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Abstract 22 

Thick-cloud contamination causes serious missing data in Landsat images, which 23 

substantially limits applications of these images. To remove the thick clouds in 24 

Landsat data, the most popular methods employ auxiliary data such as a cloud-free 25 

image of the same area acquired on another date (referred to as the “reference image”). 26 

However, the performances of most previous methods strongly depend on the 27 

usefulness of the specific reference image, but in some cases high-quality cloud-free 28 

reference images are rarely available. In addition, some of these methods ignore the 29 

use of partially cloud-contaminated reference images, but clear pixels in these images 30 

can be very useful. To address these issues, a new cloud-removal method 31 

(AutoRegression to Remove Clouds (ARRC)) has been developed in this study. The 32 

most important improvement of ARRC was that it considered the autocorrelation of 33 

Landsat time-series data and employed multi-year Landsat images including partially 34 

cloud-contaminated images in the cloud removing process. ARRC also addressed the 35 

cases that autocorrelation of Landsat time series might be adversely affected by abrupt 36 

land cover changes over multiple years. We compared ARRC with the widely used 37 

MNSPI (modified neighborhood similar pixel interpolator) method in four testing 38 

sites, including an urban area in Beijing and three croplands in the North China Plain, 39 

northeastern Vietnam, and Iowa, USA. Results based on images with simulated clouds 40 

showed that ARRC performed better than MNSPI and achieved lower RMSE values 41 

(e.g., 0.02129 vs. 0.03005, 0.03293 vs. 0.04725, 0.02740 vs. 0.03556, and 0.03303 vs. 42 
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0.03973 in the near-infrared band for the four testing sites, respectively). Besides, the 43 

experiments suggested the improved performance when clear pixels in partially 44 

cloud-contaminated images were used by ARRC. Furthermore, cloud-free images 45 

reconstructed by ARRC are visually better than those reconstructed by MNSPI, when 46 

both approaches were applied to real cloud-contaminated Landsat images. 47 

 48 

 49 
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1. Introduction 64 

Landsat images are currently the most widely used remotely-sensed data sources 65 

for land-surface mapping with medium spatial resolution at global and regional scales 66 

(Chen et al., 2015; Hansen and Loveland, 2012; Wulder et al., 2019). However, since 67 

clouds cover approximately one-third of the earth’s area at any given time, one great 68 

challenge for the applications of Landsat images is serious cloud contamination (Ju 69 

and Roy, 2008; Lin et al., 2014). Clouds (e.g., thick ones) can completely block the 70 

transmission of electromagnetic waves in the optical band, which leads to missing 71 

values in Landsat data. Reconstructing cloud-induced missing values is thus very 72 

important for Landsat data and has stimulated broad research interest, which has led 73 

to the development of numerous cloud-removal methods (e.g., reviewed by Shen et al., 74 

2015). 75 

The methods to remove thick clouds can be generally classified into four 76 

categories according to the type of auxiliary information employed. The first is 77 

spatial-based, in which clear pixels in the neighborhood of clouds are used to 78 

reconstruct a cloud pixel by using traditional spatial interpolation techniques such as 79 

nearest-neighbor or kriging interpolation (Siravenha et al., 2011; Yu et al., 2011). 80 

Spatial-based methods are suitable for small cloud regions, but perform poorly when 81 

cloud cover expands or landscape is heterogeneous. The second type of methods is 82 

based on the use of multiple data sources, in which auxiliary information can be 83 

estimated from multisource images such as synthetic aperture radar (SAR) images, 84 
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which are less affected by clouds (Hoan and Tateishi, 2009; Huang et al., 2015). The 85 

use of multisource images to assist cloud removal, however, suffers from 86 

inconsistencies in the spectral and spatial resolutions of different data. The third type 87 

is temporal-based method, which employ cloud-free images of the same region 88 

acquired on other dates (referred to as “reference images”) to fill missing values in the 89 

target image if the temporal changes between them can be quantified. Some 90 

representative methods of this type include temporal filtering (Cao et al., 2018; Vuolo 91 

et al., 2017), temporal replacement, and temporal learning using sparse representation, 92 

compressed sensing and machine learning (Li et al., 2019b; Lorenzi et al., 2013; 93 

Tahsin et al., 2017). Finally, hybrid methods belong to the fourth type, in which the 94 

respective advantages of the aforementioned three types are partly integrated (Zhang 95 

et al., 2018; Zhu et al., 2012). For example, the modified neighborhood similar pixel 96 

interpolator (MNSPI) method combines both spatial-based and temporal-based 97 

estimations to fill cloud-induced missing reflectance (Zhu et al., 2012). 98 

Among these methods, it has been recognized that the use of temporal auxiliary 99 

information is essential for better cloud removal (Li et al., 2019a; Shen et al., 2015). 100 

As a result, reference images are extensively used in previous methods. Unfortunately, 101 

these methods have not yet fully addressed the issue in the use of temporal auxiliary 102 

information. Most previous methods use one cloud-free reference images. Thus, 103 

cloud-removal performance greatly depends on the selection of the reference image. 104 

Generally, a better performance requires that the reference image should be acquired 105 
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at a date as close as possible to that of the target image so that there are not substantial 106 

landscape changes (Chen et al., 2011; Zhu et al., 2012). However, a short time interval 107 

between the reference and target images cannot be satisfied in many particular 108 

applications because of the 16-d revisit period of Landsat and temporally continuous 109 

cloud contamination. Several studies attempted to address this problem by using 110 

multi-temporal reference images to remove cloud. Zeng et al. (2013) reconstructed 111 

missing pixels by first using auxiliary multi-temporal images and then used a 112 

regularization method to recover the remaining missing pixels. Lin et al. (2013) 113 

proposed to generate a synthetic reference image in which cloud-free pixels 114 

corresponding to different cloud patches can be acquired from different reference 115 

images. They found that cloud-removed images using multitemporal reference images 116 

achieved higher accuracy than those based on a single reference image. However, it 117 

may be still difficult to find a satisfactory reference image for a large cloud patch. 118 

Chen et al. (2017) proposed another way to employ multiple reference images to 119 

remove cloud. For each cloud patch, they first sorted reference image patches 120 

according to the spectral similarity between the target image and reference images and 121 

then selected the most similar three patches of reference images to estimate missing 122 

values. The weighted average of the three estimates was used to get the final 123 

estimations of this cloud patch. Chen’s method selected the three reference images by 124 

calculating patch similarity, but the selection did not consider the similarity difference 125 

of each pixel within a cloud patch. In addition, some cloud pixels cannot be 126 
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reconstructed if they were contaminated by cloud in the most similar three reference 127 

images, and thus these cloud pixels needed further processing. In actuality, both Lin et 128 

al. (2013) and Chen et al. (2017) aimed to select the most similar reference image 129 

from multiple reference images for each cloud patch. However, the most similar 130 

reference image does not necessarily mean that it is a better reference image for cloud 131 

removal (see our discussion). Therefore, we expect a new cloud-removal method that 132 

reduces dependence on a specific reference image and makes full use of multiple 133 

partially cloud-contaminated reference images in a simple and effective way. 134 

In this study, a new method that we call AutoRegression to Remove Cloud 135 

(ARRC) was developed. The new method uses the time series of multi-year 136 

land-surface reflectance observations and reconstructs missing data in the time series 137 

by the autoregression of Landsat time series. In some cases, the autocorrelation of 138 

Landsat time series might be adversely affected because of abrupt land cover changes. 139 

ARRC also considers and addresses these cases. ARRC employs a large number of 140 

available Landsat images, even some with clouds in them, for cloud removal in the 141 

target image. We expect the performance of ARRC to be more stable than previous 142 

temporal-based methods because the new method is less affected by the selection of 143 

specific reference images. Although the basic idea of ARRC is simple, using Landsat 144 

time-series images and their autocorrelation for cloud removal is, as far as we know, 145 

original and new. In this paper, we first demonstrate the ARRC algorithm and then 146 

compare ARRC with a widely used existing method (MNSPI) in four testing regions. 147 
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 148 

