
Abstract—Spatiotemporal data fusion is a methodology 

to generate images with both high spatial and temporal 

resolution. Most spatiotemporal data fusion methods 

generate the fused image at a prediction date based on 

pairs of input images from other dates. The performance 

of spatiotemporal data fusion is greatly affected by the 

selection of the input image pair. There are two criteria for 

selecting the input image pair: the “similarity” criterion, in 

which the image at the base date should be as similar as 

possible to that at the prediction date, and the “consistency” 

criterion, in which the coarse and fine images at the base 

date should be consistent in terms of their radiometric 

characteristics and imaging geometry. Unfortunately, the 

“consistency” criterion has not been quantitatively 

considered by previous selection strategies. We thus 

develop a novel method (called “cross-fusion”) to address 

the issue of the determination of the base image pair. The 

new method first chooses several candidate input image 

pairs according to the “similarity” criterion, and then 

takes the “consistency” criterion into account by 

employing all of the candidate input image pairs to 

implement spatiotemporal data fusion between them. We 

applied the new method to MODIS-Landsat NDVI data 

fusion. The results show that the cross-fusion method 

performs better than four other selection strategies, with 

lower average absolute difference values and higher 

correlation coefficients in various vegetated regions 

including a deciduous forest in Northeast China, an 

evergreen forest in South China, a cropland in North 

China Plain and a grassland in the Tibetan Plateau. We 

simulated scenarios for the inconsistence between MODIS 

and Landsat data and found that the simulated 

inconsistence is successfully quantified by the new method. 

In addition, the 1 cross-fusion method is less affected by 

cloud omission errors. The fused NDVI time-series data 
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generated by the new method tracked various vegetation 

growth trajectories better than previous selection 

strategies. We expect that the cross-fusion method can 

advance practical applications of spatiotemporal data 

fusion technology. 

Index Terms—Landsat NDVI, MODIS-Landsat, NDVI 

time series, Spatiotemporal fusion, VIIRS NDVI 

I. INTRODUCTION

ORMALIZED Difference Vegetation Index (NDVI) data

describe the vegetation greenness of land surfaces [1]. 

NDVI time-series data have been widely used for investigating 

various processes of terrestrial ecosystems, such as vegetation 

productivity [2], vegetation phenology [3]-[4], forest fires [5], 

and land cover classification [6]. Currently, NDVI time-series 

products are provided by a number of satellite sensors. 

However, these NDVI products usually have relatively coarse 

spatial resolution, such as the MODIS NDVI (250m-0.05°), 

SPOT VGT NDVI (1km), and the AVHRR GIMMS NDVI 

(8km). The coarse spatial resolution, ranging from hundreds of 

meters to several kilometers, is an obvious constraint that 

greatly limits their application to geographically 

heterogeneous areas [7]-[8]. NDVI time-series data with 

higher spatial resolution are thus necessary. 

Due to the trade-offs between spatial and temporal 

resolutions, a single satellite sensor provides data with either 

high temporal frequency or high spatial resolution [9]-[10]. As 

such, spatiotemporal fusion technology has been proposed to 

simulate high spatiotemporal NDVI time series by blending 

the high-frequency but low spatial-resolution images (e.g., 

MODIS, referred to as the coarse resolution image) with high 

spatial-resolution but low-frequency images (e.g., Landsat, 

referred to as the fine resolution image). During the past 

decade, more than 50 spatiotemporal fusion algorithms have 
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been developed (Zhu et al. [11]). These fusion algorithms can 

be roughly grouped into four types. The first is unmixing-

based, in which the values of fine pixels are predicted by using 

the spectral linear unmixing technique (e.g., LAC-GAS by 

Maselli and Rembold [12]; STDFA by Wu [13]; MMT by 

Zhukov et al. [14]). The second is weight-function-based, in 

which the values of fine pixels are estimated from the 

combined information of all input images by using weight 

functions (e.g., STNLFFM by Cheng et al. [15]; STARFM by 

Gao et al. [16]; STAARCH by Hilker et al. [17]; semi-physical 

fusion approach by Roy et al. [18]; ESTARFM by Zhu et al. 

[19]). The third is machine-learning-based, in which the 

relationship between the coarse and fine image pairs is 

described by machine learning (SPSTFM by Huang and Song 

[20]; BME by Li et al. [21]; EBSPTM by Wu et al. [22]). The 

fourth type comprises hybrid methods, in which two or more 

of the above technologies are integrated (e.g., STRUM by 

Gevaert and García-Haro [23]; FSDAF by Zhu et al. [24]). 

Spatiotemporal data fusion algorithms normally employ 

spatial information from the fine images at base dates to assist 

in the production of the fusion image at the prediction date. 

