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1 Introduction

Research Motivation: In real-life scheduling, it often occurs that two scheduling criteria

are to be optimized. However, in most cases, an optimal schedule for one criterion is not

optimal for the other criterion. This has aroused people’s interest in bicriterion scheduling.

For detailed discussions of research on bicriterion scheduling, the reader may refer to Yen

and Wan (2003), Hoogeveen (2005), T’kindt and Billaut (2006), and Agnetis et al. (2014),

among others.

Scheduling problems with release dates and preemption have many applications in

the real world. For example, printing enterprises are actively engaged in the printing of

publicity materials for epidemic prevention and control, contributing to the fight against

an epidemic. Suppose that there are n customers placing orders (jobs) to a printer with

different release times (release dates in scheduling terms) and expected finish times (due

dates). The printing jobs are preemptive, meaning that the printer may print a job

up to a certain page, shift to printing some other jobs, and return to printing the rest

of the interrupted job later. Suppose that the primary objective of the printer is to

find a schedule to complete all the jobs as early as possible, i.e., minimizing the average

completion time or, equivalently, minimizing the total completion time of the jobs. On the

other hand, tardiness is an important performance indicator of the printer’s reputation.

Therefore, the secondary objective of the printer is to minimize the number of tardy jobs

or total weighted tardiness of the jobs (for jobs with varying importance in tardiness)

among all the optimal solutions for the primary objective.

For another example, a computer repair shop requests customers to book for the repair

services at least one day beforehand. Through telephone booking, each customer describes

the symptoms of the computer and the shop will provide an estimate of the repair duration

(processing time). The tasks of repairing computers are naturally preemptive. Suppose

that a technician is assigned n computers to repair with different release times (release

dates) in a day. The primary objective of the technician is to find a schedule to complete

all the jobs as early as possible, i.e., minimizing the total completion time of the jobs. On

the other hand, to give good impression to the customers, the technician would also like

to make the maximum lateness of the jobs as small as possible, which implies that all the

lateness of the jobs is within this limit. Therefore, the secondary objective is to minimize

the maximum lateness among all the optimal solutions for the primary objective.

In general, we consider all kinds of sum-forms (e.g., total tardiness and total weighted

completion time) and max-forms (e.g., makespan and maximum lateness) for the sec-

ondary objective. Therefore, the application range of our problem is very wide. Similar

applications can also be found in centralized wireless data networks, bandwidth-sharing

networks, traffic systems, and so on (Prakash and Veeravalli, 2007; Aalto and Ayesta,
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2009; Ahmad et al., 2013). These practical applications motivate us to study the hierar-

chical scheduling problem with release dates and preemption.

Problem Formulation: Suppose that J = {J1, J2, . . . , Jn} is a set of n jobs to be

preemptively processed on a single machine. Each job Jj has a release date rj ≥ 0, a

processing time pj ≥ 0, a due date dj ≥ 0, and a weight wj ≥ 0. In a feasible schedule,

a job Jj may be decomposed into several parts that have a total processing time pj. For

convenience, we use J to represent both the job set and the job instance.

Following Pinedo (2002), Leung (2004) and Brucker (2006), we will use the following

notation for a feasible schedule π and a job Jj ∈ J : Cj(π) (the completion time of job Jj),

fj(π) (the scheduling cost of job Jj), Lj(π) (the lateness of job Jj), Tj(π) (the tardiness of

job Jj), wjCj(π) (the weighted completion time of job Jj), and Uj(π) (the tardy indicator

of job Jj).

In this paper, we deal with the following two types of objective functions:
∑
fj =∑n

j=1 fj(π) (the total cost) and fmax = max{fj(π) : j = 1, 2, . . . , n} (the maximum cost).

Remark: We assume that all the cost functions fj(·) considered in this paper are

regular, i.e., fj(t) is a nondecreasing function in t ∈ [0,+∞). Moreover, we take the

convention in this paper that, for each index j ∈ {1, 2, . . . , n} and each time t ∈ [0,+∞),

fj(t) is a finite number, i.e., −∞ < fj(t) < +∞.

From Pinedo (2002), Leung (2004) and Brucker (2006), most objective functions in

scheduling research are special versions of
∑
fj and fmax. For example,

∑
Cj (the total

completion time),
∑
wjCj (the total weighted completion time),

∑
Tj (the total tardi-

ness),
∑
wjTj (the total weighted tardiness),

∑
Uj (the number of tardy jobs),

∑
wjUj

(the weighted number of tardy jobs), Lmax (the maximum lateness), Tmax (the maximum

tardiness), and WCmax (the maximum weighted completion time), where WCmax(π) =

max{wjCj(π) : j = 1, 2, . . . , n}. Following the three-field notation introduced in Graham

et al. (1979), we use 1|β|f to denote a single-machine single-criterion scheduling problem,

where β indicates the scheduling requirements and f is the scheduling criterion to be

minimized.

According to Yen and Wan (2003), Hoogeveen (2005), T’kindt and Billaut (2006),

and Agnetis et al. (2014), the following four types of bicriterion scheduling problems have

been widely studied in the literature.

Hierarchical Scheduling Problem: 1|β|Lex(f, g). The problem concerns finding a

feasible schedule that minimizes the secondary criterion g, subject to the condition that

the primary criterion f is minimized.

Constrained Scheduling Problem: 1|β|f : g ≤ Q. The problem deals with finding a
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feasible schedule that minimizes the criterion f , subject to the condition that g ≤ Q.

Weighted-Sum Scheduling Problem: 1|β|λ1f + λ2g. The problem seeks to find a

feasible schedule that minimizes the single criterion λ1f + λ2g, where λ1 and λ2 are two

positive constants.

Pareto Scheduling Problem: 1|β|#(f, g). The problem is concerned with finding all

the Pareto-optimal points and for each Pareto-optimal point, providing the corresponding

Pareto-optimal schedule.

For convenience, we use 1|β|{f, g} to denote the family of all the six bicriterion schedul-

ing problems 1|β|Lex(f, g), 1|β|Lex(g, f), 1|β|f : g ≤ Q, 1|β|g : f ≤ Q, 1|β|λ1f + λ2g,

and 1|β|#(f, g).

Literature Review and Discussion: Bicriterion scheduling is a classical and popular

topic in scheduling research. Representative studies on bicrirerion scheduling can be

found in Edmmons (1975), Van Wassenhove and Gelders (1980), Lin (1983), Nelson et al.

(1986), Kiran and Unal (1991), Chen and Bulfin (1993), Kyparisis and Douligeris (1993),

Hoogeveen and van de Velde (1995), Hoogeveen (1996), Kondakci and Bekiroglu (1997),

Sourd (2001), Agnetis et al. (2004), Huo et al. (2007), Huang and Yang (2009), Gao and

Yuan (2015), Gao and Yuan (2017), and Akande et al. (2017), among many others.

We now consider the bicriterion scheduling problems in the family 1|rj, pmtn|{
∑
Cj, f},

where one criterion is the total completion time
∑
Cj and the other criterion is an ar-

bitrarily regular objective function f . Labetoulle et al. (1984) showed that problem

1|rj, pmtn|
∑
wjCj is unary NP -hard. Du and Leung (1993), and Wan et al. (2015)

showed that problem 1|rj, d̄j, pmtn|
∑
Cj is binary NP -hard, where d̄j is the deadline of

job Jj. Recently, Chen and Yuan (2018) further showed that problem 1|rj, d̄j, pmtn|
∑
Cj

is unary NP -hard. Then the unary NP -hardness of problems 1|rj, pmtn|
∑
wjCj and

1|rj, d̄j, pmtn|
∑
Cj leads to the following observation.

Observation 1.1. For any criterion f ∈ {
∑
wjCj,

∑
Uj,

∑
Tj, Lmax, Tmax,WCmax}, the

hierarchical scheduling problem 1|rj, pmtn|Lex(f,
∑
Cj) is unary NP -hard.

From Observation 1.1, the following observation can be verified directly.

Observation 1.2. For any criterion f ∈ {
∑
wjCj,

∑
Uj,

∑
Tj, Lmax, Tmax,WCmax},

apart from the hierarchical scheduling problem 1|rj, pmtn|Lex(
∑
Cj, f), all the other prob-

lems in the family 1|rj, pmtn|{
∑
Cj, f} are unary NP -hard.

Shedding an optimistic light, Schrage (1968) and Baker (1974) showed that the shortest

remaining processing time (SRPT) rule solves problem 1|rj, pmtn|
∑
Cj in O(n log n)

time. This stimulates us to study the following two general problems:

1|rj, pmtn|Lex(
∑

Cj,
∑

fj) (1)
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and

1|rj, pmtn|Lex(
∑

Cj, fmax), (2)

where each fj(·), j = 1, 2, . . . , n, is a regular function. Evidently, a feasible schedule for

problem 1|rj, pmtn|Lex(
∑
Cj, f) must be an optimal schedule for problem 1|rj, pmtn|

∑
Cj.

If a job has processing time 0, then it can be completed at its release date without affecting

the other jobs, so we assume that pj > 0 for each job Jj ∈ J .

Note that in the implementation of SRPT rule, there may exist ties for scheduling jobs

and resolving the ties leads to different optimal schedules for the
∑
Cj criterion. This

defines the set of feasible solutions for the problems in (1) and (2).

Contributions: We show in this paper that the problem in (1) is solvable in O(n3) time

and the problem in (2) is solvable in O(n2) time. We also point out that, for any criterion

f̃ ∈ {
∑
wjCj,

∑
Tj, Lmax, Tmax,WCmax}, problem 1|rj, pmtn|Lex(

∑
Cj, f̃) is solvable in

O(n log n) time.

Methodology: To address the problems in (1) and (2), we develop new techniques as

follows:

– We show that each feasible schedule can be regarded as a job-permutation that

sequences the jobs in an increasing order of their completion times so that the technique

“preemptive-list schedules” can be used in our analysis.

– We reduce the general instances to standard instances (defined in Section 2) so that

the analysis becomes easier to some extent.

– We establish some hereditary properties for the feasible schedules and for instances,

which help reveal the intrinsic nature of the problems.

– We present a complete description of the feasible schedules through some elaborately

constructed job-permutations.

– The above techniques enable us to reduce the problem in (1) to an n × n linear

assignment problem, which is solvable in O(n3) time, and to solve the problem in (2) in

O(n2) time by an adaptation of Lawler’s rule, established in Lawler (1973), for solving

problem 1||fmax.

Organization: We organize the rest of the paper as follows: In Section 2, we re-visit

the classical problem 1|rj, pmtn|
∑
Cj and present an in-depth study of the structure of

its optimal schedules. Specifically, we introduce the concepts “preemptive-list schedules,

standard instances, legal sets, and legal permutations”, and study their relations. Then

we present a complete description of the optimal schedules for problem 1|rj, pmtn|
∑
Cj

by using the legal permutations. In Section 3, we show that the legal sets of a standard

instance can be generated in O(n2) time and the last legal set of a standard instance can

be generated in O(n) time. In Section 4, we provide polynomial-time algorithms for the
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two problems in (1) and (2). In Section 5, we present a numerical example to explain some

terms and notation in our research and provide computational experiments for checking

the efficiency of our algorithms established in this paper.

2 Re-visit problem 1|rj, pmtn|
∑
Cj

We now re-visit the classical scheduling problem 1|rj, pmtn|
∑
Cj. Let J = {J1, J2, . . . , Jn}

be the job instance to be scheduled. When there is no risk of confusion, we write schedules

for problem 1|rj, pmtn|
∑
Cj on instance J as “schedules for problem 1|rj, pmtn|

∑
Cj”

or “schedules for instance J ”.

