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Abstract: Instead of physically visiting all locations of concern by manpower, 12 

unmanned aerial vehicles (UAVs) equipped with cameras are a low-cost low-carbon 13 

alternative to carry out monitoring tasks. When a UAV flies to conduct monitoring tasks, 14 

it does not have to fly at a fixed speed; instead, it should fly at lower speeds over objects 15 

of higher concerns and vice versa. This paper addresses the UAV planning problem 16 

with a focus on optimizing the speed profile. We propose an infinite-dimensional 17 

optimization model for the problem and transform the model into an elegant linear 18 

programming formulation based on characteristics of the problem. Finally, we conduct 19 

a case study to demonstrate the effectiveness of the proposed model and the efficiency 20 

of the proposed solution method. 21 
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1 INTRODUCTION  25 

Traditionally, there are two methods to monitor an area. The first one is monitoring 26 

by patrol agents. This method is very flexible and easy to implement. However, it has 27 

two significant drawbacks. The first drawback is that some areas are difficult to access 28 

or dangerous, limiting the applicability of monitoring by patrol agents. Another 29 

problem is the high manpower costs of safety specialists, especially in developed 30 

countries. The second method to monitor is to use video cameras, e.g., at the entrance 31 

of residential buildings and at metro stations. Using video cameras can reduce the 32 

manpower costs, as a person in a central control room can monitor the scenes in several 33 

cameras at the same time. Moreover, video cameras can conduct monitoring tasks on a 34 

24/7 basis. A shortcoming of using video cameras is that the locations of video cameras 35 

are fixed. Even though some video cameras can rotate and shoot in many directions, 36 

they can still only monitor a limited area of a construction site. It is practically 37 

impossible to install so many cameras that all corners of a construction site are 38 

monitored. By contrast, patrol agents can monitor a much larger area, though not on a 39 

24/7 basis. Another drawback of using video cameras is that they can effectively work 40 

only with sufficient light in the monitored area. 41 

In recent years, using unmanned aerial vehicles (UAVs) that carry video cameras 42 

to carry out monitoring tasks integrates the advantages of the above two approaches 43 

(Otto et al., 2018).  UAVs equipped with cameras can provide a bird-view of locations 44 

and acquire image data efficiently, and thus are able to monitor a large area with low 45 
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manpower costs. Due to these advantages, UAVs, as a low-cost low-carbon alternative 46 

to carry out monitoring tasks, have been used in a number of applications. When a 47 

natural disaster occurs, UAVs can be used to monitor the affected area and obtain data 48 

on the extent of damage (Pi et al., 2020). UAVs can patrol land borders and shorelines 49 

between two countries (Kim and Lim, 2018). In agriculture, UAVs can inspect farm 50 

conditions for soil and yield analysis (Puri et al., 2017). In build environment, UAVs 51 

equipped with infrared imaging are used to monitor the heat transfer of building blocks 52 

(Rakha, and Gorodetsky, 2018). In this study, we will develop models to plan a UAV 53 

for carrying out monitoring tasks. 54 

 55 

1.1 Literature review 56 

A building block in UAV routing is obtaining the flying time between two points. 57 

Li et al. (2018a) examined a three-dimensional UAV path planning problem in which 58 

a UAV travels from one point to another point in an indoor environment while keeping 59 

a certain distance from obstacles. They developed A*-based algorithms to identify the 60 

shortest path and the path whose height above the floor and stairs is minimized.  61 

Some researchers have concentrated on optimizing UAV routes for monitoring a 62 

set of nodes, arcs, or an area. In the category on node monitoring, Kim and Lim (2018) 63 

proposed a UAV border monitoring concept in which electrification line systems to 64 

wirelessly charge drones are deployed. Drones must visit a sequence of nodes 65 

considering battery capacity constraints. A mixed-integer linear programming model is 66 



