This is the Pre-Published Version.

Electronic version of an article published as Asia-Pacific Journal of Operational Research, v. 38, no. 03, 2140013, https://doi.org/10.1142/ S0217595920400138, ©World Scientific Publishing Co. & Operational Research Society of Singapore. The journal url is https:// www.worldscientific.com/worldscinet/apjor

1	Development of two highly-efficient and innovative inspection
2	schemes for PSC inspection
3 4 5	Ran Yan, Dan Zhuge [*] , Hans Wang Department of Logistics and Maritime Studies, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
6	Abstract
7	Port state control (PSC) inspection contributes a lot to improving maritime safety
8	and protecting marine environment. After selecting the ships coming to a port for
9	inspection, one critical challenge faced by the PSC authorities is deciding what
10	deficiency items should be inspected. To address this problem, two innovative and high-
11	efficient PSC inspection schemes describing specific PSC inspection sequences are
12	proposed for the inspectors' reference when time and resources are limited, especially
13	when there are difficulties in estimating the possible deficiencies in advance. Both
14	schemes take the occurrence probability, inspection cost, and ignoring loss of each
15	deficiency item into account. More specifically, the first inspection scheme is based on
16	the occurrence probabilities of the deficiency items in the whole data set, while the
17	second scheme further considers the correlations among the deficiency items extracted
18	by association rules. The results of numerical experiments show that the efficiency of
19	the two proposed inspection schemes is 1.5 times higher than that of the currently used
20	inspection scheme. In addition, the second inspection scheme performs better than the
21	first inspection scheme, especially when inspecting ships with no less than 5 deficiency

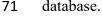
^{*} Corresponding author. Email: dan.zhuge@connect.polyu.hk

22 items and limited inspection resources.

23

24 Keywords: port state control (PSC) inspection, deficiency item, inspection scheme,

25 association rule


26

²⁷ 1. Introduction

28 Marine casualties and incidents can bring about considerable losses to the shipping industry and society (Liu et al., 2016). It is reported by European Maritime Safety 29 30 Agency (EMSA) that from 2011 to 2017, there were a total of 20,616 maritime 31 casualties and incidents with 23,264 ships involved. Due to the accidents, 6,812 people 32 were injured and 683 died (EMSA, 2018). As the consequences of maritime accidents 33 are unbearable to ships, human beings, and cargos, marine safety is gaining increasing 34 attention in recent years. Meanwhile, reducing environment pollutions related to international shipping is receiving wide notice in recent decades (IMO, 2011). Various 35 36 international conventions and documents aiming to improve marine safety and protect 37 marine environment are introduced by the International Maritime Organization (IMO), such as the International Convention for the Safety of Life at Sea (SOLAS), 38 the International Convention for the Prevention of Pollution from Ships (MARPOL), 39 40 the International Convention on Standards of Training, Certification and Watchkeeping 41 for Seafarers (STCW), and the Maritime Labour Convention (MLC).

43	Memorandum of Understanding (MoU) on port state control (PSC), which was first
44	signed by 14 European countries in 1982, is an international inspection regime aiming
45	to guarantee the foreign ships coming to the port state to comply with the various
46	international conventions. The main procedure of a typical PSC inspection is as follows.
47	When a ship comes to a port, the port state authority needs to decide whether or not to
48	inspect the ship based on some criteria. For example, Tokyo and Paris MoUs adopt the
49	New Inspection Regime (NIR) to select the inspected ships while other MoUs may
50	adopt different criteria. If the ship is decided to be inspected, one or more PSC officers
51	(PSCOs) will get on board and conduct an initial inspection, which mainly aims to
52	check the certificates and documents of the ship and crew as required by the relevant
53	conventions. Usually, if the required certificates are valid and the PSCOs are satisfied
54	with the general impression and overall observations of the ship, its equipment, and its
55	crew, the inspection could be terminated. However, if there are clear grounds for
56	believing that the condition of the ship or its equipment does not correspond
57	substantially with the related conventions, or that the master and crew are not familiar
58	with essential shipboard procedures, a more detailed inspection will be carried out
59	(IMO, 2017; Tokyo MoU, 2017). During an inspection, the conditions that are not in
60	compliance with the requirements of the relevant conventions are recorded as ship
61	deficiencies. According to the documents of Tokyo MoU, there are 18 types of

62	deficiency items related to the international maritime conventions, including but not
63	limited to SOLAS, MARPOL, the International Convention on Tonnage Measurement
64	of Ships, and the International Convention on Civil Liability for Oil Pollution Damage
65	(CLC), as listed in Table 1(IMO, 2019; Tokyo MoU, 2018b). If serious deficiencies are
66	found, the ship is likely to be detained until it can proceed to sea without presenting a
67	danger to the ship or persons on board. After each inspection, an inspection report
68	containing information on the inspected ship (e.g., ship IMO number, ship flag, ship
69	operating company, ship type, ship recognized organization, etc.) and its inspection
70	results (ship deficiencies and detention) will be generated and kept in the relevant PSC
71	database

72 Table 1: List of deficiency codes and items 【加上参考文献,例如东京 MoU】

Code	Deficiency item	Code	Deficiency item	Code	Deficiency item
D1	Certificates and documentation	D7	Fire safety	D13	Propulsion and auxiliary machinery
D2	Structural condition	D8	Alarms	D14	Pollution prevention
D3	Water/Weathertight condition	D9	Working and living conditions	D15	ISM
D4	Emergency system	D10	Safety of navigation	D16	ISPS
D5	Radio communication	D11	Life saving appliances	D18	MLC
D6	Cargo operations including equipment	D12	Dangerous goods	D99	Other

To guarantee inspection efficiency, it is clearly stated that the main purpose of PSC is to prevent a ship proceeding to the sea if it is unsafe to the marine environment and to avoid unnecessary ship detention or delay (IMO, 2017). Thus, not every deficiency item of all the coming ships will be inspected. Instead, only some deficiency items of

78	the high-risk ships will be inspected due to limited time and human resources. However,
79	in practice, since there are rare instructions on the inspection sequence for the PSCOs,
80	the inspected areas of a ship and to what extent they will be inspected are highly
81	dependent on PSCOs' expert judgments. Nevertheless, personal judgments might be
82	biased and inaccurate. First, if the possible deficiencies can be estimated in advance by
83	the PSCOs, since some of them may lack experience, it is likely that the limited
84	resources are allocated to inspect those less important or less frequently occurring
85	deficiencies so that the relative serious deficiencies are ignored. As a result, inequality
86	and inefficiency may be caused and the detected deficiencies of a single ship can be
87	quite different when inspected by different PSCOs. Second, some ship deficiency items
88	might be too veiled to be easily judged in advance even if the PSCOs are professional
89	enough and familiar with the ship conditions. Therefore, if the inspection decisions are
90	purely dependent on expert estimation, fatal deficiencies may be missed.
91	One possible way to improve the effectiveness of the inspection sequence is to
92	develop inspection schemes that could identify as many deficiency items as possible
93	after inspecting a certain number of deficiencies. In this study, we develop two
94	instructive inspection schemes based on historical PSC inspection data and association

ship safety. First, we develop a new inspection scheme which takes the value of each

rule learning method to draw a balance between the limited inspection resources and

97 deficiency item into account. The value of a deficiency item comprises the possibility of occurrence of the deficiency item, the cost of inspecting the deficiency item, and the 98 99 loss of ignoring the deficiency item. To better illustrate the relationship between the deficiency items, we then develop another inspection scheme by considering the 100 101 correlations among the deficiency items, which means that the probability of the occurrence of a deficiency when its related deficiencies are detected is higher than that 102 when no related deficiencies are detected. The relevance between the deficiencies is 103 104 identified by the association rules that are derived from the frequent itemset using 105 Apriori algorithm (Agrawal and Srikant, 1994). Thus, the inspection decisions are dynamic since the possibility of detecting a certain deficiency item depends on the 106 107 previously detected deficiencies. By selecting the deficiency item with the highest value 108 in the remaining deficiencies, the PSCOs can make the subsequent inspection decisions more accurately and efficiently. The results of the numerical experiments show that 109 both of the newly proposed inspection schemes can identify the deficiency items 1.5 110 times more efficiently than the currently used inspection scheme. Moreover, the second 111 112 inspection scheme, which takes the relevance among the deficiency items into 113 consideration, is better than the first inspection scheme when inspecting ships containing no less than 5 deficiency items while the inspection time and resources only 114 allow 5 or 6 deficiency items to be inspected. 115