 149 

2. The ARRC Algorithm development 150 

Fig. 1 shows a flowchart of the ARRC algorithm. In general, ARRC reconstructs 151 

the reflectance in band b for a cloud pixel (x, y) (𝑅(𝑥, 𝑦, 𝑏)) by using the weighted 152 

sum of two estimations, expressed as 153 

𝑅(𝑥, 𝑦, 𝑏) = 𝑅𝑙(𝑥, 𝑦, 𝑏) × 𝑊𝑙(𝑥, 𝑦, 𝑏) + 𝑅𝑠(𝑥, 𝑦, 𝑏) × 𝑊𝑠(𝑥, 𝑦, 𝑏)         (1) 154 

where 𝑅𝑙(𝑥, 𝑦, 𝑏) indicates an estimation based on multi-year time-series reflectance 155 

images (referred to as “long-term estimation”) and 𝑅𝑆(𝑥, 𝑦, 𝑏)  indicates an 156 

estimation based on a single reference image (“short-term estimation”). 𝑊𝑙(𝑥, 𝑦, 𝑏) 157 

and 𝑊𝑠(𝑥, 𝑦, 𝑏) are the weights of the two estimations, which sums to 1. We include 158 

both long-term and short-term estimations in ARRC because 𝑅𝑙(𝑥, 𝑦, 𝑏) is more 159 

suitable for near-stationary time series and 𝑅𝑆(𝑥, 𝑦, 𝑏) accounts for cases with abrupt 160 

land cover changes. We demonstrate how to determine 𝑅𝑙(𝑥, 𝑦, 𝑏) and 𝑅𝑆(𝑥, 𝑦, 𝑏) 161 

and their weights in sections 2.1, 2.2, and 2.3, respectively.  162 

 163 
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 164 

Fig. 1. Flowchart of the ARRC method. 165 

 166 

2.1 The long-term estimation algorithm in ARRC 167 

Based on the autocorrelation of Landsat reflectance time-series data, the 168 

long-term estimation (i.e., 𝑅𝑙(𝑥, 𝑦, 𝑏) in Eq. (1)) is estimated from 169 

𝑅𝑙(𝑥, 𝑦, 𝑏) = ∑ 𝑅𝑖(𝑥, 𝑦, 𝑏) ×𝑚
𝑖=1170 

𝑎𝑖(𝑥, 𝑦, 𝑏) + 𝑎0(𝑥, 𝑦, 𝑏)                   (2) 171 

where m is the total number of Landsat images acquired during multiple years that are 172 

cloud-free at the location of the cloud pixel (x, y). Obviously, m may vary for different 173 

cloud pixels. 𝑎𝑖(𝑥, 𝑦, 𝑏)  and 𝑎0(𝑥, 𝑦, 𝑏)  are the regression parameters to be 174 
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estimated. We assume that the cloud pixel (x, y) and a clear pixel in its neighborhood 175 

more likely share the same regression parameters if both pixels show similar 176 

trajectories of reflectance time-series data. Fig. 2 shows how ARRC determines the 177 

neighborhood of a cloud patch. Specifically, we first generate a local neighborhood 178 

with a window size of 30×30 pixels for each cloud pixel, and then we combine all of 179 

the local neighborhoods together. All the pixels that are in the combined 180 

neighborhood but outside the cloud patch are referred to as the neighboring pixels of 181 

this cloud patch.  182 

 183 

Fig. 2. Schematic showing neighborhood generation of a cloud target. 184 

 185 

Next, we determine the similarities between the cloud pixel (x, y) and its 186 

neighboring pixels in two steps. First, we employ the unsupervised classifier 187 

ISODATA to implement clustering of all pixels in the cloud region and its 188 

neighborhood. The input data in ISODATA are new time-series images that have been 189 

formed from cloud-free images from all years (i.e. all images are cloud-free for the 190 
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cloud region and its neighborhood). We set the range of the number of classes to be 191 

between 2 and 5, and the number of classes was automatically determined by 192 

ISODATA. For the number of classes for the four testing regions in this study, please 193 

refer to Table S1 in the supplementary materials. Neighboring pixels within the same 194 

class as the cloud pixel (x, y) may also have different similarities. Therefore, in the 195 

second step we further calculate the absolute difference (𝐷𝐼𝐹𝐹) and linear correlation 196 

(𝐶𝑂𝑅 ) of the reflectance time series between the cloud pixel (x, y) and each 197 

neighboring pixel belonging to the same class (referred to as (𝑥𝑗 , 𝑦𝑗)), as 198 

𝐷𝐼𝐹𝐹𝑗_(𝑥,𝑦) =  
1

𝑚
∑ |𝑅𝑖(𝑥, 𝑦, 𝑏) − 𝑅𝑖(𝑥𝑗 , 𝑦𝑗 , 𝑏)|𝑚

𝑖=1               (3) 199 

𝐶𝑂𝑅𝑗_(𝑥,𝑦,𝑏) =200 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 (𝑡𝑖𝑚𝑒_𝑠𝑒𝑟𝑖𝑒𝑠(𝑥𝑗,𝑦𝑗,𝑏), 𝑡𝑖𝑚𝑒_𝑠𝑒𝑟𝑖𝑒𝑠(𝑥,𝑦,𝑏))       (4) 201 

Here, 𝑡𝑖𝑚𝑒_𝑠𝑒𝑟𝑖𝑒𝑠(𝑥,𝑦,𝑏) consist of by all images during multiple years that are 202 

cloud-free at the location of (x, y), denoted as [𝑅1(𝑥, 𝑦, 𝑏), 𝑅2(𝑥, 𝑦, 𝑏), … , 𝑅𝑚(𝑥, 𝑦, 𝑏)]. 203 

𝑡𝑖𝑚𝑒_𝑠𝑒𝑟𝑖𝑒𝑠(𝑥𝑗,𝑦𝑗,𝑏) are determined as the reflectance values at the corresponding m 204 

dates for (𝑥𝑗 , 𝑦𝑗), denoted as [𝑅1(𝑥𝑗 , 𝑦𝑗 , 𝑏), 𝑅2(𝑥𝑗 , 𝑦𝑗 , 𝑏), … , 𝑅𝑚(𝑥𝑗 , 𝑦𝑗 , 𝑏)]. Because some 205 

reflectance values in 𝑡𝑖𝑚𝑒_𝑠𝑒𝑟𝑖𝑒𝑠(𝑥𝑗,𝑦𝑗,𝑏) may be contaminated by clouds (e.g., in 206 

partially cloud-contaminated images), we perform linear interpolation on 207 

𝑡𝑖𝑚𝑒_𝑠𝑒𝑟𝑖𝑒𝑠(𝑥𝑗,𝑦𝑗,𝑏)  to fill these values. By combining the absolute 208 

difference 𝐷𝐼𝐹𝐹𝑗_(𝑥,𝑦) and the linear correlation 𝐶𝑂𝑅𝑗_(𝑥,𝑦,𝑏) together, we define the 209 

Similarity (𝑆𝑗_(𝑥,𝑦,𝑏)) as 210 

𝑆𝑗_(𝑥,𝑦,𝑏) =211 



12 

 

𝐶𝑂𝑅𝑗_(𝑥,𝑦,𝑏)/𝐷𝐼𝐹𝐹𝑗_(𝑥,𝑦)

∑ (𝐶𝑂𝑅𝑗_(𝑥,𝑦,𝑏)/𝐷𝐼𝐹𝐹𝑗_(𝑥,𝑦))𝑛
𝑗=1

                                (5) 212 

where n is the total number of neighboring pixels in the same class as the cloud pixel 213 

(x, y). Using these n pixels and considering their similarities, we thus estimate the 214 

regression parameters in Eq. (2) by minimizing the following object function: 215 

𝐚𝐫𝐠 𝒎𝒊𝒏
𝒂𝟎(𝒙,𝒚,𝒃),   𝒂𝟏(𝒙,𝒚,𝒃)  ,…,  𝒂𝒎(𝒙,𝒚,𝒃)

∑ 𝑆𝑗𝑥,𝑦,𝑏
× [(∑ 𝑅𝑖(𝑥𝑗 , 𝑦𝑗 , 𝑏) × 𝑎𝑖(𝑥, 𝑦, 𝑏) +𝑚

𝑖=1
𝑛
𝑗=1216 

𝑎0(𝑥, 𝑦, 𝑏)) − 𝑅(𝑥𝑗 , 𝑦𝑗 , 𝑏)]2                                (6) 217 

We solve Eq. (6) by the least squares method to estimate 𝑎0(𝑥, 𝑦, 𝑏), 𝑎1(𝑥, 𝑦, 𝑏),…, 218 

  𝑎𝑚(𝑥, 𝑦, 𝑏), which are inserted into Eq. (2) to acquire the long-term estimation 219 

𝑅𝑙(𝑥, 𝑦, 𝑏).  220 

  221 

2.2 The short-term estimation algorithm in ARRC 222 

The long-term estimation algorithm may not be applicable to cases with abrupt 223 

land cover changes during multiple years. We thus developed a separate short-term 224 

estimation (i.e. 𝑅𝑆(𝑥, 𝑦, 𝑏) in Eq. 1) based on a single reference image without 225 

clouds, expressed as 226 

𝑅𝑠(𝑥, 𝑦, 𝑏) = 𝛼(𝑥, 𝑦, 𝑏) × 𝑅𝑟(𝑥, 𝑦, 𝑏) +227 

𝛽(𝑥, 𝑦, 𝑏)                                      (7) 228 

where 𝑅𝑟(𝑥, 𝑦, 𝑏)  is the reflectance in the reference image. 𝛼(𝑥, 𝑦, 𝑏)  and 229 

𝛽(𝑥, 𝑦, 𝑏) are the slope and intercept of the linear regression, respectively, which are 230 

retrieved by minimizing the following object function: 231 
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          𝐚𝐫𝐠 𝐦𝐢𝐧  
𝜶(𝒙,𝒚,𝒃),   𝜷(𝒙,𝒚,𝒃) 

