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1 Introduction

The total weighted completion time and the weighted number of tardy jobs are two basic and important

criteria in scheduling research. They have a wide range of applications in machinery manufacturing,

light industry, agriculture, logistics, service industry, and other industries. The goal of minimizing

the total weighted completion time reflects the decision maker’s desire to save the time spent on each

object. For example, the service industry values customer satisfaction, so reducing the sum of waiting

times for all customers is a major goal for managers, where the more important customers are given

more weights. On the other hand, the weighted number of tardy jobs is an objective function related

to the task due dates, which reflects the decision maker’s desire to complete each task on or before its

due date. When a task is not finished on time, the processing of the task is a failure. For example,

in steel production, hot forging needs to take place before the metal billet cools off. Once the hot

forging for a metal billet is not finished before it is cool off, the billet is useless. The factory naturally

would like to produce as many useful forgings as possible. In the single-machine setting, Smith (1956)

first studied problem 1||
∑
wjCj , while Lawler and Moore (1969), Moore (1968), and Sahni (1976)

first considered problem 1||
∑
wjUj . On the other hand, Blazewicz (1984) introduced late work as a

scheduling criterion, which is meaningful in the contexts of computerized control systems, processing

of perishable goods in agricultural production, etc. The goal of minimizing the total weighted late

work reflects the decision maker’s desire to reduce the negative impacts of the processing durations

beyond their corresponding due dates, given the fact that even if a job is tardy, the part that is

processed before the due date is still valuable. For example, the harvesting and planting of crops

depends on climate and time. Given the variety of crops, each field must be planted or harvested at a

specific time, after which agricultural activities become meaningless. Farmers would like to maximize

their profits by rationalizing their farming activities or, equivalently, minimizing the unproductive

agricultural activities. We can model this goal as minimizing the total weighted late work whereby we

treat each piece of land as a job and assign different weights to different lands that reflect the values

of the crops.

Extending classical scheduling research that considers a single agent, Baker and Smith (2003), and

Agnetis et al. (2004) pioneered two-agent scheduling research. Since then, two-agent (and later multi-

agent) scheduling has become a popular stream of scheduling research. However, in the literature,

no research on multi-agent scheduling has considered the above three criteria together. In fact, it is

of practical significance to combine the above three objective functions. For example, consider the

following three types of parts processing in a flexible manufacturing system (FMS). The first type of

parts (jobs) has no special requirement for the processing environment. In order to save the time cost

spent on each job, and considering the different importance of different jobs, the system would like to

minimize the total weighted completion time of the first type of jobs. The second type of parts (jobs)

needs to be repeatedly polished for a certain time (which can be regarded as jobs’ processing times),

but polishing after the parts have cooled down will not produce the desired effect. So the longer the

polishing time before the parts cool down is, the higher the precision and the better the quality of

the parts are. The time point at which a part is completely cooled can be regarded as the due date

of the part. For this type of jobs, it is desirable that the processing duration after the due date be as
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short as possible. Given the different importance of different jobs, we can model this requirement as

minimizing the total weighted late work. The third type of parts (jobs) needs to be forged before they

cool (due date) and the system sets a fixed forging time (processing time) for each part. Unlike the

second type of jobs, this type of jobs is useless once it has not been completed before it cools down.

So the system would like as many jobs as possible to be completed before the due dates. Taking the

weights of the jobs into account, we can model this requirement as minimizing the weighted number of

tardy jobs. Because the machine in the FMS has the ability to process different kinds of parts as the

products change, it is possible to freely switch the processing of the three kinds of parts, provided that

each part cannot be interrupted once the processing begins. We assume that the tool change time is

negligible relative to the machining times of the parts. The above three types of jobs can be regarded

as belonging to three different agents. In order to achieve a proper balance in the production of the

three types of jobs in the system, it is reasonable to consider seeking the Pareto-optimal schedule for

them.

In this paper we consider Pareto-optimization of three-agent scheduling in which the criteria of

the three agents are to minimize the total weighted completion time, weighted number of tardy jobs,

and total weighted late work, respectively. We focus on the case where the jobs of the first agent

have inversely agreeable processing times and weights, i.e., the smaller the processing time of a job is,

the greater its weight is. This reflects a realistic phenomenon in practice: The market demand for a

current product with reliable and good performance is high, so its weight is large, and its processing

time is relatively short due to the use of mature processing technology to produce it. On the other

hand, a newly developed product, with a long processing time due to the use of immature technology

for its production, is not easily accepted by the consumers, so its market demand is low and its

weight is small. Another case where the jobs have inversely agreeable due dates and weights is worthy

considering. It reflects the phenomenon that the greater the urgency of a task is, the smaller its due

date is. Furthermore, the above situations include the special cases where the jobs have the same

processing time, the same weight, or the same due date, which are common in real-world production.

1.1 Problem formulation

Let J = {J1, J2, . . . , Jn} be a set of jobs, all available at time 0, to be non-preemptively processed on

a single machine. Let A1, A2, and A3 be three competing agents. Each job in J belongs to exactly

one of the agents A1, A2, and A3. For each z ∈ {1, 2, 3}, we use J (z) to denote the set of jobs of agent

Az (called the Az-jobs) in J and define J (z) = {J (z)
1 , J

(z)
2 , . . . , J

(z)
nz }. Then n1 + n2 + n3 = n and

(J (1),J (2),J (3)) forms a partition of J . For each job J
(z)
j ∈ J (z), where z ∈ {1, 2, 3} and 1 ≤ j ≤ nz,

we have the following related parameters.

• p(z)j is the processing time of job J
(z)
j .

• w(z)
j is the weight of job J

(z)
j .

• d(z)j is the due date of job J
(z)
j .

We assume that all the parameters p
(z)
j , w

(z)
j , and d

(z)
j are positive integers. When a job Jj ∈ J

is not specified, we use pj , wj , and dj to denote the processing time, the weight, and the due date
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of Jj , respectively. The problems studied in this paper allow us to consider only the schedules in

which the jobs in J are processed consecutively from time 0 without idle times between the jobs,

and each of such schedules is called a tight schedule. For a given schedule σ of J , we use Jσ(i) to

denote the i-th completed job in σ, where i ∈ {1, 2, . . . , n}. Since σ is tight, we use the permutation

σ = (Jσ(1), Jσ(2), . . . , Jσ(n)) to denote the schedule σ. For each job J
(z)
j ∈ J , we use S

(z)
j (σ) and

C
(z)
j (σ) to denote the starting time and completion time of job J

(z)
j in σ, respectively. Then we have

C
(z)
j (σ) = S

(z)
j (σ) + p

(z)
j .

The late work of job J
(z)
j in a schedule σ, denoted by Y

(z)
j (σ), is the amount of processing of job

J
(z)
j that is scheduled after its due date d

(z)
j in σ. Since preemption is not allowed, we have

Y
(z)
j (σ) =


0, if C

(z)
j (σ) ≤ d(z)j ,

C
(z)
j (σ)− d(z)j , if d

(z)
j < C

(z)
j (σ) < d

(z)
j + p

(z)
j ,

p
(z)
j , if C

(z)
j (σ) ≥ d(z)j + p

(z)
j ,

or, equivalently,

Y
(z)
j (σ) = min{max{C(z)

j (σ)− d(z)j , 0}, p(z)j }.

We use the following terms and notation throughout the paper.

• J (z)
j is called early in σ if Y

(z)
j (σ) = 0 or, equivalently, C

(z)
j (σ) ≤ d(z)j . In this case, we set U

(z)
j (σ) = 0.

• J (z)
j is called strictly early in σ if C

(z)
j (σ) < d

(z)
j .

• J (z)
j is called tardy in σ if Y

(z)
j (σ) > 0 or, equivalently, C

(z)
j (σ) > d

(z)
j . In this case, we set U

(z)
j (σ) = 1.

• J (z)
j is called partially early in σ if 0 < Y

(z)
j (σ) < p

(z)
j or, equivalently, C

(z)
j (σ)−p(z)j < d

(z)
j < C

(z)
j (σ).

• J (z)
j is called late in σ if Y

(z)
j (σ) = p

(z)
j or, equivalently, S

(z)
j (σ) ≥ d(z)j .

• J (z)
j is called non-late in σ if Y

(z)
j (σ) < p

(z)
j or, equivalently, S

(z)
j (σ) < d

(z)
j . Clearly, a job is non-late

if and only if it is either an early job or a partially early job.

• γ(1)(σ) =
∑n1

j=1w
(1)
j C

(1)
j (σ) is the total weighted completion time of the A1-jobs in σ.

• γ(2)(σ) =
∑n2

j=1w
(2)
j U

(2)
j (σ) is the weighted number of tardy A2-jobs in σ.

• γ(3)(σ) =
∑n3

j=1w
(3)
j Y

(3)
j (σ) is the total weighted late work of the A3-jobs in σ.

Definition 1.1. Consider two m-vectors u = (u1, u2, . . . , um) and v = (v1, v2, . . . , vm).

(i) We say that u dominates v, denoted by u � v, if ui ≤ vi for i = 1, 2, . . . ,m.

(ii) We say that u strictly dominates v, denoted by u ≺ v, if u � v and u 6= v.

Definition 1.2. Suppose that agent Az wants to minimize its criterion γ(z), where z ∈ {1, 2, 3}.
For each schedule σ for J , we call (γ(1)(σ), γ(2)(σ), γ(3)(σ)) an objective vector of the three agents

(A1, A2, A3). A schedule σ for J is called Pareto-optimal if there is no other schedule π for J such

that (γ(1)(π), γ(2)(π), γ(3)(π)) strictly dominates (γ(1)(σ), γ(2)(σ), γ(3)(σ)). In this case, we also say

that (γ(1)(σ), γ(2)(σ), γ(3)(σ)) is the Pareto-optimal point corresponding to schedule σ. We define

the Pareto frontier as the set of all the Pareto-optimal points.
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In this paper we focus on Pareto-optimization, i.e., finding the set of all the Pareto-optimal points,

of the scheduling problem

1|β|(γ(1), γ(2), γ(3)) (1)

and its subproblems 1|β|(γ′, γ′′) with γ′, γ′′ ∈ {γ(1), γ(2), γ(3)}, where β is a set of conditions for the

job instance J = J (1) ∪ J (2) ∪ J (3). In particular, we use the following two conditions in the β-field.

• p(1)j ↑↓ w(1)
j , which means that the processing times and the weights of the A1-jobs are inversely

agreeable, i.e., p
(1)
i < p

(1)
j implies w

(1)
i ≥ w

(1)
j .

• d(3)j ↑↓ w
(3)
j , which means that the due dates and the weights of the A3-jobs are inversely agreeable,

i.e., d
(3)
i < d

(3)
j implies w

(3)
i ≥ w

(3)
j .

The aim of the problem in (1) is to generate the Pareto frontier and, for each Pareto-optimal point in

the Pareto frontier, the corresponding Pareto-optimal schedule.