2. Literature review

2.1 Studies of PSC inspection

118	Research on maritime transportation attracts wide attention in recent years (Sun et
119	al., 2015; Hu and Liu, 2016; Hu et al., 2017). Especially, there has been an increasing
120	amount of literature on PSC inspection, some of which pays particular attention to
121	developing ship selection criteria for PSC authorities and identifying the effects of PSC
122	inspection. Before conducting a PSC inspection, the decision of what ships should be
123	selected for inspection among all the coming ships is one of the critical issues faced by
124	the port state, since limited time and resources need to be allocated to inspect the ships
125	with worse conditions. One of the most popular methods used in developing the ship
126	selection scheme is machine learning method. Xu et al. (2007a) proposed a Support
127	Vector Machine (SVM) model to distinguish the ships between high risk and low risk.
128	They then improved the performance of the risk assessment system by combining web
129	mining technologies (Xu et al., 2007b). Later, Gao et al. (2008) proposed an ensemble
130	model of K-nearest neighbor and SVM (KNN-SVM) that can identify the high-risk
131	ships more accurately. Zhou and Sun (2010) proposed a ship target system which could
132	be automatically optimized and was self-evolutional by using Generalized Additive
133	Modelling (GAM) approach. Recently, Yang et al. (2018) developed a Bayesian
134	network-based model to predict the detention probabilities of the coming ships, which

135 could be used to help the port states to allocate inspection resources.

136	As outcomes of PSC inspection, the effects on maritime safety as well as on the
137	inspected ships also attract much attention. Regarding the influence on maritime safety,
138	Li and Zheng (2008) concluded that the PSC program was effective in raising maritime
139	safety level after analyzing marine casualty statistics and PSC inspection database.
140	Knapp et al. (2011) suggested that the monetary savings due to reducing maritime
141	accidents brought by PSC inspections was from 70 to 190 thousand dollars. Based on
142	Bayesian network, Hänninen and Kujala (2014) pointed out that the most influential
143	indicators of ship accident involvement were the knowledge on ship type, PSC
144	inspection type, and the number of structural conditions related deficiencies. Heij and
145	Knapp (2018) also indicated that the PSC inspection outcomes had the predictive power
146	in predicting the vessel accident involvement in the next year. In respect of the effects
147	on the inspected ships, Cariou et al. (2007) pointed out after a PSC inspection, the
148	length of inspection interval of the following two successive PSC inspections was
149	reduced for some types of vessels, and the reported deficiencies during next inspection
150	was reduced by 63% on average.
151	Apart from the aforementioned research areas, previous studies also reported that

both ship factors and non-ship factors could have an impact on PSC inspection results.

153 Ship factors mainly include ship age, ship type, and ship operating company, etc.

154 (Cariou et al., 2007; Cariou et al., 2009; Cariou et al., 2015; Yang et al., 2018; Tsou,

- 155 2018), while non-ship factors comprise the number and backgrounds of the PSCOs, the
- 156 professional profile of the inspectors, and the area where the inspection is conducted
- 157 (Knapp and Franses, 2007; Ravira and Piniella, 2016; Graziano et al., 2018).
- 158 2.2 Applying association rule learning method to transport research

Association rule learning algorithm is a rule-based learning method to discover the 159 inherent and interesting rules between variables in large database. The concept of 160 association rule was proposed by Agrawal et al. (1993). Popular algorithms used to 161 mine association rules include but are not limited to Apriori algorithm, Eclat algorithm, 162 and FP-growth algorithm (Zhang and Zhang, 2002). In the past decade, there has been 163 an increasing number of studies that apply association rule learning method to road 164 165 transport research. Among them, various studies applied association rule mining 166 methods to analyze road transport casualties, such as Weng et al. (2016), Ait-Mlouk et al. (2017), Besharati and Tavakoli Kashani (2018), Yu et al. (2019), Kumar and 167 168 Toshniwal (2016), and Zhang et al. (2018). Association rule mining methods are also employed to extract the transition patters in public transport, such research includes 169 170 Zhao et al. (2018) and Zhao et al. (2019). The concept of association rule is also used in the field of rail transport, and the representative studies are Mirabadi and Sharifian 171 172 (2010), Tang and Qin (2015), and Ghomi et al. (2016).

173	With regard to the field of air transport and maritime transport, there are much
174	fewer studies. In air transport field, Sternberg et al. (2016) applied data indexing
175	techniques together with association rules to identify the hidden patterns of flight delays
176	in Brazil. In maritime transport field, contributory factors to both nonserious and
177	serious shipping accidents were listed respectively by using association rules (Weng
178	and Li, 2019). Correlations among the detention deficiencies and external factors were
179	examined by applying association rule mining algorithms to the ship detention records
180	in Tokyo MoU database (Tsou, 2018).
181	From the above-mentioned literature, it can be seen that on the one hand, despite a
182	large number of studies on PSC inspection, to the best of our knowledge, the inspection
183	sequence of the deficiency items has seldom been studied in the existing literature. On
184	the other hand, although association rule learning method performs well in the field of
185	road transport, there is rare attempt in applying this method to maritime transport
186	research. Thus, in this study, two new PSC deficiency item inspection schemes are
187	developed based on historical inspection records and association rule mining method.
188	The hidden correlations among the deficiency items are extracted by the association
189	rules and the new schemes can give instructions on ship inspection to the PSCOs.
190	

3. Development of Inspection Scheme I for PSC inspection

3.1 Data set, indexes and definitions

In this study, we use the initial inspection records at the Port of Hong Kong from January 1, 2018 to June 30, 2018 with at least one deficiency item detected as the whole data set. Totally, there are M = 297 records and N = 18 types of deficiencies. The types and detected times of the deficiency items are shown in Table 2.

198

Table 2. Types and detected times of ship deficiency items

Deficiency item	Deficiency	Deficiency type	Total detected
in 1	code		times
it ₁	D1	Certificates and documentation	87
it ₂	D2	Structural condition	17
it ₃	D3	Water/Weathertight condition	97
it ₄	D4	Emergency system	42
it ₅	D5	Radio communication	46
it ₆	D6	Cargo operations including equipment	8
it ₇	D7	Fire safety	164
it ₈	D8	Alarms	33
it _o	D9	Working and living conditions	115
<i>it</i> ₁₀	D10	Safety of navigation	133
<i>it</i> ₁₁	D11	Life saving appliances	120
it ₁₂	D12	Dangerous goods	2
it ₁₃	D13	Propulsion and auxiliary machinery	30
<i>it</i> ₁₄	D14	Pollution prevention	89
it ₁₅	D15	ISM	23
it ₁₆	D16	ISPS	0
it ₁₇	D18	MLC	0
it ₁₈	D99	Other	12

199

200 The set of inspection records is denoted by $R = \{R_{1,...}, R_{M}\}$. A certain inspection,

201	which can also be called an experiment, is denoted by $R_m \in R$. The set of deficiency
202	items is denoted by $I = \{it_1,, it_N\}$, which contains the total 18 types of deficiency items
203	as required by Tokyo MoU. Regarding each record, we denote the deficiency set of a
204	record R_m with N_m detected deficiency items as $D_{R_m} = \{D_{R_m,1},, D_{R_m,N_m}\}$. Note that

205 $D_{R_m} \subseteq I$ and $D_{R_m} \neq \emptyset$, as we only take the inspections with deficiencies detected into 206 consideration.

