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Abstract

With the trend of global warming and destructive human activities, the fre-

quent occurrences of catastrophes have posed devastating threats to human life

and social stability worldwide. The emergency management (EM) system plays

a significant role in saving people’s lives and reducing property damage. The

prediction system for the occurrence of emergency events and resulting impacts

is widely recognized as the first stage of the EM system, the accuracy of which

has a significant impact on the efficiency of resource allocation, dispatching, and

evacuation. In fact, the number and variety of contributions to prediction tech-

niques, such as statistic analysis, artificial intelligence, and simulation method,

are exploded in recent years, motivating the need for a systematic analysis of

the current works on disaster prediction. To this end, this paper presents a

systematic review of contributions on prediction methods for emergency occur-

rence and resource demand of both natural and man-made disasters. Through

a detailed discussion on the features of each type of emergency event, this pa-

per presents a comprehensive survey of state-of-the-art prediction technologies

which have been widely applied in EM. After that, we summarize the challenges

of current efforts and point out future directions.
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1. Introduction1

The past decades have witnessed a dramatic increase in disaster events world-2

wide. As reported by the Emergency Events Database (EM-DAT, 2020), over3

the last twenty years, 7,348 disaster events were recorded, which has increased4

by 73% compared with that between 1980 and 1999. There is clear evidence5

that the earth is experiencing a gradual increase in the global average temper-6

ature, which is seen as the main reason for extreme natural events, including7

droughts, flooding, hurricanes, and wildfires (Ortuño et al., 2013). In addition,8

human-made or technological disasters, such as industrial accidents and trans-9

portation accidents, further increase the risk of human exposure to extreme10

urban hazards, and cause high casualties and financial losses as well.11

The development of timely and effective emergency management (EM) sys-12

tem has become increasingly attractive, the primary aim of which is to help13

and enable emergency managers to prepare for disasters and respond to ur-14

gent events. The general framework of the EM system is composed of a series15

of decision-making problems belonging to three phases (Zhou et al., 2018): (i)16

pre-event forecasting and preparation; (ii) in-event response and evacuation; and17

(iii) post-event recovery. Many efforts have been devoted to giving overviews of18

state-of-the-art literature. Readers interested in detailed operation strategies of19

EM system should refer to the publications summarized in Table 1.20
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Table 1: Existing literature reviews on EM system

Stage Subproblem Publication

Pre-event

Resource demand forecasting Zhu et al. (2019)

Resource prepositoning Sabbaghtorkan et al. (2020)

Emergency facility location Li et al. (2011a)

In-event

Emergency vehicle routing Humagain et al. (2020)

Emergency evacuation Abdelgawad & Abdulhai (2009)

Relief resource distribution Anaya-Arenas et al. (2014)

Post-event Disaster recovery Özdamar & Ertem (2015)

The recent popularity of intelligence EM systems emphasizes the importance21

of learning from previous experience when a new emergency event occurs by an-22

alyzing historical data of similar events or scenarios (Chen et al., 2019). These23

facts confirm that a variety of advanced technologies have been applied in EM24

systems to collect, process, and update the spatial, temporal, and environmen-25

tal information during emergency events, such as the 3S technologies: Remote26

Sensing (RS), Geography Information Systems (GIS), and Global Positioning27

Systems (GPS). The analysis of historical data is capable of reproducing the28

evolutionary process of emergency events and provide better forecasts such as29

affected areas, population and, in particular, the demand for relief resources.30

The extraordinary progress of big data, Artificial Intelligence (AI), and In-31

ternet of Things (IoT) in recent years allows the development of the prediction32

system for emergency occurrence and demand (Aringhieri et al., 2017). Chen33

et al. (2019) give a timely survey of the latest computation intelligence technolo-34

gies applied in EM. It reports that more than 170 papers have been published35

emphasizing this emerging topic. The capabilities of AI techniques to make36

full use of acquired data and deal with imprecise or uncertain information are37

widely recognized, especially in forecasting the occurrence of unexpected emer-38

gency events and evaluating their impacts on the economy and society.39

The roles of big data analytics and IoT have also received growing atten-40

tion in the last few years. For instance, Thibaud et al. (2018) focus on the41
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applications of IoT and semantic web technologies for natural disaster detec-42

tion. Heterogeneous data is collected by IoT sensors, based on which insightful43

knowledge could be investigated through semantic reasoners. Zafar et al. (2019)44

indicate that IoT is particularly effective for the preparedness phase of EM due45

to its capability of integrating a variety of knowledge and research domains.46

Shah et al. (2019) highlight the application of big data and IoT techniques in47

EM and point out the current opportunities and challenges in this area.48

Though it is almost impossible to know the time of occurrence and intensity49

of any emergency event, the occurrence possibility can be estimated using data50

mining techniques through historical data set of similar events, real-time ob-51

served data, and expert knowledge (Qiu et al., 2014; Amezquita-Sanchez et al.,52

2017). Forecasting the resource demand is another critical task in the aftermath53

of an emergency event, which serves as the premise and basis of the emergency54

management of unconventional emergencies (Liu et al., 2012). Facing the over-55

whelming increase of data, Zhu et al. (2019) focus on the application of AI in56

the forecasting methods of emergency resources.57

Owing to the wide variety of emergency events, including both natural58

and man-made, the forecasting model is event-dependent with the considera-59

tion of various social and environmental factors concerning different types of60

events, such as socio-economic conditions and geographical characteristics. The61

decision-making process during a disaster operations management also differs62

drastically with respect to the types of events, considering the severity, affected63

area, population density, surrounding landscape, among others. Though very64

few, some efforts have been devoted to discussing the current prediction and65

assessment methods of natural disasters, e.g., Amezquita-Sanchez et al. (2017).66

On the other hand, man-made catastrophes have also received increasing atten-67

tion all over the world, such as severe accidents in highway and urban transporta-68

tion systems, worldwide public health emergencies, among others. Therefore,69

in this paper, we aim to fill this gap by presenting a systematic review of efforts70

on the resource demand forecasting methods in response to different types of71

emergency events containing both natural and man-made disasters.72
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The following contributions are expected from this study. The first and73

major contribution of this study is to elaborate the unique features of different74

types of emergency events, which is of paramount importance in choosing proper75

forecasting models and decision variables. Second, we provide a systematization76

of the literature applying traditional statistical forecasting methods and state-77

of-the-art AI technologies. The third contribution is to identify several open78

research questions to be explored in the future.79

The rest of this paper is organized as follows. Section 2 first defines the80

boundaries of this study. Section 3 elaborates the characteristics of different81

types of emergencies. Section 4 introduces the existing emergency demand fore-82

casting models. Section 5 discusses the existing challenges and several future83

directions. Section 6 serves as a conclusion.84

2. Boundaries of the study85

2.1. Definitions of key concepts86

To highlight the boundaries of this study, the following questions must be87

answered: What is the EM system? And what is the task of prediction models?88

The first question does not have a unified answer because the definition of89

EM is broad and has diverse definitions in the literature. Some representative90

definitions are presented as follows:91

• The National Governors’ Association Emergency Preparedness Project de-92

fines that the EM as a process of mitigation, preparedness, response, and93

recovery when a disaster happens (Altay & Green III, 2006).94

• Chen et al. (2019) state that EM is a complex task that involves multi-95

ple stakeholders to prevent the occurrence of unexpected events and to96

mitigate the impacts caused by emergency events.97

• Bullock et al. (2017) give a simplified definition for EM, that is, “a disci-98