2.1 The SRPT rule

In the preprocessing procedure for solving problem 1|rj, pmtn|
∑
Cj, we re-number the n

jobs of J by the earliest release date (ERD) rule such that r1 ≤ r2 ≤ · · · ≤ rn. Then

we schedule the n jobs of J preemptively and forwards beginning with time r1 by the

following SRPT rule proposed in Schrage (1968).

The SRPT Rule: At each decision time τ (when some jobs are released or completed),

we schedule an available job (if any) with the smallest remaining processing time. This

procedure is repeated until all the jobs are scheduled. (Here, by “an available job at time

τ”, we mean that the job is released by time τ and has not been completed.)

Schrage (1968) and Smith (1978) showed that the SRPT rule is the unique strategy

for solving problem 1|rj, pmtn|
∑
Cj. Their findings can be formally described in the

following lemma.

Lemma 2.1. Every optimal schedule for problem 1|rj, pmtn|
∑
Cj is generated by the

SRPT rule. Moreover, when the instance J is given, all the optimal schedules have the

same sequence of job completion times.

From Lemma 2.1, the n completion times of the n jobs of J in all the optimal schedules

are uniquely determined by an implementation of the SRPT rule. Denote the n completion

times by C(1)(J ), C(2)(J ), . . . , C(n)(J ) such that C(1)(J ) < C(2)(J ) < · · · < C(n)(J ).

Then the optimal objective value of problem 1|rj, pmtn|
∑
Cj is C(1)(J )+C(2)(J )+ · · ·+

C(n)(J ). Set C(J ) = {C(1)(J ), C(2)(J ), . . . , C(n)(J )}.
Let Π∗(J ) be the set of schedules generated by the SRPT rule on instance J . From

Lemma 2.1, Π∗(J ) consists of all the optimal schedules for problem 1|rj, pmtn|
∑
Cj.

Lemma 2.1 also indicates that there is a bijection between all the schedules in Π∗(J ) and
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all the implementations of the SRPT rule on instance J . Thus, in most cases, we discuss

the schedules in Π∗(J ), which is more convenient than discussion of the SRPT rule.

Let σ be a schedule for J . Let Jj ∈ J and τ ∈ [rj, Cj(σ)). It is clear that job Jj is

available at time τ in σ. We use p
(σ)
j (τ) to denote the remaining processing time of job

Jj at time τ in σ and use J
(σ)
j (τ) to denote the remaining part of job Jj at time τ in σ.

Thus, in schedule σ, J
(σ)
j (τ) can be regarded as a job with processing time p

(σ)
j (τ).

Let T (J ) be the set of decision times in the implementation of the SRPT rule. Then

we have T (J ) = {rj : 1 ≤ j ≤ n} ∪ {C(i)(J ) : 1 ≤ i ≤ n}. For convenience, we write

T (J ) = {τ1, τ2, . . . , τn′} such that τ1 < τ2 < · · · < τn′ . Then we have n + 1 ≤ n′ ≤ 2n,

τ1 = r1, and τn′ = C(n)(J ).

Since ties may arise in the running process of the SRPT rule, different implemen-

tations of the SRPT rule generate different optimal schedules. But the following lemma

establishes an invariant property of the remaining processing times at every decision time.

Lemma 2.2. For each schedule π ∈ Π∗(J ) and each decision time τi ∈ T (J ), the

remaining processing times (with repetitions being counted) of the available jobs at time

τi are independent of the choice of π.

Proof. Consider an implementation of the SRPT rule for generating the optimal schedule

π. Since τ1 = r1, the remaining processing times of the available jobs at time τ1 are clearly

independent of the choice of π. Assume that the result is true for a decision time τi−1

with 2 ≤ i ≤ n′. If no jobs are available at time τi−1, the result is clearly true for the

decision time τi. If at least one job is available at time τi−1, by the SRPT rule, each of

the available jobs has a processing time of at least τi − τi−1 and one of such jobs, say, Jj,

with the smallest remaining processing time is scheduled in the interval [τi−1, τi] in π. It

is routine to see that the remaining processing times of the available jobs at time τi are

independent of the choice of Jj, so independent of π. The lemma follows.

From Lemma 2.2, for each τi ∈ T (J ), the remaining processing times (of the available

jobs) at time τi in every schedule in Π∗(J ) are invariant. Then the term “the remaining

processing times at time τi” has its meaning.

2.2 Preemptive-list schedules

The “preemptive-list schedule” is a useful tool for studying scheduling problems with

release dates and preemption. Let O = (Jo(1), Jo(2), . . . , Jo(n)) be a permutation (of the n

jobs) of J . As given in Yuan et al. (2015), a feasible schedule related to the permutation

O can be obtained by the following procedure:

Procedure Pmtn-LS(O): We first schedule Jo(1) as early as possible, which means that
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Jo(1) is scheduled in the interval [ro(1), ro(1)+po(1)]. When the first j jobs Jo(1), Jo(2), . . . , Jo(j)
have been scheduled and j < n, we schedule the (j + 1)-th job Jo(j+1) preemptively in the

remaining idle time space as early as possible. This procedure is repeated until all the jobs

are scheduled.

Procedure Pmtn-LS plays an important role in our research. To have a better under-

standing for this procedure, we present the implementation details of Procedure Pmtn-LS

as follows.

Implementation Details of Procedure Pmtn-LS(O):

Input: A permutation O = {Jo(1), Jo(2), . . . , Jo(n)}.
Step 1: Set i := 1, rmax := max{rj : 1 ≤ j ≤ n}, P :=

∑n
j=1 pj, and I := [0, rmax + P ].

(At the end of each iteration i, we obtain a schedule of {Jo(1), Jo(2), . . . , Jo(i)}, together

with the idle-time space, denoted by I, in the interval [0, rmax + P ] not occupied by the

schedule.)

Step 2: If i = n + 1, then all the jobs have been scheduled and stop the algorithm.

Otherwise, go to Step 3.

Step 3: Schedule job Jo(i) preemptively and fully in the the idle-time space [ro(i), rmax +

P ]∩ I as early as possible. Denote the time space of [ro(i), rmax + P ]∩ I that is occupied

by Jo(i) as Ii. Set I := I \ Ii and i := i+ 1. Return to Step 2.

From Yuan et al. (2015), the running time of Procedure Pmtn-LS(O) is O(n log n).

We use Pmtn-LS(O) to denote the (preemptive) schedule obtained by the above proce-

dure on the permutation O = (Jo(1), Jo(2), . . . , Jo(n)) and call Pmtn-LS(O) the Pmtn-

LS schedule (preemptive-list schedule) determined by O. Note that Pmtn-LS(O) is

uniquely determined by O. Thus, when there is no risk of confusion, we use O to

denote the schedule Pmtn-LS(O). Given the interfering of the release dates, differ-

ent permutations may determine a common Pmtn-LS schedule. According to Yuan et

al. (2020), a permutation O = (Jo(1), Jo(2), . . . , Jo(n)) is called completion-coinciding if

Co(1)(O) < Co(2)(O) < · · · < Co(n)(O). From Yuan et al. (2020), for every permu-

tation O = (Jo(1), Jo(2), . . . , Jo(n)), there must be a completion-coinciding permutation

O′ = (Jo′(1), Jo′(2), . . . , Jo′(n)) such that Pmtn-LS(O′) = Pmtn-LS(O).

Let σ be a feasible schedule for problem 1|rj, pmtn|
∑
Cj. We use Jσ(i) to denote

the i-th completed job in σ, i = 1, 2, . . . , n. Then (σ(1), σ(2), . . . , σ(n)) is a permuta-

tion of the job index set {1, 2, . . . , n} such that Cσ(1)(σ) < Cσ(2)(σ) < · · · < Cσ(n)(σ).

Let O(σ) = (Jσ(1), Jσ(2), . . . , Jσ(n)), and set O(σ)
i = (Jσ(1), Jσ(2), . . . , Jσ(i)) and J (σ)

i =

{Jσ(1), Jσ(2), . . . , Jσ(i)} for i = 1, 2, . . . , n. In this paper we define a time space as the

union of a family of disjoint time intervals. For a subset J ′ ⊆ J , the time space occupied

by the jobs of J ′ in σ is denoted by SP(σ)(J ′), which is formally defined as the union
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of the time intervals occupied by the processing of the jobs of J ′ in σ. The time spaces

SP(σ)(J (σ)
i ), i = 1, 2, . . . , n, are what we are really interested in. For convenience, we

define J (σ)
0 = ∅ and SP(σ)(J (σ)

0 ) = ∅.
From Procedure Pmtn-LS(O), we easily observe the following lemma.

Lemma 2.3. Let σ be a feasible schedule for J . Then σ = Pmtn-LS(O(σ)) if and only if,

for each i = 1, 2, . . . , n, the time space [rσ(i), Cσ(i)(σ)] \ SP(σ)(J (σ)
i−1) (which is the union

of the intervals included in [rσ(i), Cσ(i)(σ)] not occupied by the jobs in J (σ)
i−1 in σ) is fully

occupied by Jσ(i) in σ.

Since no artificial idle time exists in a Pmtn-LS schedule, we have the following lemma.

Lemma 2.4. Let σ and σ′ be two Pmtn-LS schedules for instance J . Let i ∈ {1, 2, . . . , n}
be an index such that J (σ)

i = J (σ′)
i . Then SP(σ)(J (σ)

i ) = SP(σ′)(J (σ′)
i ).

The following lemma reveals a useful property of the schedules in Π∗(J ).

Lemma 2.5. For every schedule σ ∈ Π∗(J ), we have σ = Pmtn-LS(O(σ)) and O(σ) is a

completion-coinciding permutation of J .

Proof. Since σ is an optimal schedule for problem 1|rj, pmtn|
∑
Cj, there is no artificial

idle time in σ. This further implies that, for i = 1, 2, . . . , n, there is no idle time in the

interval [rσ(i), Cσ(i)(σ)] in σ.

Suppose to the contrary that σ 6= Pmtn-LS(O(σ)). From Lemma 2.3, there is an index

i ∈ {1, 2, . . . , n} such that the time space [rσ(i), Cσ(i)(σ)]\SP(σ)(J (σ)
i−1) is not fully occupied

by job Jσ(i) in σ. Then i ≤ n− 1 and there is an index i′ ∈ {i+ 1, i+ 2, . . . , n} such that

a part of Jσ(i′) is scheduled in the interval [t, t′] with rσ(i) ≤ t < t′ < Cσ(i)(σ). From the

implementation of the SRPT rule, we have p
(σ)
σ(i′)(t) ≤ p

(σ)
σ(i)(t). This further implies that

p
(σ)
σ(i′)(t

′) = p
(σ)
σ(i′)(t)− (t′ − t) < p

(σ)
σ(i)(t

′). But then, from the implementation of the SRPT

rule again, we have Cσ(i′)(σ) < Cσ(i)(σ). This contradicts the fact that i′ > i.

The above discussion shows that σ = Pmtn-LS(O(σ)), soO(σ) is a completion-coinciding

permutation of J . The lemma follows.

From Lemma 2.5, we only consider completion-coinciding permutations in the sequel.