∑ 𝑤𝑖𝑠 ×
ℎ

𝑖𝑠=1
 (𝑅(𝑥𝑖𝑠, 𝑦𝑖𝑠, 𝑏) − 𝛼(𝑥, 𝑦, 𝑏)232 

× 𝑅𝑟(𝑥𝑖𝑠, 𝑦𝑖𝑠, 𝑏)233 

− 𝛽(𝑥, 𝑦, 𝑏))2                                                                                                 (8) 234 

where (𝑥𝑖𝑠, 𝑦𝑖𝑠) indicates a similar pixel in the neighborhood. 𝑅(𝑥𝑖𝑠, 𝑦𝑖𝑠, 𝑏) and 235 

𝑅𝑟(𝑥𝑖𝑠, 𝑦𝑖𝑠, 𝑏) are the reflectances of the similar pixel in the target image and the 236 

reference image. Here, the “similar” pixels were determined based on the single 237 

reference image. We followed a previous study (see Eqs. 1-2 in Chen et al., 2011) and 238 

used the 20 most similar pixels (i.e. h = 20, where h is the total number of similar 239 

pixels), as suggested by Chen et al. (2011).  𝑤𝑖𝑠 is the weight for each similar pixel 240 

(i.e., the higher the weight the more similar the pixel), and is determined by 241 

considering both spatial distance (𝐷𝑖𝑠) and spectral distance (𝑆𝑖𝑠), as follows: 242 

𝐷𝑖𝑠 = √(𝑥𝑖𝑠 − 𝑥)2 + (𝑦𝑖𝑠 − 𝑦)2 243 

𝑆𝑖𝑠 =244 

√
∑ (𝑅𝑟(𝑥𝑖𝑠,𝑦𝑖𝑠,𝑏)−𝑅𝑟(𝑥,𝑦,𝑏))2𝑔

𝑏=1

𝑔
                                         (9) 245 

where g is the number of bands. Using a normalized form of 𝐷𝑖𝑠 and 𝑆𝑖𝑠, we express 246 

 𝑤𝑖𝑠 as 247 

𝑤𝑖𝑠 =
1/(𝑛𝑜𝑟(𝐷𝑖𝑠)∙𝑛𝑜𝑟(𝑆𝑖𝑠))

∑ 1 (𝑛𝑜𝑟(𝐷𝑖𝑠)∙𝑛𝑜𝑟(𝑆𝑖𝑠))⁄ℎ
𝑖𝑠=1

, where                       248 

𝑛𝑜𝑟(𝐷𝑖𝑠) =
𝐷𝑖𝑠−min(𝐷𝑖𝑠)

max(𝐷𝑖𝑠)−min(𝐷𝑖𝑠)
+ 1,    𝑛𝑜𝑟(𝑆𝑖𝑠) =

𝑠𝑖𝑠−min(𝑠𝑖𝑠)

max(𝑠𝑖𝑠)−min(𝑠𝑖𝑠)
+ 1    (10) 249 

Therefore, by solving Eq. (8) using the least squares method we can 250 

acquire  𝛼(𝑥, 𝑦, 𝑏) and 𝛽(𝑥, 𝑦, 𝑏), and then substitute them into Eq. (7) to obtain the 251 

short-term estimation 𝑅𝑆(𝑥, 𝑦, 𝑏). 252 
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The similarity between the cloud pixel and each neighboring pixel is used in both 253 

the long-term and short-term estimation algorithms. However, it should be noted that 254 

the definitions of “similarity” in the two estimations are different. In the long-term 255 

estimation, “similarity” is calculated from multi-year reflectance time-series data (Eqs. 256 

3-5), whereas in the short-term estimation, “similarity” considers the spectral distance 257 

in multi-spectral space and the spatial distance in space (Eqs. 9-10). 258 

 259 

2.3 Combining the long-term and short-term estimations in ARRC 260 

The long-term ( 𝑅𝑙(𝑥, 𝑦, 𝑏) ) and short-term ( 𝑅𝑆(𝑥, 𝑦, 𝑏) ) estimations are 261 

combined by a weighted function (Eq. 1) in which the weights should be determined 262 

according to prediction errors. For example, a larger weight should be given to 263 

𝑅𝑙(𝑥, 𝑦, 𝑏)  if 𝑅𝑙(𝑥, 𝑦, 𝑏)  has a smaller prediction error than 𝑅𝑆(𝑥, 𝑦, 𝑏) . 264 

Unfortunately, the true reflectance values in the cloud region of the target image are 265 

unknown. Therefore, we calculate prediction errors based on the single reference 266 

image used by the short-term estimation algorithm (i.e. 𝑅𝑟 in Eq. 7). To avoid 267 

confusion in the following demonstrations, we use the abbreviations CR_T and 268 

NCR_T to denote the cloud region and its neighborhood, respectively, in the target 269 

image, and CR_R and NCR_R to denote the corresponding areas in the reference 270 

image. 271 

We employ the long-term estimation algorithm to predict CR_R and the 272 

prediction error for pixel (x, y) at band b (i.e., 𝜀𝑙(𝑥, 𝑦, 𝑏)) is as follows: 273 
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𝜀𝑙(𝑥, 𝑦, 𝑏) = |𝑅𝑟_𝑙(𝑥, 𝑦, 𝑏) − 𝑅𝑟(𝑥, 𝑦, 𝑏)|               (11) 274 

where 𝑅𝑟_𝑙(𝑥, 𝑦, 𝑏)  is the predicted reflectance from the long-term estimation 275 

algorithm for the reference image. However, the short-term estimation for location (x, 276 

y) in CR_R (referred to as 𝜀𝑠(𝑥, 𝑦, 𝑏)) cannot be acquired because the same location 277 

(x, y) in CR_T is cloudy. We thus estimate 𝜀𝑠(𝑥, 𝑦, 𝑏) indirectly. We first randomly 278 

select half of all cloud-free pixels in NCR_T and then employ the short-term 279 

estimation algorithm to make predictions for these pixels in NCR_R. Assuming that 280 

the number of these pixels is p, we use the weighted average of the prediction errors 281 

to approximately represent 𝜀𝑠(𝑥, 𝑦, 𝑏), expressed as 282 

𝜀𝑠(𝑥, 𝑦, 𝑏) = ∑ 𝑊𝑖𝑛𝑒𝑖 × |𝑅𝑟_𝑠(𝑥𝑖𝑛𝑒𝑖, 𝑦𝑖𝑛𝑒𝑖 , 𝑏) − 𝑅𝑟(𝑥𝑖𝑛𝑒𝑖, 𝑦𝑖𝑛𝑒𝑖 , 𝑏)|𝑝
𝑖𝑛𝑒𝑖=1   (12) 283 

where 𝑊𝑖𝑛𝑒𝑖 represents the weight. We also consider spatial and spectral distances 284 

and calculate 𝑊𝑖𝑛𝑒𝑖 using the same function form as Eq. (10). In actuality, Eq. (12) 285 

considers the different contributions of each neighboring pixel in the determination of 286 

𝜀𝑠(𝑥, 𝑦, 𝑏).  287 

The weights for the long-term and short-term estimations (i.e., 𝑊𝑙(𝑥, 𝑦, 𝑏) and 288 

𝑊𝑠(𝑥, 𝑦, 𝑏) in Eq. 1) are estimated from  289 

𝑊𝑙(𝑥, 𝑦, 𝑏) = [1/𝜀𝑙(𝑥, 𝑦, 𝑏)]/[1/𝜀𝑙(𝑥, 𝑦, 𝑏) + 1/𝜀𝑠(𝑥, 𝑦, 𝑏)]  290 

𝑊𝑠(𝑥, 𝑦, 𝑏) = [1/𝜀𝑠(𝑥, 𝑦, 𝑏)]/[1/𝜀𝑙(𝑥, 𝑦, 𝑏) + 1/𝜀𝑠(𝑥, 𝑦, 𝑏)]     (13) 291 

By substituting the long-term estimation (Eq. 2), short-term estimation (Eq. 7), and 292 

their weights (Eq. 13) into Eq. (1), ARRC determines the final estimation for the 293 

missing values in the target image.   294 
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  295 

 296 

3. Data and validations 297 

3.1 Testing regions 298 

We tested the ARRC method in four regions. The first was the North China Plain, 299 

where double cropping is practiced in most areas. Winter wheat is normally harvested 300 

in early June and then summer maize or soybean is planted (Xiao and Tao, 2012). The 301 

second region was Thai Binh, a key paddy rice production area located in northeastern 302 

coastal Vietnam. Two paddy rice crops are grown in Thai Binh each year (i.e., 303 

mid-June to early October and mid-December to late May) (Guan et al., 2018). The 304 

third testing region was Beijing, China, where rapid urbanization has occurred during 305 

the last two decades. The fourth region was a crop rotation area in Iowa, USA, where 306 

the rotation between corn and soybean has lasted for two decades (see, for example, 307 

the rotation maps for 2001-2002 and 2011-2012 in Fig. S1 in the supplementary 308 

materials). We chose these four testing regions because they are challenging regions 309 

for the reconstruction of missing values. The cropland regions in the North China 310 

