub>2</sub>) is slightly stronger than in BPEI-SiO<sub>2</sub> but weaker than in BPEI- $SiO_2(10\% O_2)$ , mainly due to the C=O vibration in urea linkages [13, 57]. For BPEI-SiO<sub>2</sub>(10% O<sub>2</sub>), the peak at 1666 cm<sup>-1</sup> becomes very prominent and is likely associated with the oxidation of BPEI-SiO<sub>2</sub> by O<sub>2</sub> for various reasons. Bali et al. [38, 45] assigned a similar IR peak, located at 1693 cm<sup>-1</sup>, as the C=O stretching vibration of amide, acid, and/or imide. Wang et al. [39, 58] assigned a similar band (1659  $\text{cm}^{-1}$ ) as the amide's C=O stretching vibration. Srikanth et al. [41, 53] assigned a similar peak at 1670  $\text{cm}^{-1}$  as the C=O stretching vibration in amide overlapping with the N=O stretching vibration in nitrites. Additionally, Yu et al. [40, 52] assigned a broad band at 1660–1680 cm<sup>-1</sup> as the C=O vibration in amide overlapping with the N=O vibration in nitrites. Gebald et al. [42, 54] assigned a similar peak  $(1670 \text{ cm}^{-1})$  as the C=N vibration in oxime/imine/nitrile and the C=O vibration in amide/imide. Calleja et al. [43] assigned a similar peak at 1667 cm<sup>-1</sup> as the C=N stretching vibration of imine, oxime, and/or nitrone. Assignment of this peak (1666 cm<sup>-1</sup>) in the DRIFT spectra of BPEI-SiO<sub>2</sub> (10% O<sub>2</sub>) is difficult based solely on relevant literature results. Therefore, further analysis was performed.

Figure 2b shows a weak peak at 1560 cm<sup>-1</sup> for LPEI-SiO<sub>2</sub>, attributed to the COO<sup>-</sup> stretching vibration in carbamate due to adsorption of CO<sub>2</sub> from the atmosphere [56]. However, the peak becomes more prominent for LPEI-SiO<sub>2</sub>(15% CO<sub>2</sub>) and LPEI-SiO<sub>2</sub>(10% O<sub>2</sub>) due to the C-N stretching vibration of urea linkages [53–55, 59]. In the DRIFT spectra of LPEI-SiO<sub>2</sub> and LPEI-SiO<sub>2</sub>(15% CO<sub>2</sub>),



Fig. 1 CO<sub>2</sub> cyclic adsorption–desorption results for **a** BPEI-SiO<sub>2</sub>(15% CO<sub>2</sub>) and BPEI-SiO<sub>2</sub>(10% O<sub>2</sub>) and **b** LPEI-SiO<sub>2</sub>(15% CO<sub>2</sub>) and LPEI-SiO<sub>2</sub>(10% O<sub>2</sub>)



Fig. 2 DRIFT spectra of a BPEI-SiO<sub>2</sub>, BPEI-SiO<sub>2</sub>(15% CO<sub>2</sub>), and BPEI-SiO<sub>2</sub>(10% O<sub>2</sub>) and b LPEI-SiO<sub>2</sub>, LPEI-SiO<sub>2</sub>(15% CO<sub>2</sub>), and LPEI-SiO<sub>2</sub>(10% O<sub>2</sub>)

a peak at 1639 cm<sup>-1</sup>, attributed to the N–H deformation vibration of the secondary amine in LPEI [60], was observed. However, in the IR spectra of LPEI-SiO<sub>2</sub>(10% O<sub>2</sub>), the peak at 1639 cm<sup>-1</sup> is obscured by a prominent peak at 1658 cm<sup>-1</sup>, most likely the C=O stretching vibration from the oxidization of LPEI-SiO<sub>2</sub>. Figure 3a and b show the in situ DRIFT spectra of BPEI-SiO<sub>2</sub> and LPEI-SiO<sub>2</sub> when interacting with gas 1 (15% CO<sub>2</sub> balanced with N<sub>2</sub>). No apparent changes in the DRIFT spectra were observed during the interaction. After regeneration, the flat line spectrum in Fig. 3a indicated no noticeable degradation induced by CO<sub>2</sub>. In Fig. 3b, a negative



Fig. 3 In situ DRIFT spectra of a BPEI-SiO<sub>2</sub> and b LPEI-SiO<sub>2</sub> when interacting with gas 1 (15% CO<sub>2</sub> balanced with N<sub>2</sub>)



peak at 1647 cm<sup>-1</sup> and a positive peak at 1604 cm<sup>-1</sup> were observed after regeneration, which is most likely due to the removal of chemically adsorbed  $H_2O$  in LPEI-SiO<sub>2</sub>.

Figure 4a and b show the in situ DRIFT spectra of BPEI-SiO<sub>2</sub> and LPEI-SiO<sub>2</sub>, respectively, when interacting with  $10\% O_2$  (15% CO<sub>2</sub> and  $10\% O_2$  balanced with N<sub>2</sub>). No apparent changes in the DRIFT spectra were observed during the interaction. After a 10-h interaction, no peaks indicating oxidation by O<sub>2</sub> were observed in the DRIFT spectra of regenerated BPEI-SiO<sub>2</sub>. A weak peak at 1670 cm<sup>-1</sup> in the DRIFT spectra of regenerated LPEI-SiO<sub>2</sub> was attributed to the C=O vibration derived from oxidation by O<sub>2</sub>. After a 24-h interaction, the peak size at 1670 cm<sup>-1</sup> increased in the DRIFT spectra of regenerated LPEI-SiO<sub>2</sub>. In the DRIFT spectra of regenerated BPEI-SiO<sub>2</sub>, two positive peaks appeared at 1670 cm<sup>-1</sup> and 1606 cm<sup>-1</sup> and two negative peaks at 2941 cm<sup>-1</sup> and 2817 cm<sup>-1</sup>. The two negative peaks (2941 cm<sup>-1</sup> and 2817 cm<sup>-1</sup>) corresponded to the C-H asymmetric and symmetric stretching vibration [56, 61, 62], indicating the loss of  $-CH_2$ - groups in BPEI. The positive peak at 1670 cm<sup>-1</sup> is likely due to the C=O stretching vibration, and the positive peak at 1606 cm<sup>-1</sup> indicates C=N vibration [37]. We concluded that O<sub>2</sub> oxidizes -CH<sub>2</sub>- groups in BPEI to form C=O and can also oxidize -CH<sub>2</sub>-NH- to form C=N groups. The C=O pathway seems to dominate based on the absorption intensity of the C=O peak (1670  $\text{cm}^{-1}$ ), which is much stronger than the C=N peak (1606 cm<sup>-1</sup>). In LPEI, O<sub>2</sub> oxidizes –CH<sub>2</sub>– groups to form a small number of C=O groups.

These results demonstrate that the oxidization of BPEI-SiO<sub>2</sub> and LPEI-SiO<sub>2</sub> is a relatively slow process, but BPEI-SiO<sub>2</sub> is more readily oxidized than LPEI-SiO<sub>2</sub>. We speculated that the CO<sub>2</sub> adsorption capacity of LPEI-SiO<sub>2</sub> would also gradually decrease if we increased the test duration.