 4 

developed to determine the locations to install the electrification line systems. Zhen et 67 

al. (2019) investigated a routing problem in which UAVs monitor a set of nodes with 68 

different accuracy requirements, and in which the height at which a UAV visits each 69 

node is optimized as it affects the accuracy level of monitoring. A tabu search 70 

metaheuristic approach is developed for the problem.  Xia et al. (2019) examined the 71 

routing of a fleet of UAVs for monitoring air emissions from a set of vessels (nodes). 72 

Different from many routing studies, the vessels are moving rather than standing still. 73 

A space-time network model is developed to formulate the problem, which is solved by 74 

a Lagrangian relaxation-based method. 75 

In some situation UAVs monitor not nodes, but arcs, such as road segments, power 76 

transmission lines, and territorial borders. Chow (2016) and Li et al. (2018b) have 77 

studied the routing of a fleet of UAVs to monitor vehicle traffic on a set of road 78 

segments (arcs) over multiple periods. The problem is formulated as a mixed-integer 79 

linear program and solved by approximate dynamic programming in Chow (2016) and 80 

a local branching algorithm in Li et al. (2018b). Campbell et al. (2018) pointed out that 81 

an arc can be monitored by more than one UAV because UAVs can travel directly 82 

between any two points.  83 

Some studies have examined the routing of UAVs to monitor an area. Yang et al. 84 

(2018) studied the design of a UAV route to monitor a target area with the aim of 85 

minimizing the total flying distance. They divided the area into discrete squares, whose 86 

side length is small enough to ensure a UAV can monitor a whole square when it flies 87 



 

 5 

along its center line. A modified ant colony optimization algorithm is developed to 88 

design the UAV route that passes all the discrete squares. Wang et al. (2018) examined 89 

the routing of UAVs to monitor disjoint areas over an extended time horizon, in which 90 

each area is divided into a number of cells and must be revisited within a time period. 91 

The problem is solved by a multiobjective evolutionary algorithm. 92 

UAV monitoring planning is also related to the locations of airbases. Vural et al. 93 

(2019) considered the problem of determining the locations of airbases of UAVs that 94 

are used for surveillance. The functioning of the airbases depends on the weather 95 

conditions, which are random by nature. They developed a two-stage stochastic integer 96 

linear program to determine the locations of airbases considering uncertainty. 97 

Given that UAVs have very limited flying time and distance, vehicles are used to 98 

transport and launch UAVs, improving the overall efficiency. Carlsson and Song (2018) 99 

examined the coordination between a truck and a UAV. Hu et al. (2019) proposed a 100 

vehicle-assisted multiple-drone routing problem and designed a heuristic solution 101 

approach. 102 

In the above studies, the flying speed of the UAVs is assumed known and constant. 103 

We complement these studies by focusing on optimizing the speed of a UAV. 104 

 105 

1.2 Objectives and contributions 106 

The objective of this research is to propose a model for planning the speed of a 107 

UAV to ensure effective monitoring. We consider a UAV that flies along a fixed path 108 
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and optimize the flying speed of the UAV. The flying speed of the UAV is optimized 109 

to ensure that the UAV spends the most time monitoring important segments on the 110 

path, subject to constraints that the UAV completes the path without depleting its 111 

battery. The contribution of the paper is that we propose an infinite-dimensional 112 

optimization model for the problem and transform the model into an elegant linear 113 

programming formulation based on characteristics of the problem. The effectiveness of 114 

the model is evaluated by numerical experiments. 115 

The remainder of the paper is organized as follows: Section 2 describes the 116 

problem and formulates an infinite-dimensional optimization model. Section 3 117 

proposes a tailored solution method. Section 4 reports the results of a case study. 118 

Conclusions are presented in Section 5. 119 

 120 

2 PROBLEM DESCRIPTION AND OPTIMIZATION MODEL 121 

A UAV flies along a fixed path to monitor an area of interest. We use Figure 1 to 122 

illustrate an area of a construction site and use Figure 2 to illustrate the fixed path. The 123 

length of the path is  𝐿𝐿 (m), where the starting and ending points are both the depot of 124 

the UAV. 125 

 126 

 27 
 28 
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 29 
Fig. 1 Layout of a construction site 30 