Plain and Thai Binh have at least two growing seasons in each year; thus, land-surface 311 

vegetation phenology changes quickly. In addition, Thai Binh has a typical tropical 312 

monsoon climate with serious cloud contamination especially during the rainy season 313 

(May to October). The crop rotation region in Iowa has very heterogeneous 314 

landscapes with different changes of crop types between years (Fig. S1). Beijing has 315 
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experienced substantial land cover changes during the past two decades such as from 316 

vegetated surface to buildings.  317 

 318 

3.2 Landsat data 319 

We collected all available Landsat surface reflectance (SR) images (Tier 1) 320 

during 1990-2016 for the four testing regions from the platform of Google Earth 321 

Engine. Owing to a failure of the scan-line corrector (referred to as SLC-off), there 322 

are missing strips in Landsat 7 ETM+ images after May 2003. We excluded these 323 

SLC-off images to avoid the impact of the missing strips on cloud removal. 324 

Atmospheric corrections have been performed on these SR images (Masek et al., 2006; 325 

Vermote et al., 2016). The Fmask method were used to automatically detect cloud and 326 

cloud shadow pixels in each Landsat image (Zhu and Woodcock, 2012; Zhu et al., 327 

2015) and these pixels were regarded as missing pixels. For more information 328 

regarding the Landsat images for the four testing regions, please refer to Table S2 in 329 

the supplementary materials. 330 

 331 

3.3 Validation 332 

We used three statistical indices for quantitative assessments. The first is the root 333 

mean square error (RMSE) which is defined as 334 

RMSE =
1

𝑛
√∑ [𝑅𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑥𝑖, 𝑦𝑖, 𝑏) − 𝑅𝑡𝑟𝑢𝑒(𝑥𝑖, 𝑦𝑖, 𝑏)]2𝑛

𝑖=1          (14) 335 
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where n represents the total number of pixels in the cloud region. The second 336 

evaluation index is the correlation coefficient (COR) of the linear regression between 337 

the predicted and true reflectance values. COR was employed to quantify spatial 338 

consistency between the predicted and true images. The third evaluation index is the 339 

Structure SIMilarity index (SSIM) (Wang et al., 2004), which has been widely used to 340 

assess the overall image structure similarity between the predicted and true images 341 

(e.g., Zhao et al., 2018). SSIM is between 0 and 1. The more similar the predicted 342 

image is to the true image, the closer the SSIM value is to 1.  343 

We performed quantitative evaluations at six bands, including the blue, green, 344 

red, near-infrared (NIR), and two short-wave infrared (SWIR) bands. The 345 

wavelengths of the two SWIR bands (expressed as SWIR1 and SWIR2) are 346 

approximately 1.55-1.75 µm (i.e., band 5 in Landsat 5 and band 6 in Landsat 8) and 347 

2.08-2.35 µm (i.e., band 7 in Landsat 5 and band 7 in Landsat 8). 348 

 349 

 350 

4. Experiments and Results 351 

We compared ARRC with the previously widely used method MNSPI (Zhu et al., 352 

2012). Obviously, the performance of both MNSPI and the short-term estimation 353 

algorithm in ARRC can be affected by the selection of the single cloud-free reference 354 

image. We thus investigated the percentages of different time intervals between the 355 

cloud image and the clear reference image in each testing region. We found that the 356 
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average time intervals in the North China Plain, Beijing, Thai Binh, and Iowa were 40, 357 

104, 101, and 125 days, respectively (Fig. S2). Therefore, in our experimental design, 358 

the time intervals cannot deviate very much from these average values, which 359 

suggests a fair comparison between the methods. We designed six groups of 360 

experiments. 361 

 362 

4.1 Experiment I: Simulating clouds in the four testing regions  363 

Experiment I Design: As in previous studies, quantitative assessments were 364 

performed by simulating clouds on clear Landsat images. We first randomly selected 365 

one clear image in each testing region, and then simulated a cloud region in the clear 366 

image (referred to as a “cloud-simulated image”). Here, the shapes of the simulated 367 

cloud were taken from those of true clouds. For cloud removal, the temporal reference 368 

image was the clear image with an imaging date closest to that of the cloud-simulated 369 

image. This reference image was used by MNSPI and the short-term estimation 370 

algorithm in ARRC. For North China Plain, the cloud-simulated and reference images 371 

were Landsat 5 images acquired on 26 July and 8 June, 2011 (Fig. 3A), respectively; 372 

for Thai Binh, they were Landsat 8 images on 30 December and 11 October, 2014 373 

(Fig. 3B); for Beijing, they were Landsat 5 images on 8 August and 11 October, 2010 374 

(Fig. 3C); and for Iowa, they were Landsat 5 images on 2 October and 16 September, 375 

2004 (Fig. 3D). 376 
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 377 
Fig. 3. The test images acquired for (A) North China cropland (Landsat 5), (B) Thai Binh cropland 378 

in Vietnam (Landsat 8), (C) Beijing (Landsat 5), and (D) a crop rotation region in Iowa, USA 379 

(Landsat 5). Each row shows from left to right the true image with the imaging date, cloud 380 
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simulation on this true image, and the image acquired on the nearest date without clouds 381 

(“reference image”). The reference image was used in the MNSPI method and for the short-term 382 

estimation algorithm in ARRC. The image sizes (pixel×pixel) for at four sites (A-D) are 643×654, 383 

637×583, 882×822, and 800× 800, respectively. The percentages of cloud pixels in the 384 

cloud-simulated images (A-D) are 10.45%, 14.99%, 10.45%, and 5.61%, respectively.  385 

 386 

Experiment I Results: The performances of MNSPI and ARRC on 387 

cloud-simulated images in the North China Plain, Thai Binh, Beijing, and Iowa are 388 

shown in Figures. 4, 5, 6, and 7, respectively. 389 

For the North China Plain, generally the ARRC-derived image is more similar to 390 

the true image than the MNSPI-derived images (Fig. 4). MNSPI exhibited obvious 391 

errors in some local areas (see the enlarged view panels in Fig. 4). Quantitative 392 

assessments confirmed the observations and showed that ARRC achieved lower 393 

RMSE and higher COR and SSIM in all six bands (Table 1). For example, the RMSE 394 

values for ARRC and MNSPI were 0.00503 vs. 0.00695, 0.00599 vs. 0.00864, 395 

0.00956 vs. 0.01541, 0.03293 vs. 0.04725, 0.01114 vs. 0.01420, and 0.01410 vs. 396 

0.02476 in the blue, green, red, NIR, SWIR1, and SWIR2 bands, respectively.  397 
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 398 

Fig. 4. Visual comparisons of the performance of MNSPI with that of ARRC for the image with 399 

cloud simulation (26 July 2011) of North China plain. These images are shown by standard false 400 

color. 401 

 402 

Table 1. Performance of MNSPI and ARRC (both long-term and short-term estimations) for the 403 

cloud-simulated image (26 July 2011) of North China plain. The number of simulated cloud pixels 404 

is 43933. The weights to combine the long-term estimation and short-term estimation (i.e. Eq. 1) 405 

are shown in the brackets behind the RMSE values. 406 

 MNSPI ARRC 

 

Long-term 

estimation (ARRC) 

Short-term 

estimation (ARRC) 

RMSE Blue 0.00695 0.00503 0.00492 (0.62) 0.00894 (0.38) 

Green 0.00864 0.00599 0.00598 (0.49) 0.00919 (0.51) 

Red 0.01541 0.00956 0.00839 (0.60) 0.01590 (0.40) 

NIR 0.04725 0.03293 0.03323 (0.64) 0.04799 (0.36) 

SWIR1 0.01420 0.01114 0.01283 (0.62) 0.01584 (0.38) 

SWIR2 0.02476 0.01410 0.01444 (0.64) 0.02405 (0.36) 

COR Blue 0.734 0.832 0.845 0.608 

Green 0.695 0.831 0.845 0.667 

Red 0.633 0.842 0.882 0.613 

NIR 0.674 0.844 0.841 0.655 

SWIR1 0.762 0.843 0.809 0.722 

SWIR2 0.663 0.868 0.883 0.682 

SSIM Blue 0.7017 0.7833 0.7991 0.6196 

Green 0.6046 0.7346 0.7547 0.6716 

Red 0.4381 0.5332 0.5536 0.4953 

NIR 0.6799 0.8262 0.7405 0.6157 
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SWIR1 0.7967 0.8643 0.8337 0.7411 

SWIR2 0.6564 0.8132 0.8819 0.6703 

 407 

For Thai Binh, some linear features such as roads and rivers were not well 408 

reconstructed by MNSPI (see the enlarged view panels in Fig. 5). ARRC generally 409 

performed better than MNSPI with RMSE values of 0.00526 vs. 0.00570, 0.00758vs. 410 