Remark: From the previous discussion, each element σ ∈ Π∗(J ) has three identities: (i)

σ represents an implementation of the SRPT rule on instance J , (ii) σ is an optimal sched-

ule for problem 1|rj, pmtn|
∑
Cj on instance J , and (iii) O(σ) = (Jσ(1), Jσ(2), . . . , Jσ(n)) is

a completion-coinciding permutation of J such that σ = Pmtn-LS(O(σ)). Thus, we use

the three expressions σ, O(σ) and (Jσ(1), Jσ(2), . . . , Jσ(n)) interchangeably when there is no

risk of confusion.
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Definition 2.1. A job Jj is called legal at time C(i)(J ) (with respect to instance J ),

where 1 ≤ i ≤ n, if Jj completes at time C(i)(J ) in some schedule in Π∗(J ). We use

L(i)(J ) to denote the set of all the jobs of J that are legal at time C(i)(J ). Then

L(i)(J ) = {Jσ(i) : σ ∈ Π∗(J )}.

We call L(1)(J ),L(2)(J ), . . . ,L(n)(J ) the legal sets of J .

The next lemma reveals some hereditary properties of schedules, completion times,

and legal sets.

Lemma 2.6. Consider instance J = {J1, J2, . . . , Jn}, and let σ ∈ Π∗(J ) and i ∈
{1, 2, . . . , n− 1}. Then we have the following two statements.

(i) O(σ)
i ∈ Π∗(J (σ)

i ).

(ii) C(h)(J (σ)
i ) = C(h)(J ) and L(h)(J (σ)

i ) ⊆ L(h)(J ) ∩ J (σ)
i for each h ∈ {1, 2, . . . , i}.

Proof. Let O′i = (Jo′(1), Jo′(2), . . . , Jo′(i)) be a schedule in Π∗(J (σ)
i ). Let O′ be the permu-

tation of J that is obtained from O(σ) with O(σ)
i replaced by O′i. Then

O′ = (Jo′(1), . . . , Jo′(i), Jσ(i+1), . . . , Jσ(n)).

From the choice of O′i, we have

J (O′)
i = J (σ)

i (3)

and
i∑

j=1

Co′(j)(O′) ≤
i∑

j=1

Cσ(j)(σ). (4)

From Lemma 2.4, the relation J (O′)
i = J (σ)

i in (3) implies that

SP(O′)(J (O′)
i ) = SP(σ)(J (σ)

i ).

Note thatO(σ) = (O(σ)
i , Jσ(i+1), Jσ(i+2), . . . , Jσ(n)). From the implementations of Procedure

Pmtn-LS on the two permutations O′ and O(σ), we conclude that

Co′(j)(O′) = Cσ(j)(σ) for j = i+ 1, i+ 2, . . . , n. (5)

Since σ ∈ Π∗(J ), we certainly have
∑n

j=1Co′(j)(O′) ≥
∑n

j=1Cσ(j)(σ). Combining (4)

and (5), we obtain
∑n

j=1 Co′(j)(O′) =
∑n

j=1Cσ(j)(σ) and
∑i

j=1Co′(j)(O′) =
∑i

j=1 Cσ(j)(σ).

Consequently, O′ ∈ Π∗(J ) and O(σ)
i ∈ Π∗(J (σ)

i ). Statement (i) follows.

Now, for each h ∈ {1, 2, . . . , i}, from the fact thatO(σ)
i ∈ Π∗(J (σ)

i ), we have C(h)(J (σ)
i ) =

Cσ(h)(O(σ)
i ) = Cσ(h)(σ) = C(h)(J ). From the fact that O′ ∈ Π∗(J ) and the arbi-

trary choice of O′i ∈ Π∗(J (σ)
i ), we further have L(h)(J (σ)

i ) ⊆ L(h)(J ), so L(h)(J (σ)
i ) ⊆

L(h)(J ) ∩ J (σ)
i . This proves statement (ii). The lemma follows.
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2.3 A very important property

Definition 2.2. Let O = (Jo(1), Jo(2), . . . , Jo(n)) be a permutation of J . O is called a

TC-optimal permutation of J if O is a completion-coinciding permutation of J such

that O ∈ Π∗(J ), where “TC” stands for the “total completion time”. O is called a legal

permutation of J if Jo(j) ∈ L(j)(J ) for j = 1, 2, . . . , n.

Note that for each schedule σ ∈ Π∗(J ), O(σ) = (Jσ(1), Jσ(2), . . . , Jσ(n)) is a legal and

TC-optimal permutation of J . We next present a very important property that shows

the equivalence of legal permutations and TC-optimal permutations.

Lemma 2.7. Let O = (Jo(1), Jo(2), . . . , Jo(n)) be a permutation of J . Then O is a TC-

optimal permutation of J if and only if O is a legal permutation of J .

Proof. Note that each TC-optimal permutation of J must be a legal permutation of

J . Then we only need to show that each legal permutation of J is also a TC-optimal

permutation of J . We prove the result by induction on the number of jobs. When

|J | = 1, the result holds trivially.

Inductively, suppose that J = {J1, J2, . . . , Jn} is a job instance with n ≥ 2 and the

result holds for every job instance with at most n−1 jobs. Let O = (Jo(1), Jo(2), . . . , Jo(n))

be a legal permutation of J . Then Jo(j) ∈ L(j)(J ) for j = 1, 2, . . . , n. Let i∗ ∈ {1, 2, . . . , n}
such that ro(i∗) = max{r1, r2, . . . , rn}. Let J ′ = J \{Jo(i∗)}. Then C(1)(J ′) < C(2)(J ′) <
· · · < C(n−1)(J ′) are the completion times of the n − 1 jobs of J ′ in every schedule in

Π∗(J ′). By the induction hypothesis, we have the following claim.

Claim 1. Each legal permutation of J ′ is also a TC-optimal permutation of J ′.

Let i0 ∈ {1, 2, . . . , n} be the minimum index such that ro(i∗) < C(i0)(J ). Then

i∗ ∈ {i0, i0 + 1, . . . , n}. At time ro(i∗), all the jobs in J have been released. From the

principle of the SRPT rule, in every schedule in Π∗(J ), the jobs that are processed in

the interval [ro(i∗), C
(n)(J )] must be scheduled in a non-decreasing order of their remain-

ing processing times without preemption. Note that these jobs are completed at times

C(i0)(J ), C(i0+1)(J ), . . . , C(n)(J ), respectively. Then the remaining processing times at

time ro(i∗) in every schedule in Π∗(J ) are given by

p̃i0 ≤ p̃i0+1 ≤ · · · ≤ p̃n, (6)

where p̃i0 = C(i0)(J ) − ro(i∗) and p̃i = C(i)(J ) − C(i−1)(J ) for i = i0 + 1, i0 + 2, . . . , n.

Since Jo(i∗) is processed without preemption in every schedule in Π∗(J ), from the fact

that Jo(i∗) ∈ L(i∗)(J ), we further have

p̃i∗ = po(i∗). (7)
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Given a schedule σ ∈ Π∗(J ), we construct a schedule σ′ for J ′ as follows: In the

interval [0, ro(i∗)], σ
′ has the same processing pattern as that of σ, and beginning with

time ro(i∗), the uncompleted jobs of J ′ are scheduled consecutively in the same order as

that in σ. Equivalently, σ′ is obtained from σ by removing job Jo(i∗) and eliminating the

idle time interval [Co(i∗)(σ) − po(i∗), Co(i∗)(σ)] (if o(i∗) 6= σ(n)) by shifting the processing

in the interval [Co(i∗)(σ), C(n)(J )] left by a length of po(i∗). From (6) and from the fact

that σ ∈ Π∗(J ), the construction of σ′ implies that σ′ is obtained by an implementation

of the SRPT rule, so σ′ ∈ Π∗(J ′). Thus, without the processing time p̃i∗ = po(i∗) of job

Jo(i∗), the remaining processing times at time ro(i∗) in σ′, and in fact in every schedule in

Π∗(J ′), are given by

p̃′i0 ≤ p̃′i0+1 ≤ · · · ≤ p̃′n−1, (8)

where p̃′i = p̃i for i ∈ {i0, i0 + 1, . . . , i∗ − 1} and p̃′i = p̃i+1 for i ∈ {i∗, i∗ + 1, . . . , n − 1}.
This further means that

C(i)(J ′) =

{
C(i)(J ), if i = 1, 2, . . . , i∗ − 1,

C(i+1)(J )− po(i∗), if i = i∗, i∗ + 1, . . . , n− 1.
(9)

We have the following useful claim.

Claim 2. Let π = (Jπ(1), Jπ(2), . . . , Jπ(n)) be a completion-coinciding permutation of J ,

where π(i∗) = o(i∗). Let π′ = (Jπ(1), . . . , Jπ(i∗−1), Jπ(i∗+1), . . . , Jπ(n)), which is obtained

from π by deleting job Jπ(i∗). Then we have the following two statements.

(i) π′ is also a completion-coinciding permutation of J ′;
(ii) π is a TC-optimal permutation of J if and only if π′ is a TC-optimal permutation

of J ′.

In fact, Statement (i) of Claim 2 follows from the principle of Procedure Pmtn-LS on

the two permutations π and π′, together with the fact that ro(i∗) = max{r1, r2, . . . , rn},
which implies that Jo(i∗) = Jπ(i∗) is fully processed in the interval [Co(i∗)(π)−po(i∗), Co(i∗)(π)]

in π. To prove Statement (ii), we regard π and π′ as Pmtn-LS schedules, i.e., π =

Pmtn-LS(π) and π′ = Pmtn-LS(π′). Then schedule π′ is obtained from schedule π by

removing job Jo(i∗) and eliminating the idle time interval [Co(i∗)(π) − po(i∗), Co(i∗)(π)] (if
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i∗ < n). From (6)-(9), we have that

π is a TC-optimal permutation of J

⇔ π is a schedule in Π∗(J )

⇔ Cπ(i)(σ) = C(i)(J ) for i = 1, 2, . . . , n

⇔ Cπ′(i)(σ
′) =

{
C(i)(J ), if 1 ≤ i ≤ i∗ − 1,

C(i+1)(J )− po(i∗), if i∗ ≤ i ≤ n− 1

⇔ Cπ′(i)(σ
′) = C(i)(J ′) for i = 1, 2, . . . , n− 1

⇔ π′ is a schedule in Π∗(J ′)

⇔ π′ is a TC-optimal permutation of J ′.

This proves Statement (ii) and Claim 2 follows.

We next prove another useful claim.

Claim 3. For each index i ∈ {1, 2, . . . , n}\{i∗}, there is a schedule σi ∈ Π∗(J ) such that

σi(i) = o(i) and σi(i
∗) = o(i∗).

To prove Claim 3, we fix an index i ∈ {1, 2, . . . , n} \ {i∗}. Since Jo(i) ∈ L(i)(J ), there

is a schedule πi ∈ Π∗(J ) such that πi(i) = o(i). If πi(i
∗) = o(i∗), by setting σi = πi, we

are done. Then we suppose in the following that πi(i
∗) 6= o(i∗).

Let i′ ∈ {1, 2, . . . , n} be the index such that πi(i
′) = o(i∗). Then i′ /∈ {i, i∗} and i′ ≥ i0.

Since Jo(i∗) is processed without preemption in every schedule in Π∗(J ), we have

p̃i′ = po(i∗). (10)

From (7)-(10), we have

p̃h = po(i∗) for each index h with min{i′, i∗} ≤ h ≤ max{i′, i∗}. (11)

The relation in (11) implies that p̃i′ = p̃i∗ = po(i∗), i.e., the two remaining parts (or jobs)

completed at times C(i′)(J ) and C(i∗)(J ), respectively, in πi have the same length at the

maximum release date ro(i∗) in πi. Thus, we define σi as the schedule obtained from πi by

exchanging the above two parts (or jobs). The exchange is performed after the maximum

release date ro(i∗). Then σi is a feasible schedule for J such that Cσi(h)(σi) = Cπi(h)(πi) =

C(h)(J ) for h = 1, 2, . . . , n. Consequently, we have σi ∈ Π∗(J ). Now Claim 3 follows by

noting that σi(i) = o(i) and σi(i
∗) = o(i∗).