 31 

 32 
Fig. 2 Flying path of the UAV 33 

 134 

 135 

The UAV must complete the monitoring tasks along the path in time 𝑇𝑇 (s). The 136 

minimum flying speed of the UAV is 𝑉𝑉min (m/s) and the maximum flying speed is  137 
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𝑉𝑉max (m/s). The battery of the UAV has an energy capacity of 𝑄𝑄 (kWh) and the energy 138 

consumption per meter (kWh/m) when the UAV flies at the speed 𝑣𝑣 (m/s) is denoted 139 

by 𝐹𝐹(𝑣𝑣), 𝑉𝑉min ≤ 𝑣𝑣 ≤ 𝑉𝑉max. Table 1 shows the flying duration and flying distance of a 140 

type of UAV named “DJI P4 PRO” at different speeds. It can be seen that 𝐹𝐹(𝑣𝑣) is 141 

smaller when 𝑣𝑣 is larger. 142 

 143 

Table 1 Information on the UAV DJI P4 PRO (Steiner, 2017) 144 
Flying speed (km/h) Flying duration (min) Flying distance (km) 

5 28 2.3 
10 27.5 4.6 
15 27 6.8 
20 25.5 8.5 
25 24 10.0 
30 23 11.5 
35 22 12.8 
40 20 13.3 

 145 

 146 

We denote by 𝑦𝑦 the location on the path that is 𝑦𝑦 (m) away from the origin of the 147 

path. Therefore, the UAV flies from the location 𝑦𝑦 = 0 to the location 𝑦𝑦 = 𝐿𝐿. The UAV 148 

can monitor an area with the radius of 𝑟𝑟 (m). That is, when the UAV is at location 𝑦𝑦, 149 

0 ≤ 𝑦𝑦 ≤ 𝐿𝐿, it can monitor the area from location 𝑦𝑦 − 𝑟𝑟 to location 𝑦𝑦 + 𝑟𝑟. Note that in 150 

reality 𝑟𝑟 ≪ 𝐿𝐿 and hence we do not need to worry about cases when 𝑦𝑦 − 𝑟𝑟 < 0 or 𝑦𝑦 +151 

𝑟𝑟 > 𝐿𝐿. 152 

A location 𝑦𝑦 is monitored when the UAV flies from location 𝑦𝑦 − 𝑟𝑟 to location 𝑦𝑦 +153 

𝑟𝑟. Some locations require long duration of surveillance, for example, locations where 154 

workers are conducting dangerous tasks in a construction site, and some locations 155 
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require minimum surveillance, for example, site offices.  Therefore, we define 𝑔𝑔(𝑦𝑦) as 156 

the minimum percentage of time in the 𝑇𝑇  seconds during which location 𝑦𝑦  must be 157 

monitored, 0 ≤ 𝑦𝑦 ≤ 𝐿𝐿 . 𝑔𝑔(𝑦𝑦)  is specified by site managers and the value of 𝑔𝑔(𝑦𝑦)  at 158 

location 𝑦𝑦 is determined by the flying speed of the UAV from 𝑦𝑦 − 𝑟𝑟 to 𝑦𝑦 + 𝑟𝑟. 159 

Denote by function 𝑣𝑣(𝑦𝑦)  (m/s) the speed function of the UAV that is to be 160 

determined. Represent by ℎ(𝑦𝑦) the percentage of time location 𝑦𝑦 is monitored; ℎ(𝑦𝑦) =161 

1
𝑇𝑇 ∫

1
𝑣𝑣(𝑥𝑥)

𝑑𝑑𝑑𝑑𝑦𝑦+𝑟𝑟
𝑦𝑦−𝑟𝑟  , 0 ≤ 𝑦𝑦 ≤ 𝐿𝐿 . It is required that ℎ(𝑦𝑦) ≥ 𝑔𝑔(𝑦𝑦) . We maximize 162 