1.2 Complexity description

By using a reduction from the unary NP -complete 3-Partition Problem (Garey and Johnson, 1979),

Lawler (1977) showed that problem 1||
∑
wjTj is unary NP -hard. In Lawler’s proof, the constructed

job instance consists of two families A and B. The A-jobs have a common due date 0 and the B-jobs

have a common processing time p(B). Moreover, each B-job has a very large weight so that in every

feasible schedule all the B-jobs must be early. Since the total weighted tardiness of the A-jobs is

clearly equal to the total weighted completion time of the A-jobs, Lawler’s proof can also be used to

show that both problems 1|p(B)
j = p(B)|

∑
w

(A)
j C

(A)
j :

∑
U

(B)
j ≤ 0 and 1|p(B)

j = p(B)|
∑
w

(A)
j C

(A)
j :∑

Y
(B)
j ≤ 0 are unary NP -hard. Then the problems 1|p(2)j = p(2)|(

∑
w

(1)
j C

(1)
j ,

∑
U

(2)
j ) and 1|p(3)j =

p(3)|(
∑
w

(1)
j C

(1)
j ,

∑
Y

(3)
j ) are unary NP -hard, which further implies that problem 1||(γ(1), γ(2), γ(3))

is unary NP -hard.

Potts and Van Wassenhove (1992) showed that the single-machine problem to minimize the total

late work is NP -hard. Then problem 1|p(1)j ↑↓ w
(1)
j |(γ(1), γ(2), γ(3)) is also NP -hard, so as the following

problems: 1|p(1)j ↑↓ w(1)
j , d

(3)
j ↑↓ w(3)

j |(γ(1), γ(2), γ(3)), 1|p(1)j ↑↓ w(1)
j |(γ(1), γ(3)), 1|p(1)j ↑↓ w(1)

j , d
(3)
j ↑↓

w
(3)
j |(γ(1), γ(3)), 1|d(3)j ↑↓ w

(3)
j |(γ(2), γ(3)), and 1||(γ(2), γ(3)). Chen et al. (2019) showed that problem

1|p(A)j = p(A)|
∑
C

(A)
j :

∑
U

(B)
j ≤ Q is NP -hard. Then problem 1|p(1)j = p(1)|(

∑
C

(1)
j ,

∑
U

(2)
j ) is

NP -hard. Thus problem 1|p(1)j ↑↓ w(1)
j |(γ(1), γ(2)) is NP -hard. So we attempt to find a pseudo-

polynomial-time algorithm to solve them.

1.3 Our contributions

We study in this paper Pareto-optimization of the scheduling problem 1|β|(γ(1), γ(2), γ(3)) with special

choices in the β-field and of parameters p
(z)
j , w

(z)
j , and d

(z)
j . We summarize our findings on the com-

putational complexity of the variants of the problem studied in Table 1, where Q(z) is an arbitrary

upper bound on the criterion γ(z) for z ∈ {1, 2, 3}.
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Table 1: Complexity of 1|β|(γ(1), γ(2), γ(3))

Scheduling problem Complexity Reference

1|p(1)j ↑↓ w
(1)
j |(γ(1), γ(2), γ(3)) O(n1n2n

2
3Q

(1)Q(2)Q(3)) Theorem 4.1

1|p(1)j ↑↓ w
(1)
j , d

(3)
j ↑↓ w

(3)
j |(γ(1), γ(2), γ(3)) O(n1n2n3Q

(1)Q(2)Q(3)) Corollary 4.1

1|p(1)j ↑↓ w
(1)
j |(γ(1), γ(2)) O(n1n2Q

(1)Q(2)) Corollary 4.2

1|p(1)j ↑↓ w
(1)
j |(γ(1), γ(3)) O(n1n

2
3Q

(1)Q(3)) Corollary 4.3

1|p(1)j ↑↓ w
(1)
j , d

(3)
j ↑↓ w

(3)
j |(γ(1), γ(3)) O(n1n3Q

(1)Q(3)) Corollary 4.3

1||(γ(2), γ(3)) O(n2n
2
3Q

(2)Q(3)) Corollary 4.4

1|d(3)j ↑↓ w
(3)
j |(γ(2), γ(3)) O(n2n3Q

(2)Q(3)) Corollary 4.4

1|p(2)j = p(2), p
(3)
j = p(3)|(

∑
C

(1)
j ,

∑
U

(2)
j ,

∑
Y

(3)
j ) O(n3

1n
3
2n

3
3) Theorem 5.1

1|p(2)j = p(2)|(
∑
C

(1)
j ,

∑
U

(2)
j ) O(nn2) Theorem 5.2

1|p(2)j = p(2), p
(3)
j = p(3)|(

∑
U

(2)
j ,

∑
Y

(3)
j ) O(nn2n3) Theorem 5.2

1|p(3)j = p(3)|(
∑
C

(1)
j ,

∑
Y

(3)
j ) O(n2

1n
2
3) Corollary 5.1

1.4 Organization of the paper

We organize the rest of the paper as follows: In Section 2 we review the related known results

in the literature. In Section 3 we present some preliminaries for algorithm design. In Section 4

we provide a pseudo-polynomial-time algorithm to solve problem 1|p(1)j ↑↓ w(1)
j |(γ(1), γ(2), γ(3)) and

discuss various implications. In Section 5 we present a polynomial-time algorithm to solve problem

1|p(2)j = p(2), p
(3)
j = p(3)|(

∑
C

(1)
j ,

∑
U

(2)
j ,

∑
Y

(3)
j ) and discuss various implications. We conclude the

paper and suggest future research topics in the last section.

2 Literature review

In order to be consistent with the notation in the literature, we also use A and B to denote two agents.

Given that Agnetis et al. (2014) provided a detailed review of the literature on agent scheduling before

2014, we only review studies on competing-agent scheduling on a single machine involving the above

three objective functions published after 2013.

Agnetis et al. (2019) applied the concept of price of fairness in two-agent scheduling where agent

A wants to minimize the total completion time of the A-jobs, while agent B seeks to minimize the

maximum tardiness of the B-jobs (with a common due date). Then they extended their study to

consider the problem in which both agents A and B seek to minimize the total completion time of

their own jobs. Chen et al. (2019) proved that problem 1|p(A)j = p(A)|
∑
C

(A)
j :

∑
U

(B)
j ≤ Q is

NP -hard. Chen and Li (2019) presented either a polynomial-time or a pseudo-polynomial-time algo-

rithm to solve several cumulative deterioration two-agent scheduling problems, seeking to minimize

the objective value of agent A, while keeping the objective value of agent B not exceeding a given
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bound. The scheduling criteria of agents A and B are combinations of the following regular criteria:

the maximum cost, the total completion time, and the (weighted) number of tardy jobs. Cheng et

al. (2014) studied two-agent single-machine scheduling to minimize the weighted sum of the total

completion time of the jobs of agent A and the total tardiness of the jobs of agent B. They provided

branch-and-bound algorithms to solve the problem. In addition, they presented a simulated annealing

algorithm and two genetic algorithms to obtain near-optimal solutions. Cheng et al. (2019) presented

an effective algorithm to generate the non-dominated solutions for single-machine scheduling problem

with two competing agents in which the performance criteria are the mean lateness and the num-

ber of tardy jobs. Choi and Chung (2014) and Choi et al. (2019) studied two-agent single-machine

scheduling to optimize the performance measure for agent A, while maintaining the weighted number

of just-in-time jobs for agent B at or above a given threshold. The performance measures for agent

A are the total weighted completion time and the weighted number of tardy jobs. They showed that

both problems are unary NP -hard. They also studied the computational complexity of the special

cases where the weights or the processing times of each agent are identical. Dover and Shabtay (2016)

showed that problem 1|CO, r(i)j , p
(i)
j = 1,

∑
w

(A)
j C

(A)
j ≤ K1,

∑
w

(B)
j U

(B)
j ≤ K2|− is NP -complete;

the high multiplicity variant of problem 1|CO, r(i)j , p
(i)
j = 1,

∑
C

(A)
j ≤ K1,

∑
w

(B)
j U

(B)
j ≤ K2|− is

NP -complete; and all the variants of problem 1|CO, r(i)j , p
(i)
j = 1|(

∑
C

(A)
j ,

∑
C

(B)
j ) are solvable in

polynomial time. Oron et al. (2015) studied various two-agent scheduling problems on a single ma-

chine with equal job processing times. Especially, they showed that problem 1|pj = 1|
∑
w

(A)
j U

(A)
j :∑

w
(B)
j U

(B)
j ≤ Q is binary NP -hard and problem 1|pj = 1|(

∑
w

(A)
j C

(A)
j ,

∑
w

(B)
j U

(B)
j ) is solvable in

O(nAn
2
B min{FA, FB}) time, where FA =

∑nA+nB
j=nB+1 jw

(A)
j and FB =

∑nB
j=1w

(B)
j . As special cas-

es, problems 1|pj = 1|(
∑
C

(A)
j ,

∑
w

(B)
j U

(B)
j ) and 1|pj = 1|(

∑
w

(A)
j C

(A)
j ,

∑
U

(B)
j ) are solvable in

O(n2An
2
B(nA + nB)) time and O(max{nA log nA, nB(nA + nB)}) time, respectively. Wan et al. (2016)

provided a strongly polynomial-time algorithm for the Pareto-scheduling problem 1||(
∑
U

(A)
j , f

(B)
max).

Wan et al. (2020) showed that problem 1|pj = 1|
∑
w

(A)
j C

(A)
j :

∑
w

(B)
j U

(B)
j ≤ Q is binary NP -hard.

Yin et al. (2016) studied the problems of minimizing the performance criterion of agent A in the

form ϕd(A) +
∑
w

(A)
j U

(A)
j , while keeping the objective value of f

(B)
max (resp.,

∑
C

(B)
j ,

∑
w

(B)
j C

(B)
j ,

and
∑
w

(B)
j U

(B)
j ) no greater than a given limit Q under the common due date and slack due dates,

respectively. They proved that all of the problems are NP -hard in the ordinary sense and discussed

possible solution algorithms. Zhang and Wang (2017), and Zhang and Yuan (2019) studied two-agent

scheduling on a single machine to minimize the total weighted late work of agent A, subject to the

restriction that the maximum cost of agent B is bounded. They showed that the problem is solvable in

pseudo-polynomial time in general and in polynomial time when the A-jobs have identical processing

times.

Among the studies on multi-agent scheduling, two-agent scheduling makes up the majority, while

there are a few studies involving more than two agents. Lee and Wang (2014; 2017) considered

three-agent single-machine scheduling. In Lee and Wang (2014), the objective is to minimize the

total weighted completion time of the A-jobs, given that the maximum completion time of the B-

jobs does not exceed an upper bound and the maintenance activity of agent C must be performed

within a specified period of time. In Lee and Wang (2017), their aim is to minimize the makespan
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of the A-jobs, given that the maximum tardiness of the B-jobs cannot exceed a given bound and

that a maintenance activity of agent C must be completed within a specified maintenance window.