Consider an arbitrary index i ∈ {1, 2, . . . , n} \ {i∗}. From Claim 3, there is a TC-

optimal permutation σi = (Jσi(1), Jσi(2), . . . , Jσi(n)) of J such that σi(i) = o(i) and σi(i
∗) =
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o(i∗). From Claim 2(ii), σ′i = (Jσi(1), . . . , Jσi(i∗−1), Jσi(i∗+1), . . . , Jσi(n)) is a TC-optimal

permutation of J ′. By writing σ′i = (Jσ′i(1), Jσ′i(2), . . . , Jσ′i(n−1)), we have σi(i) = σ′i(i) if

i ∈ {1, 2, . . . , i∗ − 1} and σi(i) = σ′i(i− 1) if i ∈ {i∗ + 1, i∗ + 2, . . . , n}. Since σ′i ∈ Π∗(J ′)
and o(i) = σi(i), we further have

Jo(i) ∈

{
L(i)(J ′), if i ∈ {1, 2, . . . , i∗ − 1},

L(i−1)(J ′), if i ∈ {i∗ + 1, i∗ + 2, . . . , n}.
(12)

Now let O′ = (Jo′(1), Jo′(2), . . . , Jo′(n−1)), where

o′(h) =

{
o(h), if h ∈ {1, 2, . . . , i∗ − 1},

o(h+ 1), if h ∈ {i∗, i∗ + 1, . . . , n− 1}.
(13)

Then O′ = (Jo(1), . . . , Jo(i∗−1), Jo(i∗+1), . . . , Jo(n)) is a permutation of J ′. From (12) and

(13), we have Jo′(h) ∈ L(h)(J ′) for h = 1, 2, . . . , n − 1. Then O′ is a legal permutation

of J ′. From Claim 1 (the induction hypothesis), O′ is a TC-optimal permutation of J ′.
By using Claim 2(ii) again, we conclude that O is a TC-optimal permutation of J . The

lemma follows.

2.4 Standard instances

For each τi ∈ T (J ), we define F(τi) = {Jj ∈ J : rj = τi}, and define pmin(τi) and

pmax(τi) as the smallest and largest remaining processing time at τi, respectively. For the

case where F(τi) 6= ∅, we clearly have pmin(τi) ≤ pj ≤ pmax(τi) for all the jobs Jj ∈ F(τi).

An instance J = {J1, J2, . . . , Jn} is called standard if, for every job Jj ∈ J , we have

pj = pmin(rj). Clearly, in a standard instance, the jobs with a common release date must

have the same processing times, i.e., if F(τi) 6= ∅, then pj = pmin(τi) for all Jj ∈ F(τi).

Not all the instances are standard. But, given an instance J , we can use the follow-

ing procedure, denoted as Procedure RD-Modification, to obtain a standard instance J ′

equivalent to J , in our research context, where “RD” stands for the “release date”.

Procedure RD-Modification: Do the following on instance J = {J1, J2, . . . , Jn}.
(i) Apply the SRPT rule to the jobs in instance J to obtain a schedule σ ∈ Π∗(J ) and

the set of decision times T (J ) = {τ1, τ2, . . . , τn′} such that τ1 < τ2 < · · · < τn′.

(ii) Set r′j := rj for j = 1, 2, . . . , n.

(iii) For i = 1, 2, . . . , n′, do the following: For every job Jj with r′j = τi and pj >

pmin(τi) (if any), reset r′j := τi+1, where pmin(τi) can be obtained from σ directly.

(iv) For each j = 1, 2, . . . , n, define J ′j as a job with release date r′j and processing

time pj.
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(v) Output the instance J ′ = {J ′1, J ′2, . . . , J ′n}. We call J ′ the J -standardization.

Note that the J -standardization is uniquely determined by J . The core part of Pro-

cedure RD-Modification is its Step (iii). The principle used in this step is comprehensible.

In fact, if τi ∈ T (J ) and Jj ∈ J is a job released at time τi such that pj > pmin(τi), the

SRPT rule stipulates that, in every schedule in Π∗(J ), Jj cannot be processed before time

τi+1. Thus, resetting the release date of Jj as τi+1 will not change the implementations

of the SRPT rule and the set Π∗(J ). That is, by identifying the two jobs Jj and J ′j,

we clearly have Π∗(J ′) = Π∗(J ) and C(J ′) = C(J ). Thus, Procedure RD-Modification

works correctly. Moreover, Step (iii) runs in O(n2) time since it has n′ ≤ 2n iterations

and, in each iteration, at most n jobs are released. Then we have the following lemma.

Lemma 2.8. Given an instance J , Procedure RD-Modification generates an equivalent

and standard instance J ′ in O(n2) time.

The next lemma reveals the hereditary property of standard instances.

Lemma 2.9. Let J = {J1, J2, . . . , Jn} be a standard instance and let Jj′ ∈ L(n)(J ), i.e.,

Jj′ = Jσ(n) for some schedule σ ∈ Π∗(J ). Then J \ {Jj′} is also a standard instance.

Proof. Let σ′ = O(σ)
n−1. From Lemma 2.6, we have σ′ ∈ Π∗(J (σ)

n−1). Note that σ′ can be

obtained from σ by removing the schedule for Jσ(n). For each j ∈ {σ(1), σ(2), . . . , σ(n −
1)}, since J is a standard instance, pj is the smallest remaining processing time at time rj
in σ, so pj is the smallest remaining processing time at time rj in σ′; thus, pj is the smallest

remaining processing time at time rj in every schedule in Π∗(J (σ)
n−1). Consequently, J \

{Jj′} = J (σ)
n−1 is a standard instance. The lemma follows.

If J ′ is the J -standardization, then we have T (J ′) ⊆ T (J ). It is noticed that the

standard instances enable us to simplify the discussions in Sections 3 and 4.

3 Generating the legal sets

Given a standard instance J = {J1, J2, . . . , Jn} with r1 ≤ r2 ≤ · · · ≤ rn, we present

in this section an O(n2)-time algorithm to generate all the legal sets of J . Recall that

T (J ) = {τ1, τ2, . . . , τn′} is the set of all the decision times, where τ1 < τ2 < · · · < τn′ .

Since J is a standard instance, for each decision time τi with F(τi) 6= ∅, we have

pj = pmin(τi) for Jj ∈ F(τi). (14)

Thus, for every positive number q, we have

{Jj : rj = τi, pj = q} =

{
F(τi), if q = pmin(τi),

∅, otherwise.
(15)
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We next introduce some definitions.

Definition 3.1. Let i be an index in {1, 2, . . . , n′}.
(i) For a schedule σ ∈ Π∗(J ) and a job Jz ∈ J , Jz is said to be (τi, σ)-available if

Jz is available at time τi in σ, i.e., rz ≤ τi < Cz(σ).

(ii) We use Ki to denote the set of distinct remaining processing times at time τi
and set ki = |Ki|. Then ki is the number of distinct remaining processing times at time

τi. When ki > 0, we clearly have pmin(τi) = min{q : q ∈ Ki}. We use λi to denote

the repetition number of the remaining processing time pmin(τi) at time τi and call λi the

optional index at time τi. For the case where ki = 0, we define pmin(τi) = +∞ and

λi = 0. This means that, at time τi, the SRPT rule has λi choices for processing a job in

the interval [τi, τi+1].

(iii) For a schedule σ ∈ Π∗(J ) and a positive number q, we use J (σ)(i, q) to denote

the set of (τi, σ)-available jobs that have the same remaining processing time q at time τi
in σ. Note that J (σ)(i, q) 6= ∅ if q ∈ Ki and J (σ)(i, q) = ∅ if q /∈ Ki. Moreover, we have

λi =

{
|J (σ)(i, pmin(τi))|, if ki > 0,

0, if ki = 0.

(iv) For each q ∈ Ki, we define J (i, q) =
⋃
σ∈Π∗(J ) J (σ)(i, q) and call it the q-cluster

at time τi.

(v) We finally define τ0 = −∞, K0 = ∅, and k0 = 0.

Note that τ1 = r1 is the minimum release date of the jobs in J and τn′ = C(n)(J ).

Then we have k1 = 1, kn′−1 = 1, kn′ = 0, and τ1 /∈ C(J ). From Definition 3.1, the

following lemma can be observed.

Lemma 3.1. For each index i ∈ {1, 2, . . . , n′}, we have the following statements.

(i) 0 ≤ |Ki| = ki ≤ n;

(ii) ki = 0 if and only if Ki = ∅ and λi = 0.

(iii) If ki ≥ 1, then 1 ≤ i ≤ n′−1 and F(τi) ⊆ J (σ)(i, pmin(τi)) ⊆ J (i, pmin(τi)), where

σ ∈ Π∗(J ).

(iv) If ki = 0 and i ≤ n′ − 2, then ki+1 = 1 and F(τi+1) = J (i + 1, pmin(τi+1)) is the

unique cluster at time τi+1.

The following lemma is a direct consequence of Definition 3.1 and implementations of

the SRPT rule.

Lemma 3.2. Given i ∈ {2, 3, . . . , n′}, the following statements are equivalent.

(i) τi ∈ C(J );
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(ii) τi − τi−1 = pmin(τi−1);

(iii) L(h)(J ) = J (i− 1, pmin(τi−1)), where h ∈ {1, 2, . . . , n} such that τi = C(h)(J ).

The next lemma shows how to obtain the clusters at time τi from that at time τi−1.

Lemma 3.3. For i ∈ {1, 2, . . . , n′ − 1} with ki > 0 and for q ∈ Ki, we have the following

four statements for the q-cluster J (i, q) at time τi.

(i) If q 6= pmin(τi−1) and q 6= pmin(τi−1)− (τi − τi−1), then

J (i, q) = J (i− 1, q) ∪ {Jz : rz = τi, pz = q}.

(ii) If q = pmin(τi−1) and λi−1 > 1, then

J (i, q) = J (i− 1, q) ∪ {Jz : rz = τi, pz = q}.

(iii) If q = pmin(τi−1) and λi−1 = 1, then

J (i, q) = {Jz : rz = τi, pz = q}.

(iv) If q = pmin(τi−1)− (τi − τi−1), then

J (i, q) = J (i− 1, pmin(τi−1)) ∪ {Jz : rz = τi, pz = q}.

Proof. Suppose first that ki−1 = 0. Then pmin(τi−1) = +∞ and we only need to prove

Statement (i). From Lemma 3.1, we have ki = 1 and F(τi) is the unique cluster at time τi.

This means that q = pmin(τi). From Definition 3.1, the assumption ki−1 = 0 implies that

J (i−1, q) = ∅. Consequently, J (i, q) = F(τi) = {Jz : rz = τi, pz = q} = J (i−1, q)∪{Jz :

rz = τi, pz = q}, as required in Statement (i).

Assume in the following that ki−1 > 0. We partition the set J (i, q) into two parts

J ′(i, q) and J ′′(i, q), where

J ′(i, q) = {Jz ∈ J (i, q) : rz < τi}

and

J ′′(i, q) = {Jz ∈ J (i, q) : rz = τi}.