207 To develop Inspection Scheme I, we first introduce the concept of an itemset. An 208 itemset is a specific collection of deficiencies. An itemset containing $i \in [1, N]$ deficiency items is called an *i*-itemset and is denoted by I_i . We then define the event 209 of observing a particular itemset I_i as $E(I_i)$, which means after inspecting a ship, it 210 is found that the ship has all the deficiency items in the itemset I_i . We define $P(E(I_i))$ 211 as the proportion of the *M* records that have all the deficiencies in the itemset I_i , i.e., 212 the probability of the occurrence of $E(I_i)$. Note that a record that has all the deficiency 213 items in the itemset I_i may also include deficiency items not in I_i . 214 We then define the probability of observing the event $E(I_i)$ as the Support of the 215 itemset I_i , i.e., $Sup(I_i) = P(E(I_i))$, and thus $Sup(I_i) \in [0,1]$. It is obvious that the larger 216 the Support value is, the more frequently this itemset occurs in the inspection records. 217 In order to find out the itemsets that frequently appear in the M records, we define 218 the minimum threshold of Support as min Sup. The itemsets with their Support values 219

220 no less than min Sup are called large itemsets, i.e., if and only if $I_i^* \subseteq I$ is a large

221 itemset, $Sup(I_i^*) \ge \min Sup$ (Tan et al., 2015).

222 **3.2** Generation of large itemsets

Given the value of min *Sup*, an algorithm called Apriori is adopted to generate the large itemsets (Agrawal and Srikant, 1994). This algorithm is used to discover useful

225	and hidden relationships	between data.	We assume that	at the items	in each	deficiency set
-----	--------------------------	---------------	----------------	--------------	---------	----------------

- 226 $D_{R_{a}}$ and by all itemsets are ordered in the alphabet. The Apriori algorithm is based on
- the following two properties of large itemsets (Agrawal and Srikant, 1994).
- 228 *Property I.* Any non-empty and strict subset of a large itemset is large.
- 229 *Property II.* Any superset of a non-large itemset cannot be large.
- 230 Now we describe the Apriori algorithm for generating the large itemsets (Agrawal
- and Srikant, 1994; Tan et al., 2015). We denote a large itemset containing k items as
- 232 a large k-itemset. Denote L_k as the set of all large k-itemsets. Denote C_k as the
- 233 set of candidate large k-itemsets. Denote $Num(I_i)$ as the occurrence times of itemset
- 234 I_i in the record set R.

Algorithm 1. Generate large itemsets L_k , K = 1, 2, ..., N.

```
k = 1; //generate all large 1-itemsets
Step 1:
            L_k = \emptyset;
            for all it_n \in I
                Sup(it_n) = 0;
                Num(it_n) = 0;
                   for all R_m \in R
                      if it_n is contained in R_m
                         Num(it_n) = Num(it_n) + 1;
                      end if;
                   end for;
                   Sup(it_n) = \frac{Num(it_n)}{M};
                   If Sup(it_n) \ge \min Sup
                        L_1 = L_1 \cup \{it_n\};
                   end if;
              end for.
Step 2: for (k = 2; L_{k-1} \neq \emptyset] and k \leq N; k++)//generate all large k-itemsets,
```

 C_k = generate_candidate (L_{k-1}) //generate candidate large k - itemsets from the existing large (k-1)-itemsets by using Algorithm 2. $L_k = \emptyset;$ for each $c \subset C_k$ Num(c) = 0;Sup(c) = 0;for all $R_m \in R$ if c is contained in R_m Num(c) = Num(c) + 1;end if; end for; $Sup(c) = \frac{Num(c)}{M};$ if $Sup(c) \ge \min Sup$ $L_k = L_k \cup \{c\}$ end if; end for; end for.

235 Denote a pair of large itemsets in L_{k-1} by $I_{k-1}^{*'} = \{it'_1, it'_2, ..., it'_{k-2}, it'_{k-1}\}$ and

236 $I_{k-1}^{*'} = \{it_1'', it_2'', \dots, it_{k-2}', it_{k-1}''\}$. We use "<" to denote that the left-hand side item precedes the

right-hand side item in the alphabet.

Algorithm 2. generate candidate (L_{k-1}) .

Step 1:	$C_k = \emptyset$; //Based on Property I				
Joining	bining for all pairs of itemsets in L_{k-1} , $k \ge 2$				
Step	if $(k = 2 \text{ or } it'_1 = it''_1, it'_2 = it''_2, \dots, it'_{k-2} = it''_{k-2})$				
	if $it'_{k-1} < it''_{k-1}$				
	$C_{k} = C_{k} \cup \{it'_{1}, it'_{2},, it'_{k-2}, it'_{k-1}, it''_{k-1}\};$				
	else				
	$C_{k} = C_{k} \cup \{it'_{1}, it'_{2},, it'_{k-2}, it''_{k-1}, it'_{k-1}\};$				
	end if;				
	end if;				
	end for.				
Step 2:	for all itemsets $c \subset C_k$ //Based on Property II				
Pruning	for all subsets s containing $(k-1)$ items of c				
Step	if $s \not\subset L_{k-1}$				

delete <i>c</i> from	C_k ;
end if;	
end for;	
end for;	
return C_k .	

239	In Algorithm 1, the first step is to find all large 1-itemsets by scanning the whole
240	record set R. By iteration, the set of all large k -itemsets ($k \ge 2$) L_k is found based
241	on the candidate large k -itemsets C_k generated by the set of large $(k-1)$ -itemsets
242	L_{k-1} . The algorithm terminates until all the large itemsets are found. Algorithm 2
243	describes a way to find the set of candidate large k -itemsets C_k based on L_{k-1} . A
244	candidate large k – itemset is a combination of a pair of large itemsets which have the
245	same first $(k-2)$ items and a different $(k-1)$ th item. After the combinations are
246	formulated in Step 1, the subsets containing $(k-1)$ items of each combination are
247	checked in Step 2. If any subset of a candidate itemset is not a large itemset, then this
248	candidate itemset is deleted from the set of candidate large itemsets. After the Joining
249	Step and Pruning Step, all the candidate large k -itemsets \overline{I}_k can be found.
250	3.3 Description of Inspection Scheme I
251	Inspection Scheme I (short for Scheme I) is based on the large 1-itemsets. We set

 $252 \min Sup = 0.1$. After applying the Apriori algorithm in the input data set, large 1-itemsets

can be generated as shown in Table 3.

Table 3. Large 1-intemsets

Large 1-intemset	Support
{D7 - Fire safety}	0.55
{D10 - Safety of navigation}	0.45
{D11 - Life saving appliances}	0.40
{D9 - Working and living conditions}	0.39
{D3 - Water/Weathertight condition}	0.33
{D14 - Pollution prevention}	0.30
{D1 - Certificates and documentation}	0.29
{D5 - Radio communication}	0.15
{D4 - Emergency system}	0.14
{D8 – Alarms}	0.11
{D13 - Propulsion and auxiliary machinery}	0.10

256 To develop the inspection scheme, we take the probability of a deficiency item occurs, the cost of inspecting the deficiency item and the loss of ignoring the deficiency 257 item into consideration. The possibility of the occurrence of it_i is denoted by P_{i_i} . 258 Denote the inspection cost of deficiency item it_i by C_{it_i} , $C_{it_i} > 0$. If an existing 259 deficiency item is not identified, the loss is huge and denoted by L_{it_i} , $L_{it_i} > C_{it_i}$. Note 260 that ideally, the cost and loss values of a deficiency item are not only at financial level, 261 but also reflect the effects on marine safety and environment, time delay, allocated 262 inspection resources, etc. Denote the value of inspecting deficiency item it_i as V_{it_i} , 263 and we have $V_{i_i} = P_{i_i} \times L_{i_i} - C_{i_i}$. The larger the value of a deficiency item, the more 264 265 worthy of being inspected.