#### 3.2 The adverse effects of SO<sub>2</sub>

Figure 5a and b show the CO<sub>2</sub> adsorption capacity of BPEI-SiO<sub>2</sub> and LPEI-SiO<sub>2</sub> after exposure to SO<sub>2</sub>. SO<sub>2</sub> led to a severe decrease in CO<sub>2</sub> adsorption capacity. An almost linear decrease in CO<sub>2</sub> adsorption capacity was observed for both BPEI-SiO<sub>2</sub> and LPEI-SiO<sub>2</sub> after exposure to 10 or 50 ppm SO<sub>2</sub> (15% CO<sub>2</sub> and 10 or 50 ppm SO<sub>2</sub> balanced with N<sub>2</sub>). The CO<sub>2</sub> adsorption capacity of BPEI-SiO<sub>2</sub> and LPEI-SiO<sub>2</sub> cumulatively decreased by 18.2% and 18.5% at 10 ppm SO<sub>2</sub> and by 61.4% and 60.6% at 50 ppm SO<sub>2</sub>. When the level of SO<sub>2</sub> reached 200 ppm, the CO<sub>2</sub> adsorption capacity of BPEI-SiO<sub>2</sub> and LPEI-SiO<sub>2</sub> respectively lost 89.0% and 78.5%. And the decrease in the CO<sub>2</sub> adsorption capacity occurred mainly in the first 50-60 cycles in the 200 ppm SO<sub>2</sub> scenario. For example, the CO<sub>2</sub> adsorption capacity of BPEI-SiO<sub>2</sub> at the 60th cycle and of LPEI-SiO<sub>2</sub> at the 50th cycle decreased by 85.5% and 74.1%, respectively. During subsequent cycles, the decreasing CO<sub>2</sub> adsorption capacity reached a plateau. The stable CO<sub>2</sub> adsorption performance in the plateaus may be due to the residual isolated amino groups, which could adsorb CO<sub>2</sub> and, more importantly, could adsorb SO<sub>2</sub> reversibly [28, 44, 48, 52].



Fig. 4 In situ DRIFT spectra of a BPEI-SiO<sub>2</sub>, and b LPEI-SiO<sub>2</sub> during interaction with 10% O<sub>2</sub> (15% CO<sub>2</sub> and 10% O<sub>2</sub> balanced with N<sub>2</sub>)

SN Applied Sciences A Springer NATURE journal



**Fig. 5** CO<sub>2</sub> cyclic adsorption–desorption results for **a** BPEI-SiO<sub>2</sub>(15% CO<sub>2</sub>), BPEI-SiO<sub>2</sub>(10 ppm SO<sub>2</sub>), BPEI-SiO<sub>2</sub>(50 ppm SO<sub>2</sub>), and BPEI-SiO<sub>2</sub>(200 ppm SO<sub>2</sub>) and **b** LPEI-SiO<sub>2</sub>(15% CO<sub>2</sub>), LPEI-SiO<sub>2</sub>(10 ppm SO<sub>2</sub>), LPEI-SiO<sub>2</sub>(50 ppm SO<sub>2</sub>), and LPEI-SiO<sub>2</sub>(200 ppm SO<sub>2</sub>)

Figure 6a shows a peak at 1662 cm<sup>-1</sup> for each sample, typically associated with the C=O stretching vibration, but the absorption intensities differed significantly. For BPEI-SiO<sub>2</sub>, the peak was derived from the C=O stretching vibration in carbamate and carbamic acid due to adsorption of CO<sub>2</sub> from the atmosphere [13, 52–56]. For BPEI-SiO<sub>2</sub>(15% CO<sub>2</sub>), the formation of urea linkages was most responsible for the peak [13, 57]. For BPEI-SiO<sub>2</sub>(10 ppm SO<sub>2</sub>), the peak's adsorption intensity was similar to that for BPEI-SiO<sub>2</sub>(15%

 $CO_2$ ). However, for BPEI-SiO<sub>2</sub>(50 ppm SO<sub>2</sub>) and BPEI-SiO<sub>2</sub>(200 ppm SO<sub>2</sub>), the peak's intensity increased, likely due to the affinity of SO<sub>2</sub> to BPEI-SiO<sub>2</sub>.

A similar phenomenon was observed at 1666 cm<sup>-1</sup> in Fig. 6b. Meantime, two other peaks at 1496 cm<sup>-1</sup> and 1560 cm<sup>-1</sup>, most likely attributed to the C–N stretching vibration of urea linkages [53–55, 59], can also be observed in Fig. 6b. Thus, we postulate that the intense peak at 1666 cm<sup>-1</sup> for SO<sub>2</sub>-exposed samples is due mainly



**Fig. 6** DRIFT spectra of **a** BPEI-SiO<sub>2</sub>, BPEI-SiO<sub>2</sub>(15% CO<sub>2</sub>), BPEI-SiO<sub>2</sub>(10 ppm SO<sub>2</sub>), BPEI-SiO<sub>2</sub>(50 ppm SO<sub>2</sub>), and BPEI-SiO<sub>2</sub>(200 ppm SO<sub>2</sub>) and **b** LPEI-SiO<sub>2</sub>, LPEI-SiO<sub>2</sub>(15% CO<sub>2</sub>), LPEI-SiO<sub>2</sub>(10 ppm SO<sub>2</sub>), LPEI-SiO<sub>2</sub>(50 ppm SO<sub>2</sub>), and LPEI-SiO<sub>2</sub>(200 ppm SO<sub>2</sub>)

SN Applied Sciences A SPRINGER NATURE journal



Fig. 7 In situ DRIFT spectra of **a** BPEI-SiO<sub>2</sub> and **b** LPEI-SiO<sub>2</sub> during interaction with 200 ppm SO<sub>2</sub> (15% CO<sub>2</sub> and 200 ppm SO<sub>2</sub> balanced with  $N_2$ )

to the C=O stretching vibration of urea linkages. The peak at 1662 cm<sup>-1</sup> in Fig. 6a may also represent the C=O stretching vibration of urea linkages. Therefore, we concluded that SO<sub>2</sub> promotes the formation of urea linkages when PEI functional adsorbents interact with CO<sub>2</sub> streams containing SO<sub>2</sub>. Moreover, NH<sub>2</sub><sup>+</sup> deformation vibrations were observed at 1616 cm<sup>-1</sup> in the DRIFT spectra of LPEI-SiO<sub>2</sub>(10 ppm SO<sub>2</sub>), LPEI-SiO<sub>2</sub>(50 ppm SO<sub>2</sub>), and LPEI-SiO<sub>2</sub> (200 ppm SO<sub>2</sub>) [56, 61, 63] in Fig. 6b. These represent the formation of heat-stable NH<sub>2</sub><sup>+</sup>-containing adducts between SO<sub>2</sub> and LPEI-SiO<sub>2</sub>.