They proposed a branch-and-bound algorithm and a genetic algorithm to obtain optimal and approx-

imate solutions, respectively, in the two studies. Yuan (2017) showed that when m is fixed, problem

1|CO|
∑m1

i=1 αi(
∑

Jj∈J (i) Uj)+
∑m

i=m1+1 αiC
(i)
max can be solved in polynomial time. Li and Yuan (2020)

considered multi-agent single-machine scheduling where each agent wants to minimize its total weight-

ed late work. They showed that the problem is unary NP -hard even when all the jobs have a unit

processing time. When the number of agents is fixed, they provided a pseudo-polynomial dynamic

programming algorithm and a (1 + ε)-approximate Pareto-optimal frontier for the problem. Recent-

ly, Yuan (2016; 2018) and Yuan et al. (2020) provided some new complexity results on multi-agent

scheduling.

3 Preliminaries for algorithm design

Consider problem 1|β|(γ(1), γ(2), γ(3)) and let J = J (1) ∪ J (2) ∪ J (3) be the job instance, where

J (z) = {J (z)
1 , J

(z)
2 , . . . , J

(z)
nz } for z = 1, 2, 3. For a subset F ⊆ J , we use p(F) to denote the total

processing time of the jobs in F . In the preprocessing procedure for solving the above problem, we

re-number the A1-jobs in non-decreasing order of their Smith ratios p
(1)
j /w

(1)
j such that

p
(1)
1 /w

(1)
1 ≤ p(1)2 /w

(1)
2 ≤ · · · ≤ p(1)n1

/w(1)
n1
, (2)

re-number the A2-jobs in the earliest due date (EDD) order such that

d
(2)
1 ≤ d

(2)
2 ≤ · · · ≤ d

(2)
n2
, (3)

and re-number the A3-jobs in the EDD order such that

d
(3)
1 ≤ d

(3)
2 ≤ · · · ≤ d

(3)
n3
, (4)

with ties being broken by the largest weight first (LW) rule, i.e.,

w
(3)
i ≥ w

(3)
j if i < j and d

(3)
i = d

(3)
j . (5)

Clearly, the preprocessing procedure can be executed in O(n1 log n1+n2 log n2+n3 log n3) = O(n log n)

time. Throughout the rest of the paper, we use the job indices presented in (2)-(5). Moreover, for

z ∈ {1, 2, 3} and j ∈ {1, 2, . . . , nz}, we define J
(z)
j = {J (z)

1 , J
(z)
2 , . . . , J

(z)
j },

P
(z)
j = p

(z)
1 + p

(z)
2 + · · ·+ p

(z)
j .

(6)

Then all the values P
(z)
j = p(J (z)

j ), z ∈ {1, 2, 3} and j ∈ {1, 2, . . . , nz}, can be obtained in O(n) time.

From the above indexing rule for the jobs, we easily obtain the following lemma.
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Lemma 3.1. For a given instance J , we have the following statements.

(i) If the condition p
(1)
j ↑↓ w

(1)
j holds, then p

(1)
1 ≤ p

(1)
2 ≤ · · · ≤ p

(1)
n1 and w

(1)
1 ≥ w(1)

2 ≥ · · · ≥ w(1)
n1 .

(ii) If the condition d
(3)
j ↑↓ w

(3)
j holds, then d

(3)
1 ≤ d

(3)
2 ≤ · · · ≤ d

(3)
n3 and w

(3)
1 ≥ w(3)

2 ≥ · · · ≥ w(3)
n3 .

Note that (γ(1), γ(2), γ(3)) = (
∑
w

(1)
j C

(1)
j ,

∑
w

(2)
j U

(2)
j ,

∑
w

(3)
j Y

(3)
j ). In a schedule σ for J , a job

Jj ∈ J is called valid if Jj is either an A1-job, or an early A2-job, or a non-late A3-job. A job that

is not valid in σ is called invalid in σ. In a Pareto-optimal schedule for problem 1|β|(γ(1), γ(2), γ(3)),
we can always schedule the invalid jobs after all the valid jobs. Thus, in our discussion and algorithm

design, we only consider schedules of the valid jobs, called valid-schedules. Since all the schedules

considered in this paper are tight, we denote a valid-schedule σ by

σ = (Jσ(1), Jσ(2), . . . , Jσ(n′)), (7)

where n1 ≤ n′ ≤ n = n1 + n2 + n3 and {Jσ(1), Jσ(2), . . . , Jσ(n′)} consists of all the valid jobs in σ.

This means that n′ is always used to denote the number of valid jobs. Given a valid-schedule σ and a

subset of valid jobs F , we use ~Fσ to denote the order of the jobs of F in σ. As in Hariri et al. (1995),

we introduce the following definitions in our research, which are slightly different from that in Hariri

et al. (1995).

Definition 3.1. Let σ = (Jσ(1), Jσ(2), . . . , Jσ(n′)) be a valid-schedule for J . For two jobs Ji and Jj
in J , we use the notation Ji ≺σ Jj to indicate that Ji is scheduled before Jj in σ. A non-late A3-job

J
(3)
i is called deferred (from the job-index order of the A3-jobs) in σ if there is a non-late A3-job J

(3)
j

with i < j such that J
(3)
j ≺σ J (3)

i . In this case, we also say that J
(3)
j J

(3)
i forms a reversed pair in σ.

Note that an A3-job J
(3)
i is non-late, i.e., valid, in a valid-schedule σ for J if and only if S

(3)
i (σ) <

d
(3)
i . Similar to the discussion in Hariri et al. (1995), we have the following result about the deferred

jobs and reversed pairs.

Lemma 3.2. Let σ = (Jσ(1), Jσ(2), . . . , Jσ(n′)) be a schedule for J . For each reversed pair J
(3)
j J

(3)
i of

non-late A3-jobs, J
(3)
j must be strictly early in σ.

Proof. The assumption implies that i < j, J
(3)
j ≺σ J

(3)
i , and J

(3)
i is non-late in σ. Then we have

d
(3)
i ≤ d

(3)
j and S

(3)
i (σ) < d

(3)
i . From the fact that J

(3)
j ≺σ J (3)

i , we have C
(3)
j (σ) ≤ S

(3)
i (σ) < d

(3)
i ≤

d
(3)
j . Thus, J

(3)
j is strictly early in σ.

The following lemmas provide some useful properties of the Pareto-optimal schedules for problem

1|β|(γ(1), γ(2), γ(3)).

Lemma 3.3. For each Pareto-optimal point (C,U, Y ), there exists a corresponding Pareto-optimal

schedule σ such that the following statements hold for the A1-jobs.

(i) For every two consecutively processed A1-jobs J
(1)
i and J

(1)
j with J

(1)
i ≺σ J

(1)
j , it holds that

i < j, implying p
(1)
i /w

(1)
i ≤ p

(1)
j /w

(1)
j .

9



(ii) If p
(1)
j ↑↓ w(1)

j is a condition in the β-field, then the A1-jobs are scheduled in their job-index

order, i.e., J
(1)
1 ≺σ J (1)

2 ≺σ · · · ≺σ J (1)
n1 .

Proof. We can use the job-changing argument to show statement (i), which also follows from the fact

that the weighted shortest processing time (WSPT) rule is the unique optimal strategy for minimizing

the total weighted completion time.

We can also use the job-changing argument to show statement (ii) because, from Lemma 3.1(i),

i < j implies that p
(1)
i ≤ p

(1)
j and w

(1)
i ≥ w

(1)
j . The lemma follows.

Lemma 3.4. For each Pareto-optimal point (C,U, Y ), there exists a corresponding Pareto-optimal

valid-schedule σ such that the early A2-jobs are scheduled in their job-index order.

Proof. We can easily prove the lemma by the job-shifting argument.

Lemma 3.5. For each Pareto-optimal point (C,U, Y ), there exists a corresponding Pareto-optimal

valid-schedule σ such that the following statements hold for the A3-jobs.

(i) For each reversed pair of non-late A3-jobs J
(3)
j J

(3)
i in σ, we have w

(3)
i < w

(3)
j and d

(3)
i < d

(3)
j <

C
(3)
i (σ).

(ii) Each deferred A3-job is partially early.

(iii) For each non-late A3-job J
(3)
j , at most one deferred A3-job with a job index less than j is

scheduled after J
(3)
j .

(iv) The early A3-jobs are scheduled in their job-index order. Moreover, the early A3-jobs with a

common due date are consecutively scheduled.

(v) For each deferred A3-job J
(3)
i , the A3-jobs J

(3)
j with j > i and J

(3)
j ≺σ J (3)

i are strictly early

and are consecutively scheduled directly before J
(3)
i . Consequently, each deferred A3-job is scheduled

immediately after some early A3-job with a smaller job index.

(vi) If d
(3)
j ↑↓ w(3)

j is a condition in the β-field, then the non-late A3-jobs are scheduled in their

job-index order, and the non-late A3-jobs with a common due date are consecutively scheduled.

Proof. Let σ be a Pareto-optimal valid-schedule corresponding to (C,U, Y ). We use N (3)
σ to denote

the set of non-late A3-jobs in σ. For each job J
(3)
j ∈ N (3)

σ , we use σ[J
(3)
j ] to denote the position

index of job J
(3)
j in σ, i.e., σ[J

(3)
j ] = i if and only if Jσ(i) = J

(3)
j . We use Φ(σ) to denote the sum

of the position indices of the non-late A3-jobs in σ and Ψ(σ) to denote the number of reversed pairs

of non-late A3-jobs in σ. For our purpose, we may choose such a Pareto-optimal valid-schedule σ

corresponding to (C,U, Y ) such that Ψ(σ) − Φ(σ) is as small as possible, subject to the restriction

that |N (3)
σ | is as small as possible. We show in the following that σ satisfies all the statements in this

lemma.

Note that if J
(3)
j J

(3)
i is a reversed pair of non-late A3-jobs in σ, then

i < j, d
(3)
i ≤ d

(3)
j , J

(3)
j ≺σ J (3)

i , and S
(3)
i (σ) < d

(3)
i . (8)
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From (4) and (5), the conditions “i < j and w
(3)
i < w

(3)
j ” imply “d

(3)
i < d

(3)
j ”. Then statement (i) is

equivalent to the following statement (i′).

(i′) For each reversed pair of non-late A3-jobs J
(3)
j J

(3)
i in σ, we have w

(3)
i < w

(3)
j and d

(3)
j < C

(3)
i (σ).