∫ 𝑔𝑔(𝑑𝑑)(ℎ(𝑑𝑑) − 𝑔𝑔(𝑑𝑑))𝑑𝑑𝑑𝑑𝐿𝐿
0 . In plain words, we maximize the extra surveillance effect 163 

beyond the minimum requirement, that is, ℎ(𝑑𝑑) − 𝑔𝑔(𝑑𝑑), weighted by the importance of 164 

the locations, that is, 𝑔𝑔(𝑑𝑑),  0 ≤ 𝑑𝑑 ≤ 𝐿𝐿.  165 

The UAV monitoring planning problem with decision functions 𝑣𝑣(𝑦𝑦) and ℎ(𝑦𝑦) 166 

can be formulated as follows: 167 

[P1] max ∫ 𝑔𝑔(𝑑𝑑)(ℎ(𝑑𝑑) − 𝑔𝑔(𝑑𝑑))𝑑𝑑𝑑𝑑𝐿𝐿
0                     (1) 168 

subject to 169 

ℎ(𝑦𝑦) = 1
𝑇𝑇 ∫

1
𝑣𝑣(𝑥𝑥)

𝑑𝑑𝑑𝑑𝑦𝑦+𝑟𝑟
𝑦𝑦−𝑟𝑟 , 0 ≤ 𝑦𝑦 ≤ 𝐿𝐿                      (2) 170 

ℎ(𝑦𝑦) ≥ 𝑔𝑔(𝑦𝑦), 0 ≤ 𝑦𝑦 ≤ 𝐿𝐿                      (3) 171 

∫ 1
𝑣𝑣(𝑥𝑥)

𝑑𝑑𝑑𝑑𝐿𝐿
0 ≤ 𝑇𝑇                    (4) 172 

∫ 𝐹𝐹(𝑣𝑣(𝑑𝑑))𝑑𝑑𝑑𝑑𝐿𝐿
0 ≤ 𝑄𝑄                        (5) 173 

𝑉𝑉min ≤ 𝑣𝑣(𝑦𝑦) ≤ 𝑉𝑉max, 0 ≤ 𝑦𝑦 ≤ 𝐿𝐿.                        (6) 174 

The objective function (1) maximizes the extra monitoring effect beyond the 175 

minimum requirement weighted by the importance of the locations. Constraint (2) 176 
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calculates the percentage of time each location is monitored. Constraint (3) enforces the 177 

minimum percentage of monitoring time for each location. Constraint (4) requires the 178 

UAV to complete the path in time 𝑇𝑇 . Constraint (5) mandates that the energy 179 

consumption for the UAV to complete the path is at most 𝑄𝑄. Constraint (6) specifies 180 

the lower and upper bounds of the flying speeds on the path.  181 

 182 

3 SOLUTION METHOD 183 

Model [P1] is challenging to solve because its decisions are not scalars or vectors but 184 

functions. In other words, model [P1] is an infinite-dimensional optimization problem. 185 

Moreover, there are integration operations in the objective function (1) and constraints 186 

(2), (4), and (5), which all add to the complexity of the problem. To address the 187 

challenges, we examine the properties of the problem and develop a tailored solution 188 

method based on these properties. 189 

 190 

3.1 Reformulation  191 

First, the speed decision 𝑣𝑣(𝑦𝑦) appears in the denominator in constraints (2) and (4), 192 

posing difficulty for the problem. We therefore define 𝑡𝑡(𝑦𝑦) ≔ 1
𝑣𝑣(𝑦𝑦)

 as the new decision 193 

function in place of 𝑣𝑣(𝑦𝑦), meaning the flying time (s) per meter at location 𝑦𝑦, 0 ≤ 𝑦𝑦 ≤194 