Figure 7a and b show in situ DRIFT spectra of BPEI-SiO<sub>2</sub> and LPEI-SiO<sub>2</sub>, respectively, when interacting with 200 ppm SO<sub>2</sub> (15% CO<sub>2</sub> and 200 ppm SO<sub>2</sub> balanced with N<sub>2</sub>) at 75 °C. In Fig. 7a, the initial peak at  $3022 \text{ cm}^{-1}$ , representing the NH<sub>3</sub><sup>+</sup>/ NH<sub>2</sub><sup>+</sup> vibration [56, 61, 63], clearly strengthened and gradually shifted to  $3078 \text{ cm}^{-1}$  with prolonged interaction time. Similarly, the initial peak at 1628 cm<sup>-1</sup>, representing the NH<sub>3</sub><sup>+</sup> vibration [56, 61, 63], clearly strengthened and gradually shifted to 1647 cm<sup>-1</sup>. After regeneration, the two peaks had a high absorption intensity. The peak at 2546 cm<sup>-1</sup>, representing the  $NH_3^+/NH_2^+$  vibration [56, 61, 64], and the peak at  $2104 \text{ cm}^{-1}$ , representing the NH<sub>3</sub><sup>+</sup> vibration [56, 61, 64], were observed after regeneration. The two peaks at 1562 cm<sup>-1</sup> and 1500 cm<sup>-1</sup>, which represent the COO<sup>-</sup> stretching vibration in carbamate [52, 56, 61, 64–66], disappeared after regeneration, implying the release of the adsorbed CO<sub>2</sub>. Therefore, the remaining  $NH_3^+/NH_2^+$  groups must originate from the formation of heat-stable NH<sub>3</sub><sup>+</sup>/NH<sub>2</sub><sup>+</sup>-containing

adducts between BPEI-SiO<sub>2</sub> and SO<sub>2</sub>. Meanwhile, the peaks at 1018 cm<sup>-1</sup> and 966 cm<sup>-1</sup> most likely belong to the asymmetric and symmetric S=O stretching vibration [22, 45, 46, 63, 67], and the peak at 841 cm<sup>-1</sup> represents the S–O stretching vibration [46, 68], which all suggest the existence of sulfur-containing products. All of the above peaks are observed at similar locations in Fig. 7b.

The above analysis demonstrates that  $SO_2$  reacted with BPEI and LPEI to form irreversible  $NH_3^+$ - and/or  $NH_2^+$ -containing adducts. Previous studies reported that sulfites and/or sulfates formed between  $SO_2$  and solid amine adsorbents [17, 44–46, 49, 68]. As  $H_2O$  and  $O_2$  were free during the interaction processes in this study, we hypothesized that the following Eqs. (1) and (2) describe a possible mechanism for the reactions between  $SO_2$  and amino groups [44, 69]. These equations are similar to the reaction between  $CO_2$ and amino groups under dry conditions (Eqs. (3) and (4)):

$$R_1 R_2 NH + SO_2 \leftrightarrow R_1 R_2 NH^+ SOO^-$$
(1)

$$R_1R_2NH + R_1R_2NH^+SOO^- \leftrightarrow R_1R_2NH_2^+ + R_1R_2NSOO^-$$
(2)

$$R_1 R_2 NH + CO_2 \leftrightarrow R_1 R_2 NH^+ COO^-$$
(3)

$$R_1R_2NH + R_1R_2NH^+COO^- \leftrightarrow R_1R_2NH_2^+ + R_1R_2NCOO^-$$
(4)

$$R_1, R_2 = H \text{ or } CH_2$$

SN Applied Sciences A SPRINGER NATURE journal The peak at 1680 cm<sup>-1</sup> in Fig. 7a and at 1672 cm<sup>-1</sup> in Fig. 7b were both observed after regeneration. They most likely belong to the C=O stretching vibration of urea linkages. In previous research [13], we found that the in situ DRIFT peak representing C=O in urea linkages was extremely weak after 11 h of interaction between pure CO<sub>2</sub> and the BPEI (MW=600 Da) functional adsorbent at 75 °C. Thus, the intense peaks observed after regeneration must be derived from the influence of SO<sub>2</sub> (Fig. 7a and b). As we had speculated, SO<sub>2</sub> can promote the formation of urea linkages between PEI functional adsorbents and CO<sub>2</sub>.

The in situ DRIFT spectra of BPEI-SiO<sub>2</sub> or LPEI-SiO<sub>2</sub> in the presence of 10 ppm SO<sub>2</sub> (15% CO<sub>2</sub> and 10 ppm SO<sub>2</sub> balanced with N<sub>2</sub>) are shown in Figures S7, S8, and S9 in the Supplementary Information. The spectra were similar to those in the 200 ppm SO<sub>2</sub> scenario, but the absorption intensity was much lower in the 10 ppm SO<sub>2</sub> scenario.

## 3.3 The adverse effects of NO<sub>2</sub>

Generally, NO<sub>2</sub> accounts for only 5% or less of the total NO<sub>x</sub> in flue gas [70]. In this study, we used a concentration of 10 ppm NO<sub>2</sub> (15% CO<sub>2</sub> and 10 ppm NO<sub>2</sub> balanced with N<sub>2</sub>) to investigate the adverse effects of NO<sub>2</sub> on PEI functional adsorbents. As a reference, 200 ppm NO<sub>2</sub> (15% CO<sub>2</sub> and 200 ppm NO<sub>2</sub> balanced with N<sub>2</sub>) was also investigated. CO<sub>2</sub> cyclic adsorption–desorption tests (Fig. 8a and b) showed excellent CO<sub>2</sub> adsorption stabilities for both BPEI-SiO<sub>2</sub> and LPEI-SiO<sub>2</sub> under the 10 ppm NO<sub>2</sub> scenario. However, under the 200 ppm NO<sub>2</sub> scenario, the CO<sub>2</sub> adsorption capacity of BPEI-SiO<sub>2</sub> and LPEI-SiO<sub>2</sub> and LPEI-SiO<sub>2</sub> showed an almost linear decline and were decreased by 49.6% and 49.5%, respectively.

In Fig. 9a and b, a sharp peak at 1666  $cm^{-1}$  was observed for both BPEI-SiO<sub>2</sub>(200 ppm NO<sub>2</sub>) and LPEI-SiO<sub>2</sub>(200 ppm NO<sub>2</sub>). The peaks are possibly associated with the C=O stretching vibration in urea linkages. However, in the presence of NO<sub>2</sub>, it is difficult to exclude the N=O stretching vibration in nitrites and/or nitrates for this peak (1666 cm<sup>-1</sup>) [63]. Furthermore, a peak at approximately 1361 cm<sup>-1</sup> was observed in the DRIFT spectra of BPEI-SiO<sub>2</sub>(200 ppm NO<sub>2</sub>) and LPEI-SiO<sub>2</sub>(200 ppm NO<sub>2</sub>), most likely associated with the formation of N-nitroso compounds [71, 72]. In Fig. 9a, the DRIFT spectra of BPEI- $SiO_2(10 \text{ ppm NO}_2)$  are similar to those of BPEI-SiO<sub>2</sub> (15%)  $CO_2$ ). In Fig. 9b, a peak at 1612 cm<sup>-1</sup>, representing the NH<sub>2</sub><sup>+</sup> deformation vibration [56, 61, 63], was observed for both LPEI-SiO<sub>2</sub>(10 ppm NO<sub>2</sub>) and LPEI-SiO<sub>2</sub>(200 ppm NO<sub>2</sub>), but not for LPEI-SiO<sub>2</sub> or LPEI-SiO<sub>2</sub>(15% CO<sub>2</sub>).