We prove statement (i′) by the job-shifting argument. If σ violates statement (i′), we pick a reversed

pair of non-late A3-jobs J
(3)
j J

(3)
i with either w

(3)
i ≥ w

(3)
j or d

(3)
j ≥ C

(3)
i (σ) such that σ[J

(3)
i ] − σ[J

(3)
j ]

is as small as possible. Then there is no other A3-job J
(3)
k such that J

(3)
j ≺σ J (3)

k ≺σ J (3)
i . Let σ′ be

the schedule obtained from σ by shifting job J
(3)
j to the position directly after job J

(3)
i . Moreover, if

J
(3)
j is late in σ′, we define σ′′ as the schedule obtained from σ′ by removing J

(3)
j , which leads to σ′′

being a valid-schedule such that

(γ(1)(σ′′), γ(2)(σ′′), γ(3)(σ′′)) � (γ(1)(σ′), γ(2)(σ′), γ(3)(σ′)). (9)

Note that

C
(3)
j (σ′) = C

(3)
i (σ) and C

(3)
i (σ′) = C

(3)
i (σ)− p(3)j . (10)

If w
(3)
i ≥ w

(3)
j , from (8) and (10), we have w

(3)
i Y

(3)
i (σ′) + w

(3)
j Y

(3)
j (σ′) ≤ w

(3)
i Y

(3)
i (σ) + w

(3)
j Y

(3)
j (σ).

If d
(3)
j ≥ C

(3)
i (σ), from (10), J

(3)
j is early in σ′, so we still have w

(3)
i Y

(3)
i (σ′) + w

(3)
j Y

(3)
j (σ′) ≤

w
(3)
i Y

(3)
i (σ) + w

(3)
j Y

(3)
j (σ). For each job Jz ∈ J \ {J (3)

i , J
(3)
j }, we clearly have Cz(σ

′) ≤ Cz(σ). This

implies that (γ(1)(σ′), γ(2)(σ′), γ(3)(σ′)) � (γ(1)(σ), γ(2)(σ), γ(3)(σ)), so σ′ is a Pareto-optimal sched-

ule corresponding to (C,U, F ), too. But then, if J
(3)
j is late in σ′, from (9), σ′′ is a Pareto-optimal

valid-schedule corresponding to (C,U, F ) such that |N (3)
σ′′ | < |N

(3)
σ |, contradicting the choice of σ; and

if J
(3)
j is non-late in σ′, σ′ is a Pareto-optimal valid-schedule corresponding to (C,U, F ) such that

|N (3)
σ′ | = |N

(3)
σ |, Φ(σ′) ≥ Φ(σ) and Ψ(σ′) < Ψ(σ), i.e., Ψ(σ′)−Φ(σ′) < Ψ(σ)−Φ(σ), contradicting the

choice of σ again. Statement (i′) follows and statement (i) follows.

To prove statement (ii), let J
(3)
i be a deferred A3-job in σ. Then there is a non-late A3-job J

(3)
j such

that J
(3)
j J

(3)
i forms a reversed pair in σ. From (8) and statement (i), we have d

(3)
i ≤ d

(3)
j < C

(3)
i (σ).

Then J
(3)
i is partially early in σ, as required.

To prove statement (iii), we suppose to the contrary that there are three non-late A3-jobs J
(3)
j ,

J
(3)
k , and J

(3)
k′ in σ, where J

(3)
k and J

(3)
k′ are deferred, such that k, k′ < j and J

(3)
j ≺σ J (3)

k ≺σ J (3)
k′ . Note

that J
(3)
j J

(3)
k is a reversed pair and J

(3)
k′ is a deferred job. From statement (i), we have d

(3)
j < C

(3)
k (σ)

and J
(3)
k′ is partially early in σ. Then we have d

(3)
j < C

(3)
k (σ) ≤ S

(3)
k′ (σ) < d

(3)
k′ ≤ d

(3)
j . This leads to a

contradiction and completes the proof of statement (iii).

We now consider statement (iv). From statement (i), there is no reversed pair of early A-jobs in

σ. Thus, the early A3-jobs are scheduled in their job-index order in σ. Let d be the due date of some

early A3-jobs. Let F = {J (3)
i1
, J

(3)
i2
, . . . , J

(3)
ik
} be the set of early A3-jobs with due date d in σ such

that J
(3)
i1
≺σ J (3)

i2
≺σ · · · ≺σ J (3)

ik
. Then C

(3)
ik

(σ) ≤ d. From statement (i), we have i1 < i2 < · · · < ik
and no other A3-jobs are scheduled between the jobs of F in σ. Let B be the set of valid jobs Jj

with Jj /∈ F and Cj(σ) < C
(3)
ik

(σ), and let A be the set of valid jobs Jj with Cj(σ) > C
(3)
ik

(σ). Then

(B,F ,A) forms a partition of the valid jobs in σ. If the jobs in F are not consecutively scheduled

in σ, we define σ′ as a new schedule obtained from σ by re-scheduling the valid jobs in σ in the
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order ~Bσ ≺σ′ ~Fσ ≺σ′ ~Aσ. In schedule σ′, the jobs of B are consecutively scheduled from time 0 to

time C
(3)
ik

(σ) − p(F) in the same order in σ, the jobs of F are consecutively scheduled from time

C
(3)
ik

(σ)− p(F) to C
(3)
ik

(σ), and the schedule for the jobs of A is unchanged. Clearly, the A3-jobs of F
are also early in σ′ and Cz(σ

′) ≤ Cz(σ) for all jobs Jz ∈ J \F . This means that σ′ is a Pareto-optimal

valid-schedule corresponding to (C,U, Y ), too. But then, we have |N (3)
σ′ | = |N

(3)
σ |, Φ(σ′) > Φ(σ), and

Ψ(σ′) = Ψ(σ), i.e., Ψ(σ′)− Φ(σ′) < Ψ(σ)− Φ(σ), contradicting the assumption for σ. Thus, the jobs

in F are consecutively scheduled. Statement (iv) follows.

To prove statement (v), let J
(3)
i be a deferred A3-job in σ. From statement (ii), J

(3)
i is partially

early in σ. We use F to denote the set of A3-jobs J
(3)
j with j > i and J

(3)
j ≺σ J (3)

i . Since J
(3)
i is deferred

in σ, the set F is not empty. From Lemma 3.2, all the jobs in F are strictly early in σ. Suppose to the

contrary that the A3-jobs in F ∪{J (3)
i } are not consecutively scheduled in σ. Let B be the set of valid

jobs Jj with Jj /∈ F and Cj(σ) < C
(3)
i (σ), and let A be the set of valid jobs Jj with Cj(σ) > C

(3)
i (σ).

Then (B,F , {J (3)
i },A) forms a partition of the valid jobs in σ. Let σ′ be the new schedule obtained

from σ by re-scheduling the valid jobs in σ consecutively in the order ~Bσ ≺σ′ ~Fσ ≺σ′ J
(3)
i ≺σ′ ~Aσ. It is

easy to see that C
(3)
i (σ′) = C

(3)
i (σ), so J

(3)
i is also partially early in σ′. For each J

(3)
j ∈ F , J

(3)
j J

(3)
i is a

reversed pair in σ′. From Lemma 3.2 again, all the A3-jobs in F are strictly early in σ′. For each job

Jz /∈ F , we have Cz(σ
′) ≤ Cz(σ) and at least one A-job has an earlier completion time in σ′ than that

in σ. Then σ′ is a Pareto-optimal valid-schedule corresponding to (C,U, Y ) such that |N (3)
σ′ | = |N

(3)
σ |,

Φ(σ′) > Φ(σ), and Ψ(σ′) = Ψ(σ), i.e., Ψ(σ′)−Φ(σ′) < Ψ(σ)−Φ(σ). This contradicts the assumption

for σ and proves statement (v).

To prove statement (vi), we suppose that d
(3)
j ↑↓ w

(3)
j is a condition in the β-field. From statement

(i), there is no deferred A3-job in σ. Thus, the non-late A3-jobs are scheduled in their job-index order.

Now let d be the due date of some early A3-jobs, let J
(3)
i be the last non-late A3-job in σ such that

d
(3)
i = d, and let F be the set of non-late A3-jobs J

(3)
j with due date d such that J

(3)
j ≺σ J (3)

i . Then

F ∪ {J (3)
i } consists of all the non-late A3-jobs with the common due date d. Since J

(3)
i is a non-late

A3-job in σ and F ≺σ J (3)
i , we have C

(3)
j (σ) ≤ S(3)

i (σ) < d for all the jobs J
(3)
j ∈ F . Thus, all the jobs

in F are early in σ. From statement (iv), the jobs of F are consecutively scheduled in σ. In the case

where F and J
(3)
i are consecutively scheduled in σ, we have nothing to do. Hence, we assume to the

contrary that F and J
(3)
i are not consecutively scheduled in σ. Let σ′ be the schedule obtained from

σ by shifting F to the position directly before J
(3)
i . Similar to the discussion in statement (v), we can

verify that σ′ is a Pareto-optimal valid-schedule corresponding to (C,U, Y ) such that |N (3)
σ′ | = |N

(3)
σ |

and Ψ(σ′)−Φ(σ′) < Ψ(σ)−Φ(σ), contradicting the assumption for σ. Statement (vi) follows and the

lemma follows.

Although the above three lemmas are separately proved for the A1-jobs, A2-jobs, and A3-jobs, it

is not hard to see that these results are compatible. Then we have the following lemma.

Lemma 3.6. For each Pareto-optimal point (C,U, Y ), there exists a corresponding Pareto-optimal

valid-schedule σ such that the properties given in Lemmas 3.3, 3.4, and 3.5 hold simultaneously.

The properties established in Lemma 3.6 help us understand the structure of Pareto-optimal valid-

schedules for problem 1|β|(γ(1), γ(2), γ(3)). For the convenience of algorithm design, we sometimes only
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need the weakened form of these properties.

The following lemma, which is simply an observation, helps us estimate the size of a non-dominated

set of vectors.

Lemma 3.7. Let Γ be a set of non-dominated m-vectors in the form (u1, u2, . . . , um). Suppose that

the ui-value has qi choices in Γ for i = 1, 2, . . . ,m, which means that the total number of different

values that ui can attain is qi. Then we have |Γ| ≤ mini=1,2,...,m
q1q2···qm

qi
.

4 Problem 1|p(1)
j ↑↓ w

(1)
j |(γ(1), γ(2), γ(3))

Let σ = (Jσ(1), Jσ(2), . . . , Jσ(n′)) be a valid-schedule for the problem 1|p(1)j ↑↓ w(1)
j |(γ(1), γ(2), γ(3)) on

instance J . For each k ∈ {1, 2, . . . , n′}, we call σk = (Jσ(1), Jσ(2), . . . , Jσ(k)) a subschedule of σ. When

there is no risk of confusion, we also write σk = {Jσ(1), Jσ(2), . . . , Jσ(k)}. For each z ∈ {1, 2, 3}, we

introduce a dummy Az-job J
(z)
0 with p

(z)
0 = 0, d

(z)
0 = 0, and w

(z)
0 = 0. Thus, we can sometimes regard

J
(3)
0 as a deferred A3-job (if necessary) without affecting our discussion. From Lemma 3.6, we have

the following lemma.