Clearly, we have

J ′′(i, q) = {Jz : rz = τi, pz = q}.
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Then we depict the jobs in J ′(i, q) in the sequel. Since τi−1 and τi are two consecutive

decision times, from the definition of J ′(i, q), we have the following claim.

Claim 1. Jz ∈ J ′(i, q) if and only if there is a schedule σ ∈ Π∗(J ) such that Jz is

(τi−1, σ)-available, and Jz ∈ J (σ)(i, q) if and only if rz ≤ τi−1 and there is a schedule

σ ∈ Π∗(J ) such that Jz ∈ J (σ)(i, q).

Corresponding to the four statements of this lemma, we consider the following four

cases, respectively. Since ki−1 > 0, in every schedule σ ∈ Π∗(J ), the interval [τi−1, τi] is

occupied by some job in J (σ)(i− 1, pmin(τi−1)). This implies that pmin(τi−1) ≥ τi − τi−1.

Case 1. q 6= pmin(τi−1) and q 6= pmin(τi−1)− (τi − τi−1). In this case, for each σ ∈ Π∗(J )

and each Jz ∈ J with rz < τi, job Jz has the remaining processing time q at time τi in

σ, i.e., Jz ∈ J (σ)(i, q), if and only if Jz has the remaining processing time q at time τi−1

in σ, i.e., Jz ∈ J (σ)(i− 1, q). From Claim 1, Jz ∈ J ′(i, q) if and only if Jz ∈ J (i− 1, q),

so J ′(i, q) = J (i − 1, q). Consequently, J (i, q) = J (i − 1, q) ∪ {Jz : rz = τi, pz = q}.
Statement (i) follows.

Case 2. q = pmin(τi−1) and λi−1 > 1. In this case, for each σ ∈ Π∗(J ) and each Jz ∈ J
with rz < τi, the relation Jz ∈ J (σ)(i, q) holds only if Jz has the remaining processing

time q at time τi−1 in σ, i.e., Jz ∈ J (σ)(i − 1, q). From Claim 1, Jz ∈ J ′(i, q) only if

Jz ∈ J (i− 1, q). This implies that J ′(i, q) ⊆ J (i− 1, q).

To prove the opposite inclusion relationship, we pick Jz ∈ J (i−1, q) arbitrarily. Then

there is a schedule σ ∈ Π∗(J ) such that Jz ∈ J (σ)(i − 1, q), i.e., Jz has the remaining

processing time q at time τi−1 in σ. Since q = pmin(τi−1) and |J (σ)(i − 1, q)| = λi−1 > 1,

the SRPT rule has multiple choices for processing the jobs in J (σ)(i− 1, q) at time τi−1.

Therefore, there is a schedule σ′ ∈ Π∗(J ) such that Jz ∈ J (σ′)(i − 1, q) and the interval

[τi−1, τi] is not occupied by job Jz in σ′. Then Jz has the remaining processing time q at

time τi in σ′. As a result, we have Jz ∈ J ′(i, q). It follows that J (i− 1, q) ⊆ J ′(i, q).
The above discussion shows that J ′(i, q) = J (i − 1, q). Consequently, J (i, q) =

J (i− 1, q) ∪ {Jz : rz = τi, pz = x}. Statement (ii) follows.

Case 3. q = pmin(τi−1) and λi−1 = 1. In this case, let us consider an arbitrary schedule

σ ∈ Π∗(J ). Since q = pmin(τi−1) and |J (σ)(i − 1, q)| = λi−1 = 1, the unique job in

J (σ)(i− 1, q) occupies the interval [τi−1, τi] in σ. Thus, no job in J (σ)(i, q) is released by

time τi−1. This implies that J ′(i, q) = ∅. Consequently, J (i, q) = {Jz : rz = τi, pz = q}.
Statement (iii) follows.

Case 4. q = pmin(τi−1) − (τi − τi−1). In this case, for each σ ∈ Π∗(J ) and each Jz ∈ J
with rz < τi, the relation Jz ∈ J (σ)(i, q) holds only if Jz has the remaining processing

time pmin(τi−1) at time τi−1 in σ and Jz occupies the interval [τi−1, τi] in σ, implying that

Jz ∈ J (σ)(i− 1, pmin(τi−1)). From Claim 1, Jz ∈ J ′(i, q) only if Jz ∈ J (i− 1, pmin(τi−1)).
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This means that J ′(i, q) ⊆ J (i− 1, pmin(τi−1)).

To prove the opposite inclusion relationship, we pick Jz ∈ J (i − 1, pmin(τi−1)) ar-

bitrarily. Then there is a schedule σ ∈ Π∗(J ) such that Jz ∈ J (σ)(i − 1, pmin(τi−1)),

i.e., Jz has the minimum remaining processing time pmin(τi−1) at time τi−1 in σ. From

the implementation of the SRPT rule, there is a schedule σ′ ∈ Π∗(J ) such that Jz ∈
J (σ′)(i− 1, pmin(τi−1)) and the interval [τi−1, τi] is occupied by job Jz in σ′. Then Jz has

the remaining processing time q = pmin(τi−1)− (τi − τi−1) at time τi in σ′. Therefore, we

have Jz ∈ J ′(i, q). It follows that J (i− 1, pmin(τi−1)) ⊆ J ′(i, q).
The above discussion shows that J ′(i, q) = J (i−1, pmin(τi−1)). Consequently, J (i, q) =

J (i − 1, pmin(τi−1)) ∪ {Jz : rz = τi, pz = q}. Statement (iv) follows and the lemma fol-

lows.

From Lemmas 3.2 and 3.3, we present the following algorithm for determining the

legal sets L(1)(J ),L(2)(J ), . . . ,L(n)(J ).

Algorithm 3.1. For generating the legal sets L(1)(J ),L(2)(J ), . . . ,L(n)(J ).

Input: An standard instance J = {J1, J2, . . . , Jn} with r1 ≤ r2 ≤ · · · ≤ rn.

Step 1: Apply the SRPT rule to the jobs in instance J to obtain a schedule σ ∈ Π∗(J ),

together with the corresponding completion times Cσ(1)(σ), Cσ(2)(σ), . . . , Cσ(n)(σ).

Step 2: From schedule σ, do the following:

(2.1) Set C(h)(J ) := Cσ(h)(σ) for h = 1, 2, . . . , n. Generate the set of decision times

T (J ) = {τ1, τ2, . . . , τn′}, where τ1 < τ2 < · · · < τn′ .

(2.2) Determine the index sequence i1, i2, . . . , in of {1, 2, . . . , n′} such that i1 < i2 <

· · · < in and

τih = C(h)(J ) for h = 1, 2, . . . , n.

(2.3) Determine the items pmin(τi), λi, ki, and Ki for i = 1, 2, . . . , n′.

(2.4) For each i ∈ {1, 2, . . . , n′} and q ∈ Ki, calculate J ′′(i, q) := {Jz : rz = τi, pz = q}.
Step 3: Set k0 := 0. For i = 1, 2, . . . , n′ with ki > 0, generate the clusters at time τi in

the following way:

– For each q ∈ Ki, set J (i, q) :=

J (i− 1, q) ∪ J ′′(i, q), if q 6= pmin(τi−1) and q 6= pmin(τi−1)− (τi − τi−1),

J (i− 1, q) ∪ J ′′(i, q), if q = pmin(τi−1) and λi−1 > 1,

J ′′(i, q), if q = pmin(τi−1) and λi−1 = 1,

J (i− 1, pmin(τi−1)) ∪ J ′′(i, q), if q = pmin(τi−1)− (τi − τi−1).

Step 4: For h = 1, 2, . . . , n, set L(h)(J ) := J (ih − 1, pmin(τih−1)).

Output: C(1)(J ), C(2)(J ), . . . , C(n)(J ) and L(1)(J ),L(2)(J ), . . . ,L(n)(J ).
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Lemma 3.4. Algorithm 3.1 generates the n legal sets L(1)(J ),L(2)(J ), . . . ,L(n)(J ) cor-

rectly in O(n2) time.

Proof. The correctness of Algorithm 3.1 follows from Lemmas 3.2 and 3.3. We roughly

estimate the time complexity of the algorithm in the following.

Clearly, Steps 1, 2 and 4 run in O(n2) time in total. Then we only need to estimate

the running time of Step 3.

In Step 3, we have a total of n′ ≤ 2n iterations and, for each i ∈ {1, 2, . . . , n′} with

ki > 0, the |Ki| = ki clusters at time τi, i.e., J (i, q) for all q ∈ Ki, are generated in the

i-th iteration. We distinguish the following two cases.

If ki−1 = 0, then |Ki| = ki = 1 and the only cluster at time τi is J (i, pmin(τi)) = F(τi).

Thus, the i-th iteration runs in O(n) time.

If ki−1 ≥ 1, then for each q ∈ Ki−1\{pmin(τi), pmin(τi−1)}, we have q ∈ Ki and J (i, q) =

J (i − 1, q). This means that Ki \ Ki−1 ⊆ {pmin(τi), pmin(τi−1), pmin(τi−1) − (τi − τi−1)},
so |Ki \ Ki−1| ≤ 3. Then at most three clusters J (i, q) with q ∈ Ki \ Ki−1 are newly

generated at time τi. Note that |Ki| = ki ≤ n and each new cluster, which contains at

most n jobs, can be generated in O(n) time. As a result, the i-th iteration runs in O(n)

time.

The above discussion shows that Step 3 runs in O(n2) time. Then the time complexity

of Algorithm 3.1 is O(n2).

Sometimes, we only need the last legal set L(n)(J ). The following lemma states the

feature of L(n)(J ). Recall that τn′ = C(n)(J ), so kn′−1 = 1.

Lemma 3.5. Let J = {J1, J2, . . . , Jn} with r1 ≤ r2 ≤ · · · ≤ rn be a standard instance.

Let j∗ = min{j : Jj ∈ L(n)(J )}. Then L(n)(J ) = {Jj ∈ J : j ≥ j∗, pj = pmax(rj)}.

Proof. Note that the condition pj = pmax(rj) implies pmin(rj) = pj = pmax(rj) since we

have pj = pmin(rj) for all the jobs Jj ∈ J in the standard instance J .

Suppose first that Jj ∈ L(n)(J ). Then there is a schedule π ∈ Π∗(J ) such that

Jj = Jπ(n). By the SRPT rule, at every decision time τi ≥ rj, Jj has the largest remaining

processing time in π, i.e., p
(π)
j (τi) = pmax(τi). Therefore, pj = p

(π)
j (rj) = pmax(rj). More-

over, the choice of Jj∗ implies that j ≥ j∗. Consequently, we have L(n)(J ) ⊆ {Jj ∈ J :

j ≥ j∗, pj = pmax(rj)}. This also shows that pj∗ = pmax(rj∗).

In order to prove the opposite inclusion relationship, we pick an arbitrary job Jj ∈ J
such that j ≥ j∗ and pj = pmax(rj). Then rj ≥ rj∗ . Since Jj∗ ∈ L(n)(J ), there is a schedule

σ ∈ Π∗(J ) such that Jj∗ = Jσ(n). Suppose that Jj = Jσ(h) for some h ∈ {1, 2, . . . , n}. If

h = n, we have Jj = Jσ(h) = Jj∗ ∈ L(n)(J ). Then we suppose that h ≤ n− 1, so Jj 6= Jj∗ .