Due to the lack of data and the sake of simplicity, we assume that the value of L_{u_i} and the value of C_{u_i} are identical to each deficiency item, respectively. It should be noted that it is reasonable to assume the ignoring loss and inspection cost are the same for each deficiency item respectively for two reasons. First, 【通常不要提具体人,

270	以免给该人带来不必要的麻烦 (特别是政府官员); 如果需要提具体人, 需要征
271	得他同意】as suggested by a senior PSCO in a port under the Tokyo MoU, all the
272	deficiency items are related to important international maritime regulations and
273	conventions, and thus they can be viewed of the same level of importance and their loss
274	values can be viewed as identical. Second, as suggested by the PSCOs we interviewed,
275	they usually walk around the ship to observe its conditions as well as to inspect the
276	deficiency items, and thus the cost of inspecting a deficiency item can also be roughly
277	treated as the same. As positive V_{i_i} indicates that the deficiency item is worthy of
278	being inspected, we need to compare $P_{i_i} \times L_{i_i} - C_{i_i}$ and 0, i.e., we need to know the
279	value of C_{ii_i} / L_{ii_i} . To determine the inspection sequence of the deficiency items, we also
280	need to compare the values of P_{it_i} of all the deficiency items with positive V_{it_i} . As
281	estimating the value of C_{ii_i} / L_{ii_i} is quite complicated and there are few references, for
282	the sake of simplicity, we set C_{it_i} / L_{it_i} equal to the PSC inspection rate at the Port of
283	Hong Kong during the time period from 2015 to 2017. According to the annual reports
284	of Tokyo MoU in 2015, 2016, and 2017, there were a total of 10,239 ships visiting the
285	Port of Hong Kong and 1,324 of them were inspected during this period (Tokyo MoU,
286	2016; Tokyo MoU, 2017; Tokyo MoU, 2018a). Therefore, we set $C_{it_i} / L_{it_i} = 0.1293$. By
287	converting $V_{it_i} = P_{it_i} \times L_{it_i} - C_{it_i}$ to $\frac{V_{it_i}}{L_{it_i}} = P_{it_i} - \frac{C_{it_i}}{L_{it_i}}$, we can view L_{it_i} as the unit of V_{it_i} , and
288	the value of a deficiency item equals the difference between P_{it_i} and $\frac{C_{it_i}}{L_{it_i}}$. The value

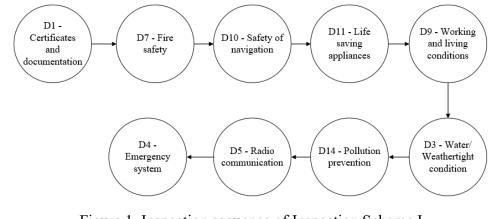


Table 4. Values of all deficiency items in large1-itemsets

	Large 1-intemset	Value (unit: $/L_{it_i}$)
	{D7 - Fire safety}	0.4207
	{D10 - Safety of navigation}	0.3207
	{D11 - Life saving appliances}	0.2707
	{D9 - Working and living conditions}	0.2607
	{D3 - Water/Weathertight condition}	0.2007
	{D14 - Pollution prevention}	0.1707
	{D1 - Certificates and documentation}	0.1607
	{D5 - Radio communication}	0.0207
	{D4 - Emergency system}	0.0107
	$\{D8 - Alarms\}$	-0.0193
292	{D13 - Propulsion and auxiliary machinery}	-0.0293
294 295	the PSCO's reference when conducting PSC inspection. two basic assumptions:	-
296	(a) The cost of inspecting a deficiency is identical no	matter if this deficiency item
297	exists.	
298	(b) If an existing deficiency item exists and it is inspecte	d, it can be detected.
299	Inspection Scheme I	
300	The values of the deficiency items in Inspection Sch	eme I are based on the Support
301	values of the items in large 1-itemsets, and the va	lue of each deficiency item
302	$V_{it_i} = P_{it_i} \times L_{it_i} - C_{it_i}$ is fixed. The general inspection sequen	nce is as follows: staring from

inspecting D1- certificates and documentation as suggested by Tokyo MoU (2018b), all the remaining deficiency items with positive V_{it_i} will be inspected from larger V_{it_i} to smaller V_{it_i} . Totally, 9 deficiencies, namely D1, D7, D10, D11, D9, D3, D14, D5, and

D4, are worthy of being inspected. The inspection sequence is shown in Figure 1.

307

308

Figure 1. Inspection sequence of Inspection Scheme I

309 4. Development of Inspection Scheme II for PSC inspection

310 4.1 Indexes and definitions

311 The data set used to develop Inspection Scheme II (short for scheme II) is the same 312 as that is used for developing scheme I. In scheme II, we further consider the relevance 313 among the deficiency items to better illustrate their relationships, i.e., the deficiency 314 items are dependent and the probability of the occurrence of each deficiency item is 315 influenced by other deficiency items. The dependency is presented by the association 316 rules generated from the large 2-itemsets and large 3-itemsets, which are shown in Table 317 5 and Table 6. Note that no Support of the itemsets containing 4 items is greater than or 318 equal to min Sup, and hence the biggest large itemsets only contain 3 items. One main

- reason for generating the association rules from the large itemsets is that only the rules
- 320 with occurrence beyond the minimum support threshold are statistically significant and

321	worth being considered (Agrawal, 1	1993).
	worth being constacted (rigititian, i	1 2 2 3 1.

{D7, D10, D14}

{D1, D7, D10}

{D7, D11, D14}

0.13

0.12

0.12

322

Table 5.	Large 2-intemsets
----------	-------------------

Large 2-	Support	Large 2-	Support	Large 2-	Support
intemset		intemset		intemset	
{D7, D10}	0.28	{D1, D7}	0.17	{D3, D9}	0.15
{D7, D11}	0.24	{D3, D10}	0.17	{D3, D14}	0.13
{D7, D9}	0.23	{D9, D11}	0.17	{D1, D14}	0.11
{D10, D11}	0.21	{D1, D10}	0.17	{D4, D11}	0.10
{D7, D14}	0.19	{D1, D11}	0.17	{D9, D14}	0.10
{D9, D10}	0.19	{D3, D11}	0.16	{D1, D9}	0.10
{D3, D7}	0.18	{D11, D14}	0.16	{D1, D3}	0.10
{D10, D14}	0.18				
		Table 6. Large	3-intems	ets	
Large 3-intemset	Support	Large 3-intemset	Support	Large 3-intemset	Support
{D7, D10, D11}	0.14	$\{D10, D11, D14\}$	0.12	$\{D1, D7, D11\}$	0.10
$\{D7, D9, D10\}$	0.13	$\{D3, D10, D11\}$	0.11	$\{D1, D10, D14\}$	0.10

{D7, D9, D11}

{D1, D10, D11}

0.11

0.11

{D3, D7, D11}

{D3, D7, D10}

0.10

0.10

325

323 324

A rule is generated by dividing a large *i*- itemset I_i^* ($i \ge 2$) into two mutually 326 exclusive and non-empty deficiency itemsets, I_i and I_k , with $I_j \cup I_k = I_i^*$. Note that 327 both I_j and I_k are large itemsets. To determine whether the rule from I_j to I_k 328 (denoted by $I_j \rightarrow I_k$) is an association rule, we further introduce two indexes: 329 Confidence and Lift (McNicholas et al., 2008). The Confidence of $I_j \rightarrow I_k$ (denoted 330 by $Conf(I_j \to I_k)$) can be interpreted as the conditional probability of the event of $E(I_k)$ 331 under the 332 condition that the event of $E(I_i)$ has occurred, i.e., $Conf(I_j \to I_k) = \frac{P(E(I_k) \cap E(I_j))}{P(E(I_k))} = P(E(I_k) | E(I_j)) \cdot Conf(I_j \to I_k) \in [0,1]$. The larger value the 333