pline that deals with risk and risk avoidance.”99
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In sum, the EM system is an integrated decision support system composed100

of a variety of tasks that covers the lifecycle of an emergency event. It can101

be seen that the effective prevention or avoidance of emergency events plays a102

critical role in the EM system that aims at minimizing or eliminating the loss103

before the disaster. Hence, the first task of prediction methods discussed in104

this survey is to predict the occurrence of emergency events by identifying their105

unique causes and features.106

It is evident that critical factors that influence the evolution of emergencies107

are dissimilar among different types of events. For instance, the prediction108

of earthquake occurrence is difficult by the damage of affected area can be109

estimated roughly according to the magnitude of the earthquake which can be110

monitored and assessed dynamically (Kossobokov, 2013); while the occurrence of111

a hurricane can be observed and predicted using sea surface temperature (Vecchi112

et al., 2011). In this study, we define the features of disasters as the essential113

nature of this type of disaster which should be analyzed in the prediction models.114

In this survey, the urgent relief demand or emergency demand refers to the115

requirement of relief commodities that could alleviate the casualties and injuries116

of vulnerable people. Zhu et al. (2019) classify emergency resources into four117

categories: (i) relief materials (including food, purified water, tent, etc.); (ii)118

equipment and facilities (including communication equipment, means of trans-119

port, first-aid medicine, etc.); (iii) technological resources (including satellite120

telemetering technology, communication technology, computer networking tech-121

nology, etc.); and (iv) manpower resources. The effectiveness and efficiency of122

the allocation and distribution of the above emergency resources are highly de-123

pendent on the accurate prediction and assessment of the disaster damage from124

both spatial and temporal dimensions. To this end, the second task of pre-125

diction methods covered in this survey is to predict the relief resource demand126

with respect to the disaster’s features. It is noteworthy that the discussion of127

the optimization models for resource logistics problems is beyond the scope of128

this survey. Interested readers could refer to Ortuño et al. (2013), Anaya-Arenas129

et al. (2014), and Özdamar & Ertem (2015) for more details.130
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2.2. The search process131

A multi-stage search and screening methodology proposed by Farahani et al.132

(2020) are applied in this study (see Fig. 1). Several academic search engines133

such as Google Scholar, Scopus, and Web of Science (WOS) are used for initial134

metasearch. Keywords ”emergency management”, ”disaster”, ”catastrophe”135

and ”forecasting model” are searched in the title, abstract, and full text of136

journal articles and conference proceedings published in English between 2000137

and 2021.138

Because the research of EM is significantly cross-functional, journals be-139

longing to a wide variety of research fields are considered, including ”Geo-140

science”, ”Environmental Science”, ”Operation Research and Management Sci-141

ence”, ”Computer Science”, among many others. By screening titles, abstracts,142

and full texts in the last three steps, we further omit the papers that beyond143

the scope of this paper. In the end, a total of 137 papers are comprehensively144

considered in this review.145

Figure 1: Search and screening methodology.

3. Emergency event146

3.1. Natural disaster147

In the face of climate change, the recent increase in the frequency and inten-148

sity of extreme weather and associated natural disasters has caused substantial149
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economic, social, and environmental impacts all over the world. China’s 2008150

Wenchuan earthquake caused a great loss of life and property, the total dam-151

age of which is estimated to exceed 100 billion dollars (Wang, 2008). Japan’s152

2011 Earthquake and Tsunami, which is considered as the severest disaster since153

1965, caused an estimated economic loss of 240 billion dollars, accounting for154

4.1% of the country’s GDP of that year (Guha-Sapir et al., 2012). The perfor-155

mance of search-and-rescue after disasters is of great importance in decreasing156

the total number of fatalities. Hence, the prediction of victims and the mini-157

mum guaranteed requirements is the key to effective and quick responses to the158

disaster.159

3.1.1. Earthquake160

Earthquake refers to the sharp shaking of the earth’s crust in seconds, which161

is the result of the tremendous loss of lives and a series of high degree damages to162

infrastructure (such as buildings, highways, and bridges), electric power distri-163

bution systems, communication systems, etc. Many efforts have been devoted to164

making retrospective predictions or computing the probability of the earthquake165

occurrence, among which three parameters are widely received considerable at-166

tention: time of occurrence, epicentral location, and the magnitude of upcoming167

earthquakes (Panakkat & Adeli, 2008). As a result of the earth’s geophysical168

process, a variety of precursors can be observed and analyzed, including ani-169

mal behavior (Fidani, 2013), water composition (Tsunomori & Tanaka, 2014),170

anomalous electromagnetic field (Chavez et al., 2016), foreshocks (Brodsky &171

Lay, 2014), etc. Besides, the historical data of earthquake occurrence in a re-172

gion can also be applied for retrospective analysis by using machine learning173

methods (Dai & Cao, 2017).174

Though difficult to solve, many efforts have been devoted to the prediction175

problem of damage, casualties, and resulting resource demand when earthquakes176

accidentally occur. Xing et al. (2015) propose a casualty prediction model based177

on the support vector machine. A robust model is developed by applying sev-178

eral loss functions to handle different data of casualty predictors. Zeng et al.179
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(2016) present a regional earthquake loss prediction model based on the multi-180

story concentrated-mass shear models, which can effectively quantify the loss,181

especially buildings, of a major city center. A critical issue of vulnerability as-182

sessment is that how to analyze the varying temporal and spatial distributions183

of damage in the affected area (Li et al., 2011b), which leads to the equity and184

efficiency issue of relief demand forecasting and allocation. For instance, Huang185

et al. (2012) are among the first to highlight this issue by proposing a set of186

performance metrics in relief distribution.187

Given the increasing importance placed on IoT, it becomes salient to utilizing188

heterogeneous data in the early warning system of earthquakes. Zambrano et al.189

(2017) use smartphones as sensors and build an accelerograph to detect seismic-190

peak through a data fusion process. Greco et al. (2018) design an abnormal191

event detection system, especially for earthquakes, which retrieve data from IoT192

sensors and semantically annotate them. Mei et al. (2019) provide a detailed193

survey of the application of IoT in geologic hazard prevention. It indicates that194

it is still challenging to guarantee the reliability of the IoT-based EM system in195

a complex environment.196

3.1.2. Tsunami197

Tsunami consists of a series of waves that arose from the ocean resulting from198

submarine earthquakes or other underwater explosions such as volcanic erup-199

tions and landslides. Although the affected area of tsunami is limited to coastal200

areas, it has destructive power and may cause enormous human and economical201

losses. For instance, the Indian Ocean tsunami that happened in 2004 results in202

more than 225,000 deaths (Altay & Green III, 2006). Two parameters, which203

are used to provide early warning are evacuation decisions, need to be predicted204

in tsunami prediction models, namely, arrival time and wave height. Existing205

prediction methods apply a variety of data sources. For instance, Wei et al.206

(2008) utilize the real-time tsunami data collected by the deep-ocean detection207

buoy to predict the tsunami within two hours before its occurrence. Wei et al.208