𝐿𝐿 . We further define 𝑓𝑓(𝑡𝑡(𝑦𝑦)) ≔ 𝐹𝐹(1/𝑡𝑡(𝑦𝑦))  as the energy consumption per meter 195 
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(kWh/m) of the UAV when flying at the speed 1/𝑡𝑡(𝑦𝑦). Then, constraints (2), (4), (5), 196 

and (6) are replaced by the following ones, respectively: 197 

ℎ(𝑦𝑦) = 1
𝑇𝑇 ∫ 𝑡𝑡(𝑑𝑑)𝑑𝑑𝑑𝑑𝑦𝑦+𝑟𝑟

𝑦𝑦−𝑟𝑟 , 0 ≤ 𝑦𝑦 ≤ 𝐿𝐿                    (7) 198 

∫ 𝑡𝑡(𝑑𝑑)𝑑𝑑𝑑𝑑𝐿𝐿
0 ≤ 𝑇𝑇                          (8) 199 

∫ 𝑓𝑓(𝑡𝑡(𝑑𝑑))𝑑𝑑𝑑𝑑𝐿𝐿
0 ≤ 𝑄𝑄                            (9) 200 

1
𝑉𝑉max ≤ 𝑡𝑡(𝑦𝑦) ≤ 1

𝑉𝑉min , 0 ≤ 𝑦𝑦 ≤ 𝐿𝐿.                       (10) 201 

Second, since 𝑟𝑟 ≪ 𝐿𝐿 and a UAV cannot suddenly dramatically change its speed, 202 

𝑡𝑡(𝑑𝑑) will not change much over 𝑦𝑦 − 𝑟𝑟 ≤ 𝑑𝑑 ≤ 𝑦𝑦 + 𝑟𝑟. Therefore, constraint (7) can be 203 

approximated by 204 

ℎ(𝑦𝑦) ≈ 1
𝑇𝑇 ∫ 𝑡𝑡(𝑦𝑦)𝑑𝑑𝑑𝑑𝑦𝑦+𝑟𝑟

𝑦𝑦−𝑟𝑟 = 2𝑟𝑟
𝑇𝑇
𝑡𝑡(𝑦𝑦), 0 ≤ 𝑦𝑦 ≤ 𝐿𝐿.          (11) 205 

Embedding Eq. (11) into constraint (3), we have 206 

𝑡𝑡(𝑦𝑦) ≥ 𝑇𝑇
2𝑟𝑟
𝑔𝑔(𝑦𝑦), 0 ≤ 𝑦𝑦 ≤ 𝐿𝐿.                       (12) 207 

Combining constraints (10) and (12), we have 208 

max{ 1
𝑉𝑉max , 𝑇𝑇

2𝑟𝑟
𝑔𝑔(𝑦𝑦)} ≤ 𝑡𝑡(𝑦𝑦) ≤ 1

𝑉𝑉min , 0 ≤ 𝑦𝑦 ≤ 𝐿𝐿.          (13) 209 

We embed Eq. (11) into the objective function (1) and obtain a new objective function 210 

with decision function 𝑡𝑡(𝑦𝑦): 211 

[P2] max ∫ 𝑔𝑔(𝑑𝑑)[2𝑟𝑟
𝑇𝑇
𝑡𝑡(𝑑𝑑) − 𝑔𝑔(𝑑𝑑)]𝑑𝑑𝑑𝑑𝐿𝐿

0                    (14) 212 

subject to constraints (8), (9), and (13). 213 

Model [P2] looks nicer than model [P1] (He, 2016; Tan et al., 2019); however, [P2] 214 

is still an infinite-dimensional optimization problem. 215 
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3.2 Discretization 216 

In reality, the function 𝑔𝑔(𝑦𝑦) should be a piecewise constant function. For instance, 217 

when the UAV flies from the origin to Building II in Figure 2, the function 𝑔𝑔(𝑦𝑦) should 218 

be the same constant value; when the UAV flies within the area of Building II, the 219 

function 𝑔𝑔(𝑦𝑦) should be another constant value (we can, of course, divide Building II 220 

into different parts and allow 𝑔𝑔(𝑦𝑦)  to have different values for different parts of 221 

Building II). Therefore, we rewrite 𝑔𝑔(𝑦𝑦) as the following form: 222 

𝑔𝑔(𝑦𝑦) = 𝑔𝑔𝑘𝑘, 𝑙𝑙𝑘𝑘−1 ≤ 𝑦𝑦 ≤ 𝑙𝑙𝑘𝑘,𝑘𝑘 = 1, … ,𝐾𝐾                  (15) 223 

where 𝐾𝐾 is the number of segments that the path is divided into, 𝑙𝑙𝑘𝑘 is a given parameter, 224 