0.00856, 0.01091 vs. 0.01440, 0.02748 vs. 0.03556, 0.02656 vs. 0.03081, and 411 

0.02036 vs. 0.02712 in the blue, green, red, NIR, SWIR1 and SWIR2 bands, 412 

respectively (Table 2).  413 

 414 

Fig. 5. Visual comparisons of the performance of MNSPI with that of ARRC for the image with 415 

cloud simulation (30 Devember 2014) of Thai Binh cropland. These images are shown by standard 416 

false color. 417 

 418 

Table 2. Performance of MNSPI and ARRC (both long-term and short-term estimations) for the 419 

cloud-simulated image (30 Devember 2014) of Thai Binh cropland. The number of simulated 420 

cloud pixels is 55680. The weights to combine the long-term estimation and short-term estimation 421 

(i.e. Eq. 1) are shown in the brackets behind the RMSE values. 422 

 MNSPI ARRC Long-term Short-term 
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estimation (ARRC) estimation (ARRC) 

RMSE Blue 0.00570 0.00526 0.00564 (0.53) 0.00666 (0.47) 

Green 0.00856 0.00758 0.00836 (0.53) 0.01044 (0.47) 

Red 0.01440 0.01091 0.01266 (0.53) 0.01301 (0.47) 

NIR 0.03556 0.02748 0.03466 (0.53) 0.03243 (0.47) 

SWIR1 0.03081 0.02656 0.03191 (0.57) 0.03109 (0.43) 

SWIR2 0.02712 0.02036 0.02533 (0.57) 0.02784 (0.43) 

COR Blue 0.733 0.736 0.709 0.614 

Green 0.739 0.803 0.779 0.675 

Red 0.779 0.878 0.847 0.831 

NIR 0.739 0.849 0.794 0.785 

SWIR1 0.829 0.880 0.843 0.834 

SWIR2 0.818 0.882 0.864 0.816 

SSIM Blue 0.7092 0.6792 0.3331 0.4177 

Green 0.6907 0.7732 0.6346 0.4038 

Red 0.8083 0.8610 0.5283 0.5309 

NIR 0.8082 0.8450 0.4404 0.5976 

SWIR1 0.7890 0.8247 0.4033 0.4776 

SWIR2 0.4029 0.5288 0.3090 0.4199 

 423 

For Beijing, some spatial details were also better preserved by ARRC (Fig. 6). 424 

Quantitative evaluation indices confirmed better performance of ARRC compared 425 

with that of MNSPI (Table 3). For the crop rotation region in Iowa, the reconstructed 426 

images by both ARRC and MNSPI seemed to be less satisfactory (Fig. 7). There were 427 

some differences in spatial details between the truth image and the reconstructed 428 

images, highlighting the challenge to remove cloud in these very heterogeneous areas. 429 

However, compared with MNSPI, ARRC achieved lower RMSE and higher COR and 430 

SSIM in all six bands (Table 4). 431 
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 432 

Fig. 6. Visual comparisons of the performance of MNSPI with that of ARRC for the image with 433 

cloud simulation (8 August 2010) for Beijing. These images are shown by standard false color. 434 

 435 

Table 3. Performance of MNSPI and ARRC (both long-term and short-term estimations) for the 436 

image with cloud simulation (8 August 2010) for Beijing. The number of simulated cloud pixels is 437 

42834. The weights to combine the long-term estimation and short-term estimation (i.e. Eq. 1) are 438 

shown in the brackets behind the RMSE values. 439 

 MNSPI ARRC Long-term 

estimation (ARRC) 

Short-term 

estimation (ARRC) 

RMSE Blue 0.01054 0.00868 0.00542 (0.58) 0.01942 (0.42) 

Green 0.01249 0.01015 0.00703 (0.59) 0.01442 (0.41) 

Red 0.01553 0.01135 0.01004 (0.59) 0.01711 (0.41) 

NIR 0.03005 0.02129 0.01986 (0.64) 0.03156 (0.36) 

SWIR1 0.02496 0.01682 0.01617 (0.60) 0.02481 (0.40) 

SWIR2 0.02913 0.02025 0.01701 (0.58) 0.02707 (0.42) 

COR Blue 0.847 0.895 0.941 0.729 

Green 0.817 0.872 0.926 0.785 

Red 0.834 0.892 0.924 0.815 

NIR 0.749 0.878 0.898 0.732 

SWIR1 0.813 0.921 0.936 0.849 

SWIR2 0.835 0.915 0.941 0.846 

SSIM Blue 0.7354 0.7497 0.7315 0.5342 

Green 0.7976 0.8719 0.8232 0.7763 

Red 0.6751 0.7814 0.7249 0.6879 

NIR 0.8051 0.9068 0.8848 0.8059 

SWIR1 0.8363 0.9141 0.9072 0.8469 

SWIR2 0.8048 0.8921 0.9210 0.8239 

 440 
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 441 
Fig. 7. Visula comparisons of the performance of MNSPI with that of ARRC for the image with 442 

cloud simulation (2 October 2004) for a crop rotation area in Iowa. These images are shown by 443 

standard false color. 444 

 445 

Table 4. Performance of MNSPI and ARRC (both long-term and short-term estimations) for the 446 

image with cloud simulation (2 October 2004) for a crop rotation area in Iowa. The number of 447 

simulated cloud pixels is 35908. The weights to combine the long-term estimation and short-term 448 

estimation (i.e. Eq. 1) are shown in the brackets behind the RMSE values. 449 

 MNSPI ARRC Long-term 

estimation (ARRC) 

Short-term 

estimation (ARRC) 

RMSE Blue 0.00814 0.00730 0.00779 (0.60) 0.00848 (0.40) 

Green 0.01388 0.01167 0.01288 (0.62) 0.01375 (0.38) 

Red 0.02271 0.01884 0.02053 (0.59) 0.02232 (0.41) 

NIR 0.03973 0.03376 0.03389 (0.56) 0.03997 (0.44) 

SWIR1 0.02696 0.02360 0.02556 (0.61) 0.02722 (0.39) 

SWIR2 0.01937 0.01592 0.01699 (0.59) 0.01960 (0.41) 

COR Blue 0.753 0.801 0.774 0.735 

Green 0.698 0.783 0.756 0.701 

Red 0.675 0.788 0.755 0.699 

NIR 0.571 0.668 0.647 0.566 

SWIR1 0.756 0.816 0.791 0.758 

SWIR2 0.811 0.875 0.868 0.808 

SSIM Blue 0.6736 0.7431 0.7326 0.7103 

Green 0.6854 0.7321 0.7137 0.5461 
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Red 0.5843 0.7375 0.6555 0.6045 

NIR 0.5880 0.6671 0.6467 0.5820 

SWIR1 0.7348 0.7956 0.7867 0.7387 

SWIR2 0.7507 0.8434 0.8553 0.7482 

 450 

Because ARRC achieved its final results through a weighted combination of the 451 

long-term and short-term estimations, we investigated the two estimations in the four 452 

testing regions to gain a better understanding of the performance of ARRC (see Tables 453 

1-4). We found that the long-term estimations had smaller RMSE values than the 454 

short-term estimations in all bands and testing regions. By combining the two 455 

estimations, the RMSE values for ARRC were further reduced in some cases, such as 456 

the NIR and two SWIR bands for the North China Plain (Table 1), and all six bands 457 

for Thai Binh (Table 2) and Iowa (Table 4). In other cases, the ARRC RMSE values 458 

tended to be closer to, albeit somewhat larger than, the RMSE values of the long-term 459 

estimations. 460 

 461 

4.2 Experiment II: Different temporal reference images 462 

Experiment II Design: We conducted an experiment to investigate whether and 463 

to what extent the performances of MNSPI and ARRC are affected by the selection of 464 

different temporal reference images. To illustrate this issue, this experiment was 465 

performed on the image of the North China Plain as the example. To be exact, we first 466 

simulated clouds on a clear image (6 May 2005) of the North China Plain (Fig. 8A) 467 

and then we performed cloud removal on this simulated cloud image (Fig. 8B) based 468 
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on different temporal reference images. Two clear images with the closest dates to the 469 

cloud-simulated image were acquired on 22 May and 23 June 2005 and used as 470 

reference images (Figs. 8C and D). When using the 23 June 2005 reference image, we 471 

further considered two scenarios in which the 22 May 2005 image was assumed to be 472 

unavailable or partially covered by clouds (Fig. 8E). 473 

 474 

Fig. 8. (A-C) The 6 May 2005 target image, cloud simulation on this image, and the 22 May 2005 475 

reference image. (D) The 23 June 2005 reference image. (E) Simulated partial cloud 476 

contamination on the image in (C) at 2005-05-22. 477 

 478 

Experiment II Results: When using the reference image (22 May 2005) to 479 

remove clouds in the target image (6 May 2005) for the North China Plain, we found 480 

that both ARRC and MNSPI performed rather well, with comparable values of RMSE 481 

in the green and red bands. In the other bands, ARRC showed lower RMSE values 482 

than MNSPI (see RMSE in Table 5 and COR and SSIM in Table S3). The good 483 
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performance of MNSPI in this case is not surprising because the time interval 484 

between the reference and target images was only 16 days. If this reference image had 485 

not been available (e.g., cloudy), the next available reference image was from one 486 

month later (23 June 2005). In the North China Plain, winter wheat is harvested in 487 

early June (Xiao and Tao, 2012); thus, the land surface in the new reference image 488 

would have been substantially different from that of the target image (see Fig. 8). As a 489 

result, changing the reference image would obviously decrease the accuracy of 490 