(2014) then predict the arrival time of tsunami using three models with differ-209

9



ent data sources, i.e., tsunameter measurements, GPS, and seismic waveforms.210

The result shows that the model with deep-ocean tsunameter measurements211

provides high-quality forecasting by presenting a comprehensive understanding212

of tsunami generation.213

Since the arrival time and wave height can be forecasted by real-time meth-214

ods, there is a chance that the residents evacuate from the coast immediately.215

There is a large body of research on using simulation tools to provide informa-216

tion for evacuation risk assessment and effective evacuation planning decisions.217

Takabatake et al. (2017) develop an agent-based evacuation model considering218

the different behavior of residents and visitors, through which the following219

parameters are estimated, including evacuation time, the number of individu-220

als evacuated, bottleneck location, and the number of casualties. Wang & Jia221

(2021) propose a novel multi-modal evacuation simulation model considering222

the interactive effects between walking and vehicles.223

3.1.3. Hurricane224

Hurricane is a kind of strong tropical storm that usually occurs during the225

summer. The storms and heavy rains caused by hurricane landfall would result226

in different types of damages with respect to the topographical features of the227

affected area, such as flash floods and landslides in the mountain area, and228

infrastructure destruction in the plain area. Wind field modeling, which is the229

basis of hurricane prediction methods, is a process of estimating wind speed230

and adjusting it to different parameters for further analysis, such as hurricane231

boundary layer (Vickery et al., 2009), trajectory (Cox et al., 2018), and damage232

(Chung Yau et al., 2011).233

Similar to tsunami, the arrival time and possible magnitude of damage can234

be forecasted with respect to the real-time observation of related indicators.235

Hence, pre-disaster preparation for emergency items. Rawls & Turnquist (2010)236

develop an emergency response planning tool for hurricanes, which determines237

the optimal location and quantities of a variety of emergency supplies before238

the occurrence of hurricanes or other disaster threats. Galindo & Batta (2013)239
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propose an integer programming model which jointly optimizes the location and240

level of storage for supplies. Xu et al. (2016) focus on the prediction of the evac-241

uation rate of the hurricane by using statistical models of evacuation behavior,242

which could provide valuable information for evacuation planning decisions.243

3.1.4. Flood244

The occurrence of flood can be attributed to the intense and frequent ex-245

treme precipitation caused by global climate warming (Wu et al., 2015). Maier246

et al. (2010) and Mosavi et al. (2018) have conducted detailed reviews for the247

prediction model for flood and conduct that rainfall and the spatial examination248

of hydrologic cycle are two critical indicators in flood modeling among other wa-249

ter resource variables, such as water level, soil moisture, river inflow. Moreover,250

considering the seasonal feature of floods, historical records of floods have been251

widely applied and analyzed with real-time monitoring technologies, such as252

remote sensing and GIS. Yu et al. (2017) evaluate the performance of two ma-253

chine learning techniques, namely, random forest and support vector machine,254

in the forecasting model of rainfall based on radar-derived rainfall data. Avand255

et al. (2021) propose an integrated model which contains machine learning, re-256

mote sensing, and GIS technologies to analyze the impacts of climate change257

and land use on flood probability. The result shows that the most significant258

impact factors are elevation, Land use and land cover, slope, and rainfall. Sood259

et al. (2018) propose an IoT-based flood monitoring and forecasting system,260

in which all flood causing and preventing attributes are sensed by IoT devices261

and processed by a multi-layered system, including dimension reduction, cluster262

analysis, and flood forecasting.263

Another critical task of flood management is to forecast and assess its im-264

pact, based on which the mitigation and evacuation strategies can be derived.265

Jonkman et al. (2008) develop a method to estimate the loss of life caused266

by a large-scale flood. Balica et al. (2013) adopt two methods to conduct the267

flood risk and vulnerability assessment, namely, physically-based modelling and268

parametric approaches. It indicates that the parametric approach is suitable for269
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larger-scale vulnerability assessment; while physically-based has a better science270

base but is better for a specific case.271

3.1.5. Wildfire272

Wildfire has received increasing attention in the past three years because273

of its frequent occurrence and significant damage. According to the report274

published by the Emergency Events Database (EM-DAT, 2019), at least 14275

wildfires occurred in 2019 around the world, of which the severest were in the276

US, Australia, and Brazil, with total damage and economic cost of over 30 billion277

US dollars. Though the primary cause of wildfire can also be attributed to global278

warming and climate change, other influencing factors, such as vegetation (Adab279

et al., 2015), topographic variables (Parisien et al., 2012), and human activities280

(Parisien et al., 2016), have also received considerable attention in the literature.281

The objectives of wildfire prediction fall into two categories: wildfire proba-282

bility and its corresponding scale. Parisien et al. (2016) use statistical models283

to evaluate the joint impact of climate, topography features, lightning, and hu-284

man activities on wildfire probability. The result shows that fire probability285

has a negative relationship with human influences. Nami et al. (2018) propose286

a data-driven evidential belief function model integrated with GIS technolo-287

gies to predict the spatial pattern of wildfire probability. Jaafari et al. (2019)288

conduct a comparative analysis of four artificial intelligence methods for the pre-289

diction of wildfire probability in spatial scope. It shows that the hybrid model290

of the adaptive neuro-fuzzy inference system and the imperialist competitive al-291

gorithm has a superior performance. Liang et al. (2019) focus on predicting the292

wildfire scale which is determined by the fire’s duration and size of the burning293

area. Three prediction models are applied, namely, backpropagation neural net-294

work (BPNN), recurrent neural network (RNN), and long short-term memory295

(LSTM), among which the LSTM reaches the highest accuracy of 90.9%.296
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3.2. Urban emergency297

3.2.1. General urban incident298

The emergencies occurring in the urban area are often caused by two kinds299

of events: natural disasters and social incidents (e.g., fire, explosion, terrorist300

attack, crime, and traffic accident). The affected people require immediate301

assistance and have to be evacuated out of the hazard area. Hence, the major302

objective of the urban emergency demand forecasting problem is to determine303

the number of victims or affected people due to disasters, providing input for304

evacuation planning and resource management optimization, including shelter305

location and capacity, evacuation path, resource allocation, among others.306

In general, the required shelter capacity can be approximated by the product307

of the number of victims and effective area per capita (≤ 6m2) (Chu & Su,308

2012). For a temporary shelter, which provides temporary living spaces for309

people who would be evacuated and transferred in a short time, the number of310

victims is equal to the usually resident population. In contrast, the purpose of a311

permanent shelter is to provide a sustainable habitat for the people whose houses312

are destroyed. Hence, it is necessary to estimate the number of victims assigned313

to each shelter located scattered in the affected area considering major impact314

factors including event type, population distribution, geographical position, and315

land use.316

3.2.2. Crime317

Predicting the temporal and spatial distributions of crimes in the urban area318

is a longstanding issue in the urban management system (Zhao & Tang, 2017).319

In literature, it is usually assumed that the number of crimes is dependent320

on explicative variables such as unemployment and income (Phillips & Land,321

2012), based on which linear regression models are carried out to analyze their322

interrelationships (Alves et al., 2015). However, Alves et al. (2018) indicate323

that the relationship between crime occurrence and urban indicators is usually324

nonlinear. This study then uses the random forest algorithm to quantify the325

importance of indicators and predict the number of homicides, which reaches326
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an accuracy of 97%. Zhang et al. (2015) have pointed out that most crimes327

are opportunistic, but the location and time of crimes are dependent on police328

deployment. Hence, this study develops a patrol scheduler to predict the oc-329

currence of crime by learning criminals’ behavior, which is analyzed through a330

multi-source database. Seo et al. (2018) propose an automatic system for crime331

classification. A novel Partially Generative Neural Networks is introduced which332

is capable of classifying crimes with both full or partial information. Gholami333

et al. (2018) focus on the prediction method of crimes that occurred in the334

wildlife protection domain. To overcome the shortcoming of lacking observed335

data, a new ensemble technique is designed to predict poachers’ behavior, the336

results of which are further utilized in the patrol planning problem. Liao et al.337