Confidence is, the more likely the deficiency items in I_k will be detected after the 334 deficiency items in I_i are detected. Lift of $I_i \rightarrow I_k$ (denoted by $Lift(I_i \rightarrow I_k)$) is the 335 measure of the influence of the occurrence of event $E(I_i)$ on the occurrence of event 336 $E(I_k) \quad Lift(I_j \to I_k) = \frac{P(E(I_k) \cap E(I_j))}{P(E(I_k)) \times P(E(I_k))} = \frac{P(E(I_k) \mid E(I_j))}{P(E(I_k))} \quad \text{and} \quad Lift(I_j \to I_k) \in [0, +\infty) \quad .$ It 337 represents the ratio of the probability of the occurrence of event $E(I_k)$ under the 338 condition that event $E(I_i)$ occurs and the probability that event $E(I_k)$ occurs 339 340 unconditionally in the record set. If $Lift(I_i \rightarrow I_k) = 1$, i.e., $P(E(I_i), E(I_k)) = P(E(I_i)) \times P(E(I_k))$, $E(I_i)$ and $E(I_k)$ 341 are independent. If $Lift(I_j \to I_k) \in [0,1)$, the occurrence of $E(I_j)$ reduces the probability that $E(I_k)$ occurs. 342 If $Lift(I_i \to I_k) \in (1, +\infty)$, the occurrence of $E(I_i)$ increases the probability of the 343 occurrence of $E(I_k)$. After introducing the indexes, we can now define an association 344 345 rule:

Definition 1: Suppose that there is a large *i* - itemset I_i^* ($i \ge 2$) and its two mutually exclusive and non-empty deficiency itemsets I_j and I_k such that $I_j \cup I_k = I_i^*$. Given the minimum threshold of Confidence, min*Conf*, and the minimum threshold of Lift, min*Lift*, the rule $I_j \rightarrow I_k$ is an association rule if and only if $Conf(I_j \rightarrow I_k) \ge \min Conf$ and $Lift(I_j \rightarrow I_k) \ge \min Lift$.

The implication of this association rule is that during the PSC inspection if the deficiency items in I_j are detected, there is a high probability that this ship also has

deficiency items in I_k . The left-hand side of an association rule is called antecedent 353

354 and the right-hand side is called consequent (Agrawal et al., 1993).

355

4.2 Generation of association rules

356 After all the large k-itemsets are obtained and the values of min Conf and min Lift are given, we can then generate the corresponding association rules. Similar 357 to Property I and II, we can have the following Property III (Agrawal et al., 1993): 358 Property III. Partition a large *i*-itemset I_i^* ($i \ge 2$) into two itemsets I_j and I_k . 359 The rule from I_j to I_k is denoted by $I_j \rightarrow I_k$. $Conf(I_j \rightarrow I_k) < \min Conf$. For any non-360 empty and strict subset of I_j , denoted by \underline{I}_j , and the superset of I_k , denoted by 361 $\overline{I}_k = I_i - \underline{I}_j$, the rule from \underline{I}_j to \overline{I}_k is called a sub-rule of $I_j \to I_k$, and 362 $Conf(\underline{I}_i \rightarrow \overline{I}_k) < min Conf$ (Agrawal and Srikant, 1994). 363

Proof: 364

We first denote the events of observing I_i and I_k as $E(I_i)$ and $E(I_k)$, 365 respectively, and the events of observing \underline{I}_j and \overline{I}_k as $E(\underline{I}_j)$ and $E(\overline{I}_k)$, 366 Confidence of $I_i \rightarrow I_k$ can be presented 367 respectively. The as $Conf(I_j \to I_k) = \frac{P(E(I_j) \cap E(I_k))}{P(E(I_j))} = \frac{P(E(I_i))}{P(E(I_j))}$, and the Confidence of $\underline{I}_j \to \overline{I}_k$ can be 368 presented as $Conf(\underline{I}_{j} \to \overline{I}_{k}) = \frac{P(E(\underline{I}_{j}) \cap E(\overline{I}_{k}))}{P(E(I_{j}))} = \frac{P(E(I_{j}))}{P(E(I_{j}))}$. As $\underline{I}_{j} \subset I_{j}$, we have 369 $P(E(\underline{I}_j)) \ge P(E(I_j))$ and $Conf(\underline{I}_j \to \overline{I}_k) \le Conf(I_j \to I_k) < \min Conf$. Therefore, we can 370 conclude that $Conf(\underline{I}_j \to \overline{I}_k) < \min Conf$. 371

372 It can be seen from the above property that the sub-rules of a rule with its

373	Confidence less than	min Conf	cannot be association rules.	. We can use this property
-----	----------------------	----------	------------------------------	----------------------------

to simplify the process by ignoring the sub-rules of the rules with Confidence less than

```
375 \quad \min Conf.
```

376	We now describe the process of generating association rules of all large $k-$
377	itemsets in L_k (Agrawal and Srikant, 1994). A consequent containing m ($1 \le m < k$)
378	items is denoted by h_m and the set of all h_m is denoted by H_m . we use a recursive
379	algorithm called Association rules generation involving Ap-AssRule, which can first
380	generate the rules with their Confidence larger than or equal to min Conf and then
381	generate the set of association rules by deleting rules with Lift less than min Lift.

Algorithm 3. Association rules generation.				
Step 1:	$Rules = \emptyset;$			
Generating_Rules	for each large k -itemset I_k^* , $k \ge 2$			
	Ap-AssRule (I_k^*); //recursively call the function			
	end for;			
Step 2:	for each <i>rule</i> in <i>Rules</i>			
Pruning_Rules	Calculate Lift(rule);			
(Rules)	if <i>Lift(rule)</i> < min <i>Lift</i>			
	Delete <i>rule</i> from <i>Rules</i> ; //Filter rules by Lift			
	end if;			
	end for;			
	Return Rules.			

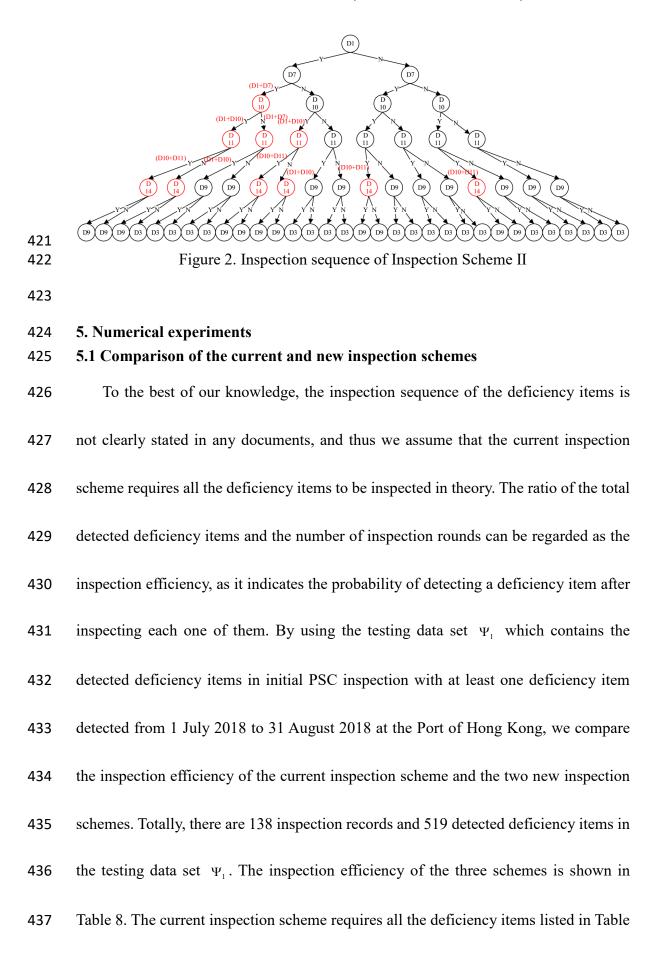
Algorithm 4. Ap-AssRule (I_k^*) .

m=1;