By the SRPT rule again, at the decision time rj ≥ rj∗ , Jj∗ has the largest remaining
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processing time in σ. Therefore, p
(σ)
j∗ (rj) = pmax(rj) = pj; consequently, J

(σ)
j∗ (rj) and

Jj can be regarded as two identical jobs at time rj. Let σ′ be the schedule obtained

from σ by swapping Jj and J
(σ)
j∗ (rj). Then the two schedules σ and σ′ have the same

completion times, so σ′ ∈ Π∗(J ) since σ ∈ Π∗(J ). Noting that Jj = Jσ′(n), we conclude

that Jj ∈ L(n)(J ). This shows that {Jj ∈ J : j ≥ j∗, pj = pmax(rj)} ⊆ L(n)(J ). The

lemma follows.

Based on Lemma 3.5, we present the following algorithm for generating the last legal

set of instance J .

Algorithm 3.2. For generating the last legal set L(n)(J ).

Input: A standard instance J = {J1, J2, . . . , Jn} with r1 ≤ r2 ≤ · · · ≤ rn.

Step 1: Apply the following modified SRPT rule to the jobs in instance J to obtain a

schedule σ ∈ Π∗(J ) and the values pmax(rj) for j ∈ {1, 2, . . . , n}: At each decision time,

we schedule an available job (if any) with the largest job index. This procedure is repeated

until all the jobs are scheduled.

Step 2: Set j∗ := σ(n) and set L(n)(J ) := {Jj ∈ J : j ≥ j∗, pj = pmax(rj)}.
Output: The set L(n)(J ).

Lemma 3.6. For a standard instance J , Algorithm 3.2 generates L(n)(J ) in O(n) time.

Proof. Recall that the jobs are initially indexed in the ERD order such that r1 ≤ r2 ≤
· · · ≤ rn. For each decision time τi with F(τi) 6= ∅, the jobs in F(τi) have the same

processing times pmin(τi) and we have F(τi) = {Jyi , Jyi+1, . . . , Jzi}, where yi = min{j :

Jj ∈ F(τi)} and zi = max{j : Jj ∈ F(τi)}. Then we set
−→
F (τi) = (Jyi , Jyi+1, . . . , Jzi),

which lists the jobs in F(τi) in an increasing order of their job indices. For the case where

F(τi) = ∅, we set
−→
F (τi) as empty.

Let us first consider the implementation of Step 1. We use a simple data structure in

the following discussion. At each decision time τi with ki > 0, we store the available jobs

in an increasing order of their job indices in a list, denoted as List(τi). We also define

List(τi) as empty if ki = 0. We next show that all the lists List(τi), i ∈ {1, 2, . . . , n′},
have the desired property : List(τi) can be generated from List(τi−1) in O(1 + |F(τi)|)
time, and if ki > 0, the available jobs at time τi in σ are also listed in a non-increasing

order of their remaining processing times in List(τi).

At time τ1 = r1, we have k1 = 1 and the available jobs are given by F(τ1) = F(r1).

Then List(τ1) = (J1, J2, . . . , Jz1) can be obtained in O(1 + |F(τ1)|) time clearly. Since

all the jobs in F(τ1) have the same processing time pmin(τ1), List(τ1) has the desired

property.

21



Inductively, suppose that i ∈ {2, 3, . . . , n′} and the desired property holds for each of

the lists List(τ1),List(τ2), . . . ,List(τi−1). The design of Step 1 means that the SRPT

rule is implemented in the interval [τ1, τi] in Step 1. Thus, the remaining processing times

at time τi in σ are exactly those in every schedule in Π∗(J ). We distinguish the following

three possibilities for discussing the list List(τi).

• ki−1 = 0. Then ki = 1 and the available jobs at time τi are given by F(τi). Thus,

List(τi) = (Jyi , Jyi+1, . . . , Jzi). Similar to the discussion for List(τ1), the list List(τi) has

the desired property.

• ki = 0. Then List(τi) is empty, so it has the desired property trivially.

• ki−1 > 0 and ki > 0. Suppose that List(τi−1) = (Jj1 , Jj2 , . . . , Jja). Then the interval

[τi−1, τi] is occupied by job Jja in σ. If pmin(τi−1) = τi − τi−1, then Cja(σ) = τi and Jja is

no longer available at time τi in σ; and if pmin(τi−1) > τi − τi−1, then p
(σ)
ja

(τi) > 0 and Jja
is still available at time τi in σ. Thus, we have

List(τi) =

 (List(τi−1) \ {Jja},
−→
F (τi)), if pmin(τi−1) = τi − τi−1,

(List(τi−1),
−→
F (τi)), if pmin(τi−1) > τi − τi−1.

This means that List(τi) can be formed by shifting the jobs in the list
−→
F (τi) one by one

to the list List(τi−1) \ {Jja} or List(τi−1). Note that deleting the last job Jja from list

List(τi−1) or shifting a job of
−→
F (τi) takes a constant time. Consequently, List(τi) can

be generated in O(1 + |F(τi)|) time. Since J is a standard instance, when F(τi) 6= ∅, all

the jobs in F(τi) have the same processing time pmin(τi). Therefore, the available jobs at

time τi in σ are also listed in a non-increasing order of their remaining processing times

in List(τi). As a result, List(τi) has the desired property.

The above discussion shows that all the lists List(τi), i ∈ {1, 2, . . . , n′}, have the

desired property. This statement has two consequences:

(i) Note that n′ ≤ 2n and (F(τi) : 1 ≤ i ≤ n′) forms a partition of J . Then the time

complexity for generating the lists (List(τi) : 1 ≤ i ≤ n′) is given by O(n). This also

shows that Step 1 runs in O(n) time. Step 2 runs in O(n) time clearly. Then Algorithm

3.2 runs in O(n) time.

(ii) Step 1 is an implementation of the SRPT rule. Thus, σ ∈ Π∗(J ).

From (ii), we know that Jj∗ = Jσ(n) ∈ L(n)(J ). We next show that j∗ is the smallest

index of the jobs in L(n)(J ). Then the result follows from Lemma 3.5.

If there exists some job index j′ such that j′ < j∗ and Cj′(σ) > rj∗ , then both Jj∗ and

Jj′ are available at time rj∗ in σ. The design of Step 1 implies that, at any decision time

τi ≥ rj∗ , an available job with the largest job index is scheduled. Then Jj∗ = J
(σ)
j∗ (rj∗)

must be scheduled before the part J
(σ)
j′ (rj∗) of job Jj′ in σ since j∗ > j′. This contradicts

the fact that Cj′(σ) < Cj∗(σ).
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The above discussion shows that Ch(σ) ≤ rj∗ for every indices h = 1, 2, . . . , j∗−1. This

further means that C(j∗−1)(J ) ≤ rj∗ and all the jobs J1, J2, . . . , Jj∗−1 must be completed

by time rj∗ in every schedule in Π∗(J ). Consequently, j∗ is the smallest index of the jobs

in L(n)(J ). The lemma follows.

4 Problem 1|rj, pmtn|Lex(
∑
Cj, f )

We study problem 1|rj, pmtn|Lex(
∑
Cj, f), where f ∈ {

∑
fj, fmax}. In Section 4.1, we

show that problem 1|rj, pmtn|Lex(
∑
Cj,

∑
fj) is solvable in O(n3) time. In Section 4.2,

we show that problem 1|rj, pmtn|Lex(
∑
Cj, fmax) is solvable in O(n2) time. In Section 4.3,

we show that, for some special choices of f , problem 1|rj, pmtn|Lex(
∑
Cj, f) is solvable

in O(n log n) time.

From Lemma 2.8, given an instance J , Procedure RD-Modification generates an equiv-

alent and standard instance in O(n2) time. Then we only consider standard instances in

Sections 4.1 and 4.2.

4.1 Problem 1|rj, pmtn|Lex(
∑
Cj,

∑
fj)

Consider the problem 1|rj, pmtn|Lex(
∑
Cj,

∑
fj) on a standard instance J = {J1, J2, . . . , Jn}.

Then Π∗(J ) is the set of feasible schedules of this problem. From Lemmas 2.5 and 2.7,

a schedule σ of J is in Π∗(J ) if and only if O(σ) is not only a TC-optimal permutation but

also a legal permutation of J . This enables us to reduce problem 1|rj, pmtn|Lex(
∑
Cj,

∑
fj)

to an n× n linear assignment problem. Recall that, for each index j ∈ {1, 2, . . . , n} and

each time t ∈ [0,+∞), fj(t) is a finite number. Then, for each feasible schedule σ ∈ Π∗(J ),

the objective value
∑n

j=1 fj(σ) is a finite number.

We define indicator variables of a legal permutation O = (Jo(1), Jo(2), . . . , Jo(n)) of J
as

xij =

1, if Jj ∈ L(i)(J ),

0, otherwise.

Define the cost of assigning job Jj to the i-th position in O, i.e., Jj = Jo(i), as

cij =

fj(C
(i)(J )), if Jj ∈ L(i)(J ),

+∞, otherwise.
(16)
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Then we consider the following n× n linear assignment problem:

min
∑n

i=1

∑n
j=1 cijxij

s.t.
∑n

i=1 xij = 1, for all j ∈ {1, . . . , n},∑n
j=1 xij = 1, for all i ∈ {1, . . . , n},

xij ∈ {0, 1}, for all i, j ∈ {1, . . . , n}.

(17)

For each feasible solution x = (xij : 1 ≤ i, j ≤ n) of the problem in (17), we set

Value(x) =
n∑
i=1

n∑
j=1

cijxij,

which is the objective value of the solution x.

Lemma 4.1. Let x∗ = (x∗ij : 1 ≤ i, j ≤ n) be an optimal solution for the n × n linear

assignment problem stated in (17). Let O∗ = (Jo∗(1), Jo∗(2), . . . , Jo∗(n)) be the permutation

of J such that x∗i,o∗(i) = 1 for i = 1, 2, . . . , n. Then O∗ is an optimal schedule for the

problem 1|rj, pmtn|Lex(
∑
Cj,

∑
fj) on instance J .

Proof. Let σ ∈ Π∗(J ). Then we have Cσ(i)(σ) = C(i)(J ) and Jσ(i) ∈ L(i)(J ) for i =

1, 2, . . . , n. Thus, O(σ) = (Jσ(1), Jσ(2), . . . , Jσ(n)) is a legal permutation of J . Now we

define a solution x = (xij : 1 ≤ i, j ≤ n) for (17) as

xij =

{
1, if j = σ(i),

0, otherwise.

Since O(σ) = (Jσ(1), Jσ(2), . . . , Jσ(n)) is a permutation of J , it is observed that x = (xij :

1 ≤ i, j ≤ n) is a feasible solution for the problem in (17). From the legality of O(σ), we

have
Value(x) =

∑n
i=1

∑n
j=1 cijxij

=
∑n

i=1 ci,σ(i)

=
∑n

i=1 fσ(i)(C
(i)(J ))

=
∑n

i=1 fσ(i)(Cσ(i)(σ))

=
∑n

j=1 fj(σ)

< +∞.
From the optimality of x∗, we thus have

Value(x∗) ≤ Value(x) =
n∑
j=1

fj(σ) < +∞. (18)
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If x∗i′j′ = 1 for some i′ ∈ {1, 2, . . . , n} and Jj′ /∈ L(i′)(J ), then ci′j′ = +∞. As a result,

we have Value(x∗) =
∑n

i=1

∑n
j=1 cijx

∗
ij = +∞. This contradicts (18). Hence, we have

x∗ij = 0 if Jj /∈ L(i)(J ). (19)

From (19) and from the definition of permutationO∗ = (Jo∗(1), Jo∗(2), . . . , Jo∗(n)), which

requires that x∗i,o∗(i) = 1 for i = 1, 2, . . . , n, we have Jo∗(i) ∈ L(i)(J ) for i = 1, 2, . . . , n.