Lemma 4.1. For every Pareto-optimal valid-schedule σ = (Jσ(1), Jσ(2), . . . , Jσ(n′)) for the problem

1|p(1)j ↑↓ w
(1)
j |(γ(1), γ(2), γ(3)), which satisfies the properties in Lemma 3.6, and for every k ∈ {1, 2, . . . , n′},

there is a quadruple (i1, i2, i3, x), where iz ∈ {1, 2, . . . , nz} for z ∈ {1, 2, 3} and x ∈ {0, 1, . . . , i3}, such

that

(i) the k jobs in σk = (Jσ(1), Jσ(2), . . . , Jσ(k)) consist of all the A1-jobs of J (1)
i1

, the early A2-jobs

of J (1)
i2

, and all the non-late A3-jobs of J (3)
i3
\ {J (3)

x };
(ii) the A1-jobs in σk are scheduled in their job-index order in σk;

(iii) the early A2-jobs in σk are scheduled in their job-index order in σk;

(iv) if x 6= 0, then Cσ(k)(σ) < d
(3)
x ; all the non-late A3-jobs J

(3)
j with x + 1 ≤ j ≤ i3 are early in

σk; and for the last early A3-job J
(3)
j∗ in σ with j∗ ≥ x + 1 and J

(3)
j∗ ≺ J

(3)
x , J

(3)
j∗ is scheduled directly

before J
(3)
x in σ (which means that J

(3)
x will be expected as a deferred job in σ but not included in σk);

(v) all the early A3-jobs in J (3)
i3

are scheduled in their job-index order in σk and, for each non-late

A3-job J
(3)
j ∈ J (3)

i3
, at most one deferred A3-job with a job-index less than j is scheduled after J

(3)
j in

σk.

Proof. Let iz = max{j : J
(z)
j ∈ {J (z)

0 } ∪ σk} for z = 1, 2, 3. From Lemma 3.6, at most one deferred

A3-job with an index smaller than i3 is scheduled after J
(3)
i3

in σ. If such a deferred A3-job does not

exist, we define x = 0; if such a deferred A3-job exists, we define J
(3)
x as this deferred A3-job in σ. If

x 6= 0, we have Cσ(k)(σ) ≤ S
(3)
x (σ) < d

(3)
x since J

(3)
x is non-late in σ. Note that, in this case, we have

J
(3)
x = Jσ(i) for some i ∈ {k + 1, k + 2, . . . , n′}. Now the correctness of this lemma follows from the

properties given in Lemma 3.6.

13



Note that the properties given in Lemma 4.1 are much weaker than those given in Lemma 3.6.

But they are sufficient and convenient for our algorithm design.

Definition 4.1. For a quadruple (i1, i2, i3, x) with iz ∈ {1, 2, . . . , nz} for z ∈ {1, 2, 3} and x ∈
{0, 1, . . . , i3}, a schedule for J (1)

i1
∪J (2)

i2
∪ (J (3)

i3
\{J (3)

x }) is called an (i1, i2, i3, x)-schedule if it satisfies

the properties given in Lemma 4.1 for σk. An (n1, n2, n3, 0)-schedule is also called a standard schedule

for J . For each (i1, i2, i3, x)-schedule π, we call (τ(π), C(π), U(π), Y (π)) a state of (i1, i2, i3, x), where

τ(π) is the total processing time of the valid-jobs in π, C(π) =
∑i1

j=1w
(1)
j C

(1)
j (π) is the total weighted

completion time of the A1-jobs of J (1)
i1

in π, U(π) =
∑i2

j=1w
(2)
j U

(2)
j (π) is the weighted number of

tardy A2-jobs of J (2)
i2

in π, and Y (π) =
∑

J
(3)
j ∈J

(3)
i3
\{J(3)

x }
w

(3)
j Y

(3)
j is the total weighted late work of the

A3-jobs of J (3)
i3
\ {J (3)

x } in π. We use Γ(i1, i2, i3, x) to denote the set of all the states of (i1, i2, i3, x),

and Γ̃(i1, i2, i3, x) to denote the set of non-dominated vectors in Γ(i1, i2, i3, x). Moreover, we define

Γ(n1, n2, n3) = {(C,U, Y ) : (τ, C, U, Y ) ∈ Γ̃(n1, n2, n3, 0) for some τ ≥ P (1)
n1
} (11)

and let Γ̃(n1, n2, n3) be the set of non-dominated vectors in Γ(n1, n2, n3).

The states of (i1, i2, i3, x) are used to iteratively enumerate all the states of (n1, n2, n3, 0), so that

we can get the set of all the target vectors of the standard schedules, i.e., the schedules that satisfy

Lemma 4.1. Note that for any Pareto-optimal point, there is a schedule, corresponding to this point,

that satisfies Lemma 4.1. If we enumerate all the standard schedules, then the set of the target

vectors corresponding to these schedules must contain all the pareto-optimal points. The following

two lemmas show that all the non-dominated vectors in the set of target vectors of standard schedules

constitute the Pareto frontier.

Note that each Pareto-optimal valid-schedule satisfying the properties in Lemma 3.6 for J is also

a standard schedule for J , but the reverse is not necessarily true.

Lemma 4.2. For each standard schedule π for J , there is a Pareto-optimal valid-schedule σ for J
such that (C(σ), U(σ), Y (σ)) � (C(π), U(π), Y (π)).

The following lemma reveals the structure of the Pareto frontier of problem 1|p(1)j ↑↓ w
(1)
j |(γ(1), γ(2), γ(3)).

Lemma 4.3. The Pareto frontier of problem 1|p(1)j ↑↓ w
(1)
j |(γ(1), γ(2), γ(3)) on instance J is Γ̃(n1, n2, n3).

Proof. From Definition 4.1, Γ̃(n1, n2, n3) is a set of non-dominated vectors, each of which is an objective

vector. Then it suffices to show that the Pareto frontier of the considered problem is a subset of

Γ̃(n1, n2, n3).

To this end, let (C,U, Y ) be a Pareto-optimal point of the considered problem. Let π be a

Pareto-optimal valid-schedule for J with (C(π), U(π), Y (π)) = (C,U, Y ) such that τ = τ(π) is as

small as possible. Since π is also a standard schedule for J , we have (τ(π), C(π), U(π), Y (π)) ∈
Γ(n1, n2, n3, 0). Then there is a standard schedule π̃ for J such that (τ(π̃), C(π̃), U(π̃), Y (π̃)) �
(τ(π), C(π), U(π), Y (π)) and (C(π̃), U(π̃), Y (π̃)) ∈ Γ̃(n1, n2, n3). From Lemma 4.2, there is a Pareto-

optimal valid-schedule σ for J such that (C(σ), U(σ), Y (σ)) � (C(π̃), U(π̃), Y (π̃)). Thus, we have

(C(σ), U(σ), Y (σ)) � (C(π̃), U(π̃), Y (π̃)) � (C(π), U(π), Y (π)). (12)
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Since both σ and π are Pareto-optimal, the relation in (12) implies that (C(σ), U(σ), Y (σ)) =

(C(π̃), U(π̃), Y (π̃)) = (C(π), U(π), Y (π)). Then we have (C,U, Y ) = (C(π̃), U(π̃), Y (π̃)) ∈ Γ̃(n1, n2, n3).

The lemma follows.

From Lemma 4.3, to solve problem 1|p(1)j ↑↓ w(1)
j |(γ(1), γ(2), γ(3)), we first generate all the non-

dominated state sets Γ̃(i1, i2, i3, x) for all the possible choices of the quadruple (i1, i2, i3, x), and then

generate the Pareto-frontier Γ̃(n1, n2, n3). This is implemented by a forward dynamic programming

algorithm, with the minor exception that the sets Γ(i1, i2, i3, x) with x > 0 are generated before the

set Γ(i1, i2, i3, 0).

Initially, we set Γ(0, 0, 0, 0) := {(0, 0, 0, 0)} and set Γ(i1, i2, i3, x) := ∅ if (i1, i2, i3, x) 6= (0, 0, 0, 0).

Then we recursively generate all the state sets Γ(i1, i2, i3, x). To this end, we consider a state

(τ, C, U, Y ) ∈ Γ(i1, i2, i3, x), if any, and let π be an (i1, i2, i3, x)-schedule corresponding to the s-

tate (τ, C, U, Y ). Since J
(3)
x is expected to be a deferred job, from Lemma 4.1(iv), we should require

τ < d
(3)
x . We next generate a state (τ ′, C ′, U ′, Y ′) ∈ Γ(i′1, i

′
2, i
′
3, x
′) for some quadruple (i′1, i

′
2, i
′
3, x
′)

with (i1, i2, i3) ≺ (i′1, i
′
2, i
′
3) and (i′1 − i1) + (i′2 − i2) + (i′3 − i3) = 1, where x′ ∈ {0, x, i′3}. Let π′ be an

(i′1, i
′
2, i
′
3, x
′)-schedule corresponding to the state (τ ′, C ′, U ′, Y ′). We distinguish the following cases.

Case 1. (i′1, i
′
2, i
′
3, x
′) = (i1 +1, i2, i3, x). Then π′ is obtained from π by scheduling J

(1)
i1+1 directly after

schedule π. Thus, we have

(τ ′, C ′, U ′, Y ′) = (τ + p
(1)
i1+1, C + w

(1)
i1+1(τ + p

(1)
i1+1), U, Y ).

Note that, in this case, if x 6= 0, the condition τ ′ < d
(3)
x , i.e., τ < d

(3)
x − p(1)i1+1, must be satisfied. This

is deduced from Lemma 4.1(iv).

Case 2. (i′1, i
′
2, i
′
3, x
′) = (i1, i2 + 1, i3, x) and J

(2)
i2+1 is a tardy A2-job. Then π′ = π and

(τ ′, C ′, U ′, Y ′) = (τ, C, U + w
(2)
i2+1, Y ).

Case 3. (i′1, i
′
2, i
′
3, x
′) = (i1, i2 + 1, i3, x) and J

(2)
i2+1 is an early A2-job. Then π′ is obtained from π by

scheduling J
(2)
i2+1 directly after schedule π. Thus,

(τ ′, C ′, U ′, Y ′) = (τ + p
(2)
i2+1, C, U, Y ).

Note that, in this case, the condition τ + p
(2)
i2+1 ≤ d

(2)
i2+1, i.e., τ ≤ d

(2)
i2+1 − p

(2)
i2+1, must be satisfied.

Moreover, from Lemma 4.1(iv), if x 6= 0, the other condition τ ′ < d
(3)
x , i.e., τ < d

(3)
x − p(2)i2+1, must be

satisfied, too.

Case 4. (i′1, i
′
2, i
′
3, x
′) = (i1, i2, i3 + 1, x) and J

(3)
i3+1 is a late A3-job. Then π′ = π and

(τ ′, C ′, U ′, Y ′) = (τ, C, U, Y + w
(3)
i3+1p

(3)
i3+1).