Figure 10a and b exhibit the in situ DRIFT spectra of BPEI-SiO<sub>2</sub> and LPEI-SiO<sub>2</sub> during interaction with 200 ppm  $NO_2$  (15%  $CO_2$  and 200 ppm  $NO_2$  balanced with  $N_2$ ). Figure 10a shows that the initial peak at 3022 cm<sup>-1</sup> gradually strengthened and shifted to 3074 cm<sup>-1</sup> during prolonged interaction time. This peak represents the  $NH_3^+/NH_2^+$  stretching vibration [56, 61, 63] and was still prominent after regeneration. The peak at approximately  $2505 \text{ cm}^{-1}$  represents the NH<sub>3</sub><sup>+</sup>/NH<sub>2</sub><sup>+</sup> stretching vibration [56, 61, 64], and the peaks at approximately 2162  $\text{cm}^{-1}$ and 1631 cm<sup>-1</sup> represent the NH<sub>3</sub><sup>+</sup> vibration [56, 61, 63, 64] and were observed after regeneration. The peak at 1651 cm<sup>-1</sup>, most likely due to the N=O vibration in nitrites and/or nitrates [63], emerged and gradually strengthened with prolonged interaction time, and the sharp peak was still present after regeneration. Furthermore, the peak at



Fig. 8 CO<sub>2</sub> cyclic adsorption–desorption results for **a** BPEI-SiO<sub>2</sub>(15% CO<sub>2</sub>), BPEI-SiO<sub>2</sub>(10 ppm NO<sub>2</sub>), and BPEI-SiO<sub>2</sub>(200 ppm NO<sub>2</sub>) and **b** LPEI-SiO<sub>2</sub>(15% CO<sub>2</sub>), LPEI-SiO<sub>2</sub>(10 ppm NO<sub>2</sub>), and LPEI-SiO<sub>2</sub>(200 ppm NO<sub>2</sub>)

SN Applied Sciences A Springer Nature journat



Fig. 9 DRIFT spectra of **a** BPEI-SiO<sub>2</sub>, BPEI-SiO<sub>2</sub>(15% CO<sub>2</sub>), BPEI-SiO<sub>2</sub>(10 ppm NO<sub>2</sub>), and BPEI-SiO<sub>2</sub>(200 ppm NO<sub>2</sub>) and **b** LPEI-SiO<sub>2</sub>, LPEI-SiO<sub>2</sub>(15% CO<sub>2</sub>), LPEI-SiO<sub>2</sub>(10 ppm NO<sub>2</sub>), and LPEI-SiO<sub>2</sub>(200 ppm NO<sub>2</sub>)

802 cm<sup>-1</sup>, representing the C-N stretching vibration in nitrites [63], and the peak at  $1126 \text{ cm}^{-1}$ , representing N–N stretching vibration in nitrates [46, 63], both remained after regeneration.

All of the above peaks are observed at similar locations in Fig. 10b. Therefore, the formation of  $NH_3^+$  and/or  $NH_2^+$ -containing nitrites and/or nitrates is an important route for the degradation of BPEI-SiO<sub>2</sub> and LPEI-SiO<sub>2</sub>. Considering O<sub>2</sub> and H<sub>2</sub>O are free during the interaction processes, we speculate that the possible formation mechanism of nitrites and nitrates is depicted in Eqs. (5) to (9) [73]:

$$R_1 R_2 NH + NO_2 \leftrightarrow R_1 R_2 NH^+ NOO^-$$
(5)

$$R_1R_2NH + R_1R_2NH^+NOO^- \leftrightarrow R_1R_2NH_2^+ + R_1R_2NNOO^-$$
(6)

$$NO_{2}^{\cdot} + NO_{2}^{\cdot} \leftrightarrow N_{2}O_{4} \tag{7}$$

 $R_1R_2NH + N_2O_4 \leftrightarrow R_1R_2NH^+NOOO^- + NO$ (8)

$$R_1R_2NH + R_1R_2NH^+NOOO^- \leftrightarrow R_1R_2NH_2^+ + R_1R_2NNOOO^-$$
(9)

 $R_1, R_2 = H \text{ or } CH_2$ 

In Fig. 10a, the peaks at 1525 cm<sup>-1</sup>, 1396 cm<sup>-1</sup>, and 1246 cm<sup>-1</sup> may represent different types of NO<sub>2</sub> stretching vibrations in N-nitro compounds (N-NO<sub>2</sub>) [22, 63]. Corresponding peaks are observed at 1525 cm<sup>-1</sup>, 1400 cm<sup>-1</sup>, and

1242 cm<sup>-1</sup> in Fig. 10b. Meanwhile, the peak at 962 cm<sup>-1</sup> in Fig. 10a and the peak at 957 cm<sup>-1</sup> in Fig. 10b may represent the N–N stretching vibration in N-nitro compounds [63]. Moreover, in Fig. 10a, the two peaks at 1525 cm<sup>-1</sup> and 1396 cm<sup>-1</sup> may also represent NO<sub>2</sub> asymmetric and symmetric stretching vibrations in C-nitro compounds (C–NO<sub>2</sub>) [63]. The peak at 1377 cm<sup>-1</sup> may represent the N=O stretching vibration in C-nitroso compounds (C-NO) [63], with the C-nitro and C-nitroso compounds arising due to the oxidation of NO<sub>2</sub> to a primary amine in BPEI. N<sub>2</sub>O<sub>4</sub> may also act as an oxidizing agent.

The peaks at 1680 cm<sup>-1</sup> in Fig. 10a and 1676 cm<sup>-1</sup> in Fig. 10b were observed after regeneration. The two peaks are most likely due to the C=O stretching vibration in urea linkages. These two peaks were mutually corroborative with the two peaks at 1666 cm<sup>-1</sup> in Fig. 9a and b. Therefore, similar to SO<sub>2</sub>, NO<sub>2</sub> also promotes the formation of urea linkages between PEI functional adsorbents and CO<sub>2</sub>.

At 3215 cm<sup>-1</sup> in Fig. 10a and 3190 cm<sup>-1</sup> in Fig. 10b, apparent variations are observed. These two peaks gradually strengthened and can be observed after regeneration. A similar observation was noted at 3224 cm<sup>-1</sup> in Fig. 7a. These peaks most likely represent the O–H vibration in acid. We hypothesized that the following Eqs. (10) to (15) might explain the appearance of the peak:

$$\mathsf{RNH}_2 + \mathsf{CO}_2 \leftrightarrow \mathsf{RNH}_2^+ \mathsf{COO}^- \leftrightarrow \mathsf{RHNCOOH}$$
(10)

$$\text{RNH}_2 + \text{SO}_2 \leftrightarrow \text{RNH}_2^+ \text{SOO}^- \leftrightarrow \text{RHNSOOH}$$
 (11)



**Fig. 10** In situ DRIFT spectra of **a** BPEI-SiO<sub>2</sub> and **b** LPEI-SiO<sub>2</sub> when interacting with 200 ppm NO<sub>2</sub> (15% CO<sub>2</sub> and 200 ppm NO<sub>2</sub> balanced with N<sub>2</sub>) and of **c** BPEI-SiO<sub>2</sub> and (d) LPEI-SiO<sub>2</sub> when interacting with 10 ppm NO<sub>2</sub> (15% CO<sub>2</sub> and 10 ppm NO<sub>2</sub> balanced with N<sub>2</sub>)

$$R_1 R_2 NH + NO_2 \leftrightarrow R_1 R_2 NH^+ NOO^- \leftrightarrow R_1 R_2 NNOOH$$
(12)

$$NO_2^{\cdot} + NO_2^{\cdot} \leftrightarrow N_2O_4 \tag{13}$$

$$R_1 R_2 N H_2 + N_2 O_4 \leftrightarrow R_1 R_2 N H^+ NOOO^- + NO$$
(14)