(2020) elaborate the necessity of applying IoT techniques in urban security anal-338

ysis. However, it also points out that IoT system suffers from vulnerabilities339

and threats as well, which needs a strong security mechanism.340

There also have been some studies modelling crime prevention from the scope341

of game theory. For instance, Tambe et al. (2012) and Tambe et al. (2014) define342

this problem as a “security game” model, where the defender is the leader and343

the attacker the follower. Yin et al. (2012) utilize this approach in the fare344

inspection problem in transit systems.345

3.2.3. Traffic accident346

Another important application of prediction models in urban emergencies347

is to predict traffic accidents. A large body of research applies statistical and348

artificial intelligence approaches to analyze the influencing factors for traffic ac-349

cidents and to predict the occurrence of accidents. With the help of advanced350

data collection techniques, a large amount of data obtained from a variety of351

sources is available for traffic flow analysis. To select the most significant ex-352

planatory variables or features, Lin et al. (2015) propose a novel variable selec-353

tion method based on the Frequent Pattern (FP) tree. The result shows that354

the proposed FP tree method performs better than the random forest-based355

model with respect to the type of prediction models. Lu et al. (2015) focus356
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on the prediction of accident hotspots in urban areas. A Logistic regression357

analysis is conducted to investigate the relationships between traffic accidents358

and road type, vehicle type, driver state, etc. Recently, many efforts have been359

devoted to neural network approaches. For instance, Alkheder et al. (2017) use360

the artificial neural network (ANN) to predict the injury severity of traffic ac-361

cidents based on nearly 6,000 traffic accident records. Consider the case with362

limited data, Yuan et al. (2018) develop a deep learning approach, namely, the363

Convolutional Long Short-Term Memory neural network model, for traffic ac-364

cident prediction. Mukhopadhyay & Vorobeychik (2017) indicate most studies365

ignore the incident properties which are related to the further emergency dis-366

patch problem. To this end, a novel incident prediction method is proposed by367

jointly analyzing both incident arrival time and severity. Mukhopadhyay et al.368

(2020) have done a comprehensive survey on the incident prediction, resource369

allocation, and dispatch models, which is among the first to cover the entire370

urban emergency response management system.371

3.3. Highway and logistics372

The increasing number of vehicles has imposed overwhelming pressure on373

highway traffic. Traffic incidents caused by accident, breakdown, adverse weather,374

and natural disaster pose serious threats to the safety and efficiency of transport375

and logistics systems. In literature, the critical issues related to highway emer-376

gency management include improving emergency response and reducing rescue377

time. Increasing awareness of these issues has led to a growing body of litera-378

ture, which can be divided into three categories: emergency resource demand379

forecasting problem, facility location (or pre-positioning) problem, resource al-380

location problem, and relief distribution problem. The first three problems are381

addressed in the pre-event phase, while the last one in the post-event phase382

(Tufekci & Wallace, 1998). In this subsection, we mainly discuss the influencing383

factors on highway emergencies, which are critical to emergency resource pre-384

dictions in the scenario of highway and logistics. Issues related to emergency385

resource planning and management will be discussed in the following sections.386
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Many efforts have been devoted to investigating the causes of highway emer-387

gencies especially traffic accidents (Ayati & Abbasi, 2011; Anastasopoulos et al.,388

2012; Mannering et al., 2016; Chang, 2017; Mannering, 2018). Generally, two389

types of influencing factors are identified in highway emergencies: internal and390

external factors. The first type of factors is related to the driver’s physical char-391

acteristics, including age, gender, reaction time, risk-taking behavior, among392

others. The external factors are dependent on roadway characters, time-varying393

traffic, and weather conditions. Though an increased interest in investigating394

the contributing factors to traffic safety can be observed in recent decades, fore-395

casting and precaution problems in highway emergencies are still difficult to396

address (Mannering, 2018).397

Data-driven approaches bring new opportunities to investigate the uncov-398

ering correlations between influencing factors and develop accurate predictive399

models. Two datasets are analyzed in recent studies, i.e., traffic flow data (speed,400

lane occupancy ratio, flow, density, among others) and accident data (time and401

location). The aim of highway crash risk prediction is to identify explanatory402

variables from a high-dimensional variable set using traditional statistical mod-403

els or machine learning techniques. However, because of the lack of time-series404

historical data in disaster cases, it is still a challenging issue to predict pre-event,405

or real-time relief demands (Sheu, 2007a).406

3.4. Public health emergency407

Outbreaks of epidemics account for a great number of death and damages408

through financial and economic losses across the globe. For instance, COVID-409

19, which started in December 2019, has played havoc in the world. According410

to the World Health Organization (WHO) report dated October 16, 2020, more411

than 38 million people in more than 100 countries are infected. It is widely412

recognized that COVID-19 has posed the most serious threat to the global413

economy since World War II (Sarkar et al., 2020). To understand and mitigate414

the implications of COVID-19, Elsevier launched the open Special Issue on415

Modeling and Forecasting of Epidemic Spreading, where a hundred papers are416
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collected. This special issue presents a systematic collection of novel methods,417

strategies forecasting techniques, and models that reveal a deeper understanding418

of the spread process of the current pandemic, which also provides guidance for419

future pandemics. Interested readers can refer to Boccaletti et al. (2020) for420

details.421

Quick responding to large-scale public health emergencies requires accurate422

prediction of the trend and assessment of resource demand under changing cir-423

cumstances. The main task in the prediction of the future trend in terms of424

the total amount of infected people is to derive the epidemic curve. Wang et al.425

(2020c) indicate that three critical points have to be identified in the prediction426

model: i) the epidemic peak point, ii) the point with the highest slope, and iii)427

the point when the number of cumulative cured cases exceeds the number of428

active confirmed cases, which indicate the initial control of the epidemic. Bouch-429

nita & Jebrane (2020) develop an agent-based model to simulate the transmis-430

sion dynamics of COVID-19. The results show that restricted movement policies431

could curb coronavirus contagion. However, due to the difference of prevention432

measures between countries, the prediction model is location-dependent by com-433

prehensively considering social, political, and economic features (Firmino et al.,434