𝑘𝑘 = 0,1, … ,𝐾𝐾, 𝑙𝑙0 = 0 and 𝑙𝑙𝐾𝐾 = 𝐿𝐿. For example, the path in Figure 2 is divided into 𝐾𝐾 =225 

11 segments in Figure 3. 226 

 27 
 28 

 29 
Fig. 3 Divide the path into 11 segments 30 



Once the path is divided into 𝐾𝐾 segments, a natural question is: is the optimal speed 231 

(equivalently, the optimal 𝑡𝑡(𝑦𝑦)) on each segment a constant value or not? To answer 232 

this question, we examine the flying data DJI P4 PRO shown in Table 1. Because we 233 

are concerned with the relation between  𝑡𝑡(𝑦𝑦) (the time required to fly for 1 m) and 234 

𝑓𝑓(𝑡𝑡(𝑦𝑦)) (the amount of energy used to fly for 1 m at the speed 1/𝑡𝑡(𝑦𝑦)), we plot the 235 

relation in Figure 4 based on the data in Table 1. Note that in Figure 4, the vertical axis 236 

is the 𝑓𝑓(𝑡𝑡(𝑦𝑦))/𝑄𝑄, that is, the proportion of the total energy capacity of the battery used 237 

to fly for 1 m at the speed 1/𝑡𝑡(𝑦𝑦). In Figure 4, when  𝑡𝑡(𝑦𝑦) = 0.12, that is, the speed is 238 

8.33 m/s, or equivalently, 30 km/h, 𝑓𝑓(𝑡𝑡(𝑦𝑦))/𝑄𝑄 = 0.00073. Figure 4 evidently shows 239 

that 240 

Property 1:  𝑓𝑓(𝑡𝑡(𝑦𝑦)) is a convex function of 𝑡𝑡(𝑦𝑦). 241 

Based on Property 1, we immediately have 242 

Theorem 1:  The optimal 𝑡𝑡(𝑦𝑦), denoted by 𝑡𝑡∗(𝑦𝑦), is a piecewise constant function and 243 

can be represented by 244 

𝑡𝑡∗(𝑦𝑦) = 𝑡𝑡𝑘𝑘∗ , 𝑙𝑙𝑘𝑘−1 ≤ 𝑦𝑦 ≤ 𝑙𝑙𝑘𝑘,𝑘𝑘 = 1, … ,𝐾𝐾.                  (16) 245 

 246 

Fig. 4 Relation between  𝑡𝑡(𝑦𝑦) and 𝑓𝑓(𝑡𝑡(𝑦𝑦)) 247 

 248 
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Based on Theorem 1, model [P2] is equivalent to the following discretized model 249 

with decision variables 𝑡𝑡𝑘𝑘,𝑘𝑘 = 1, … ,𝐾𝐾: 250 

[P3] max ∑ 𝑔𝑔𝑘𝑘(𝑙𝑙𝑘𝑘 − 𝑙𝑙𝑘𝑘−1)(2𝑟𝑟
𝑇𝑇
𝑡𝑡𝑘𝑘 − 𝑔𝑔𝑘𝑘)𝐾𝐾

𝑘𝑘=1                 (17) 251 

subject to 252 

∑ (𝑙𝑙𝑘𝑘 − 𝑙𝑙𝑘𝑘−1)𝑡𝑡𝑘𝑘𝐾𝐾
𝑘𝑘=1 ≤ 𝑇𝑇                        (18) 253 

∑ (𝑙𝑙𝑘𝑘 − 𝑙𝑙𝑘𝑘−1)𝑓𝑓(𝑡𝑡𝑘𝑘)𝐾𝐾
𝑘𝑘=1 ≤ 𝑄𝑄                     (19) 254 

max{ 1
𝑉𝑉max , 𝑇𝑇

2𝑟𝑟
𝑔𝑔𝑘𝑘} ≤ 𝑡𝑡𝑘𝑘 ≤

1
𝑉𝑉min ,𝑘𝑘 = 1, … ,𝐾𝐾.              (20) 255 

Model [P3] is no longer an infinite-dimensional optimization problem. It has only 𝐾𝐾 256 