MNSPI (e.g., RMSE: 0.00968 vs. 0.01882, 0.01204 vs. 0.02757, and 0.02402 vs. 491 

0.03725 in the green, red and NIR bands; Table 5). Changing the reference image 492 

affected the performance of ARRC to a smaller extent. In particular, ARRC could 493 

effectively make use of the partially cloud-contaminated image (22 May 2005) to 494 

further improve its performance (RMSE for use vs. non-use: 0.01246 vs. 0.01381, 495 

0.01549 vs. 0.01799, 0.01811 vs. 0.02129 in the green, red and NIR bands; Table 5). 496 

This group of experiments suggests two advantages of ARRC. First, ARRC achieves 497 

more stable performance when the reference image is less satisfactory. In these cases, 498 

ARRC greatly reduces dependence on a specific reference image. Second, ARRC 499 

employs clear pixels in partially cloud-contaminated images for better cloud removal 500 

overall.  501 

 502 

Table 5. Performance of MNSPI and ARRC (both long-term and short-term estimations) based on 503 

different temporal reference images. We considered three scenarios: (1) reference image from 22 504 

May 2005, (2) reference image from 23 June 2005 (without the image 22 May 2005), (3) reference 505 

image from 23 June 2005 (the 22 May 2005 image is partially covered by clouds). Noted: RMSE 506 
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values were shown here, and COR and SSIM were shown in Table S3 due to page limitation. The 507 

number of cloud pixels in Fig. 8B is 43933. The weights to combine the long-term estimation and 508 

short-term estimation (i.e. Eq. 1) are shown in the brackets behind the RMSE values. 509 

Cloud date: 

 6 May 2005 

MNSPI ARRC Long-term 

estimation (ARRC) 

Short-term 

estimation (ARRC) 

Reference 

date  

22 May 2005 

(RMSE) 

Blue 0.00833 0.00733 0.00824 (0.43) 0.00817 (0.57) 

Green 0.00968 0.00951 0.01110 (0.44) 0.01030 (0.56) 

Red 0.01204 0.01166 0.01452 (0.45) 0.01272 (0.55) 

NIR 0.02402 0.01827 0.01847 (0.50) 0.02557 (0.50) 

SWIR1 0.01711 0.01451 0.01610 (0.47) 0.01683 (0.53) 

SWIR2 0.01921 0.01614 0.01884 (0.48) 0.01917 (0.52) 

Reference 

date  

23 June 2005 

(RMSE) 

The 22 May 2005 image is unavailable 

Blue 0.01853 0.01255 0.01230 (0.55) 0.01815 (0.45) 

Green 0.01882 0.01381 0.01536 (0.64) 0.01945 (0.36) 

Red 0.02757 0.01799 0.01940 (0.64) 0.02871 (0.36) 

NIR 0.03725 0.02129 0.02132 (0.60) 0.03879 (0.40) 

SWIR1 0.03762 0.02363 0.02148 (0.56) 0.03756 (0.44) 

SWIR2 0.04134 0.02716 0.02396 (0.54) 0.04336 (0.46) 

Reference 

date  

23 June 2005 

(RMSE) 

The 22 May 2005 image is partially covered by clouds 

Blue 0.01853 0.01102 0.01004 (0.61) 0.01815 (0.39) 

Green 0.01882 0.01246 0.01335 (0.58) 0.01945 (0.42) 

Red 0.02757 0.01549 0.01671 (0.59) 0.02871 (0.41) 

NIR 0.03725 0.01811 0.02011 (0.60) 0.03879 (0.40) 

SWIR1 0.03762 0.02161 0.01833 (0.61) 0.03756 (0.39) 

SWIR2 0.04134 0.02437 0.02064 (0.61) 0.04336 (0.39) 

 510 

4.3 Experiment III: Abrupt land cover changes 511 

Experiment III Design: Since the long-term estimation algorithm in ARRC may 512 

be problematic for cases with abrupt land cover changes, we included the short-term 513 

estimation algorithm in ARRC to address such cases. We conducted an additional 514 

experiment to simulate abrupt land cover changes and tested the performance of 515 

ARRC under this scenario by using the same cloud-simulated images as in Fig.3. For 516 

example, to simulate abrupt land cover changes in the cloud-simulated image in Thai 517 
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Binh (acquired on 30 Dec. 2014; Fig. 9A), for each image before 2014 we replaced 518 

pixels in the cloud region (the white polygon in Fig. 9B) by pixels from another 519 

region with the same shape (the red polygon in Fig. 9B). Simulations of abrupt land 520 

cover changes in other three testing regions were shown in Fig. S3 in the 521 

supplementary materials. We compared ARRC with MNSPI to investigate whether 522 

ARRC is applicable to this challenging scenario. 523 

 524 

Fig. 9. (A) The true image acquired on 30 Dec. 2014 for Thai Binh cropland. (B) The cloud area 525 

(white polygon) and another area with the identical shape (red polygon). (C) We performed a 526 

simulation experiment by replacing the subset area (white polygon in panel B) by another area 527 

(red polygon in panel B) in all images before 2014. 528 

 529 

Experiment III Results: As we expected, the long-term estimation in ARRC 530 

performed poorly under this scenario (Table 6), possible because of the destruction of 531 

the autocorrelation in the time-series images. However, benefiting from the short-term 532 

estimation, ARRC continued to achieve comparable accuracy to that of MNSPI (e.g., 533 

RMSE: 0.01005 vs. 0.00856, 0.01472 vs. 0.01440, and 0.03342 vs. 0.03556 in the 534 

green, red and NIR bands, respectively). Similar results were found for other testing 535 
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regions (Table S4). This experiment suggests the necessity of including both 536 

long-term and short-term estimation algorithms in ARRC, which makes the new 537 

method robust for various regions, even for an area with abrupt land cover changes. 538 

 539 

Table 6. Performance of MNSPI and ARRC (both long-term and short-term estimations) for the 540 

simulated scenario with abrupt land cover changes. Noted: the results for Thai Binh were shown 541 

here, and the results for other three testing regions were shown in Table S4 due to page limitation. 542 

The number of cloud pixels is 55680. The weights to combine the long-term estimation and 543 

short-term estimation (i.e. Eq. 1) are shown in the brackets behind the RMSE values. 544 

Thai Binh 

 (30 December 2014) 

MNSPI ARRC Long-term 

estimation (ARRC) 

Short-term 

estimation (ARRC) 

 RMSE Blue 0.00570 0.00698 0.02437 (0.42) 0.00666 (0.58) 

Green 0.00856 0.01005 0.01823 (0.33) 0.01044 (0.67) 

Red 0.01440 0.01472 0.02692 (0.32) 0.01301 (0.68) 

NIR 0.03556 0.03342 0.05206 (0.39) 0.03243 (0.61) 

SWIR1 0.03081 0.04087 0.08361 (0.41) 0.03109 (0.59) 

SWIR2 0.02712 0.03166 0.06687 (0.41) 0.02784 (0.59) 

COR Blue 0.733 0.594 0.136 0.614 

 Green 0.739 0.617 0.189 0.675 

 Red 0.779 0.747 0.331 0.831 

 NIR 0.739 0.765 0.457 0.785 

 SWIR1 0.829 0.731 0.281 0.834 

 SWIR2 0.818 0.737 0.284 0.816 

SSIM Blue 0.7092 0.5009 0.1394 0.4177 

 Green 0.6907 0.4937 0.1768 0.4038 

 Red 0.8083 0.6101 0.2887 0.5309 

 NIR 0.8082 0.7384 0.4686 0.5976 

 SWIR1 0.7890 0.5864 0.1881 0.4776 

 SWIR2 0.4029 0.3865 0.1444 0.4199 

 545 

 546 

4.4 Experiment IV: Performances on real cloud images 547 

Experiment IV Design: We compared ARRC with MNSPI for cloud removal on 548 
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real cloud-contaminated images in one year for each testing region. In this experiment, 549 

we first determined the years in which there are the maximum number of images and 550 

found the years were 2004, 2015, 2016, and 2002 for North China, Thai Binh, Beijing, 551 

and Iowa, respectively. We then reconstructed all cloud images if the percentage of 552 

cloud-contaminated pixels in a cloud image is less than 80%. As a result, we 553 

performed cloud removal on 4, 4, 6, and 5 cloud images in North China, Thai Binh, 554 

Beijing, and Iowa, respectively. 555 

Experiment IV Results: Fig. 10 shows the performances of MNSPI and ARRC 556 

on one real cloud image for each testing region. The cloud-removed images 557 

reconstructed by ARRC are visually better than those reconstructed by MNSPI. 558 

Spatial details can be well restored by ARRC, even for the cases with large clouds. 559 

Similar results were observed for cloud-removed images at other dates (see Fig. S4 in 560 

the supplementary materials). 561 
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 562 

Fig. 10. (A-D) The performances of MNSPI and ARRC on one real cloud image for each testing 563 

region. Noted: for the results at all dates, please refer to Fig. S4 in the supplementary materials.  564 