Thus, O∗ is a legal permutation of J . From Lemma 2.7, O∗ is a TC-optimal permutation

of J , so O∗ ∈ Π∗(J ). This further implies that Co∗(i)(O∗) = C(i)(J ) for i = 1, 2, . . . , n.

From (18) and (19), we have∑n
j=1 fj(O∗) =

∑n
i=1 fo∗(i)(O∗)

=
∑n

i=1 fo∗(i)(Co∗(i)(O∗))

=
∑n

i=1 fo∗(i)(C
(i)(J ))

=
∑n

i=1 ci,o∗(i)

=
∑n

i=1

∑n
j=1 cijx

∗
ij

= Value(x∗)

≤ Value(x)

=
∑n

j=1 fj(σ).

Consequently, O∗ is optimal for the problem 1|rj, pmtn|Lex(
∑
Cj,

∑
fj) on instance J .

The lemma follows.

Based on Lemma 4.1, we present the following algorithm.

Algorithm 4.1. For solving problem 1|rj, pmtn|Lex(
∑
Cj,

∑
fj).

Input: A standard instance J = {J1, J2, . . . , Jn} with r1 ≤ r2 ≤ · · · ≤ rn.

Step 1: Run Algorithm 3.1 to obtain the completion times C(1)(J ), C(2)(J ), . . . , C(n)(J )

and the legal sets L(1)(J ),L(2)(J ), . . . ,L(n)(J ).

Step 2: Calculate the position cost cij, 1 ≤ i, j ≤ n, by using (16), and then generate

the n× n linear assignment problem in (17).

Step 3: Solve the n× n linear assignment problem in (17) to obtain its optimal solution

x∗ = (x∗ij : 1 ≤ i, j ≤ n) and its optimal value Value(x∗) =
∑n

i=1

∑n
j=1 cijx

∗
ij.

Step 4: Generate the permutation O∗ = (Jo∗(1), Jo∗(2), . . . , Jo∗(n)) of J , where, for each

i ∈ {1, 2, . . . , n}, o∗(i) is the unique index in {1, 2, . . . , n} such that x∗i,o∗(i) = 1.

Step 5: Run Procedure Pmtn-LS(O∗) to obtain the schedule σ∗ = Pmtn-LS(O∗) of J .

Output: Schedule σ∗ = Pmtn-LS(O∗) and its objective value Value(x∗).
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Theorem 4.1. Algorithm 4.1 solves problem 1|rj, pmtn|Lex(
∑
Cj,

∑
fj) in O(n3) time.

Proof. The correctness of Algorithm 4.1 follows from Lemmas 3.4 and 4.1. We next

estimate the time complexity of the algorithm.

From Lemma 3.4, Step 1 runs in O(n2) time. Step 2 runs in O(n2) time clearly. From

Lawler (1976), the n × n linear assignment problem in (17) is solvable in O(n3) time.

Thus, Step 3 can be implemented in O(n3) time. Step 4 runs in O(n2) time clearly. From

Yuan et al. (2015), Procedure Pmtn-LS(O∗) in Step 5 can be implemented in O(n log n)

time. Then the overall time complexity of Algorithm 4.1 is O(n3).

4.2 Problem 1|rj, pmtn|Lex(
∑
Cj, fmax)

Consider the problem 1|rj, pmtn|Lex(
∑
Cj, fmax) on a standard instance J = {J1, J2, . . . , Jn}

with r1 ≤ r2 ≤ · · · ≤ rn. We use the following lemma to determine the last completed

job in an optimal schedule.

Lemma 4.2. Consider the problem 1|rj, pmtn|Lex(
∑
Cj, fmax) on instance J and suppose

that Jj′ ∈ L(n)(J ) such that

fj′(C
(n)(J )) = min{fj′′(C(n)(J )) : Jj′′ ∈ L(n)(J )}.

Then there is an optimal schedule for the problem in which Jj′ is the last completed job.

Proof. Let σ be an optimal schedule such that Jj′ is completed as late as possible. Since

σ ∈ Π∗(J ), we have Cσ(i)(σ) = C(i)(J ) for i = 1, 2, . . . , n. Then we only need to show

that j′ = σ(n).

Suppose to the contrary that j′ = σ(i′) for some index i′ ∈ {1, 2, . . . , n− 1}. Then

rj′ < Cj′(σ) = Cσ(i′)(σ) < C(n)(J ).

Suppose that the intervals occupied by job Jj′ in σ are given by

[τi1 , τi1+1] ≤ [τi2 , τi2+1] ≤ · · · ≤ [τia , τia+1],

where, for two intervals [τ, τ ′] and [t, t′], the expression [τ, τ ′] ≤ [t, t′] indicates that τ <

τ ′ ≤ t < t′. Then rj′ ≤ τi1 and τia+1 = Cj′(σ) = Cσ(i′)(σ). We have the following claim.

Claim 1. For each τ ∈ {τi1 , τi2 , . . . , τia}, we have

(i) p
(σ)
j′ (τ) is the smallest remaining processing time at time τ in σ,

(ii) Jj′ is the unique job with the smallest remaining processing time at time τ in σ,

and
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(iii) in every schedule in Π∗(J ), p
(σ)
j′ (τ) is the smallest remaining processing time at

time τ and exactly one available job at time τ has the remaining processing time p
(σ)
j′ (τ).

In fact, Statement (i) follows from the principle of the SRPT rule, since σ ∈ Π∗(J ).

To prove Statement (ii), we suppose to the contrary that there is a decision time

τ ∈ {τi1 , τi2 , . . . , τia} such that a (τ, σ)-available job Jj other than Jj′ also has the smallest

remaining processing time at time τ in σ. Then p
(σ)
j (τ) = p

(σ)
j′ (τ). By the SRPT rule, the

part J
(σ)
j (τ) is completely processed after the part J

(σ)
j′ (τ) in σ. Let π be the schedule of J

that is obtained from σ by swapping the two parts J
(σ)
j (τ) and J

(σ)
j′ (τ). Since σ ∈ Π∗(J )

and p
(σ)
j (τ) = p

(σ)
j′ (τ), we have π ∈ Π∗(J ). Note that Cj′(π) > Cj′(σ) and Jj′ is the only

job whose completion time in π is greater than that in σ. Since Cj′(π) ≤ C(n)(J ), we have

fj′(π) ≤ fj′(C
(n)(J )) = min{fj′′(C(n)(J )) : Jj′′ ∈ L(n)(J )} ≤ fσ(n)(σ) ≤ fmax(σ). This

means that fmax(π) ≤ max{fmax(σ), fj′(π)} = fmax(σ). Consequently, π is also an optimal

schedule for problem 1|rj, pmtn|Lex(
∑
Cj, fmax). But then, the relation Cj′(π) > Cj′(σ)

contradicts the choice of σ. This proves Statement (ii).

Statement (iii) is just a consequence of Lemma 2.2 and the above two statements.

This completes the proof of Claim 1.

Since Jj′ ∈ L(n)(J ), from the principle of the SRPT rule, there is a schedule σ′ ∈
Π∗(J ) such that Cj′(σ

′) = C(n)(J ), so, at every decision time in T (J ) ∩ [rj′ , C
(n)(J )),

job Jj′ is available and has the largest remaining processing time in σ′. From Lemma 2.2,

the remaining processing times at each decision time are independent of the choices of

the schedules in Π∗(J ). Then we have the following claim.

Claim 2. At each time τ ∈ {τi1 , τi2 , . . . , τia}, p
(σ′)
j′ (τ) is the largest remaining processing

time in σ′.

The following claim is critical for our discussion.

Claim 3. For each a′ ∈ {1, 2, . . . , a}, we have p
(σ)
j′ (τia′ ) = p

(σ′)
j′ (τia′ ) and the interval

[τia′ , τia′+1] is fully occupied by job Jj′ in σ′.

To prove Claim 3, we first consider the states of σ and σ′ at the decision time τi1 and

the interval [τi1 , τi1+1]. Since τi1 is the starting time of job Jj′ in σ, we have p
(σ)
j′ (τi1) = pj′ .

From Claims 1 and 2, we have pj′ = p
(σ)
j′ (τi1) ≤ p

(σ′)
j′ (τi1) ≤ pj′ . Consequently, we have

p
(σ)
j′ (τi1) = p

(σ′)
j′ (τi1). From Claim 1(iii) and Claim 2, Jj′ is the unique available job at time

τi1 in σ′. Since τi1 and τi1+1 are two consecutive decision points, no jobs in J are released

in the interval (τi1 , τi1+1). Consequently, the time interval [τi1 , τi1+1] is fully occupied by

job Jj′ in σ′. As a result, Claim 3 holds for a′ = 1.

Inductively, suppose that 2 ≤ a′ ≤ a and the intervals

[τi1 , τi1+1], [τi2 , τi2+1], . . . , [τia′−1
, τia′−1+1]
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are fully occupied by job Jj′ in σ′. From Claims 1 and 2, and by using the induction

hypothesis, we have

p
(σ)
j′ (τia′ ) = pj′ − (|[τi1 , τi1+1]|+ |[τi2 , τi2+1]|+ · · ·+ |[τia′−1

, τia′−1+1]|)

≥ p
(σ′)
j′ (τia′ ) ≥ p

(σ)
j′ (τia′ ).

It follows that p
(σ)
j′ (τia′ ) = p

(σ′)
j′ (τia′ ). From Claim 1(iii) and Claim 2 again, Jj′ is the

unique available job at time τia′ in σ′, so the interval [τia′ , τia′+1] is fully occupied by job

Jj′ in σ′. This proves Claim 3.

From Claim 3, we have Cj′(σ
′) = Cj′(σ) < C(n)(J ). This contradicts the fact that

Cj′(σ
′) = C(n)(J ). The lemma follows.

We provide the following algorithm to solve problem 1|rj, pmtn|Lex(
∑
Cj, fmax).

Algorithm 4.2. For solving problem 1|rj, pmtn|Lex(
∑
Cj, fmax).

Input: A standard job instance J = {J1, J2, . . . , Jn} with r1 ≤ r2 ≤ · · · ≤ rn.

Step 1: Generate a permutation O = (Jo(1), Jo(2), . . . , Jo(n)) of J in the following way.

(1.1) Set Jn = J . Set i := n.

(1.2) Run Algorithm 3.2 on instance Ji to obtain L(i)(Ji).
(1.3) Pick a job Jj′ ∈ L(i)(Ji) such that fj′(C

(i)(Ji)) is as small as possible. Set

o(i) := j′.

(1.4) If i = 1, then go to Step 2. If i > 1, then set Ji−1 := Ji \ {Jj′} and go to Step

(1.5).

(1.5) Set i := i− 1 and go to Step (1.2).

Step 2: Generate the schedule σ = Pmtn-LS(O) and calculate the value fmax(σ).

Output: Schedule σ and its objective value fmax(σ).

We have the following theorem.

Theorem 4.2. Problem 1|rj, pmtn|Lex(
∑
Cj, fmax) is solvable by Algorithm 4.2 in O(n2)

time.

Proof. From Lemmas 2.9 and 3.6, and from the design of the algorithm, all the instances

Jn,Jn−1, . . . ,J1 generated in the algorithm are standard, and their last legal sets L(i)(Ji),
i = n, n− 1, . . . , 1, are generated correctly.