 $H_{m} = \{h_{m} \mid h_{m} \subset I_{k}^{*}\}; //\text{generate all consequents containing one item}$ while ($k \ge m+1$) for each $h_{m} \subset H_{m}$ //Divide I_{k}^{*} into two parts with h_{m} as the consequent

 $rule = I_k^* - h_m \to h_m;$ Calculate Conf(rule); if $(Conf(rule) \ge \min Conf)$ *Rules* Urule ; //Filter rules by Confidence else Delete h_m from H_m ; //Based on Property III end if; end for: m = m + 1; $H_m = generate_candidate(H_{m-1}); //generate H_m$ from H_{m-1} by calling Algorithm 2. end while; //loop until k < m+1382 383 4.3 Description of Inspection Scheme II 384 Inspection Scheme II is based on the association rules of the deficiency items. We 385 set $\min Conf = 0.6$ and $\min Lift = 1.2$ as the thresholds and the generated association 386 rules are presented in Table 7. Except for Rule NO. 4, which is generated by a large 2-387 itemset, all the other association rules are generated by the large 3-itemsets. As the 388 Confidence value is used to determine the strongness of an association rule, and the Lift 389 value is used to verify if it is meaningful, the association rules with higher Confidence 390 values are of higher priority to be adopted. Table 7. Association rules of the deficiency items 391

Rule NO.	Left-hand side	Right-hand side	Confidence	Lift	Rule NO.	Left-hand side	Right-hand side	Confidence	Lift
1	D1, D14	D10	0.91	2.03	12	D7, D14	D10	0.66	1.49
2	D11, D14	D10	0.77	1.72	13	D7, D14	D11	0.65	1.61
3	D11, D14	D7	0.77	1.40	14	D1, D10	D11	0.64	1.58
4	D4	D11	0.74	1.83	15	D1, D11	D10	0.64	1.43
5	D1, D10	D7	0.74	1.34	16	D3, D10	D11	0.63	1.55
6	D1, D7	D10	0.73	1.62	17	D10, D11	D14	0.61	2.02
7	D10, D11	D7	0.72	1.30	18	D1, D7	D11	0.61	1.50
8	D10, D14	D7	0.72	1.28	19	D7, D11	D10	0.61	1.35
9	D10, D14	D11	0.70	1.73	20	D1, D10	D14	0.60	2.00
10	D9, D10	D7	0.70	1.26	21	D3, D7	D10	0.60	1.35
11	D3, D11	D10	0.68	1.52					


393

394 Inspection scheme II

In Inspection Scheme II, we also consider the value of each deficiency item $V_{i_{i_i}}$, 395 which contains its occurrence probability, the cost of inspecting it and the loss of 396 ignoring it the same as that of Inspection Scheme I. Regarding V_{it_i} of all the deficiency 397 398 items, 9 deficiency items, namely D1, D7, D10, D11, D9, D3, D14, D5, and D4, are worthy of being inspected in total. The differences between Inspection Schemes I and 399 II are that in Inspection Scheme II, the values for some deficiency items are dynamic 400 after some certain deficiencies are detected according to the association rules as 401 402 indicated in Table 5, while the values for all deficiency items in Inspection Scheme I 403 are static. There are four types of deficiency items on the right-hand side among all the correlation rules: D7, D10, D11, and D14, which means that only P_{D_7} , $P_{D_{10}}$, $P_{D_{11}}$, and 404 $P_{D_{14}}$ are dynamic and related to the detected deficiencies, while the probabilities of 405

406	other deficiency items are static. Starting from inspecting D1 in the first inspection
407	round, the probabilities of the uninspected deficiency items are updated based on the
408	association rules. Then, the deficiency item with the highest probability to occur is
409	selected to be inspected in the next round. Note that as the minimum Confidence value
410	of the association rules is 0.6, if items on the left-hand side of an association rule are
411	detected, the value of the deficiency item on the right-hand side is the largest (larger
412	than 0.4207) among all the uninspected items and should be inspected in the next round.
413	The first 6 rounds of inspection are presented in Figure 2. In this figure, "Y" means the
414	deficiency is detected while "N" means the deficiency does not exist. The red nodes
415	represent that the probabilities of these deficiency items are updated according to the
416	association rules. The brackets contain the left-hand side of the used association rules.
417	It should be noted that the first 5 rounds inspection have already updated all the
418	updatable deficiency probabilities among the uninspected deficiencies (recall that only
419	P_{D_7} , $P_{D_{10}}$, $P_{D_{11}}$, and $P_{D_{14}}$ can be updated). From the 6th round of inspection, the
420	probability of each deficiency item is equal to its Support value.

Development of efficient PSC inspection schemes

438	1 to be inspected, and hence there are totally $18 \times 138 = 2484$ inspection rounds. Schemes
439	I and II both require 9 out of the total 18 deficiency items to be inspected, so there are
440	9×138=1242 rounds of inspection.

442

Table 8. Inspection efficiency of the current and new inspection schemes

Inspection	Inspection	Total detected	Inspection efficiency
scheme	rounds	deficiency items	
Current	2,484	519	20.89%
Scheme I	1,242	435	35.02%
Scheme II	1,242	435	35.02%

It can be seen from Table 8 that each of the two new inspection schemes can identify 443 444 83.82% of the real detected deficiency items by inspecting only 50% of all the possible 445 deficiency items. It also shows that the inspection efficiency of the two new inspection 446 schemes is the same and is almost 1.5 times higher than that of the currently used inspection scheme. Therefore, we can conclude that the new schemes have higher 447 efficiency and perform better than the currently used one, which means that if one of 448 the new inspection schemes is adopted, more deficiency items can be detected after 449 450 conducting a certain number of inspection rounds. 451 5.2 Comparison of the two new inspection schemes As both of the new inspection schemes contain 9 rounds of inspection, we also 452 compare their performance. Data set Ψ_1 is used in the first comparison. The total 453 number of identified deficiencies after each inspection round of the two schemes is 454

shown the Table 9.

456	Table 9. Identified deficiencies of the two new inspection schemes									
457	in the 1st comparison									
	Inspection Scheme	1st round	2nd round	3rd round	4th round	5th round	6th round	7th round	8th round	9th round
	I	42	124	186	242	298	333	378	401	435
458	II	42	124	186	242	299	337	378	401	435
459	Table 9 indica	ates that	the firs	st 4 roui	nds of ir	nspectio	on are th	ne same	in both	schemes,
460	and after the 5th a	nd 6th i	nspecti	on rour	nds, the	perform	nance of	f Inspec	tion Sc	heme II is
461	a little better than	that of	Inspect	ion Sch	eme I, v	vith 1 a	nd 4 mo	ore defic	ciencies	detected.
462	The differences b	oetween	the tw	vo sche	mes dej	pend or	n the in	spected	l item i	in the 5th
463	inspection round:	if the d	letected	deficie	ency iter	ns in th	e first 4	4 round	s contai	in D1 and
464	D10, or D10 and	D11, D	14 will	be insp	ected in	Schem	e II, wł	nile D9	will be	inspected
465	in Scheme I no	matter	what	deficier	ncies ar	e detec	eted; O	therwis	e the i	nspection
466	sequences are the	same ii	n the tw	o scher	nes.					
467	To further con	mpare t	heir pei	rforman	ice, we	do the s	second	compar	ison by	selecting
468	the deficiency iter	ms in th	e inspe	ction re	ecords w	vith larg	er than	or equa	al to 5 c	leficiency
469	items detected fro	m 1 Sej	ptember	r 2018 t	to 31 De	ecember	: 2018 a	at the Po	ort of H	ong Kong
470	as testing data set	Ψ_2 . Tł	iere are	53 reco	ords in to	otal, wit	h 380 d	eficienc	ey items	detected.
471	Then, we use the	two pro	posed i	nspecti	on sche	mes to	conduc	t PSC in	nspectio	on and the
472	total number of i	dentifie	d defic	iency i	tems af	ter each	n inspec	ction ro	ound is	shown in
473	Table 10.									