2020).435

4. Resource demand forecasting method436

As discussed in the above section, the influencing factors on resource demand437

and data basis vary with respect to the type of emergency event. For instance,438

it is difficult to forecast the timing, location, and density of any natural disas-439

ter due to the lack of referable time-series historical data. In contrast, in the440

highway transportation system, a vast amount of data can be applied to predict441

and analyze potential dangers and to develop an optimal allocation strategy of442

emergency resources. Admittedly, it is always challenging to accurately forecast443

the number of survivors in affected areas considering the real-world complexities444

and uncertainties (Sheu, 2007a,b). With the help of available disaster databases,445

17



such as EM-DAT, which stores massive amounts of data collected from more446

than 18,000 disasters worldwide since 1900, it is sufficient to predict the po-447

tential post-disaster impacts, especially the number of victims, impact area,448

and severity, which serve as the reference to further management of emergency449

resources.450

Over the last few years, the growing body of literature paid much attention451

to the application of artificial intelligence methods in emergency demand fore-452

casting models. In this subsection, the existing emergency resources demand453

prediction approaches are summarized. In general, demand forecasting can be454

roughly classified into two categories (see Tables 2 and 3): traditional methods,455

artificial intelligence methods, and simulation methods. The methodology and456

application of each category will be discussed considering the features of the457

studied problems.458

4.1. Traditional method459

4.1.1. Experience-based analysis460

Though the timing and location of emergencies, especially those caused by461

natural disasters, are unpredictable, impacts of disaster can be evaluated based462

on previous experience with similar types of emergency, density, and other fea-463

tures. Case-based reasoning (CBR) is proposed to solve new problems by re-464

ferring to successful solutions to similar problems (Zhu et al., 2019). CBR465

formulates a comprehensive analogy reasoning from one case (new problem) to466

another (old problem). The process of CBR contains the following four steps467

(also known as 4R): i) retrieve similar historical cases; ii) reuse the past knowl-468

edge to solve the new problem; iii) revise the proposed solution according to469

new conditions; and iv) retain the new experience which is useful for solving470

future problems (Liu et al., 2012).471
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However, the reasoning process of an emergency event is usually based on472

incomplete information: i) missing data in the case base, and ii) inaccurate473

post-disaster information due to the suddenness and urgencies. Hence, how to474

extract major features from the current case and to eliminate the disturbance of475

incomplete information is one of the critical issues of using CBR. Moreover, in476

order to obtain a feasible and effective relief plan in the immediate aftermath of477

a disaster, improving search efficiency by reducing the search space is another478

research focus on CBR.479

When history cases are incorrect or not always fitting to the current deci-480

sion problem, CBR can hardly search or match available cases based on sim-481

ilarities using the hidden domain knowledge. Role-Based Reasoning (RBR) is482

proposed to make up for this deficiency by considering the decision maker’s spe-483

cific requests. Da et al. (2007) propose an emergency decision-making method484

combining CBR and RBR. An iterative process is designed, where “if then”485

rules are added after obtaining similar cases through CBR, aiming to help the486

decision-maker to adjust his/her solutions. Guo et al. (2009) extend this hybrid487

reasoning process by integrating the Analytic Hierarchy Process (AHP). An in-488

dex system is developed to identify distinctive attributes and to speed up the489

reasoning process.490

Many efforts have been devoted to combining CBR and other techniques491

to increase search efficiency. Liu et al. (2012) conduct a risk analysis CBR492

on the target area to obtain significant features, such as incident type, occur-493

rence probability, among others. To tackle the uncertainty of information, the494

fuzzy theory is adopted to CBR by constructing intuitionistic fuzzy sets, which495

quantitatively describes characteristic factors of emergency cases (Shao et al.,496

2020).497

As mentioned in Section 3.1, secondary disasters also cause serious damage498

continuously. To describe the hidden relationship of the cascading disaster, the499

causal event sequence of the trigger disaster and secondary disasters is usually500

represented by a tree structure (May, 2007) or a “disaster chain” (Zhou et al.,501

2015). Feng & Li (2018) describe this kind of complex emergency cases as a502
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genetic structure, that is, the retrieval and reuse of similar solutions in the503

case base are in analogy to the genetic translation and expression processes.504

Similarly, Wang et al. (2020a) analyze the emergency evolution mechanism with505

a multi-dimensional scenario space method, through which four types of critical506

features are identified: inducing factors, bearing factors, pregnant environments,507

and emergency actions. A decision model based on CBR is then constructed,508

where tailored matching algorithms are used for different types of data (i.e.,509

accurate numerical data, fuzzy semantic data, and symbolic data).510

4.1.2. Time series analysis511

The time series analysis is developed to extract meaningful statistics and512

other characteristics of time series data (Box et al., 2011). It aims to obtain the513

characteristics of an emergency’s temporal evolution from past observations and514

then to predict future values. However, time series data collected in an emer-515

gency event is usually nonlinear and irregular. The autoregressive integrated516

moving average (ARIMA) model is one of the most widely used time series517

methods that could process this kind of data properly. Three critical model518

parameters should be determined based on problem features and available data:519

i) the order of autoregressive model, p; ii) the degree of differencing, d; and520

iii) the order of moving-average model, q. Holgúın-Veras & Jaller (2012) use521

ARIMA to predict the temporal patterns of resource requirements after the hur-522

ricane Katrina, such as the temporal evolution of demand and types of required523

commodities, as well as their corresponding importances. Juang et al. (2017)524

focus on the forecasting of visitors to the emergency department (e.g., medical525

center). Six different combinations of parameters are tested, and the results526

reveal that ARIMA(0,0,1) is appropriate for forecasting emergency department527

visits.528

However, the performance of ARIMA is unstable if time series data is highly529

nonlinear (Box et al., 2011). A considerable number of studies have been devoted530

to developing hybrid models that integrate ARIMA with emerging techniques531

to address nonlinearity. Dı́az-Robles et al. (2008) combine ARIMA and ANN to532
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forecast air quality in urban areas. The hybrid model takes the advantages of533

ARIMA and ANN in linear and nonlinear modeling, respectively, and achieves534

strong performance on forecasting air quality for a whole year. Xu et al. (2010)535

design a hybrid methodology combining ARIMA and the empirical mode de-536

composition (EMD) method. The proposed model extracts the intrinsic modes537

of the original time series through EMD and uses the ARIMA process for each538

mode.539

4.1.3. Fuzzy theory-based method540

The fuzzy theory has been widely used in emergency decision-making to541

treat uncertainties in the form of ambiguity and vagueness (Dubois, 1980), both542

of which widely exist in emergency management problems. For instance, am-543

biguity refers to the uncertain attributes with multiple options among a set of544

feasible alternatives from which the decision-maker can choose, while vagueness545

indicates unclear or imprecise data due to insufficient and incomplete informa-546

tion. The objective of the fuzzy theory is to describe these intrinsic uncertainties547

in the form of mathematics. Song et al. (1996) develop an earthquake damage548

evaluation method using the fuzzy sets theory to define the unclear boundary549

on the classification of earthquake damage grades. Sun et al. (2013) consider550

a fuzzy rough set over two universes aiming to deal with incomplete informa-551

tion smoothly. Shao et al. (2020) study the relief demand forecasting using the552

fuzzy CBR. Fuzzy logic is embedded in CBR to handle incomplete and complex553

historical data.554

4.1.4. Bayesian network555

To clearly track the real-time evolution of the disaster’s impact, the Bayesian556

approach applies the probabilistic graphical model to present the conditional557

dependencies of influencing factors and forecast the occurrence and develop-558

ment of an emergency event. Molina et al. (2005) propose a spatio-temporal559

Bayesian network to predict the occurrence of river floods. Considering the un-560

certainty and real-time constraints, a dynamic Bayesian network is built based561
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on the causal relations among different hydrologic processes. With the help of562