Therefore, at least one pair of fine and coarse images at a base 

date is required for spatiotemporal fusion. For example, one 

base image pair is necessary for STARFM, STRUM, and 

FSDAF, and two base image pairs are required by STDFA and 

ESTARFM. It has been recognized that in addition to the 

fusion algorithms, the accuracy of spatiotemporal data fusion 

also strongly depends on the selection of the base image pair 

[25]-[26]. For better spatiotemporal data fusion performance, 

there are two criteria in regards to the selection of the base 

image pair. Taking MODIS-Landsat fusion and one-pair base 

images as an example, the first criterion to be considered is that 

the image at the base date should be as similar as possible to 

the one at the prediction date (called the “similarity” criterion; 

Fig. 1). To meet this requirement, two automatic strategies 

have been adopted in previous studies: the “nearest date” (ND) 

strategy, in which the base image pair is determined to be 

acquired at the closest date to the prediction date, and the 

“highest correlation” (HC) strategy, in which the base date is 

determined when the correlation coefficient of the MODIS 

images between the base and prediction dates is the highest. 

The second criterion for selecting the base image pair is that 

the MODIS and Landsat images at the base date should be 

consistent in terms of their radiometric characteristics and 

imaging geometry (called the “consistency” criterion; Fig. 1). 

Inconsistency between MODIS and Landsat images, a major 

problem that decreases the accuracy of data fusion, may be 

caused by many factors, including differences in the spectral 

response function and viewing angles (large viewing angle for 

MODIS vs. near nadir view for Landsat) and geolocation 

accuracy [18][27]. Figure 1 graphically illustrates the 

“similarity” and “consistency” criteria.  

 

Fig. 1. A graphical illustration showing the two criteria for the selection of 

the input base image pair (i.e., “similarity” and “consistency”). 

Unfortunately, no method exists to automatically 

determine the base image pair by taking both “similarity” and 

“consistency” criteria into consideration. For example, Zhu et 

al. [24] adopted the ND strategy in the FSDAF spatiotemporal 

fusion algorithm that they developed. Wang et al. [25] 

proposed an operational data fusion framework in which a user 

can choose between the ND and HC strategies. Liu et al. [26] 

suggested to use multiple base image pairs to generate several 

fused images first, and then produce the final prediction by the 

weighted sum of these fused images. However, the weights 

were estimated by considering the difference in MODIS scale 

NDVI only (see Eq. 10 in [26]). Such treatment cannot account 

for the inconsistency between MODIS and Landsat images. In 

actuality, most previous studies employed only the “similarity” 

criterion, because MODIS images at the base and prediction 

dates are available for the determination of similarity. It is 

more difficult to consider the “consistency” criterion because 

consistency is hard to quantify; thus, several studies just 

provided some recommendations for this criterion [27]-[29]. 

For example, they suggested that compared with the MODIS 

directional reflectance product (MOD09GA), the bidirectional 

reflectance distribution function (BRDF) adjusted reflectance 

products (e.g., MCD43A4) might be better for MODIS-

Landsat data fusion because the viewing angular differences 

between MODIS and Landsat can be corrected to a large extent 

[27]-[29]. Some methods were also developed to further 

normalize Landsat data to nadir BRDF-adjusted data [30]-[31]. 

Even after BRDF corrections, however, many other factors 

may also lead to inconsistency, such as the registration 

accuracy between MODIS and Landsat [25]. Therefore, it is 

important to develop a method to automatically determine the 

optimal base image pair, which is a crucial step for the 

practical applications of spatiotemporal data fusion technology.   

In this study, we developed a novel method (called 

“cross-fusion”) to address the issue of the determination of the 

base image pair. The new method can quantitatively take both 

“similarity” and “consistency” criteria into account. The new 

method operates by first choosing a number of base image 

pairs as candidates according to the “similarity” criterion. 

Considering the interannual vegetation growth cycle, these 

candidate image pairs are selected from multi-year images. 

The new method then employs all the candidate image pairs to 

implement spatiotemporal data fusion between them (referred 

to as “cross-fusion”). Performance of cross-fusion can be 

quantitatively evaluated because all of the true Landsat images 

at the candidate dates are available. Logically, we expect cross- 



 

 

 
Fig. 2. Left: The spatial distribution of various vegetation types in China provided by the Editorial Board of the Vegetation Map of China CAS (2001) [38]. The 

four boxes A-D indicate the locations of the testing areas. Right: the Landsat images of the four testing regions (Standard false color composite). 

 

fusion to perform well according to the “similarity” criterion. 