 $R_1 R_2 NH^+ NOOO^- \leftrightarrow R_1 R_2 NNOOOH$ (15)

 $R_1, R_2 = H \text{ or } CH_2$ 

SN Applied Sciences A Springer Nature journal Figure 10 c and d show in situ DRIFT spectra during interaction with 10 ppm NO<sub>2</sub> (15% CO<sub>2</sub> and 10 ppm NO<sub>2</sub> balanced with N<sub>2</sub>) for BPEI-SiO<sub>2</sub> and LPEI-SiO<sub>2</sub>. The spectra are similar to those in Fig. 10a and b, but with a much weaker absorption intensity. Therefore, 10 ppm NO<sub>2</sub> could also lead to degradation of BPEI-SiO<sub>2</sub> and LPEI-SiO<sub>2</sub> via similar mechanisms. The degradation induced by 10 ppm NO<sub>2</sub> was very slight, and therefore no pronounced decrease in the CO<sub>2</sub> adsorption capacity was observed. However, when the CO<sub>2</sub> cyclic adsorption–desorption cycles were increased, both BPEI-SiO<sub>2</sub> and LPEI-SiO<sub>2</sub> encountered a loss in their  $\text{CO}_2$  adsorption capacity under the 10 ppm  $\text{NO}_2$  scenario

## 3.4 The adverse effects of NO

As mentioned above, NO typically accounts for over 95% of the total NO<sub>x</sub> in flue gas. We only investigated the impact of 200 ppm NO on BPEI-SiO<sub>2</sub> and LPEI-SiO<sub>2</sub>. Figure 11a and b show the changes in the CO<sub>2</sub> adsorption capacity of BPEI-SiO<sub>2</sub> and LPEI-SiO<sub>2</sub> after exposure to 200 ppm NO (15% CO<sub>2</sub> and 200 ppm NO balanced with N<sub>2</sub>). The CO<sub>2</sub> adsorption performance of BPEI-SiO<sub>2</sub> and LPEI-SiO<sub>2</sub> was very stable during the whole process.

In Fig. 12a and b, the DRIFT spectrum of BPEI-SiO<sub>2</sub>(200 ppm NO) is similar to that of BPEI-SiO<sub>2</sub>(15% CO<sub>2</sub>), while the DRIFT spectrum of LPEI-SiO<sub>2</sub>(200 ppm NO) is similar to that of LPEI-SiO<sub>2</sub>(15% CO<sub>2</sub>). Compared with the DRIFT spectra of BPEI-SiO<sub>2</sub>, the absorption intensity of the peak at approximately 1666 cm<sup>-1</sup> was stronger in the DRIFT spectra of BPEI-SiO<sub>2</sub>(200 ppm NO) and BPEI-SiO<sub>2</sub> (15% CO<sub>2</sub>). The sharp peak at 1558 cm<sup>-1</sup> was far more prominent for LPEI-SiO<sub>2</sub>(200 ppm NO) and LPEI-SiO<sub>2</sub>(15% CO<sub>2</sub>) than for LPEI-SiO<sub>2</sub>. These two peaks at 1666 cm<sup>-1</sup> and 1558 cm<sup>-1</sup> represent the C=O stretching vibration and the C-N stretching vibration in urea linkages. This is due mainly to the formation of urea linkages during the CO<sub>2</sub> cyclic adsorption–desorption processes. The DRIFT spectra provide no information on the degradation induced by NO.

Figure 13a and b show the in situ DRIFT spectra for BPEI-SiO<sub>2</sub> and LPEI-SiO<sub>2</sub> during interaction with 200 ppm NO (15% CO<sub>2</sub> and 200 ppm NO balanced with N<sub>2</sub>). No apparent changes were observed for BPEI-SiO<sub>2</sub> or LPEI-SiO<sub>2</sub> during the interaction processes. But some peaks remained after regeneration in Fig. 13a, for example, the peaks at 2985 cm<sup>-1</sup> and 2509 cm<sup>-1</sup> denoting the NH<sub>3</sub><sup>+</sup>/NH<sub>2</sub><sup>+</sup> vibration [56, 61, 64], the peak at 1657 cm<sup>-1</sup> representing the N=O vibration [63], the peak at 1606 cm<sup>-1</sup> most likely denoting the NH<sub>2</sub><sup>+</sup> vibration, and the peak at 1011 cm<sup>-1</sup> likely representing the N–N stretching vibration. All of these peaks were observed at similar locations in Fig. 13b. Equations (16) to (18), shown below, may provide an explanation for these peaks [69]. The reaction in Eq. (16) limited the formation of R<sub>1</sub>R<sub>2</sub>NH<sub>2</sub><sup>+</sup> R<sub>1</sub>R<sub>2</sub>NHN<sub>2</sub>O<sub>2</sub><sup>-</sup> and further confined the degradation of BPEI-SiO<sub>2</sub> and LPEI-SiO<sub>2</sub> induced by NO.

$$R_1 R_2 NH + NO \leftrightarrow R_1 R_2 NHNO (slow)$$
(16)

$$R_1R_2NHNO + NO \leftrightarrow R_1R_2NHN_2O_2(fast)$$
(17)

$$\begin{array}{l} \mathsf{R_1R_2NHN_2O_2} + \mathsf{R_1R_2NH} \ \leftrightarrow \mathsf{R_1R_2NH_2^+R_1R_2NHN_2O_2^-(fast)} \\ (18) \end{array}$$

$$R_1, R_2 = H \text{ or } CH_2$$

Furthermore, the peak at 1361 cm<sup>-1</sup> in Fig. 13a and the peak at 1360 cm<sup>-1</sup> in Fig. 13b may be associated with the formation of N-nitroso compounds (N–N=O) [71, 72]. These results demonstrate that NO can lead to degradation of PEI functional adsorbents by forming  $R_1R_2NH_2^+$  $R_1R_2NHN_2O_2^-$  and N-nitroso compounds. However, the degradation induced by NO was extremely low and



Fig. 11 CO<sub>2</sub> cyclic adsorption–desorption results for **a** BPEI-SiO<sub>2</sub>(15% CO<sub>2</sub>) and BPEI-SiO<sub>2</sub>(200 ppm NO) and **b** LPEI-SiO<sub>2</sub>(15% CO<sub>2</sub>) and LPEI-SiO<sub>2</sub>(200 ppm NO)



Fig. 12 DRIFT spectra of **a** BPEI-SiO<sub>2</sub>, BPEI-SiO<sub>2</sub>(15% CO<sub>2</sub>), and BPEI-SiO<sub>2</sub>(200 ppm NO) and **b** LPEI-SiO<sub>2</sub>, LPEI-SiO<sub>2</sub>(15% CO<sub>2</sub>), and LPEI-SiO<sub>2</sub>(200 ppm NO)



**Fig. 13** In situ DRIFT spectra of **a** BPEI-SiO<sub>2</sub>, and **b** LPEI-SiO<sub>2</sub> during interaction with 200 ppm NO (15% CO<sub>2</sub> and 200 ppm NO balanced with  $N_2$ )

would not cause an obvious decrease in the  $CO_2$  adsorption capacity during the limited duration of  $CO_2$  cyclic adsorption–desorption tests.