GIS-based analysis, Rohde et al. (2010) use the Bayesian approach to forecast563

domestic fires in an urban area. Three different datasets collected from past564

fire incidents, one aggregate dataset (census) and two disaggregate datasets (lo-565

cation and time), are combined using subjective Bayesian data analysis. Qiu566

et al. (2014) develop a novel Bayesian network-based method focusing on the567

evolutionary mechanisms of crisis events from both micro (crisis event) and568

macro (crisis chain reaction) points of view simultaneously. This method is ca-569

pable of providing a comprehensive pre-warning and predicting the potential570

losses caused by the crisis event. Taskin & Lodree (2016) apply the sequential571

Bayesian decision model in the wind speed probability forecasting. A 5-day572

forecasting horizon is adopted, which is helpful for the proactive preparation of573

relief resources for potential hurricanes.574

4.2. Machine learning method575

In the recent decade, big data has brought significant impacts and chal-576

lenges to efficient data mining and processing in decision-making (Chen et al.,577

2019). Compared with traditional statistical tools, the machine learning method578

provides a more accurate and comprehensive description of the system in the579

context of big data by an iterative learning mechanism from historical informa-580

tion. Increasing awareness of these issues has led to a growing body of literature581

on the subject of applications of machine learning for emergency management.582

4.2.1. Supervised machine learning583

Classification and regression are two basic methods of supervised machine584

learning for the labeled dataset. The objective of classification is to construct a585

model with respect to the features of a dataset and to place each object into a586

known object class, e.g., classifying critical features of an emergency event and587

finding similar cases in the case base. Regression-based forecasting models use588

statistical methods to determine the relationship between dependent variables589

(e,g., resource demand and occurrence of disasters) and a series of indepen-590
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dent variables (Yi et al., 2010; Gul & Celik, 2018). Generally, classification591

and regression methods provide a straightforward framework for identifying the592

relationship between dependent variables and predictor variables. Support vec-593

tor machine (SVM) is another supervised learning method aiming to obtain an594

optimal hyper-plane that classifies the sample data with the maximal margin.595

Due to its high discriminability for pattern recognition, SVM has been widely596

used in recognition of disaster outbreaks from sensor data of smartphones (Mori597

et al., 2013; Higuchi et al., 2014).598

Classification of an event’s features can be explicitly described by a tree-599

structure, namely, the decision tree. Thus, the aim of a learning task is to600

find optimal classification rules which best explain values of dependent vari-601

ables by classifying explanatory variables. Ensemble learning methods, e.g.,602

Random Forest (RF) and boosted tree, are proposed based on multiple decision603

trees to deal with high-dimensional features, reduce over-fitting, and improve604

generalization (Breiman, 2001). Lee et al. (2017) employ RF and boosted-tree605

models to achieve the spatial prediction of flood susceptibility in Seoul, Korea.606

The results show that RF performs better than boosted-tree in the capture of607

a flood. Yu et al. (2017) construct two kinds of forecasting models to fore-608

cast real-time radar-derived rainfall based on RF and SVM, i.e., single-mode609

and multiple-mode models. It shows that the multiple-mode model provides610

better performance in 1-hour ahead forecasting, while the SVM-based model611

performs better in 2- and 3-hours forecasting. Chen et al. (2020) predict the612

flood occurrence using three tree-based methods, i.e., näıve Bayes tree (using613

näıve Bayes classifiers to replace leaf nodes of the decision tree), alternating614

decision tree (consisting of decision and prediction nodes), and RF. The spatial615

flood database is constructed using thirteen explanatory factors. The results616

demonstrate that the RF is an efficient and reliable model that has a higher617

prediction accuracy among different types of tree-based forecasting models.618
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4.2.2. Unsupervised machine learning619

In contrast to classification, clustering is an unsupervised learning method620

that aims to divide a group of unlabeled examples into an unknown number of621

categories with similarities. For instance, Hadid et al. (2020) develop a data-622

driven modeling approach for flood forecasting, where a clustering-based pro-623

cedure is embedded in a linear regression because the class labels of regression624

data are not known in advance. Sood et al. (2017) employ the K-mean cluster-625

ing algorithm to classify the flood state in five disparate levels. Available data626

is collected by using collaborative Internet of Things devices installed in a web627

of hexagonal.628

With the widespread adoption of social media, clustering is usually used to629

identify the occurrence of emergency events in real-time through online media630

data. Sakai & Tamura (2014) develop a new framework to identify the af-631

fected area of emergency in geotagged tweets using a spatiotemporal clustering632

technique. The proposed method has been validated to be effective in a real-633

world emergency topic in Japan through crawling geotagged tweets posted on634

the Twitter site. Pohl et al. (2016) propose an online indexing and clustering635

procedure of social media data for real-time emergency identification, where in-636

dexing aims to track the related vocabulary over time, and clustering is then637

applied to detect the set of events recognized through indexing.638

4.3. Neural network639

Artificial neural network (ANN) has become increasingly popular in the640

last decade due to its distinct advantages to exploit the available big datasets641

and provide higher forecasting accuracy compared with other machine learning642

methods (Hatcher & Yu, 2018). Wu et al. (2008) propose a risk evaluation model643

of heavy snow disasters using the ANN considering natural, social, economic,644

and environmental factors. Aghamohammadi et al. (2013) also use ANN to es-645

timate the severity and distribution of loss in the earthquake. Two key factors646

are identified in the human loss estimation problem in disaster management:647

i) estimating the number of casualties caused by a disaster, and ii) determin-648
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ing the spatial spread of casualties. To achieve the goal of estimating the re-649

lief demand dynamically in a disaster, Lin et al. (2020) propose a multiplayer650

perceptron ANN considering the dynamic population distribution utilizing big651

data originating from web mapping service, social media, crowdsourcing system,652

among others. Compared with general ANN, radial basis function neural net-653

work (RBF-NN) has been proved to have a simpler design process and higher654

generalization ability (Yu et al., 2011). Mohammadi et al. (2014) use RBF-NN655

to predict the demand for emergency supplies. The network size and parame-656

ters of RBF-NN are optimized simultaneously by a novel hybrid evolutionary657

algorithm.658

In the traditional ANN, all inputs are independent of each other, while the659

sequential information is not considered (Yousefi et al., 2019). To overcome this660

limitation, different architectures, i.e., recurrent neural networks (RNN) and661

convolution neural networks (CNN), are proposed, which have been proved to662

have better performance. Specifically, RNN is derived from ANN by adding a663

recurrent connection on the hidden layer, where the looping constraint ensures664

that the sequential information is captured in the input data. Chen et al. (2013)665

propose a multi-step-ahead real-time flood forecasting model based on RNN.666

Model parameters are adjusted repeatedly according to the current observed667

information to enhance the reliability and forecast accuracy of the proposed668

method.669

CNN is a deep learning method including three types of hidden layers,670

namely, convolution layer, pooling layer, and fully-connected layer. It is de-671

signed to deal with grid-structured inputs, which indicate the data which has672

strong spatial dependencies in local regions of the grid, e.g., 2-dimensional image673