From Step (1.3), for i ∈ {1, 2, . . . , n}, we have

Jo(i) ∈ L(i)(Ji) (20)

and

fo(i)(C
(i)(Ji)) = min{fj(C(i)(Ji)) : Jj ∈ L(i)(Ji)}. (21)
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From (20), for each i ∈ {1, 2, . . . , n}, there is a schedule σi ∈ Π∗(Ji) such that σi(i) = o(i),

so by repeatedly using Lemma 2.6, we have C(i)(Ji) = C(i)(Ji+1) = · · · = C(i)(Jn) =

C(i)(J ) and L(i)(Ji) ⊆ L(i)(Ji+1) ⊆ · · · ⊆ L(i)(Jn) = L(i)(J ). Thus, from (20) and (21),

we have

C(i)(Ji) = C(i)(J ) and Jo(i) ∈ L(i)(J ), ∀i. (22)

The relation in (22) just implies that O = (Jo(1), Jo(2), . . . , Jo(n)) is a legal permutation

of J . From Lemma 3.4, O is a TC-optimal permutation of J . Consequently, we have

σ ∈ Π∗(J ), i.e., σ is a feasible schedule for the problem 1|rj, pmtn|Lex(
∑
Cj, fmax) on

instance J .

From Lemma 4.2, the relation in (21) implies that, for each i ∈ {1, 2, . . . , n}, there is

an optimal schedule σ∗i for the problem 1|rj, pmtn|Lex(
∑
Cj, fmax) on instance Ji such

that σ∗i (i) = o(i). Since Jn = J , σ∗n is optimal for the problem on instance J . From (21)

and (22), we have

fo(i)(σ) = fo(i)(C
(i)(Ji)) = fo(i)(σ

∗
i ) ≤ fmax(σ∗i ). (23)

Since J1 ⊂ J2 ⊂ · · · ⊂ Jn = J , we further have

fmax(σ∗1) ≤ fmax(σ∗2) ≤ · · · ≤ fmax(σ∗n). (24)

Combining (23) and (24), we have fmax(σ) = max{fo(i)(σ) : i = 1, 2, . . . , n} ≤ fmax(σ∗n).

This means that σ is an optimal schedule for the problem 1|rj, pmtn|Lex(
∑
Cj, fmax) on

instance J . Then the correctness of Algorithm 4.2 follows.

The running time of the algorithm is dominated by that of Step 1, which has n

iterations. In each iteration, Step (1.2) runs in O(n) time (which follows from Lemma

3.6) and Step (1.3) takes O(n) time clearly, so O(n) time is needed. Hence, the overall

time complexity of Algorithm 4.2 is O(n2). The theorem follows.

4.3 Problem 1|rj, pmtn|Lex(
∑
Cj, f̃)

Consider problem 1|rj, pmtn|Lex(
∑
Cj, f̃) with f̃ ∈ {

∑
wjCj,

∑
Tj, Lmax, Tmax,WCmax}.

The problem can be solved in polynomial time by the algorithms in Section 4.1 or Section

4.2. However, we show that it can be more efficiently solved in O(n log n) time. Let

J = {J1, J2, . . . , Jn}, where r1 ≤ r2 ≤ . . . ≤ rn.

First, we define a permutation O = (Jo(1), Jo(2), . . . , Jo(n)) of J associated with each

problem 1|rj, pmtn|Lex(
∑
Cj, f̃) in Table 1, where f̃ ∈ {

∑
wjCj,

∑
Tj, Lmax, Tmax,WCmax}.

Note that each permutation O in Table 1 can be obtained in O(n log n) time. By the

pairwise job exchange argument, we can easily show the following lemma.
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Table 1: The O-permutation for problem 1|rj, pmtn|Lex(
∑
Cj, f̃)

Scheduling problem O-permutation

1|rj, pmtn|Lex(
∑
Cj,

∑
wjCj) wo(1) ≥ wo(2) ≥ · · · ≥ wo(n)

1|rj, pmtn|Lex(
∑
Cj,

∑
Tj) do(1) ≤ do(2) ≤ · · · ≤ do(n)

1|rj, pmtn|Lex(
∑
Cj, Lmax) do(1) ≤ do(2) ≤ · · · ≤ do(n)

1|rj, pmtn|Lex(
∑
Cj, Tmax) do(1) ≤ do(2) ≤ · · · ≤ do(n)

1|rj, pmtn|Lex(
∑
Cj,WCmax) wo(1) ≥ wo(2) ≥ · · · ≥ wo(n)

Lemma 4.3. For problem 1|rj, pmtn|Lex(
∑
Cj, f̃), there is an optimal schedule σ ∈

Π∗(J ) such that, at each decision time τi ∈ T (J ) with ki ≥ 1, if multiple available

jobs have the smallest remaining processing time, the one with the smallest index under

permutation O is processed in the interval [τi, τi+1] in σ.

Based on Lemma 4.3, problem 1|rj, pmtn|Lex(
∑
Cj, f̃) can be solved by the following

procedure, called the SRPT(f̃) Rule.

SRPT(f̃) Rule: At each decision time, we schedule an available job with the smallest

remaining processing time, with ties being broken by choosing the candidate job with the

smallest index under permutation O. This procedure is repeated until all the jobs are

scheduled.

It is noted that the SRPT(f̃) Rule runs in O(n log n) time. Thus, we have the following

theorem.

Theorem 4.3. Problem 1|rj, pmtn|Lex(
∑
Cj, f̃) is solvable by the SRPT(f̃) Rule in

O(n log n) time, where f̃ ∈ {
∑
wjCj,

∑
Tj, Lmax, Tmax,WCmax}.

Remark: For problem 1|rj, pmtn|Lex(
∑
Cj,

∑
Uj), we fail to find a scheduling strategy

similar to SRPT(f̃) because breaking the ties by the EDD rule does not guarantee re-

sulting in an optimal schedule. But we do feel that the problem can also be solved in

O(n log n) time.
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5 A numerical example and computational experi-

ments

A Numerical Example: We provide a numerical example to illustrate the concepts of

completion-coinciding permutation, standard instance, and legal set. Consider the job

instance given in Table 2.

Table 2: The job instance J

Jobs J1 J2 J3 J4 J5 J6 J7

release dates 1 2 2 5 5 10 10

Processing times 3 1 1 2 1 2 1

Figure 1 illustrates the implementation of the SRPT rule on instance J , where an

available job with the smallest remaining processing time is scheduled at each decision

time. Note that there may be more than one available job with the smallest remaining

processing time at some decision times.

From Figure 1, we find a schedule σ such that

C2(σ) < C3(σ) < C5(σ) < C1(σ) < C4(σ) < C7(σ) < C6(σ).

Then (J2, J3, J5, J1, J4, J7, J6) is a completion-coinciding permutation.

From Figure 1, the seven completion times are C(1)(J ) = 3, C(2)(J ) = 4, C(3)(J ) = 6,

C(4)(J ) = 7, C(5)(J ) = 9, C(6)(J ) = 11, and C(7)(J ) = 13. Moreover, we note that

both J2 and J3 can each be completed at C(1)(J ) and C(2)(J ), while no other jobs can

be completed at C(1)(J ) or C(2)(J ). Thus, the legal sets L(1)(J ) = L(2)(J ) = {J2, J3}.
In fact, using Algorithm 3.1, we can further obtain that L(3)(J ) = L(4)(J ) = {J1, J5},
L(5)(J ) = {J4}, L(6)(J ) = {J7}, and L(7)(J ) = {J6}.

Now we apply Procedure RD-Modification to obtain an equivalent and standard in-

stance J ′.
From Figure 1, the set of decision times is T (J ) = {1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13}, i.e.,

(τ1, τ2, . . . , τ11) = (1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13}.
• First, we set r′j := rj, j = 1, 2, . . . , 7.

• At time τ1, we have r′1 = τ1. Since p1 = pmin(τ1) = 3, J ′1 is a new job with release

date τ1 and processing time p1.

• At time τ2, we have r′2 = r′3 = τ2. Since p2 = p3 = pmin(τ2) = 1, J ′2 is a new job

with release date τ2 and processing time p2, and J ′3 is a new job with release date τ2 and

processing time p3.
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J1

0 1 2

J1 J2

0 1 2 3

J1 J2 J3

0 1 2 3 4

J1 J2 J3 J1

0 1 2 3 4 5

J1 J2 J3 J1 J5

0 1 2 3 4 5 6

J1 J2 J3 J1 J5 J1

0 1 2 3 4 5 6 7

J1 J2 J3 J1 J5 J1 J4

0 1 2 3 4 5 6 7 9

J1 J2 J3 J1 J5 J1 J4 J7

0 1 2 3 4 5 6 7 9 10 11

J1 J2 J3 J1 J5 J1 J4 J7 J6

0 1 2 3 4 5 6 7 9 10 11 13

Figure 1: Implementation of the SRPT rule
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• At times τ3 and τ4, no job is released.

• At time τ5, we have r′4 = r′5 = τ5. Since p4 > pmin(τ5) = 1, we reset r′4 := τ6. Since

p4 > pmin(τ6) = 1, we reset r′4 := τ7. Since p4 = pmin(τ7) = 2, J ′4 is a new job with release

date τ7 and processing time p4. Furthermore, since p5 = pmin(τ5) = 1, J ′5 is a new job

with release date τ5 and processing time p5.

• At times τ6, τ7 and τ8, no job is released.

• At time τ9, we have r′6 = r′7 = τ9. Since p6 > pmin(τ9) = 1, we reset r′6 := τ10.

Since p6 = pmin(τ10) = 2, J ′6 is a new job with release date τ10 and processing time p6.

Furthermore, since p7 = pmin(τ9) = 1, J ′7 is a new job with release date τ9 and processing

time p7.

Thus, an equivalent and standard instance J ′ = {J ′1, J ′2, . . . , J ′7} is obtained, whose

details are illustrated in Table 3.

Table 3: The standard instance J ′

Jobs J ′1 J ′2 J ′3 J ′4 J ′5 J ′6 J ′7

release dates 1 2 2 7 5 11 10

Processing times 3 1 1 2 1 2 1
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Computational Experiments: We next present computational experiments of applying

our algorithms to solve different instances of the two problems in (1) and (2). To evaluate

the performance of the proposed algorithms, we coded them in MATLAB and performed

the experiments on a personal computer powered by an Intel(R) Core(TM)i7-7500U CPU

at 2.70GHz with 8GB RAM operating under Windows 10. We generated the instances

with n = 10, 50, 100, 300, 500 jobs. For each job Jj (j = 1, 2, . . . , n), we sampled its

release date rj and processing time pj from the uniform integer distributions U [1, 50] and

U [1, 30], respectively. Moreover, we set the cost function of job Jj as a linear function

fj(t) = ajt + bj with the values of the parameters aj and bj being integers randomly

selected from U [1, α], where α ∈ {10, 100}. We present the results of the experiments in

Table 4, which show that our Algorithms 4.1 and 4.2 are very fast in solving the problems

in (1) and (2). Given that all our algorithms run in polynomial time, i.e., they are efficient

in theory, the computational results are expected.

It should be noticed that although the values of the release dates of the jobs in the

scheduling instances are selected randomly from U [1, 50], the release dates in the induced

standard instances may be much greater than 50 because our algorithms are based on the

standard instances.

Table 4: Average running time (in seconds)

Algorithm α n

10 50 100 300 500

Algorithm 4.1
10

100

0.017

0.021

0.0410

0.0423

0.113

0.125

1.309

1.317

5.843

5.863

Algorithm 4.2
10

100

0.003

0.005

0.018

0.019

0.051

0.049

0.360

0.362

1.024

1.036
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