 565 

 566 

4.5 Experiment V: The length of time-series images in ARRC 567 

Experiment V Design: The long-term estimation algorithm in ARRC employed 568 

the time-series images. In this experiment, we tested how the long-term estimation 569 
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algorithm was affected by the duration of the Landsat time-series images. Using the 570 

same cloud-simulated and reference images as in Fig. 3, we investigated the 571 

performance of the long-term estimation algorithm when employing Landsat 572 

time-series images of different durations (from 1 to 5 years). These investigations can 573 

inform users the minimum number of time-series images required by ARRC. 574 

Experiment V Results: Fig. 11 shows the relationship between the performance 575 

of the long-term estimation in ARRC and the duration of time-series images from 576 

different bands and testing regions. We found that the relationship is somewhat 577 

different in different regions. In the North China Plain, RMSE initially decreased 578 

rapidly as the duration of time-series images increased, and fluctuations of RMSE 579 

were relatively small when duration exceeded 3-4 years. In Beijing, the performance 580 

varied little when more than 2 years of data were employed. These results can be 581 

explained as follows: in the North China Plain, double cropping produces relatively 582 

complex interannual growth curves, so a minimum of 3-4 years of Landsat images are 583 

required for autocorrelation of the time-series images to be learned by ARRC. In 584 

contrast, interannual variations of reflectance from the urban surface are relatively 585 

stable, so just 1-2 years of Landsat images are required by ARRC. In Thai Binh, 586 

however, we found more dramatic fluctuations of RMSE, which may be due to the 587 

limited number of clear images within a year in this tropical region. In Iowa where 588 

crop rotation occurs between different years, more Landsat images were required by 589 

ARRC to achieve better performance. Overall, these investigation results suggest that 590 
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in general time-series images from 3-4 years can fulfill the requirements of ARRC in 591 

most cases, which greatly reduces the data burden when applying the new method.    592 

 593 

Fig. 11. Relationship between the performance of the long-term estimation in ARRC and the 594 

number of years of time-series images employed by ARRC for different bands and testing areas. 595 

 596 

4.6 Experiment VI: Computation efficiency and algorithm scalability 597 

Experiment VI Design: Computation efficiency and algorithm scalability 598 

should be considered for the practical applications of cloud removal. Here, 599 

computation efficiency is described as the time required for reconstructing one cloud 600 

pixel (i.e., (total time)/(total cloud pixels)). More processing time per cloud pixel 601 
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indicates lower computation efficiency. Because both MNSPI and ARRC employed 602 

neighboring pixels to assist cloud removal, one concern may be the lower 603 

computation efficiency for larger clouds with more neighboring pixels. Therefore, we 604 

investigated computation efficiency for clouds with different sizes. If computation 605 

efficiency does not obviously decrease with the increase of cloud size, this can be 606 

regarded as good “computation efficiency scalability”. In addition, we considered 607 

“accuracy scalability”, which is calculated as the reconstruction accuracy for different 608 

sizes of cloud. A cloud removal method with good scalability is expected to have 609 

stable computation efficiency and accuracy for different sizes of cloud. 610 

To address the issue mentioned above, we performed a simulation experiment as 611 

follows: we first simulated cloud with different sizes (50×50, 100×100,…, and 612 

400×400 pixels at an interval of 50) in one clear image in each testing region (see Fig. 613 

12 and Fig. S5). These clear images are the same as those used in Experiment I. We 614 

then investigated the changes in processing time per cloud pixel against cloud sizes. 615 

We evaluated cloud-removal accuracy by comparing the reconstructed pixels with 616 

their true values. Here, only reconstructed pixels within the minimum size of cloud 617 

(i.e., 50×50 pixels) were employed for evaluations, which guaranteed that the same 618 

cloud pixels were used for evaluations at different cloud sizes. This experiment is 619 

taken on a personal computer (CPU: Inter Core i7-8700). 620 
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 621 
Fig. 12. The different sizes of simulated cloud in a clear image (20110726) in North China Plain. 622 

The cloud sizes are 50×50, 100×100, 150×150, 200×200, 250×250, 300×300, 350×350, and 623 

400×400 pixels. For the simulated clouds in the other three testing regions, please refer to Fig. S5 624 

in the supplementary materials. 625 

              626 

Experiment VI Results: Fig. 13 shows the performances (RMSE) of ARRC and 627 

MNSPI at the NIR band for different cloud sizes. ARRC achieved lower RMSE 628 

values than MNSPI under all cloud sizes. RMSE for ARRC does not increase 629 

obviously with the increase of cloud sizes in North China Plain, Thai Binh, and 630 

Beijing. In Iowa, however, RMSE values for MNSPI and ARRC increase with cloud 631 

sizes when cloud is below the size of 200×200, which may be due to the very 632 

heterogeneous landscape in this crop rotation area. Similar observations were also 633 

found at other five bands (Fig. S6). These investigations suggest an acceptable 634 

“accuracy scalability” of ARRC. 635 
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 636 

Fig. 13. The performances (RMSE) of ARRC and MNSPI at the NIR band against cloud sizes. 637 

Noted: for fair comparisons, RMSE values were calculated for only those pixels within the 638 

minimum size of cloud (i.e., 50×50 pixels). 639 

 640 

In addition, we found that the time to reconstruct a cloud pixel is relatively stable 641 

and does not increase for larger cloud for both ARRC and MNSPI (Fig. 14). These 642 

results suggest the good scalability of both methods in terms of computation 643 

efficiency, which can be explained as: MNSPI finishes the search of similar 644 

neighboring pixels once 20 similar pixels have been found. Thus, computation 645 

efficiency does not decrease with the increase of cloud sizes although larger cloud has 646 

more neighboring pixels. However, ARRC calculated the similarity between a cloud 647 

pixel and all neighboring pixels in the same class as this cloud pixel, which is affected 648 

by cloud sizes. We thus used matrix operations to address this problem. For example, 649 

the correlation coefficients between a cloud pixel and neighboring pixels (i.e., Eq. 4) 650 
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were estimated by matrix operations, which was sped up hundreds of times (see Fig. 651 

S7 in the supplementary materials). We also noted that ARRC took more processing 652 

time per cloud pixel than MNSPI (approximately 0.02s vs. 0.0006s; Fig. 14). 653 

Fortunately, ARRC has good scalability in terms of computation efficiency. Therefore, 654 

when using ARRC to process large clouds, it is possible to greatly reduce processing 655 

time by parallel computing with multiple CPU cores or Graphics Processing Unit 656 

(GPU). 657 

 658 
Fig. 14. The time required to reconstruct a cloud pixel for different cloud sizes. Because the time 659 

of MNSPI for different testing regions is similar, we showed the average time for MNSPI. 660 

 661 

 662 

5. Discussion  663 

5.1 Improvements in ARRC for cloud removal 664 

Employing temporal auxiliary information for cloud removal is not new and has 665 

been widely adopted in previous studies (Shen et al., 2015). Most previous 666 

cloud-removal methods choose one or several reference images. In this study, we 667 

developed the new ARRC method that acquires temporal auxiliary information based 668 
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on autocorrelation of long-term time-series Landsat data. The new method 669 

incorporated the following three improvements. 670 

First, ARRC avoids the dependence on a specific reference image for those cases 671 

when the reference image is not satisfactory. Our experiments confirmed that 672 

compared with MNSPI, ARRC is less affected by the lack of a satisfactory reference 673 

image (Table 5). This result is easy to understand because the long-term estimation 674 

algorithm included in ARRC employs all available images as references and shows 675 

better performance than the short-term estimation algorithm in all four testing regions 676 

(Tables 1-4). In practice, it is very likely that some unsatisfactory reference images 677 

will be chosen because the time intervals between the reference and target images are 678 

typically several months (Fig. S2). Therefore, the employment of Landsat time-series 679 

images is important for accurate and robust cloud removal in practical applications.  680 

The second improvement in ARRC is that it can effectively use temporal 681 

auxiliary information provided by clear pixels in partially cloud-contaminated images. 682 

Our simulation experiments showed that the cloud removal performance of ARRC on 683 

6 May 2005 improved when the partially cloud-contaminated image from 22 May 684 

2005 were used (Fig. 8 and Table 5). Unfortunately, most previous cloud-removal 685 

methods such as MNSPI do not use images with partial cloud cover. One solution for 686 

this problem may be to employ partially cloud-contaminated images one by one and 687 

at each time to use only clear pixels for cloud removal (e.g., Chen et al., 2017). 688 

However, such treatment is somewhat complicated especially when dealing with a 689 
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large number of target images. 690 

Third, ARRC can be widely applied to various landscapes. Logically, the most 691 

challenging scenario for the application of ARRC is changes of land cover between 692 

years because the long-term estimation algorithm in ARRC employed the time-series 693 

Landsat data. We tested ARRC in Beijing, where rapid urbanization is occurring, and 694 

in cropland regions of China, Vietnam, and Iowa, where human activities are intensive. 695 