Case 5. (i′1, i
′
2, i
′
3, x
′) = (i1, i2, i3 + 1, x), x 6= 0, and J

(3)
i3+1 is a non-late A3-job. Then π′ is obtained

from π by scheduling J
(3)
i3+1 directly after schedule π. According to Lemma 4.1(iv), J

(3)
i3+1 is an early

job in π′. Thus,

(τ ′, C ′, U ′, Y ′) = (τ + p
(3)
i3+1, C, U, Y ).
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Since J
(3)
i3+1 is an early job in π′ and J

(3)
x is a deferred job, the condition τ ′ < d

(3)
x , i.e., τ < d

(3)
x − p(3)i3+1

must be satisfied.

Case 6. (i′1, i
′
2, i
′
3, x
′) = (i1, i2, i3 + 1, x), x = 0, and J

(3)
i3+1 is a non-late A3-job. Then π′ is obtained

from π by scheduling J
(3)
i3+1 directly after schedule π. Note that w

(3)
i3+1Y

(3)
i3+1(π

′) = w
(3)
i3+1 max{τ +

p
(3)
i3+1 − d

(3)
i3+1, 0}. Thus,

(τ ′, C ′, U ′, Y ′) = (τ + p
(3)
i3+1, C, U, Y + w

(3)
i3+1 max{τ + p

(3)
i3+1 − d

(3)
i3+1, 0}).

Note that, in this case, the condition τ < d
(3)
i3+1 must be satisfied.

Case 7. (i′1, i
′
2, i
′
3, x
′) = (i1, i2, i3 + 1, 0), x 6= 0, and J

(3)
i3+1J

(3)
x forms a reversed pair in π′. Then

π′ is obtained from π by scheduling J
(3)
i3+1J

(3)
x directly after schedule π. In this case, the condition

τ < d
(3)
x − p(3)i3+1 must be satisfied to make sure that J

(3)
i3+1 is early and J

(3)
x is non-late. Note that

w
(3)
x Y

(3)
x (π′) = w

(3)
x max{τ + p

(3)
i3+1 + p

(3)
x − d(3)x , 0}. Thus,

(τ ′, C ′, U ′, Y ′) = (τ + p
(3)
i3+1 + p(3)x , C, U, Y + w(3)

x max{τ + p
(3)
i3+1 + p(3)x − d(3)x , 0}).

We remark that the case where “(i′1, i
′
2, i
′
3, x
′) = (i1, i2, i3 + 1, 0), x 6= 0, and J

(3)
x ≺π′ J

(3)
i3+1” is covered

in our situation classification.

Case 8. (i′1, i
′
2, i
′
3, x
′) = (i1, i2, i3 + 1, i3 + 1) and x = 0. Then π′ = π and J

(3)
i3+1 is the deferred and

unscheduled A3-job. Thus,

(τ ′, C ′, U ′, Y ′) = (τ, C, U, Y ).

Note that, in this case, the condition τ < d
(3)
i3+1 must be satisfied since J

(3)
i3+1 is deferred.

The above analysis enables us to solve problem 1|p(1)j ↑↓ w(1)
j |(γ(1), γ(2), γ(3)) by the following

Algorithm 1.
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Algorithm 1: For solving 1|p(1)j ↑↓ w
(1)
j |(γ(1), γ(2), γ(3))

1 Set Γ(0, 0, 0, 0) := {(0, 0, 0, 0)} and set Γ(i1, i2, i3, x) := ∅ if (i1, i2, i3, x) 6= (0, 0, 0, 0).

2 for i1 = 0, 1, . . . , n1, i2 = 0, 1, . . . , n2, i3 = 0, 1, . . . , n3, and x = 0, 1, . . . , i3, do

3 for each (τ, C, U, Y ) ∈ Γ(i1, i2, i3, x), do

4 if “i1 < n1, x 6= 0, and τ < d
(3)
x − p(1)i1+1” or “i1 < n1 and x = 0”, then

5 Γ(i1 + 1, i2, i3, x) := Γ(i1 + 1, i2, i3, x) ∪ (τ + p
(1)
i1+1, C + w

(1)
i1+1(τ + p

(1)
i1+1), U, Y )

6 end

7 if i2 < n2, then

8 Γ(i1, i2 + 1, i3, x) := Γ(i1, i2 + 1, i3, x) ∪ (τ, C, U + w
(2)
i2+1, Y )

9 end

10 if “i2 < n2, x 6= 0, τ ≤ d
(2)
i2+1 − p

(2)
i2+1, and τ < d

(3)
x − p(2)i2+1”or“i2 < n2, x = 0 and

τ ≤ d
(2)
i2+1 − p

(2)
i2+1”, then

11 Γ(i1, i2 + 1, i3, x) := Γ(i1, i2 + 1, i3, x) ∪ (τ + p
(2)
i2+1, C, U, Y )

12 end

13 if i3 < n3, then

14 Γ(i1, i2, i3 + 1, x) := Γ(i1, i2, i3 + 1, x) ∪ (τ, C, U, Y + w
(3)
i3+1p

(3)
i3+1)

15 end

16 if i3 < n3, x 6= 0 and τ < d
(3)
x − p(3)i3+1, then

17 Γ(i1, i2, i3 + 1, x) := Γ(i1, i2, i3 + 1, x) ∪ (τ + p
(3)
i3+1, C, U, Y );

18 Γ(i1, i2, i3 + 1, 0) :=

Γ(i1, i2, i3 + 1, 0)∪ (τ +p
(3)
i3+1 +p

(3)
x , C, U, Y +w

(3)
x max{τ +p

(3)
i3+1 +p

(3)
x −d(3)x , 0})

19 end

20 if i3 < n3, x = 0 and τ < d
(3)
i3+1, then

21 Γ(i1, i2, i3 + 1, i3 + 1) := Γ(i1, i2, i3 + 1, i3 + 1) ∪ (τ, C, U, Y );

22 Γ(i1, i2, i3 + 1, 0) :=

Γ(i1, i2, i3 + 1, 0) ∪ (τ + p
(3)
i3+1, C, U, Y + w

(3)
i3+1 max{τ + p

(3)
i3+1 − d

(3)
i3+1, 0})

23 end

24 end

25 For each newly generated Γ(i′1, i
′
2, i
′
3, x
′), set Γ(i′1, i

′
2, i
′
3, x
′) := Γ̃(i′1, i

′
2, i
′
3, x
′)

26 end

27 Generate Γ̃(n1, n2, n3) and, for each state (C,U, Y ) ∈ Γ̃(n1, n2, n3), derive the

corresponding optimal schedule by backtracking.
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Note that the upper bounds of γ(1), γ(2), and γ(3) are given by Q(1) =
∑n1

j=1w
(1)
j p(J ), Q(2) =∑n2

j=1w
(2)
j , and Q(3) =

∑n3
j=1w

(3)
j p

(3)
j , respectively.

Theorem 4.1. Algorithm 1 solves the Pareto-frontier scheduling problem 1|p(1)j ↑↓ w
(1)
j |(γ(1), γ(2), γ(3))

in O(n1n2n
2
3Q

(1)Q(2)Q(3)) time.

Proof. The correctness of Algorithm 1 is guaranteed by Lemma 4.3. In the following we analyze its

time complexity.

The initialization step takes O(n1n2n
2
3) time, which is dominated by the final time complexity of

Algorithm 1.

In the implementation of Algorithm 1, we guarantee that Γ(i1, i2, i3, x) = Γ̃(i1, i2, i3, x), which

consists of some non-dominated states. There are a total O(n1n2n
2
3) distinct state sets Γ(i1, i2, i3, x)

for i1 = 0, 1, . . . , n1, i2 = 0, 1, . . . , n2, i3 = 0, 1, . . . , n3, and x = 0, 1, . . . , i3. From Lemma 3.7, each

state set Γ(i1, i2, i3, x) contains O(Q(1)Q(2)Q(3)) states in each iteration of Algorithm 1. Moreover, for

each state (τ, C, U, Y ) ∈ Γ(i1, i2, i3, x), Algorithm 1 generates at most eight (a constant) new states.

Thus, the overall running time of Algorithm 1 is O(n1n2n
2
3Q

(1)Q(2)Q(3)).

Corollary 4.1. Problem 1|p(1)j ↑↓ w
(1)
j , d

(3)
j ↑↓ w

(3)
j |(γ(1), γ(2), γ(3)) is solvable in O(n1n2n3Q

(1)Q(2)Q(3))

time.

Proof. From Lemma 3.5(vi), we know that, for each Pareto-optimal point (C,U, Y ) of problem 1|p(1)j ↑↓
w

(1)
j , d

(3)
j ↑↓ w(3)

j |(γ(1), γ(2), γ(3)) on instance J , there exists a corresponding Pareto-optimal valid-

schedule σ such that the non-late A3-jobs are scheduled in their job-index order, so no deferred A3-job

exists in σ. Thus, we may fix x = 0 in the implementation of Algorithm 1. From the proof of Theorem

4.1, the time complexity can be reduced to O(n1n2n3Q
(1)Q(2)Q(3)).

The time complexity of Algorithm 1 is in fact estimated by the number of choices for the variables

in {i1, i2, i3, x, C, U, Y }. The result in Corollary 4.1 is valid since the variable x can be omitted. If we

only consider the criteria γ(1) and γ(2), then the variables i3, x, and Y can be omitted. From Theorem

4.1, we have the following corollary.

Corollary 4.2. Problem 1|p(1)j ↑↓ w
(1)
j |(γ(1), γ(2)) is solvable in O(n1n2Q

(1)Q(2)) time.

If we only consider the criteria γ(1) and γ(3), then the variables i2 and U can be omitted. From

Theorem 4.1 and Corollary 4.1, we have the following corollary.

Corollary 4.3. Problem 1|p(1)j ↑↓ w
(1)
j |(γ(1), γ(3)) is solvable in O(n1n

2
3Q

(1)Q(3)) time, while problem

1|p(1)j ↑↓ w
(1)
j , d

(3)
j ↑↓ w

(3)
j |(γ(1), γ(3)) is solvable in O(n1n3Q

(1)Q(3)) time.

If we only consider the criteria γ(2) and γ(3), then there is no need to record the variables i1 and

C. Then we have the following corollary.

Corollary 4.4. Problem 1||(γ(2), γ(3)) on instance J is solvable in O(n2n
2
3Q

(2)Q(3)) time, while prob-

lem 1|d(3)j ↑↓ w
(3)
j |(γ(2), γ(3)) on instance J is solvable in O(n2n3Q

(2)Q(3)) time.
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5 Problem 1|p(2)
j = p(2), p

(3)
j = p(3)|(

∑
C

(1)
j ,

∑
U

(2)
j ,

∑
Y

(3)
j )

In this section we present a polynomial-time algorithm to solve the Pareto-frontier problem

1|p(2)j = p(2), p
(3)
j = p(3)|(

∑
C

(1)
j ,

∑
U

(2)
j ,

∑
Y

(3)
j ). (13)

Although the problem in (13) is a special version of problem 1|(p(1), w(1)|(γ(1), γ(2), γ(3)), Algorithm

1 is not polynomial for this special case. Due to the two conditions p
(2)
j = p(2) and p

(3)
j = p(3) in the

β-filed, the problem in (13) has stronger optimality properties as given in the following lemma.