(Aggarwal, 2018). CNN is getting increasing attention due to its outstanding674

performance in the area of image processing. Hence, there have been some works675

in developing disaster detecting and forecasting models using satellite imagery676

(Amit & Aoki, 2017; Zhao et al., 2020). Additionally, Nguyen et al. (2017)677

propose a real-time emergency event detection system based on CNN by using678

social media data, such as tweets. Considering the huge amount of data for the679
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learning phase, Aqib et al. (2017) are among the first to use Graphics Process-680

ing Unit (GPU) to expedite the training process of CNN in the urban traffic681

prediction problem. Lohumi & Roy (2018) develop a deep learning method to682

predict the severity level of flood based on videos, the performance of which is683

shown to be better than the traditional CNN model. Tian et al. (2019) propose684

a deep learning framework based on CNN to investigate disaster-related infor-685

mation from different modalities, including image, video, audio, text, etc. Qiao686

et al. (2020) propose an automatic change detection framework for natural dis-687

aster detection. The optical flow is estimated based on deep learning to detect688

pixel-based motion tracking.689

One inherent limitation of NN is that the successive multiplication with the690

recurrent weight matrix is usually unstable because of various time-stamps, re-691

sulting in a good short-term memory but poor long-term memory (Aggarwal,692

2018). LSTM is designed to address this problem (Hochreiter & Schmidhuber,693

1997). Yousefi et al. (2019) forecast the patient visit in emergency depart-694

ments using LSTM and other statistical approaches, including multiple linear695

regression (MLR), autoregressive integrated moving average, support vector re-696

gression, and ARIMA. The comparison results show that LSTM generally gives697

a better performance with the lowest MAPE and largest R2 on average in exper-698

iments of 1-day to 7-days ahead forecasting. While, ARIMA performs better in699

short-term (one or two days ahead) forecasting horizons, and MLR shows better700

results in forecasting horizons of 3-7 days. Rahman & Hasan (2018) use LSTM701

to predict traffic speed on highways in an emergency event of the hurricane evac-702

uation. The effectiveness of LSTM in capturing nonlinear relationships between703

traffic-related variables is verified by the result comparison between LSTM and704

traditional methods, including ARIMA, ANN, and k-nearest NN. Due to its705

capability of learning nonlinear functions of inputs and capturing long-term706

temporal dependencies, LSTM has been widely applied in forecasting the de-707

mand for relief resources during disasters, such as hurricane (Nguyen et al.,708

2019), flood (Hu et al., 2019; Kim & Kim, 2020), and public health emergency709

(Chimmula & Zhang, 2020; Shahid et al., 2020).710
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4.4. Simulation method711

Simulation method for EM has raised widespread concerns since the 1980s712

(Amezquita-Sanchez et al., 2017), which is a powerful tool to study the com-713

plex system of emergency events. As one of the most widely applied disaster714

simulation tools, HAZUS, which began in the early 1990s, has the capability715

of estimating the intensity of hazards (including earthquake, flood, hurricane,716

tsunami, etc.) in the exposed area and corresponding potential losses (Schneider717

& Schauer, 2006). The construction of a simulation system is a typical inter-718

disciplinary problem that contains many disciplines, such as geography, human719

behavior, information science, economics, urban planning, and transportation.720

This section will provide a detailed review of two types of simulation methods,721

namely, physics- and agent-based methods.722

4.4.1. Physics-based simulation723

Compared with traditional statistics-based prediction models, the physics-724

based simulation model usually uses in-depth knowledge and expertise regarding725

disaster parameters to investigate the trigging mechanism of induced hazards726

(Homma et al., 2014). For instance, two statistical models are usually ap-727

plied in earthquake prediction, namely, the rupture forecasting model and the728

ground-motion model, both of which are based on historical observation data.729

The physics-based waveform simulation could estimate the seismic hazard by730

simulating the ground motion (Graves et al., 2011).731

Another important application of physics-based simulation is in floods, hy-732

drological events, and resulting geological disasters, such as landslides (Zhang733

et al., 2018). Looper & Vieux (2012) develop physics-based hydrologic mod-734

els for the flash flood forecasting system. The model using radar rainfall data735

achieves higher accuracy than that using rain gauge data alone. Though some736

works suggest that the physics-based method sometimes fails to predict floods737

due to high uncertainties, e.g., Shrestha et al. (2013), remarkable improvements738

have been made by using other knowledge. For instance, Bellos & Tsakiris739
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(2016) propose a hybrid model using both hydrodynamic and hydrological the-740

ories.741

4.4.2. Agent-based simulation742

Agent-based simulation (ABS) is a powerful tool to represent the compli-743

cated decision-making process by employing autonomous agents that can inter-744

act with the surrounding virtual environment (Yin et al., 2014). Hawe et al.745

(2012) indicate that ABS plays an important role in the EM system by achiev-746

ing the following two goals: 1) reproducing the occurred emergency event and747

making preparedness for future similar events; and 2) simulating the real-time748

emergency and acting as a decision-support tool.749

Considering the fact that the ABS is capable of simulating individuals’ inter-750

action in a dynamic system, it has been widely used in modeling the evacuation751

process and therefore predicting the evacuation demand, including whether to752

evacuate, time, path, mode, and other decisions (Wang et al., 2021). Yin et al.753

(2014) propose an agent-based travel demand model system for hurricane evac-754

uation, through which six evacuation decisions are predicted, namely, evacuate755

or stay, accommodation type, destination, mode, vehicle usage, and departure756

time. Koc & Işık (2020) develop a multi-agent system (MAS) for flood risk757

assessment, which employs heterogeneous agents and simulates their negotia-758

tion, coordination, and cooperation. Three agents are considered in this work,759

namely, social, economical, and environmental agents.760

5. Discussions761

This section first presents our analysis of the reviewed paper by identifying762

the most challenging problems in the forecasting methods in the EM system. It763

then provides promising future directions to improve the accuracy and efficiency764

of forecasting methods.765
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5.1. Current challenges766

5.1.1. Natural disaster767

Admittedly, accurate prediction of natural disasters is still intractable be-768

cause of their abrupt occurrence, and limited actions can be made before their769

occurrence. There have been some works in investigating natural phenomena770

before a disaster. For instance, the generation of earthquakes may cause abnor-771

mal changes in animal behavior (Grant & Halliday, 2010), water composition772

and level (Grant et al., 2011), electrical and magnetic field signals (Masci &773