The results showed that the long-term estimation algorithm in ARRC also performed 696 

well in these regions (see Tables 1-4). This good performance may be possible 697 

because (1) landscapes heterogeneous in space can be characterized by the use of 698 

similar pixels, and (2) gradual changes of land cover over time have less of an effect 699 

on the long-term estimation algorithm, which by using 3-4 years of data is able to 700 

capture temporal change patterns of reflectance in most cases (Fig. 11). To test this 701 

explanation, we further investigated the absolute value of the parameter 𝑎𝑖 in Eq. 2 702 

(i.e. the regression parameter for each image in the long-term estimation algorithm). 703 

The long-term estimation is more determined by images with larger absolute values of 704 

 𝑎𝑖. Taking the testing region Beijing (i.e. Fig. 3C) as the example, we calculated the 705 

absolute value of 𝑎𝑖 averaged over each image in the long-term estimation algorithm. 706 

We found that some images during 2010-2016 have obvious larger absolute values 707 

of 𝑎𝑖 (Fig. S8), suggesting that these images (e.g., images on 20 May, 2010 and 26 708 

July, 2011) contributed more to the long-term estimation of the cloud-simulated image 709 

on 8 August, 2010. Those images between 1990 and 2004 have relatively small values. 710 
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Therefore, the long-term estimation algorithm can be applied to the regions with 711 

gradual changes of land cover over time.  712 

 713 

Fig. S8. The absolute value of the parameter 𝑎𝑖 in Eq. 2 (i.e. the regression parameter 714 

for each image in the long-term estimation algorithm) for the testing region Beijing. 715 

The long-term estimation is more determined by an image if this image has a larger 716 

 𝑎𝑖. Noted: the absolute value of 𝑎𝑖 is averaged over each image. 717 

 718 

ARRC combines the long-term and short-term estimation into one framework 719 

considering the respective strengths of both components and the effectiveness of the 720 

combination method. On one hand, the short-term component is preferred if the 721 

cloud-free reference image is acquired at a date close to that of the clouded image. 722 

The experiment II suggested that the short-term estimations were better than the 723 
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long-term estimations at some bands when the time interval between the cloud-free 724 

reference image and the clouded image was only 16 days (Table 5). We investigated 725 

more cases with the shortest time interval (16-d) and also found better performance of 726 

the short-term component in cases where surface change was minimal during a 16-day 727 

period (see the additional experiment in the supplementary materials). In addition, the 728 

short-term component performed better in the extreme case of abrupt land cover 729 

changes (Fig. 9 and Table 6). One the other hand, the long-term component is more 730 

appropriate for the case when a satisfactory reference image (e.g., reference image 731 

with16-d time interval) is not available. This situation is very common because the 732 

average time intervals between the reference and cloud images are typically from one 733 

to several months in many regions (Fig. S2). Our experiments confirmed that the 734 

long-term component performed better than the short-term component in these 735 

common cases (see Tables 1-4). Therefore, we included both the long-term and 736 

short-term components in ARRC to make it flexible to handle both cases, i.e. a 737 

satisfactory reference cloud-free image is available or not. We noted that combining 738 

the long-term and short-term components does not further improve the final estimates 739 

in some cases (Tables 1-4 and Table 6). However, in these cases, the performances of 740 

ARRC were more determined by the component with better performances (e.g., the 741 

long-term component in Tables 1-4 and the short-term component in Table 6 and the 742 

additional experiment in the supplementary materials). These results suggest the 743 

effectiveness of the combination method of ARRC. Because we cannot test ARRC in 744 
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all scenarios, the combination of the two components can make ARRC more robust 745 

for various scenarios. 746 

 747 

 748 

5.2 Uncertainties in ARRC 749 

We recognize that some uncertainties regarding the application of ARRC remain. 750 

First, the neighborhood of a cloud pixel was empirically determined by using a local 751 

window with a size of 30 × 30 (Fig. 2). We also tested a larger local window (50 × 752 

50) and found similar ARRC performance (Table S5 in the supplementary materials). 753 

This result may be because the different weights for each neighboring pixel were 754 

considered in terms of temporal consistence, spatial distance, and spectral similarity. 755 

Thus, additional pixels outside a window of 30 × 30 may provide only limited 756 

auxiliary information. On the basis of current investigation results, we recommend a 757 

window size of 30 × 30 in ARRC for the computational efficiency. 758 

Second, a temporal reference image is necessary for MNSPI and the short-term 759 

estimation algorithm in ARRC. In our experiments, this reference image was 760 

determined to be the clear image in the same year with an imaging date closest to that 761 

of the cloud-contaminated image (called “the closest date strategy”). We also noted 762 

that some previous studies determined the reference image as the clear image that is 763 

most similar to the cloud-contaminated image (called “the most similar strategy”). 764 

Here, we used the most similar strategy to determine the reference image and 765 
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performed the quantitative evaluation experiment (i.e., Experiment I) again. In 766 

specific, we followed Lin et al. (2013) to calculate the SSIM index between the 767 

cloud-simulated image and reference images. To accurately estimate image similarity, 768 

SSIM was calculated for only the cloud-free pixels in the neighborhood of the 769 

simulated cloud patch. The reference image was determined to be the one with the 770 

highest SSIM value (Fig. S9). The experimental results showed that ARRC also 771 

performed better than MNSPI (see Fig. S10 and Table S6 in the supplementary 772 

materials). Interestingly, we found half quantitative results of MNSPI were not 773 

improved when the reference images were determined by using the most similar 774 

strategy (comparing Table S6 with Tables 1-4), suggesting that it is still difficult to 775 

find a better reference image for cloud removal. In the future, more efforts may be 776 

necessary to quantify the relationship between the reference image and the 777 

cloud-contaminated image to improve cloud-removal performances.  778 

Third, we used all available Landsat images to achieve the long-term estimation 779 

in ARRC. One concern may be the difference in spectra between the datasets from 780 

TM, ETM+, and OLI, which may affect the performances. To address this concern, 781 

we further investigated the performances of the long-term algorithm in ARRC by 782 

using the images from an identical sensor. For example, we used TM data to remove 783 

clouds in the TM data only. This additional experiment was performed on the same 784 

cloud-simulated images as those used in Experiment I (i.e., Fig. 3). Results showed 785 

that the long-term estimations based on an identical sensor perform worse than the 786 
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estimations using all sensors in the testing regions North China and Thai Binh (Table 787 

S7). In Iowa, however, the long-term estimations using an identical sensor are better. 788 

These investigations suggest that ARRC does not necessarily to use the datasets from 789 

an identical sensor, possible because of the small difference in spectra for 790 

TM/ETM+/OLI. For the very heterogeneous areas such as crop rotation areas in Iowa, 791 

using the dataset from an identical sensor may be better choice to further improve the 792 

performances of ARRC. 793 

Fourth, compared with some previous methods that use only one reference image, 794 

ARRC requires time to collect and preprocess at least 3-4 years of Landsat images. 795 

However, it is worth noting that more and more applications are based on a large 796 

amount of Landsat images (e.g., multi-year data) since Landsat data became freely 797 

available in 2008. ARRC may be preferred when dealing with many 798 

cloud-contaminated images because of its simple operation and robust performance.  799 

Last, in this study we tested ARRC in four challenging landscapes (North China 800 

Plain, cropland in Vietnam, the city of Beijing, and a crop rotation area in Iowa, USA). 801 

More tests in various regions will be necessary in future studies.  802 

 803 

6. Conclusions 804 

We developed a new method (called ARRC) to remove thick cloud in Landsat 805 

images. The new method reconstructs missing values by the weighted sum of two 806 

estimations. One estimation is based on autocorrelation of Landsat time-series data 807 
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and employs multi-year Landsat images for cloud removal (referred to the long-term 808 

estimation), and the other estimation is to remove cloud based on a single reference 809 

image (referred to the short-term estimation). We evaluated ARRC in four testing 810 

regions by using both simulated and real cloud images, including an urban area in 811 

Beijing and three croplands in the North China Plain, northeastern Vietnam, and Iowa, 812 

USA. We found that the new method performed better than the widely used MNSPI 813 

method. ARRC achieved lower RMSE values (e.g., ARRC vs. MNSPI: 0.02129 vs. 814 

0.03005, 0.03293 vs. 0.04725, 0.02740 vs. 0.03556, and 0.03303 vs. 0.03973 in the 815 

NIR band for the four testing regions, respectively) and higher SSIM values (e.g., 816 

ARRC vs. MNSPI: 0.8262 vs. 0.6799, 0.8450 vs. 0.8082, 0.9068 vs. 0.8051, and 817 

0.6671 vs. 0.5880 in the NIR band for the four testing regions, respectively). By 818 

applying both methods to real cloud-contaminated Landsat images, cloud-removed 819 

images generated by ARRC are visually better than those generated by MNSPI.    820 

Our experiments suggested three advantages of ARRC. First, ARRC eliminates 821 

dependence on a specific reference image for those cases when the reference image is 822 

less satisfactory. Second, ARRC uses temporal auxiliary information provided by 823 

clear pixels in partially cloud-contaminated images in a simple and effective way. 824 

Third, the performances of ARRC are robust for various landscapes and the image 825 

with large clouds. 826 
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