Lemma 5.1. For each Pareto-optimal point (C,U, Y ) of the problem in (13) on instance J , there

exists a corresponding Pareto-optimal valid-schedule σ such that the following statements hold for the

jobs in J .

(i) The A1-jobs are scheduled in their index order J
(1)
1 , J

(1)
2 , . . . , J

(1)
n1 .

(ii) The early A2-jobs are given by J
(2)
u+1, J

(2)
u+2, . . . , J

(2)
n2 and are scheduled in this order.

(iii) There is some v ∈ {0, 1, . . . , n3} such that the non-late A3-jobs are given by J
(3)
v+1, J

(3)
v+2, . . . , J

(3)
n3

and are scheduled in this order.

Proof. We can prove the result using the pairwise job-interchange argument.

For a pair of indices u and v with u ∈ {0, 1, . . . , n2} and v ∈ {0, 1, . . . , n3}, we define

F (u,v) = J (1) ∪ (J (2) \ J (2)
u ) ∪ (J (3) \ J (3)

v ).

We use Problem(u, v) to denote the Pareto-frontier problem

1|p(2)j = p(2), p
(3)
j = p(3)|(

∑
C

(1)
j ,

∑
Y

(3)
j )

on instance F (u,v) under the restriction that all the A2-jobs in F (u,v) are early and all the A3-jobs

in F (u,v) are non-late. We use Γ(u,v)(1, u + 1, v + 1) to denote the Pareto frontier of Problem(u, v).

Moreover, we define

Γ′(u,v)(1, u+ 1, v + 1) = {(C, u, Y + vp(3)) : (C, Y ) ∈ Γ(u,v)(1, u+ 1, v + 1)}.

From Lemma 5.1, we have the following lemma.

Lemma 5.2. The Pareto frontier of the problem in (13) on instance J consists of all the non-

dominated vectors in the set ∪u∈{0,1,...,n2},v∈{0,1,...,n3}Γ
′(u,v)(1, u+ 1, v + 1).

Based on Lemma 5.2, we next present a polynomial-time algorithm to solve Problem(u, v) for a

given pair (u, v) with u ∈ {0, 1, . . . , n2} and v ∈ {0, 1, . . . , n3}.
For convenience sake, we re-define the standard schedules. For a triple (i1, i2, i3) with i1 ∈

{1, 2, . . . , n1}, i2 ∈ {u + 1, u + 2, . . . , n2}, and i3 ∈ {v + 1, v + 2, . . . , n3}, we define J (i1,i2,i3) =

J \ (J (1)
i1−1 ∪ J

(2)
i2−1 ∪ J

(3)
i3−1). Then we have

J (i1,i2,i3) = {J (1)
i1
, J

(1)
i1+1, . . . , J

(1)
n1
} ∪ {J (2)

i2
, J

(2)
i2+1, . . . , J

(2)
n2
} ∪ {J (3)

i3
, J

(3)
i3+1, . . . , J

(3)
n3
}.
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Let τ(i1, i2, i3) = p(F (u,v))− p(J (i1,i2,i3)). Then

τ(i1, i2, i3) =

i1−1∑
i=1

p
(1)
i +

i2−1∑
i=u+1

p
(2)
i +

i3−1∑
i=v+1

p
(3)
i .

Thus, all the values τ(i1, i2, i3) can be calculated in O(n1n2n3) time in the preprocessing procedure.

A schedule π for J (i1,i2,i3) is called an (i1, i2, i3)-schedule if it satisfies the following properties:

(i) The jobs in J (i1,i2,i3) are consecutively scheduled from time τ(i1, i2, i3) to time p(F (u,v)) =

τ(i1, i2, i3) + p(J (i1,i2,i3));

(ii) The A1-jobs in J (1) \ J (1)
i1−1 are scheduled in their index order in π;

(iii) The A2-jobs in J (2) \ J (2)
i2−1 are early in π and are scheduled in their index order in π;

(iv) The A3-jobs in J (3) \ J (3)
i3−1 are non-late in π and are scheduled in their index order in π.

A (1, u+ 1, v + 1)-schedule is also called a standard schedule for F (u,v). Obviously, the start time

of a (1, u + 1, v + 1)-schedule is 0. For each (i1, i2, i3)-schedule π, we call (C(π), Y (π)) a state of

(i1, i2, i3), where C(π) =
∑n1

j=i1
C

(1)
j (π) is the total completion time of the A1-jobs of J \ J (1)

i1−1 in π

and Y (π) =
∑n3

j=i3
Y

(3)
j (π) is the total late work of the A3-jobs of J \J (3)

i3−1 in π. We use Γ(u,v)(i1, i2, i3)

to denote the set of all the states of (i1, i2, i3) and Γ̃(u,v)(i1, i2, i3) to denote the set of non-dominated

vectors in Γ(u,v)(i1, i2, i3).

Our algorithm is a backwards dynamic programming algorithm. First, we generate all the non-

dominated state sets Γ̃(u,v)(i1, i2, i3) for all the possible choices of the triple (i1, i2, i3), and then we

generate the Pareto-frontier Γ̃(u,v)(1, u+ 1, v + 1).

Initially, we set Γ(u,v)(n1 + 1, n2 + 1, n3 + 1) := {(0, 0)} and set Γ(u,v)(i1, i2, i3) := ∅ if (i1, i2, i3) 6=
(n1 + 1, n2 + 1, n3 + 1). Then we recursively generate all the state sets Γ(u,v)(i1, i2, i3). Let us consider

a state (C, Y ) ∈ Γ(u,v)(i1, i2, i3), if any, and let π be an (i1, i2, i3)-schedule corresponding to the

state (C, Y ). We next generate a state (C ′, Y ′) ∈ Γ(u,v)(i′1, i
′
2, i
′
3) with (i′1, i

′
2, i
′
3) ≺ (i1, i2, i3) and

(i1− i′1) + (i2− i′2) + (i3− i′3) = 1. Let π′ be an (i′1, i
′
2, i
′
3)-schedule corresponding to the state (C ′, Y ′).

We distinguish the following cases.

Case 1. (i′1, i
′
2, i
′
3) = (i1 − 1, i2, i3). Then π′ is obtained from π by scheduling J

(1)
i1−1 directly before

schedule π. Thus, we have

(C ′, Y ′) = (C + τ(i1, i2, i3), Y ).

Case 2. (i′1, i
′
2, i
′
3) = (i1, i2 − 1, i3). Then J

(2)
i2−1 is an early A2-job in π′, which is obtained from π by

scheduling J
(2)
i2−1 directly before schedule π. Thus, we have

(C ′, Y ′) = (C, Y ).

Note that this case only happens when τ(i1, i2, i3) ≤ d(2)i2−1.

Case 3. (i′1, i
′
2, i
′
3) = (i1, i2, i3 − 1). Then J

(3)
i3−1 is a non-late A3-job in π′, which is obtained from π

by scheduling J
(3)
i3−1 directly before schedule π. Thus, we have

(C ′, Y ′) = (C, Y + max{τ(i1, i2, i3)− d(3)i3−1, 0}).
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Note that this only happens when τ(i1, i2, i3) < d
(3)
i3−1 + p(3).

The above discussion enables us to solve Problem(u, v) by the following Algorithm 2.

Algorithm 2: For solving Problem(u, v)

1 Set Γ(u,v)(n1 + 1, n2 + 1, n3 + 1) := {(0, 0)} and set Γ(u,v)(i1, i2, i3) := ∅ if

(i1, i2, i3) 6= (n1 + 1, n2 + 1, n3 + 1).

2 for i1 = n1 + 1, n1, . . . , 1, i2 = n2 + 1, n2, . . . , u+ 1, i3 = n3 + 1, n3, . . . , v + 1, do

3 for each (C, Y ) ∈ Γ(u,v)(i1, i2, i3), do

4 if i1 > 1, then

5 Γ(u,v)(i1 − 1, i2, i3) := Γ(u,v)(i1 − 1, i2, i3) ∪ (C + τ(i1, i2, i3), Y )

6 end

7 if i2 > u+ 1 and τ(i1, i2, i3) ≤ d
(2)
i2−1, then

8 Γ(u,v)(i1, i2 − 1, i3) := Γ(u,v)(i1, i2 − 1, i3) ∪ (C, Y )

9 end

10 if i3 > v + 1 and τ(i1, i2, i3) < d
(3)
i3−1 + p(3), then

11 Γ(u,v)(i1, i2, i3 − 1) := Γ(u,v)(i1, i2, i3 − 1) ∪ (C, Y + max{τ(i1, i2, i3)− d(3)i3−1, 0})
12 end

13 end

14 For each newly generated Γ(u,v)(i′1, i
′
2, i
′
3), set Γ(u,v)(i′1, i

′
2, i
′
3) := Γ̃(u,v)(i′1, i

′
2, i
′
3)

15 end
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Theorem 5.1. For each pair (u, v) with u ∈ {0, 1, . . . , n2} and v ∈ {0, 1, . . . , n3}, Algorithm 2 solves

Problem(u, v) in O(n31n
2
2n

2
3) time. Consequently, problem 1|p(2)j = p(2), p

(3)
j = p(3)|(

∑
C

(1)
j ,

∑
U

(2)
j ,

∑
Y

(3)
j )

is solvable in O(n31n
3
2n

3
3) time.

Proof. The correctness of Algorithm 2 is ensured by the analysis above. Next we discuss the time

complexity of the algorithm.

The initialization step of Algorithm 2 takes O(n1n2n3) time, which is dominated by the final time

complexity of Algorithm 2.

In the implementation of Algorithm 2, we guarantee that Γ(u,v)(i1, i2, i3) = Γ̃(u,v)(i1, i2, i3), which

consists of some non-dominated states. There are in total O(n1n2n3) distinct state sets Γ(u,v)(i1, i2, i3)

for i1 = n1 + 1, n1, . . . , 1, i2 = n2 + 1, n2, . . . , u + 1, and i3 = n3 + 1, n3, . . . , v + 1. From Lemma

3.7, the size of each state set Γ(u,v)(i1, i2, i3) is upper bounded by the number of C-values with

(C, Y ) ∈ Γ(u,v)(i1, i2, i3), which is estimated in the following claim.

Claim 1. The number of C-values with (C, Y ) ∈ Γ(u,v)(i1, i2, i3) is O(n21n2n3).