475

490

Table 10. Identified deficiencies of the two new inspection schemes

in the 2nd comparison

		T	1-4	2 1	21	4.1	5.1	Cil.	741	0.4	0.1	
		Inspection Scheme	1 st round	2nd round	3rd round	4th round	5th round	6th round	7th round	8th round	9th round	
		Ι	40	89	132	163	192	205	246	258	278	
476		II	40	89	132	163	204	228	246	258	278	
477	The	above table	e show	s that w	hen in	spectin	g the sł	nips wit	h defic	iency i	tems no	less
478	than 5, tl	nese two ir	spectio	on sche	mes ca	n ident	ify 73.	16% de	ficienc	ies afte	er inspec	ting
479	50% of	all the po	ossible	deficie	ency ite	ems. B	esides,	it is i	indicate	ed that	Schem	ie II
480	outperfo	rms Scher	ne I, v	with 12	2 (9.41	%) and	d 23 (11.22%) more	e defic	iency it	tems
481	detected	after finis	hing th	e 5th a	and 6th	round	s of ins	spection	n. Thus	s, we c	an conc	lude
482	that alth	ough Insp	ection	Schem	e I is	intuitiv	ve and	easy t	o unde	erstand	, Inspec	tion
483	Scheme	II works be	etter tha	ın Inspe	ection S	Scheme	I, espe	cially v	vhen in	spectin	g ships v	with
484	no less tl	han 5 defic	eiency i	tems.								
485												
486	6. Discu											
487		his study,				-						
488		tected at th			C	•		C			Î	
489	scheme	models. Al	lthougł	n some	interes	sting in	sights	are ger	nerated	, such	as the la	arge

491 can be incorporated, for example, inspection records of 12 to 24 months, we can find

itemsets and valid association rules, it is worth mentioning that if more inspection data

492	more comprehensive and accurate correlations among the deficiency items. Meanwhile,
493	these two innovative inspection schemes may also cause some possible consequences.
494	First, the ship operators may take some measures before the inspection to prevent their
495	ships from being identified the related deficiencies and even detained if they are aware
496	of the inspection schemes. Second, only some of the deficiency items are included in
497	these two inspection schemes while other deficiency items are omitted. Regarding the
498	first consequence, it is believed that the goal of PSC inspection is to guarantee the ships
499	to comply with the various international conventions by conducting inspection as well
500	as its deterrence. Thus, if the ship operators are willing to spare their efforts to keep the
501	ships in satisfactory condition and conforming to the regulations, we can say that the
502	goal of PSC inspection has been achieved. Regarding the second consequence, both the
503	relevant documents on PSC and the PSCOs we interviewed suggest that in practice,
504	after checking the documentation, the PSCOs will walk around the ship to observe its
505	overall condition. If deficiencies are detected, they will pay more attention to the
506	corresponding deficiency categories and conduct a more comprehensive inspection. If
507	there are no clear findings, they may let the ship go without further inspection. Under
508	this situation, both of the inspection schemes are designed to give some instructions
509	and reference to the PSCOs when the time and inspection resources are limited and the
510	deficiencies are not that obvious instead of interfering with their own expert judgment.

512 **7. Conclusion**

513 PSC inspection is viewed as an effective way to contribute to the enhancement of maritime safety and security, and the prevention of marine pollution. Due to the limited 514 515 time and human resources, not every deficiency item listed by the MoUs can be inspected. Thus, it is worthy of developing inspection schemes that can give 516 instructions to the PSCOs in order to improve inspection efficiency. The goal of the 517 inspection schemes is to identify as many deficiency items as possible after conducting 518 certain rounds of inspections. In this paper, two inspection schemes based on the 519 inspection value of each deficiency item are proposed. The inspection value of a 520 521 deficiency item comprises its probability of occurrence, the cost of inspecting it and the 522 loss of ignoring it. To be more specific, the probabilities in Inspection Scheme I are the 523 occurrence probabilities of the deficiency items in the whole data set and are static, 524 while the probabilities in Inspection Scheme II also depend on the interdependencies among the deficiency items and are dynamic. As the data and references are limited, we 525 526 approximate the values of the cost and loss by setting the ratio of cost and loss equal to 527 the PSC inspection rate at the Port of the Hong Kong from 2015 to 2017. Both of the inspection schemes suggest that 9 deficiency items with positive values, 528

i.e. D1, D7, D10, D11, D9, D3, D14, D5, and D4, should be inspected. The inspection

530	sequence of Scheme I is fixed, while in Scheme II, 4 types of deficiency items occur on
531	the right-hand side of the generated association rules: D7, D10, D11, and D14, which
532	means that their probabilities (i.e., values) and inspection sequence are dynamic. Thus,
533	the inspection sequence of Scheme II is dynamic and is related to the detected
534	deficiencies. The detailed inspection sequences of the schemes are also provided.
535	To the best of our knowledge, this is the first research on developing inspection
536	schemes containing detailed inspection sequence for PSC inspection. Numerical
537	experiments show that both the newly proposed inspection schemes are about 1.5 times
538	more efficient when used to identify the deficiency items compared with the currently
539	used inspection scheme. Further, the performance of Inspection Scheme II is better than
540	Inspection Scheme I, with 9.41% and 11.22% more deficiency items detected after
541	finishing 5th and 6th rounds of inspection when inspecting ships with no less than 5
542	deficiency items. In the future research, the value of the inspection cost and ignoring
543	loss of each deficiency item can be estimated more accurately to further improve the
544	performance of the two schemes.
545	Acknowledgements

546 This study is supported by the National Natural Science Foundation of China547 (Grant Numbers 71701178, 71771050, 71831008).

548 **Reference**

- Agrawal, R and R Srikant (1994). Fast algorithms for mining association rules.
 In Proceedings of the 20th International Conference of Very Large Data Bases,
 1215, 487-499.
- Agrawal, R, T Imieliński and A Swami (1993). Mining association rules between sets
 of items in large databases. *ACM SIGMOD Record*, 22(2), 207-216.
- Ait-Mlouk, A, F Gharnati and T Agouti (2017). An improved approach for association
 rule mining using a multi-criteria decision support system: a case study in road
 safety. *European Transport Research Review*, 9(3), 40-53.
- Besharati, M M and A Tavakoli Kashani (2018). Which set of factors contribute to
 increase the likelihood of pedestrian fatality in road crashes? *International Journal*of *Injury Control and Safety Promotion*, 25(3), 247-256.
- 560 Cariou, P, M Q Mejia Jr and F C Wolff (2007). An econometric analysis of deficiencies
 561 noted in port state control inspections. *Maritime Policy & Management*, 34(3),
 562 243-258.
- 563 Cariou, P, M Q Mejia and F C Wolff (2009). Evidence on target factors used for port
 564 state control inspections. *Marine Policy*, 33(5), 847-859.
- 565 Cariou, P and F C Wolff (2015). Identifying substandard vessels through port state
 566 control inspections: a new methodology for concentrated inspection
 567 campaigns. *Marine Policy*, 60, 27-39.
- 568 EMSA (2018). Annual overview of marine casualties and incidents 2018. <
 569 http://www.emsa.europa.eu/news-a-press-centre/external-news/item/3406-annual570 overview-of-marine-casualties-and-incidents-2018.html> (accessed 31.05.19).
- Gao, Z, G M Lu, M J Liu and M Cui (2008). A novel risk assessment system for port
 state control inspection. In: *IEEE International Conference on Intelligence and Security Informatics (ISI) Proceedings*, 242-244.
- 574 Ghomi, H, M Bagheri, L P Fu and L F Miranda-Moreno (2016). Analyzing injury
 575 severity factors at highway railway grade crossing accidents involving vulnerable
 576 road users: a comparative study. *Traffic Injury Prevention*, 17(8), 833-841.
- 577 Graziano, A, P Cariou, F C Wolff, M Q Mejia and J U Schröder-Hinrichs (2018). Port
 578 state control inspections in the European Union: do inspector's number and
 579 background matter? *Marine Policy*, 88, 230-241.
- Hänninen, M and P Kujala (2014). Bayesian network modeling of port state control
 inspection findings and ship accident involvement. *Expert Systems with Applications*, 41(4), 1632-1646.
- Heij, C and S Knapp (2018). Predictive power of inspection outcomes for future
 shipping accidents-an empirical appraisal with special attention for human factor
 aspects. *Maritime Policy & Management*, 45(5), 1-18.
- 586 Hu, L and Y Liu (2016). Joint design of parking capacities and fleet size for one-way