Thomas, 2015). However, very few works have considered the construction of774

a generalized assessment framework that can be easily implemented in differ-775

ent areas with heterogeneous social and environmental characteristics. One776

of the challenges in constructing such a framework is how to validate the accu-777

racy of various methods utilizing different types of information and assumptions778

through cross-validation.779

Though the location, time, and damage magnitude of disasters are challeng-780

ing to predict, quick response to evaluate the scale of damage and estimate the781

urgent relief demand in the aftermath of a disaster is also of paramount impor-782

tance. However, in such a complex disaster situation, a large amount of noise783

information (e.g., incorrect, incomplete, and inconsistent data) are collected,784

which further increases the difficulty of decision making (Huang et al., 2018).785

Developing efficient data mining techniques, including data cleaning, integra-786

tion, and reduction, is a vital and challenging task due to the overwhelming787

increase of data in a disaster.788

5.1.2. Urban emergency789

The urban area is the most vulnerable place for both natural disasters and790

man-made emergency events, which has a higher density of population and791

infrastructure. Additionally, the effectiveness and efficiency of in-event and792

post-event emergency management strategies are highly dependent on the ac-793

cessibility of urban transportation system (Chang, 2003). Unlike the unpre-794

dictable natural disasters, the vulnerability of an urban transportation system795
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can be detected beforehand, such as the preposition of assets and supplies (Sab-796

baghtorkan et al., 2020). With the development of cities, the environmental and797

social features are changing dynamically, such as population density, road net-798

work, among others. There is a lack in consideration of robustness, flexibility,799

and adaptability of forecasting methods accommodating the dynamic change of800

influencing factors.801

It is true that recent advances have been made by the literature using data802

mining techniques to explore emergency-related information through social me-803

dia (Sakai & Tamura, 2014; Pohl et al., 2016; Sabbaghtorkan et al., 2020), but804

most current efforts are post-hoc analysis. The construction of an EM system805

integrating real-time forecasting, monitoring, and early warning is still an open806

question in the literature.807

5.1.3. Highway and logistics808

Highway system is another critical component of the transportation infras-809

tructure system that supports the mobility of relief goods and the evacuation810

of affected people before and after an emergency event. The accessibility of the811

highway system is of great importance, especially in the case that evacuees try to812

leave the affected area as fast as possible, such as hurricane and flood (Li et al.,813

2012). Faturechi & Miller-Hooks (2015) have given seven performance metrics814

for the highway system to measure its ability to resist emergencies: risk, vulner-815

ability, reliability, robustness, flexibility, survivability, and resilience. Gu et al.816

(2020) review recent studies on the transportation network’s vulnerability, relia-817

bility, and resilience under perturbations. It is stated that it is difficult to predict818

the likelihood of rare and extreme disturbances, i.e., natural disasters. How-819

ever, recurrent perturbations, such as traffic jams, are predictable with respect820

to travel times. Though many efforts have been devoted to estimating travel821

times on highways, the data-driven methods depending on historical data are822

challenged by novel data fusion methodologies multi-source data collected from823

loop detectors, probe vehicle data, Global Positioning System (GPS), among824

others. To increase the accuracy and efficiency of the prediction models, data825
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assimilation methodology with high-quality data and sophisticated prediction826

algorithms with experimental settings (e.g., the structure of feature structure,827

the trade-off between accuracy and efficiency) are two major challenging tasks828

for travel time prediction studies (Oh et al., 2015).829

Additionally, cutting-edge traffic management strategies, such as customized830

service (Huang et al., 2020), traffic signal priority (Humagain et al., 2020), lane831

reservation (Huang et al., 2021), and lane pre-clearing (Wu et al., 2020), can also832

be combined with travel time prediction to improve the transportation efficiency833

for evacuees and relief goods.834

5.1.4. Public health emergency835

The prevention of the COVID-19 pandemic has become the first and fore-836

most political policy for most nations in the world. Meanwhile, the coronavirus837

has mutated in a way that helps the pathogen spread more easily, which further838

increases the difficulty of the modeling and forecasting of epidemic spreading.839

Another challenge for epidemic models is how to take nationwide and local pre-840

ventive measures, such as lockdown, compulsory quarantine, social distancing,841

travel restriction, into consideration to accommodate the overwhelming demand842

for healthcare resources and daily relief items. For instance, in current literature,843

it is assumed that the infection rate is a decreasing function of time of imple-844

menting lockdown (Sahoo & Sapra, 2020). Obviously, the epidemic model of845

infectious diseases is highly nonlinear and dynamic with respect to independent846

variables, such as time, population, among others, and it always falls behind847

the actual situation, which is changing over time. The underestimation of the848

spread of the disease would result in the resource shortage and the loss of life.849

5.2. Future directions850

In view of the current challenges existing in literature, we then predict some851

possible directions of forecasting models for EM systems as well as possible852

opportunities in the coming year of the big data era.853
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5.2.1. Fusion of multi-source big data854

With the wide equipment of smart devices, such as sensors, GPS, smart-855

phones, and many other IoT-enabled devices, huge volumes and different types856

of data are available in an emergency event. An effective fusion of multi-source857

data could provide a consistent and reliable information environment by omit-858

ting incorrect and incomplete data sources. At present, though very few, some859

efforts have been devoted to building the platform for information sharing be-860

tween different organizations during emergencies (Lee & Kang, 2015; Chen et al.,861

2019). Efficient data fusion methods involving data cleaning and mapping, criti-862

cal feature extraction, and incomplete data interpolation would be beneficial for863

forecasting methods in the EM system and following decision-making problems.864

5.2.2. High-performance processing/computing technologies865

The quick response to urgent events relies on powerful computing technolo-866

gies that enable emergency managers to capture, store, process, and analyze867

huge amounts of data. Huang et al. (2018) have proposed a conceptual frame-868

work of the big-data-driven safety decision-making system. Distributed data869

management systems and parallel processing techniques are two promising di-870

rections to accelerate data processing and decrease the training time in AI-based871

forecasting models. For instance, the Hadoop Distributed File System (HDFS)872

has been applied in the training phase of the CNN-based flood prediction model873

(Anbarasan et al., 2020). The actual need integrated EM system also provides874

a promising opportunity for the application of computational intelligence tech-875

nologies.876

6. Conclusions877

During the last four decades, the forecasting method for emergency events878

has played a vital role in both society and scientific community because it is879

highly related to human life, property, society, and envionment. In this paper,880

we review a rich literature that works on forecasting models in the EM system.881

We categorize the surveyed papers in different ways to show the characteristics of882
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various types of emergency events (see Section 3) and forecasting models includ-883

ing traditional statistical methods (see Section 4.1), machine learning methods884

(see Section 4.2), NN-based methods (see Section 4.3), and simulation methods885

(see Section 4.4). Despite the fact that significant advances have been made in886

recent years, we further highlight and discuss the gaps found through reviewing887

these papers (see Section 5.1) and provide potential future research directions888

(see Section 5.2).889

The main limitation of this review is that though it summarizes the features890

of a variety of emergency events and gives an overview of corresponding pre-891

diction methods, the advantage of each prediction methods with respect to a892

certain emergency event is not well discussed, which may provide more insight-893

ful remarks and act as a guide for future studies and applications. Another894

limitation of this paper is that it only focuses on prediction models for relief895

resource demand and ignores the properties of allocation problems which take896

the results of resource demand as inputs. Prediction methods that integrate the897

prediction and allocation models are not included in this survey, which needs898

more attention in future research.899
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