To prove Claim 1, we consider an (i1, i2, i3)-schedule π corresponding to a state (C, Y ) ∈ Γ(u,v)(i1, i2, i3).

Note that there are n1 − i1 + 1 A1-jobs, n2 − i2 + 1 A2-jobs, and n3 − i3 + 1 A3-jobs scheduled in π.

We set t1 = n1 − i1 + 1, t2 = n2 − i2 + 1, and t3 = n3 − i3 + 1. There are two extreme cases for the

possible arrangement of π:

Case 1. J
(1)
i1
≺π J (1)

i1+1 ≺π · · · ≺π J
(1)
n1 ≺π (J (2) \ J (2)

i2−1)
⋃

(J (3) \ J (3)
i3−1);

Case 2. (J (2) \ J (2)
i2−1)

⋃
(J (3) \ J (3)

i3−1) ≺π J
(1)
i1
≺π J (1)

i1+1 ≺π · · · ≺π J
(1)
n1 .

Note that the contributions of the jobs in (J (2) \ J (2)
i2−1)

⋃
(J (3) \ J (3)

i3−1) to the value of C is 0 for

Case 1, but t1(t2p
(2) + t3p

(3)) for Case 2. Then the difference in the values of C for the two extreme

cases of π is t1t2p
(2) + t1t3p

(3). Note that, in general, the contribution of the jobs in J (2) \ J (2)
i2−1 to

the value of C is not more than t1t2p
(2), and the contribution of the jobs in J (3) \ J (3)

i3−1 to the value

of C is not more than t1t3p
(3). Then, for each possible arrangement of π, the value of C is given by

ap(2)+bp(3) with 0 ≤ a ≤ t1t2 and 0 ≤ b ≤ t1t3. Thus, there are at most (t1t2+1)(t1t3+1) possibilities

for the value of C. Claim 1 follows by noting that (t1t2 + 1)(t1t3 + 1) = O(n21n2n3).

From Claim 1, the state set Γ(u,v)(i1, i2, i3) contains O(n21n2n3) states in each iteration of Algorithm

2, which follows from the observation that there are O(n1n2n3) choices for the value of C. Moreover,

for each state (C, Y ) ∈ Γ(u,v)(i1, i2, i3), Algorithm 2 generates at most three (a constant) new states.

Thus, the overall running time of Algorithm 2 is O(n31n
2
2n

2
3).

Generating ∪u∈{0,1,...,n2},v∈{0,1,...,n3}Γ
′(u,v)(1, u + 1, v + 1) takes O(n31n

3
2n

3
3) time, which dominates

the time of generating all the non-dominated vectors in this set.

Consequently, problem 1|p(2)j = p(2), p
(3)
j = p(3)|(

∑
C

(1)
j ,

∑
U

(2)
j ,

∑
Y

(3)
j ) on instance J is solvable

in O(n31n
3
2n

3
3) time.

The time complexity of Algorithm 2 is in fact estimated by the number of choices for the variables

in {u, v, i1, i2, i3, C}. If we only consider the criteria
∑
C

(1)
j and

∑
Y

(3)
j , then the variables u and i2

can be omitted. In this case, there are O(n1n3) choices for the value of C. Then we have the following

corollary.
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Corollary 5.1. Problem 1|p(3)j = p(3)|(
∑
C

(1)
j ,

∑
Y

(3)
j ) is solvable in O(n21n

2
3) time.

For problems 1|p(2)j = p(2)|(
∑
C

(1)
j ,

∑
U

(2)
j ) and 1|p(2)j = p(2), p

(3)
j = p(3)|(

∑
U

(2)
j ,

∑
Y

(3)
j ), we can

solve the corresponding Problem(u, 0) and Problem(u, v) backwards in O(n) time in the following way:

the last unscheduled A2-job has priority to be scheduled if it is early at the current time. Consequently,

we have the following result.

Theorem 5.2. (i) Problem 1|p(2)j = p(2)|(
∑
C

(1)
j ,

∑
U

(2)
j ) is solvable in O(nn2) time. (ii) Problem

1|p(2)j = p(2), p
(3)
j = p(3)|(

∑
U

(2)
j ,

∑
Y

(3)
j ) is solvable in O(nn2n3) time.

6 Conclusions

We study Pareto-optimization of the three-agent single-machine scheduling problem 1|β|(γ(1), γ(2), γ(3)),
where γ(1)(σ) =

∑n1
j=1w

(1)
j C

(1)
j (σ), γ(2)(σ) =

∑n2
j=1w

(2)
j U

(2)
j (σ), and γ(3)(σ) =

∑n3
j=1w

(3)
j Y

(3)
j (σ). For

some special versions of the problem, we present the NP -hardness results by using some known result-

s in the literature. For problem 1|p(1) ↑↓ w(1)|(γ(1), γ(2), γ(3)), we provide a pseudo-polynomial-time

solution algorithm and discuss various implications. In addition, we show that, for various special

versions, the time complexity of our algorithms can be further reduced, even down to polynomial

time. Table 1 summarizes our research results.

Some topics can be considered in the future research. First, we note that problem 1|d(2)j =

d(2), d
(3)
j = d(3)|(γ(1), γ(2), γ(3)), which is binary NP -hard, can be solved in pseudo-polynomial time

by using an approach different from ours, since it can be shown that, for each Pareto-optimal point,

there exists a corresponding Pareto-optimal valid schedule that is composed of five subschedules,

among which the first, third and fifth subschedules comprise the A1-jobs, while the second and fourth

subschedules comprise the A2-jobs and A3-jobs, respectively. Second, for problem 1||(
∑
T
(1)
j ,

∑
Y

(2)
j ),

we know that it is binary NP -hard, but its exact computational complexity, i.e., whether it is unary

NP -hard or pseudo-polynomially solvable, is still open. Moreover, Pareto-optimization of the single-

agent single-machine bi-criteria scheduling problem 1||(f,
∑
w̃jYj) is another choice for research, where

f ∈ {Tmax,
∑
wjCj ,

∑
wiUj ,

∑
wjYj}, where wj and w̃j are different weights for job Jj .
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Appendix: An explanation for Lemma 4.1

To explain the significance of Lemma 4.1, we consider a new job J
(z)
x in some step of our algorithm in

which the subschedules for the jobs of the first i1 A1-jobs, the first i2 A2-jobs, and the first i3 A3-jobs
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have been enumerated, where z ∈ {1, 2, 3}, (i1, i2, i3) ≤ (n1, n2, n3), and i1 + i2 + i3 ≤ n − 1. Then

J
(z)
x ∈ {J (1)

i1+1, J
(2)
i2+1, J

(3)
i3+1}. Note that, for each z ∈ {1, 2, 3}, the Az-jobs have been numbered by some

rule, as described in (2), (3), (4), and (5). If J
(z)
x is an A1-job, we schedule it immediately. If J

(z)
x is

an A2-job, we either schedule it as an early job immediately or treat it as a tardy job. However, if

J
(z)
x = J

(3)
x is an A3-job, we either schedule it as a non-late job (deferred or non-deferred) or treat it

as a late job. If J
(3)
x is non-deferred, it is scheduled immediately. If J

(3)
x is deferred, then we do not

schedule it immediately until we meet the job J
(3)
j∗ , which will be scheduled immediately before J

(3)
x

such that J
(3)
x is non-late, and then we arrange the reversed pair J

(3)
j∗ J

(3)
x together. Note that all the

non-late A3-jobs J
(3)
j with x+ 1 ≤ j ≤ j∗ are early and scheduled in their job-index order. We use an

example to further illustrate Lemma 4.1.

Instance I1: In instance I1, we have two A1-jobs, two A2-jobs, and four A3-jobs defined as follows:

Table 2: Instance I1

The job set J (A1) J (A2) J (A3)

The job J
(1)
1 J

(1)
2 J

(2)
1 J

(2)
2 J

(3)
1 J

(3)
2 J

(3)
3 J

(3)
4

The processing time 1 2 1 1 1 3 1 1

The due date 5 7 4 9 10 10

The weight 1 1 1 1 3 1 3 3

Then σ8 = (J
(1)
1 , J

(1)
2 , J

(3)
1 , J

(2)
1 , J

(3)
3 , J

(2)
2 , J

(3)
4 , J

(3)
2 ) is a Pareto-optimal schedule for the above

instance (see Figure 1).

0 1 3 4 5 6 7 8 11

J
(1)
1 J

(1)
2 J

(3)
1 J

(2)
1 J

(3)
3 J

(2)
2 J

(3)
4 J

(3)
2

Figure 1: A Pareto-optimal schedule σ8 corresponding to Instance I1

According to Lemma 4.1, there are two ways to get σ8. The first way is to consider the jobs in the

following order (note that this is only the order of consideration, not the actual order in the schedule):

J
(1)
1 ≺ J (1)

2 ≺ J (3)
1 ≺ J (3)

2 ≺ J (2)
1 ≺ J (3)

3 ≺ J (2)
2 ≺ J (3)

4 . (14)

The second way is to consider the jobs in the following order

J
(1)
1 ≺ J (1)

2 ≺ J (3)
1 ≺ J (2)

1 ≺ J (3)
2 ≺ J (3)

3 ≺ J (2)
2 ≺ J (3)

4 . (15)

The quadruple (i1, i2, i3, x) in Lemma 4.1 corresponding to the above two orders (14) and (15) are as

follows:

(1, 0, 0, 0) ≺ (2, 0, 0, 0) ≺ (2, 0, 1, 0) ≺ (2, 0, 2, 2) ≺ (2, 1, 2, 2) ≺ (2, 1, 3, 2) ≺ (2, 2, 3, 2) ≺ (2, 2, 4, 0),

(16)
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and

(1, 0, 0, 0) ≺ (2, 0, 0, 0) ≺ (2, 0, 1, 0) ≺ (2, 1, 1, 0) ≺ (2, 1, 2, 2) ≺ (2, 1, 3, 2) ≺ (2, 2, 3, 2) ≺ (2, 2, 4, 0).

(17)

As the only deferred job in σ8, J
(3)
2 is considered as the fourth in (14). At this time, the first three

jobs have been arranged, and the numbers of the A1, A2, and A3 jobs we consider are 2, 0, and 2,

respectively, while the subscript of the deferred job is 2, so the corresponding quadruple is (2, 0, 2, 2).

Note that the deferred job is not scheduled in the current schedule. The reader can imagine putting

it somewhere else temporarily. There will be no other deferred job after J
(3)
2 is deferred until it is

scheduled. During the period, we consider and schedule the jobs J
(2)
1 , J

(3)
3 , and J

(2)
2 , noting that the

value of x in all the quadruples is 2. When J
(3)
2 is scheduled, the value of x in the quadruple becomes

0. Note that both J
(3)
3 and J

(3)
4 are early, and J

(3)
4 is scheduled immediately before J

(3)
2 . The same

analysis applies to the order (15).
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