- station-based carsharing systems with road congestion constraints. *Transportation Research Part B: Methodological*, 93, 268-299.
- Hu, H T, X Z Chen and Z Sun (2017). Effect of water flows on ship traffic in narrow
 water channels based on cellular automata. *Polish Maritime Research*, 24(s3), 130135.
- 592 IMO (2011). IMO and the environment. < http://www.imo.org/en/OurWork/Envir
 593 onment/Documents/IMO%20and%20the%20Environment%202011.pdf>
 594 (accessed 4.6.19).
- 595 IMO (2017). Resolution A. 1119(30): Procedures for port state control. < http://
 596 /www.imo.org/en/KnowledgeCentre/IndexofIMOResolutions/Assembly/Docume
 597 nts/A.1119%2830%29.pdf> (accessed 22.5.19).
- 598 IMO (2019). Implementation, control and coordination. < http://www.imo.org/en/
 599 OurWork/MSAS/Pages/ImplementationOfIMOInstruments.aspx>
- 600 (accessed 13.03.19).
- Knapp, S, G Bijwaard and C Heij (2011). Estimated incident cost savings in shipping
 due to inspections. *Accident Analysis & Prevention*, 43(4), 1532-1539.
- Knapp, S and P H Franses (2007). Econometric analysis on the effect of port state
 control inspections on the probability of casualty: can targeting of substandard
 ships for inspections be improved? *Marine Policy*, 31(4), 550-563.
- Kumar, S and D Toshniwal (2016). A data mining approach to characterize road
 accident locations. *Journal of Modern Transportation*, 24(1), 62-72.
- Li, K X and H S Zheng (2008). Enforcement of law by the port state control
 (PSC). *Maritime Policy & Management*, 35(1), 61-71.
- Liu C C, X Xiang, C R Zhang and L Zheng (2016). A decision model for berth allocation
 under uncertainty considering service level using an adaptive differential evolution
 algorithm. *Asia-Pacific Journal of Operational Research*, 33(06), 1-28.
- McNicholas, P D, T B Murphy and M O'Regan (2008). Standardising the lift of an
 association rule. *Computational Statistics & Data Analysis*, 52(10), 4712-4721.
- Mirabadi, A and S Sharifian (2010). Application of association rules in Iranian Railways
 (RAI) accident data analysis. *Safety Science*, 48(10), 1427-1435.
- Ravira, F J and F Piniella (2016). Evaluating the impact of PSC inspectors' professional
 profile: a case study of the Spanish Maritime Administration. WMU Journal of
 Maritime Affairs, 15(2), 221-236.
- 620 Sternberg, A, D Carvalho, L Murta, J Soares and E Ogasawara (2016). An analysis of
 621 Brazilian flight delays based on frequent patterns. *Transportation Research Part E:*622 Logistics and Transportation Review, 95, 282-298.
- Sun, Z, Z L Chen, H T Hu and J F Zheng (2015). Ship interaction in narrow water
 channels: a two-lane cellular automata approach. *Physica A: Statistical Mechanics*

625 *and Its Applications*, *431*, 46-51.

- Tan, P N, M Steinbach and V Kumar (2005). Association Analysis: Basic Concepts and
 Algorithms. *Introduction to Data mining*. Addison-Wesley, Boston.
- Tang, Y Y and Y Qin (2015). Railway freight demand analysis based on
 multidimensional association rules mining. In: *Fifth International Conference on Transportation Engineering Proceedings*, 2075-2081.
- Tokyo MoU (2012). Tokyo MoU deficiency codes. < http://www.tokyo-mou.org/
 publications/tokyo_mou_deficiency_codes.php> (accessed 13.03.19).
- 633 Tokyo MoU (2016). Annual report 2015 on port state control in the
- Asia-Pacific region. < http://www.tokyo-mou.org/doc/ANN15.pdf> (accessed
 28.05.19).
- 636 Tokyo MoU (2017). Annual report 2016 on port state control in the
 637 Asia-Pacific region. http://www.tokyo-mou.org/doc/ANN16.pdf> (accessed 2
 638 7.12.18).
- 639 Tokyo MoU (2018a). Annual report 2017 on port state control in the
 640 Asia-Pacific region. http://www.tokyo-mou.org/doc/ANN17.pdf> (accessed 2
 641 9.05.19).
- Tokyo MoU (2018b). Memorandum of Understanding on port state control in
 the Asia-Pacific Region. < http://www.tokyo-mou.org/doc/Memorandum%20re
 v18.pdf > (accessed 13.01.19).
- Tokyo MoU (2019). Annual report 2018 on port state control in the
 Asia-Pacific region. http://www.tokyo-mou.org/doc/ANN18.pdf
 (accessed 27.12.18).
- 648 Tsou, M C (2018). Big data analysis of port state control ship detention
 649 database. *Journal of Marine Engineering & Technology*, 17, 1-9.
- 650 UNCTAD (2018). Review of maritime transport 2018. < https://unctad.org/en/Pu
 651 blicationsLibrary/rmt2018_en.pdf> (accessed 29.05.31).
- Weng, J X and G R Li (2019). Exploring shipping accident contributory factors using
 association rules. *Journal of Transportation Safety & Security*, 11(1), 36-57.
- Weng, J X, J Z Zhu, X D Yan and Z Y Liu (2016). Investigation of work zone crash
 casualty patterns using association rules. *Accident Analysis & Prevention*, 92, 4352.
- Ku, R F., Q Lu, W J Li, K X Li and H S Zheng (2007a). A risk assessment system for
 improving port state control inspection. In: *International Conference on Machine Learning and Cybernetics Proceedings in 2007*, 818-823.
- Ku, R F, Q Lu, K X Li and W J Li (2007b). Web mining for improving risk assessment
 in port state control inspection. In: *International Conference on Natural Language Processing and Knowledge Engineering Proceedings in 2007*, 427-434.

- Yang, Z S, Z L Yang and J B Yin (2018). Realising advanced risk-based port state
 control inspection using data-driven Bayesian networks. *Transportation Research Part A*, 110, 38-56.
- Yu, S, Y H Jia and D Y Sun (2019). Identifying factors that influence the patterns of
 road crashes using association rules: a case study from Wisconsin, United
 States. *Sustainability*, 11(7), 1925-1939.
- 669 Zhang, C Q and S C Zhang (2002). Association rule mining: models and algorithms.670 Germany, Springer-Verlag Publishing Company.
- 671 Zhang, Z H, Q H, J Gao and M Ni (2018). A deep learning approach for detecting traffic
 672 accidents from social media data. *Transportation Research Part C: Emerging*673 *Technologies*, 86, 580-596.
- 674 Zhao, D, W Wang, G P Ong and Y J Ji (2018). An association rule based method to
 675 integrate metro-public bicycle smart card data for trip chain analysis. *Journal of*676 *Advanced Transportation*, 2018, 1-11.
- 677 Zhao, D, W Wang, C Y Li, Y J Ji, X J Hu and W F Wang (2019). Recognizing metro678 bus transfers from smart card data. *Transportation Planning and Technology*, 42(1),
 679 70-83.
- Zhou, C and J Sun (2010). Automatically optimized and self-evolutional ship targeting
 system for port state control. In: *IEEE International Conference on Systems Man and Cybernetics (SMC) Proceedings 2010*, 791-795.