# **4** Conclusions

In this study, the adverse effects of simulated flue gas on BPEI and LPEI functional adsorbents were investigated.

The results showed that  $O_2$ ,  $SO_2$ ,  $NO_2$ , and NO all caused degradation of PEI functional adsorbents. After contact with 10%  $O_2$  (15%  $CO_2$  and 10%  $O_2$  in  $N_2$ ) for 990 cumulative minutes, BPEI-SiO<sub>2</sub> lost 23.0% of its original  $CO_2$  adsorption capacity. On the other hand, LPEI-SiO<sub>2</sub> maintained a stable CO<sub>2</sub> adsorption performance during the adsorption process and only lost approximately 3.6% of its original adsorption capacity. However, the IR spectra demonstrated that 10% O<sub>2</sub> also damages LPEI-SiO<sub>2</sub>. Three concentration gradients were considered for SO<sub>2</sub>, namely 10, 50, and 200 ppm SO<sub>2</sub> (15% CO<sub>2</sub> and 10, 50, or 200 ppm SO<sub>2</sub> in  $N_2$ ). Higher concentrations of SO<sub>2</sub> would lead to more severe and quicker degradation of BPEI-SiO<sub>2</sub> and LPEI-SiO<sub>2</sub>. After contact with 10, 50, or 200 ppm SO<sub>2</sub> for 990 cumulative minutes, BPEI-SiO<sub>2</sub> lost 18.2%, 61.4%, and 89.0% of its original CO<sub>2</sub> adsorption capacity, and LPEI-SiO<sub>2</sub> lost 18.5%, 60.6%, and 78.5% of its original CO<sub>2</sub> adsorption capacity, respectively. As for  $NO_x$ , 10 ppm  $NO_2$  (15%  $CO_2$  and 10 ppm  $NO_2$  in  $N_2$ ) and 200 ppm NO (15% CO<sub>2</sub> and 200 ppm NO in N<sub>2</sub>) caused almost no decrease in the CO<sub>2</sub> adsorption capacity after 990-min interactions, but as shown by the IR spectra, both concentrations induced degradation of BPEI-SiO<sub>2</sub> and LPEI-SiO<sub>2</sub>. We also investigated 200 ppm NO<sub>2</sub> (15%  $CO_2$  and 200 ppm  $NO_2$  in  $N_2$ ) and observed a 49.6% and 49.5% decrease in the original CO<sub>2</sub> adsorption capacity of BPEI-SiO<sub>2</sub> and LPEI-SiO<sub>2</sub>, respectively.

Further exploration of the degradation mechanism demonstrated that O2 oxidized the -CH2- and -CH<sub>2</sub>-NH- groups of BPEI-SiO<sub>2</sub> to form C=O and C=N groups, and C=O formation seems to be the primary pathway. For LPEI-SiO<sub>2</sub>, only C=O formation via oxidation of -CH<sub>2</sub>- was observed. SO<sub>2</sub> can react with the amine groups of BPEI-SiO<sub>2</sub> and LPEI-SiO<sub>2</sub> to form heat-stable NH<sub>3</sub><sup>+</sup>—and/ or NH<sub>2</sub><sup>+</sup>—containing adducts. SO<sub>2</sub> can promote the formation of urea linkages between PEI functional adsorbents and CO<sub>2</sub>. Similar to SO<sub>2</sub>, the presence of NO<sub>2</sub> can lead to the formation of heat-stable NH<sub>3</sub><sup>+</sup>—and/or NH<sub>2</sub><sup>+</sup>—containing adducts and promote urea linkage formation. Furthermore, NO<sub>2</sub> can result in the formation of heatstable acid adducts and, likely, N-nitro (N–NO<sub>2</sub>), C-nitroso (C–N=O), and C-nitro (C–NO<sub>2</sub>) compounds. NO can lead to the formation of heat-stable NH<sub>3</sub><sup>+</sup>—and/or NH<sub>2</sub><sup>+</sup>—containing adducts, as well as N-nitroso (N–N=O) compounds.

# 5 Supplementary Information

Molecular structures of BPEI and LPEI are shown in Scheme S1. Detailed in situ DRIFT spectra of BPEI-SiO<sub>2</sub> and LPEI-SiO<sub>2</sub> during interaction with different gas mixtures are shown in Figure S1 to S15.

Acknowledgements The authors are really grateful for the supports of the Postdoctoral Fellowship Scheme of The Hong Kong Polytechnic University (Scheme No. G-YW3U). And the authors sincerely acknowledge the supports from Shanghai Tongji Gao Tingyao Environmental Science & Technology Development Foundation.

#### **Compliance with ethical standards**

**Conflict of interest** The authors declare that there is no any competing interest. The English in this document has been checked by at least two professional editors, both native speakers of English. For a certificate, please see: http://www.textcheck.com/certificate/HjvYgi

**Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

## References

- International Engergy Agency, Energy Technology Perspectives (2020 https://www.iea.org/reports/energy-technology-persp ectives-2020. September 2020.
- Murge P, Dinda S, Roy S (2019) Zeolite-based sorbent for co<sub>2</sub> capture: preparation and performance evaluation. Langmuir 35(46):14751–14760
- Megias-Sayago C, Bingre R, Huang L, Lutzweiler G, Wang Q, Louis B (2019) CO<sub>2</sub> Adsorption capacities in zeolites and layered double hydroxide materials. Fron Chem 7:551
- You YY, Liu XJ (2019) Modeling of CO<sub>2</sub> adsorption and recovery from wet flue gas by using activated carbon. Chem Eng J 369:672–685
- Gunawan T, Wijiyanti R, Widiastuti N (2018) Adsorption-desorption of CO<sub>2</sub> on zeolite-Y-templated carbon at various temperatures. RSC Adv 8(72):41594–41602
- 6. Tan P, Jiang Y, Liu X, Sun LB (2019) Making porous materials respond to visible light. ACS Energy Lett 4(11):2656–2667
- Hu Z, Wang Y, Shah BB, Zhao D (2019) CO2 capture in metalorganic framework adsorbents: an engineering perspective. Adv Sustain Syst 3(1):1800080
- Perejon A, Romeo LM, Lara Y, Lisbona P, Martinez A, Valverde JM (2016) The Calcium-Looping technology for CO<sub>2</sub> capture: On the important roles of energy integration and sorbent behavior. Appl Energy 162:787–807
- 9. Arias B, Alonso M, Abanades C (2017)  $CO_2$  Capture by calcium looping at relevant conditions for cement plants: experimental testing in a 30 kW(th) pilot plant. Ind Eng Chem Res 56(10):2634–2640
- Jiang Y, Tan P, Qi SC, Liu XQ, Yan JH, Fan F, Sun LB (2019) Metalorganic frameworks with target-specific active sites switched by photoresponsive motifs: efficient adsorbents for tailorable CO<sub>2</sub> capture. Angew Chem-Int Edn 58(20):6600–6604
- Jiang Y, Shi XC, Tan P, Qi SC, Gu C, Yang T, Peng SS, Liu XQ, Sun LB (2020) Controllable CO<sub>2</sub> capture in metal-organic frameworks:

making targeted active sites respond to light. Ind Eng Chem Res 59(50):21894–21900