decision variables. A challenge of solving model [P3] is that constraint (19) is nonlinear 257 

as the function 𝑓𝑓(𝑡𝑡(𝑦𝑦)) is generally nonlinear. 258 

 259 

3.3 Linearization  260 

As mentioned in Property 1, 𝑓𝑓(𝑡𝑡(𝑦𝑦)) is a convex function of 𝑡𝑡(𝑦𝑦). The functional 261 

form for 𝑓𝑓(𝑡𝑡(𝑦𝑦)) cannot be derived analytically but has to be estimated numerically. 262 

We use a piecewise linear function to estimate 𝑓𝑓(𝑡𝑡(𝑦𝑦)) by connecting all the available 263 

data, as shown in Figure 4. Mathematically, denote by (𝑡𝑡𝜃𝜃 ,𝑓𝑓𝜃𝜃) the set of data available, 264 

𝜃𝜃 = 1, … ,Θ. We then estimate 𝑓𝑓(𝑡𝑡(𝑦𝑦)) as 265 

𝑓𝑓(𝑡𝑡(𝑦𝑦)) = max
𝜃𝜃=1,…,Θ−1

[𝑓𝑓
𝜃𝜃+1−𝑓𝑓𝜃𝜃

𝑡𝑡𝜃𝜃+1−𝑡𝑡𝜃𝜃
(𝑡𝑡(𝑦𝑦) − 𝑡𝑡𝜃𝜃) + 𝑓𝑓𝜃𝜃].          (21) 266 
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Since 𝑓𝑓(𝑡𝑡(𝑦𝑦)) is estimated as a piecewise linear convex function, we can linearize 267 

constraint (19) by introducing decision variables 𝑢𝑢𝑘𝑘 , 𝑘𝑘 = 1, … ,𝐾𝐾 , and replace the 268 

nonlinear constraint (19) by the following three groups of linear constraints: 269 

∑ (𝑙𝑙𝑘𝑘 − 𝑙𝑙𝑘𝑘−1)𝑢𝑢𝑘𝑘𝐾𝐾
𝑘𝑘=1 ≤ 𝑄𝑄               (22) 270 

𝑢𝑢𝑘𝑘 ≥
𝑓𝑓𝜃𝜃+1−𝑓𝑓𝜃𝜃

𝑡𝑡𝜃𝜃+1−𝑡𝑡𝜃𝜃
(𝑡𝑡𝑘𝑘 − 𝑡𝑡𝜃𝜃) + 𝑓𝑓𝜃𝜃,𝜃𝜃 = 1, … ,Θ − 1,𝑘𝑘 = 1, … ,𝐾𝐾          (23) 271 

𝑢𝑢𝑘𝑘 ≥ 0,𝑘𝑘 = 1, … ,𝐾𝐾.                  (24) 272 

where 𝑢𝑢𝑘𝑘  is the energy consumption per meter (kWh/m) when the UAV flies on 273 

segment 𝑘𝑘 = 1, … ,𝐾𝐾. 274 

We thus have a linear programming model [P4] with objective function (17) and 275 

constraints (18), (20), (22), (23), and (24). Model [P4] can be solved by off-the-shelf 276 

solvers (Yan et al., 2011; He et al., 2020).  277 

 278 

4 COMPUTATIONAL EXPERIMENTS 279 

We carry out a case study to demonstrate the applicability of the proposed model 280 

and algorithm. The layout of the construction site is shown in Figure 1, the path of the 281 

UAV is shown in Figure 2, and the path is divided into 11 segments, as shown in Figure 282 