- 12. Bos MJ, Kroeze V, Sutanto S, Brilman DWF (2018) Evaluating regeneration options of solid amine sorbent for  $CO_2$  removal. Ind Eng Chem Res 57(32):11141–11153
- Li KM, Jiang JG, Chen XJ, Gao YC, Yan F, Tian SC (2016) Research on urea linkages formation of amine functional adsorbents during CO<sub>2</sub> capture process: two key factors analysis, temperature and moisture. J Phys Chem C 120(45):25892–25902
- Goeppert A, Meth S, Prakash GKS, Olah GA (2010) Nanostructured silica as a support for regenerable high-capacity organoamine-based CO<sub>2</sub> sorbents. Energ Environ Sci 3(12):1949–1960
- 15. Didas SA, Zhu RS, Brunelli NA, Sholl DS, Jones CW (2014) Thermal, oxidative and  $CO_2$  induced degradation of primary amines used for  $CO_2$  capture: effect of alkyl linker on stability. J Phys Chem C 118(23):12302–12311
- Sjostrom S, Krutka H (2010) Evaluation of solid sorbents as a retrofit technology for CO<sub>2</sub> capture. Fuel 89(6):1298–1306
- Khatri RA, Chuang SSC, Soong Y, Gray M (2006) Thermal and chemical stability of regenerable solid amine sorbent for CO<sub>2</sub> capture. Energy Fuels 20(4):1514–1520
- Anderson JL, Dixon JK, Maginn EJ, Brennecke JF (2006) Measurement of SO<sub>2</sub> solubility in ionic liquids. J Phys Chem B 110(31):15059–15062
- Stevens L, Williams K, Han WY, Drage T, Snape C, Wood J, Wang JW (2013) Preparation and CO<sub>2</sub> adsorption of diamine modified montmorillonite via exfoliation grafting route. Chem Eng J 215:699–708
- 20. Uyanga IJ, Idem RO (2007) Studies of SO<sub>2</sub>- and O<sub>2</sub>-induced degradation of aqueous MEA during CO<sub>2</sub> capture from power plant flue gas streams. Ind Eng Chem Res 46(8):2558–2566
- Bollini P, Choi S, Drese JH, Jones CW (2011) Oxidative degradation of aminosilica adsorbents relevant to postcombustion CO<sub>2</sub> capture. Energy Fuels 25(5):2416–2425
- Miller DD, Chuang SSC (2015) Experimental and theoretical investigation of SO<sub>2</sub> adsorption over the 1,3-phenylenediamine/ SiO<sub>2</sub> system. J Phys Chem C 119(12):6713–6727
- Rao AB, Rubin ES (2002) A technical, economic, and environmental assessment of amine-based CO<sub>2</sub> capture technology for power plant greenhouse gas control. Environ Sci Technol 36(20):4467–4475
- Lin KYA, Petit C, Park AHA (2013) Effect of SO<sub>2</sub> on CO<sub>2</sub> capture using liquid-like nanoparticle organic hybrid materials. Energy Fuels 27(8):4167–4174
- Su FS, Lu CS, Chen HS (2011) Adsorption, desorption, and thermodynamic studies of CO<sub>2</sub> with high-amine-loaded multiwalled carbon nanotubes. Langmuir 27(13):8090–8098
- 26. Schreiber A, Zapp P, Kuckshinrichs W (2009) Environmental assessment of German electricity generation from coal-fired power plants with amine-based carbon capture. Int J Life Cycle Assess 14(6):547–559
- 27. Liu YM, Ye Q, Shen M, Shi JJ, Chen J, Pan H, Shi Y (2011) Carbon Dioxide capture by functionalized solid amine sorbents with simulated flue gas conditions. Environ Sci Technol 45(13):5710–5716
- Fan YF, Labreche Y, Lively RP, Jones CW, Koros WJ (2014) Dynamic CO<sub>2</sub> adsorption performance of internally cooled silica-supported poly(ethylenimine) hollow fiber sorbents. Aiche J 60(11):3878–3887
- 29. Hallenbeck AP, Kitchin JR (2013) Effects of  $O_2$  and  $SO_2$  on the capture capacity of a primary-amine based polymeric  $co_2$  sorbent. Ind Eng Chem Res 52(31):10788–10794
- Chandan PA, Remias JE, Liu KL (2014) Possible ways to minimize nitrosation reactions during post-combustion CO<sub>2</sub> capture process. Int J Greenh Gas Con 31:61–66

- 31. Liu YM, Lin XY, Wu XH, Liu MY, Shi RH, Yu XJ (2017) Pentaethylenehexamine loaded SBA-16 for  $CO_2$  capture from simulated flue gas. Powder Technol 318:186–192
- Yang J, Yu XH, Yan JY, Tu ST, Dahlquist E (2013) Effects of SO<sub>2</sub> on CO<sub>2</sub> capture using a hollow fiber membrane contactor. Appl Energy 112:755–764
- Wang ZM, Mitch WA (2015) Influence of dissolved metals on n-nitrosamine formation under amine-based CO<sub>2</sub> capture conditions. Environ Sci Technol 49(19):11974–11981
- 34. Gouedard C, Picq D, Launay F, Carrette PL (2012) Amine degradation in  $CO_2$  capture I. a review. Int J Greenh Gas Con 10:244–270
- 35. Chi S, Rochelle GT (2002) Oxidative degradation of monoethanolamine. Ind Eng Chem Res 41(17):4178–4186
- Dickinson J, Percy A, Puxty G, Verheyen TV (2016) Oxidative degradation of amine absorbents in carbon capture systems—a dynamic modelling approach. Int J Greenh Gas Con 53:391–400
- Ahmadalinezhad A, Sayari A (2014) Oxidative degradation of silica-supported polyethylenimine for CO<sub>2</sub> adsorption: insights into the nature of deactivated species. Phys Chem Chem Phys 16(4):1529–1535
- Bali S, Chen TT, Chaikittisilp W, Jones CW (2013) Oxidative stability of amino polymer-alumina hybrid adsorbents for carbon dioxide capture. Energy Fuels 27(3):1547–1554
- Wang DX, Wang XX, Song CS (2017) Comparative study of molecular basket sorbents consisting of polyallylamine and polyethylenimine functionalized SBA-15 for CO<sub>2</sub> capture from flue gas. ChemPhysChem 18(22):3163–3173
- Qian Y, Delgado JDLP, Veneman R, Brilman DWF (2017) Stability of a benzyl amine based CO<sub>2</sub> capture adsorbent in view of regeneration strategies. Ind Eng Chem Res 56(12):3259–3269
- Srikanth CS, Chuang SSC (2012) Spectroscopic investigation into oxidative degradation of silica-supported amine sorbents for CO<sub>2</sub> capture. Chemsuschem 5(8):1435–1442
- 42. Gebald C, Wurzbacher JA, Tingaut P, Steinfeld A (2013) Stability of amine-functionalized cellulose during temperature-vacuum-swing cycling for CO<sub>2</sub> capture from air. Environ Sci Technol 47(17):10063–10070
- Calleja G, Sanz R, Arencibia A, Sanz-Perez ES (2011) Influence of drying conditions on amine-functionalized SBA-15 as adsorbent of CO<sub>2</sub>. Top Catal 54(1–4):135–145
- Fan YF, Rezaei F, Labreche Y, Lively RP, Koros WJ, Jones CW (2015) Stability of amine-based hollow fiber CO<sub>2</sub> adsorbents in the presence of NO and SO<sub>2</sub>. Fuel 160:153–164
- 45. Wu DZ, Sun CH, Dutta PK, Ho WSW (2017) SO<sub>2</sub> interference on separation performance of amine-containing facilitated transport membranes for  $CO_2$  capture from flue gas. J Membr Sci 534:33–45
- 46. Rezaei F, Jones CW (2013) Stability of supported amine adsorbents to  $SO_2$  and  $NO_x$  in postcombustion CO2 capture 1. Single-component adsorption. Ind. Eng. Chem. Res. 52(34):12192–12201
- Wang P, Guo YF, Zhao CW, Yan JJ, Lu P (2017) Biomass derived wood ash with amine modification for post-combustion CO<sub>2</sub> capture. Appl Energy 201:34–44
- 48. Rezaei F, Jones CW (2014) Stability of supported amine adsorbents to  $SO_2$  and  $NO_x$  in postcombustion  $CO_2$  capture .2. Multicomponent adsorption. Ind. Eng. Chem. Res. 53(30):12103–12110
- 49. Liu Q, Xiong BT, Shi JJ, Tao MN, He Y, Shi Y (2014) Enhanced tolerance to flue gas contaminants on carbon dioxide capture using amine-functionalized multiwalled carbon nanotubes. Energy Fuels 28(10):6494–6501
- Wang M, Yao LW, Wang JT, Zhang ZX, Qiao WM, Long DH, Ling LC (2016) Adsorption and regeneration study of polyethylenimineimpregnated millimeter-sized mesoporous carbon spheres for post-combustion CO<sub>2</sub> capture. Appl Energy 168:282–290

#### **SN Applied Sciences**

A SPRINGER NATURE journal

- 51. Chen XJ, Jiang JG, Yan F, Tian SC, Li KM (2014) A novel low temperature vapor phase hydrolysis method for the production of nano-structured silica materials using silicon tetrachloride. Rsc Adv 4(17):8703–8710
- 52. Srikanth CS, Chuang SSC (2013) Infrared study of strongly and weakly adsorbed  $CO_2$  on fresh and oxidatively degraded amine sorbents. J Phys Chem C 117(18):9196–9205
- Sayari A, Belmabkhout Y, Da'na E (2012) CO<sub>2</sub> deactivation of supported amines: does the nature of amine matter? Langmuir 28(9):4241–4247
- 54. Heydari-Gorji A, Sayari A (2012) Thermal, oxidative, and  $co_2$ -induced degradation of supported polyethylenimine adsorbents. Ind Eng Chem Res 51(19):6887–6894
- 55. Sayari A, Heydari-Gorji A, Yang Y (2012) CO<sub>2</sub>-Induced degradation of amine-containing adsorbents: reaction products and pathways. J Am Chem Soc 134(33):13834–13842
- 56. Wilfong WC, Srikanth CS, Chuang SSC (2014) In situ ATR and DRIFTS studies of the nature of adsorbed CO<sub>2</sub> on tetraethylenepentamine films. ACS Appl Mater Interfaces 6(16):13617–13626
- 57. Sayari A, Belmabkhout Y (2010) Stabilization of amine-containing  $CO_2$  adsorbents: dramatic effect of water vapor. J Am Chem Soc 132(18):6312–6314
- Wei L, Gao Z, Wang Y (2017) Integrated two-stage adsorption for selective removal of CO<sub>2</sub> and SO<sub>2</sub> by amine-functionalized SBA-15. Asia-Pac J Chem Eng 12(4):660–670
- 59. Kim C, Cho HS, Chang S, Cho SJ, Choi M (2016) An ethylenediamine-grafted Y zeolite: a highly regenerable carbon dioxide adsorbent via temperature swing adsorption without urea formation. Energ Environ Sci 9(5):1803–1811
- 60. Lakard S, Herlem G, Lakard B, Fahys B (2004) Theoretical study of the vibrational spectra of polyethylenimine and polypropylenimine. J Mol Struc-Theochem 685(1–3):83–87
- Hiyoshi N, Yogo K, Yashima T (2005) Adsorption characteristics of carbon dioxide on organically functionalized SBA-15. Micropor Mesopor Mat 84(1–3):357–365
- Okabayashi H, Shimizu I, Nishio E, O'Connor CJ (1997) Diffuse reflectance infrared Fourier transform spectral study of the interaction of 3-aminopropyltriethoxysilane on silica gel. Behavior of amino groups on the surface. Colloid Polym Sci 275(8):744–753
- 63. Bio-Rad Laboratories, Inc., Informatics Division, The Sadtler Handbook of Infrared Spectra.

- Wilfong WC, Chuang SSC (2014) Probing the adsorption/desorption of CO<sub>2</sub> on amine sorbents by transient infrared studies of adsorbed CO<sub>2</sub> and C<sub>6</sub>H<sub>6</sub>. Ind Eng Chem Res 53(11):4224–4231
- Knofel C, Martin C, Hornebecq V, Llewellyn PL (2009) Study of carbon dioxide adsorption on mesoporous aminopropylsilane-functionalized silica and titania combining microcalorimetry and in situ infrared spectroscopy. J Phys Chem C 113(52):21726–21734
- 66. Wankhade PM, Gambhire AB, Muley GG (2016) Influence of urea doping on optical, thermal, mechanical and electrical properties of L-arginine phosphate monohydrate crystals for NLO applications. Optik 127(6):3322–3328
- 67. Tailor R, Abboud M, Sayari A (2014) Supported polytertiary amines: highly efficient and selective SO<sub>2</sub> adsorbents. Environ Sci Technol 48(3):2025–2034
- Tailor R, Ahmadalinezhad A, Sayari A (2014) Selective removal of SO<sub>2</sub> over tertiary amine-containing materials. Chem Eng J 240:462–468
- Diaf A, Garcia JL, Beckman EJ (1994) Thermally reversible polymeric sorbents for acid gases—CO<sub>2</sub>, SO<sub>2</sub>, and NO<sub>x</sub>. J Appl Polym Sci 53(7):857–875
- Botheju D, Glarborg P, Tokheim LA (2012) NO<sub>x</sub> reduction using amine reclaimer wastes (ARW) generated in post combustion CO<sub>2</sub> capture. Int J Greenh Gas Con 10:33–45
- 71. Drago RS, Paulik FE (1960) The reaction of nitrogen (II) oxide with diethylamine. J Am Chem Soc 82(1):96–98
- 72. Diaf A, Beckman EJ (1995) Thermally reversible polymeric sorbents for acid gases, IV. affinity tuning for the selective dry sorption of NOx. React Polym 25(1):89–96
- 73. Dai N, Shah AD, Hu LH, Plewa MJ, McKague B, Mitch WA (2012) Measurement of nitrosamine and nitramine formation from no reactions with amines during amine-based carbon dioxide capture for postcombustion carbon sequestration. Environ Sci Technol 46(17):9793–9801

**Publisher's Note** Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.