3. The lengths of the 11 segments are shown in Table 2. Segments 2, 4, 6, 8, and 10 283 

correspond to Building II, rebar bending yard, material storage area, carpentry 284 

workshop, and Building I, respectively. Therefore, these five segments require 285 
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surveillance by UAV and their minimum percentage of time to be monitored 𝑔𝑔𝑘𝑘 is also 286 

shown in Table 2. 287 

 288 

Table 2 Information of the 11 segments on the path 289 
Segment Length 𝑔𝑔𝑘𝑘 Note 

1 100  0.00  
2    520     0.01 Building II 
3     30        0.00  
4     20     0.05 Rebar bending 
5     10        0.00  
6     10     0.01 Storage 
7 40        0.00  
8     20     0.04 Carpentry 
9     20        0.00  

10    325     0.01 Building I 
11    140        0.00  

 290 

The UAV is a DJI P4 PRO whose flying parameters are shown in Table 1 and 291 

Figure 4. The other parameters of the UAV are 𝑟𝑟 = 10, 𝑉𝑉min = 1, and 𝑉𝑉max = 40. The 292 

UAV needs to complete the path in 𝑇𝑇 = 180 seconds. The linear programming model 293 

[P4] is solved using CPLEX 12.6.3 on a PC equipped with 3.60GHz of Intel Core i7 294 

CPU and 16GB of RAM. 295 

The case is solved to optimality in 0.01s. The optimal objective value is 0.6475. In 296 

the optimal solution, the total flying time (i.e., the left-hand side of constraint (18)) is 297 

exactly 180s. 298 

The optimal solutions of 𝑡𝑡𝑘𝑘 and 𝑢𝑢𝑘𝑘 are shown in Table 3. We can see from Table 299 

3 that the solution has a clear structure. Since segment 4 has the largest value of 𝑔𝑔𝑘𝑘 (i.e., 300 

segment 4 is the most important), the flying speed on it is the lowest (1 km/h). Then, 301 
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segment 8 is the second most important and the UAV also flies at a low speed on it. 302 

The UAV flies at the highest speed on the other segments. 303 

 304 

Table 3 Optimal solution 305 
Segment Optimal 𝑡𝑡𝑘𝑘 (s) Optimal flying speed (km/h)  Optimal 𝑢𝑢𝑘𝑘 

1 0.09 40 0.0001 
2 0.09 40 0.0001 
3 0.09 40 0.0001 
4 3.26 1 0.0019 
5 0.09 40 0.0001 
6 0.09 40 0.0001 
7 0.09 40 0.0001 
8 0.36 10 0.0002 
9 0.09 40 0.0001 

10 0.09 40 0.0001 
11 0.09 40 0.0001 

  306 

 307 

We further plot the flying-time–flying-distance curve in Figure 5. It can be seen 308 

that the UAV spends long time on segment 4. The slopes of the curve, which correspond 309 

to the flying speeds, are equal except those on segment 4 and segment 8. 310 

 311 

 312 
Fig. 5 Relation between cumulative flying time and cumulative flying distance 313 

 314 
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The flying-time–energy-consumption curve is plotted in Figure 6. It can be seen 315 

that the slopes of the curve, which correspond to the power consumption rates (i.e., 316 

energy consumption per unit time), are equal except those on segment 4 and segment 317 

8. Note that although the power consumptions per meter on segment 4 and segment 8 318 

are higher than those on the other segments because of the lower speeds on segment 4 319 

and segment 8, the power consumptions per second on segment 4 and segment 8 are 320 

lower than those on the other segments, as shown in Figure 6. 321 

 322 

 323 
Fig. 6 Relation between cumulative flying time and cumulative energy 324 

consumption 325 
 326 

 327 

5 CONCLUSIONS  328 

This study has proposed a UAV monitoring planning problem in which a UAV 329 

flies on a fixed path. The flying speed of the UAV is optimized to ensure that the UAV 330 

spends the most time monitoring important segments of the path while ensuring that 331 

the UAV completes the path within a certain time and without depleting its battery. We 332 

propose an infinite-dimensional optimization model for the problem and transform the 333 
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model into an elegant linear programming formulation based on characteristics of the 334 

problem. A case study is carried out to demonstrate the applicability of the proposed 335 

UAV scheduling model. In general, the UAV flies at low speeds on important segments 336 

of the path and at its highest speeds on less-important segments.  337 

 338 
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