We assume that larger fusion errors can occur when using an 

“inconsistent” candidate image pair to implement data fusion 

at other candidate dates. In such a way, the cross-fusion 

method can further consider the “consistency” criterion. We 

compared the cross-fusion method with other existing 

selection strategies and found that the fused NDVI image from 

the cross-fusion method was more accurate (smaller errors) 

and robust. The new method provides an operational and 

automatic way to perform spatiotemporal data fusion in 

practical applications. 

II. MATERIALS AND METHODS 

A. MODIS and Landsat NDVI data and preprocessing 

We collected MODIS and Landsat images in four testing 

areas covered by different vegetation types, including 

deciduous forests, evergreen forests, double-season croplands, 

and alpine grasslands (regions A, B, C and D in Fig. 2, 

respectively). We downloaded the BRDF-adjusted reflectance 

product (MCD43A4) for 2001-2016 from the website of the 

United States Geological Survey (USGS: 

https://lpdaac.usgs.gov/products/mcd43a4v006/). MCD43A4 

data are available daily with a spatial resolution of 500 m. For 

Landsat data, we collected all available Landsat images (i.e., 

Landsat 5, 7, and 8) from 2001 to 2016 from the platform of 

Google Earth Engine. Subset areas (12×12 km2) in each of the 

regions (Fig. 2) were used for our experiments. Digital 

Numbers in Landsat images were radiometrically calibrated 

and atmospherically corrected by the Landsat Ecosystem 

Disturbance Adaptive Processing System (LEDAPS) [32]. We 

used the daily MCD43A4 product to generate 8-day composite 

reflectance data by averaging all cloud-free reflectance data 

during each 16-day time period centered at the composition 

date (correspondence with Dr. Zhuosen Wang from the 

MODIS BRDF team). There were still some missing data in 

the 8-day composite time-series reflectance. We therefore 

filled these missing data by the linear interpolation and 

smoothed the time-series data with the Savitzky-Golay filter 

[33]-[34]. 

To implement spatiotemporal data fusion, both MODIS 

and Landsat images were co-registered, and MODIS NDVI 

images were resampled by the nearest neighbor method to 

match the Landsat spatial resolution. Cloud contamination in 

each Landsat image was automatically detected by the Fmask 

(function of mask) method [35]-[36]. We followed Xie et al. 

[27] to define that only the12×12 km2 subset images with cloud 

cover below 1% were used. As a result, we screened out in total 

171, 137, 90 and 155 Landsat images for the areas of deciduous 

forests, evergreen forests, double-season croplands, and alpine 

grasslands, respectively. 

There are two strategies to generate NDVI fused images. 

One is to blend the reflectance images and then calculate 

NDVI from the fused images (i.e., Blend-then-Index), and the 

other is to first calculate NDVI and then blend the coarse and 

fine NDVI images (i.e., Index-then-Blend). We adopted the 

Index-then-Blend strategy in this study because of its better 

performance, as suggested by Jarihani et al. [37] 

 

B. Developing the cross-fusion method 

There are two steps in the cross-fusion method. In the first 

step, we employ the “similarity” criterion to choose a certain 

number of candidate base image pairs. In the second step, we 

address the “consistency” issue by employing all the candidate 

image pairs for the cross-fusion process. Fig. 3 shows the 

flowchart of the new method. 

 

1) Step 1: Determining the candidate base image pairs 

 



 

 

Fig. 3. Flowchart of the cross-fusion method. Ci and Fi represent the coarse 

(MODIS) and fine (Landsat) images, respectively. Cp is the coarse image at 

the prediction date. 

 

To quantify the similarity between the MODIS image at 

the prediction date 𝑅𝑝  and the one at a given date 𝑅𝑖 , we 

calculated the reflectance difference  𝑑𝑖𝑓𝑓(𝑅𝑝_𝑖)  and linear 

correlation coefficient  𝑐𝑜𝑟(𝑅𝑝_𝑖)  between the two MODIS 

images as follows: 

            𝑑𝑖𝑓𝑓(𝑅𝑝_𝑖
) =

1

𝑛
∑ |𝑅𝑝(𝑗) − 𝑅𝑖(𝑗)|𝑛

𝑗=1                                                                

            𝑐𝑜𝑟(𝑅𝑝_𝑖
) =

𝐶𝑜𝑣( {𝑅𝑝(𝑗)},{𝑅𝑖(𝑗)} )

√𝑉𝑎𝑟({𝑅𝑝(𝑗)}) √𝑉𝑎𝑟({𝑅𝑖(𝑗)})
, 

                                   𝑗 = 1, … , 𝑛                                             (1) 

where n indicates the number of MODIS pixels in the subset 

image, and the functions Var() and Cov() represent estimations 

of the variance and covariance, respectively. Assuming that the 

total number of image pairs during multiple years is m (i.e., i = 

1,…,m), we combined 𝑑𝑖𝑓𝑓(𝑅𝑝_𝑖) and 𝑐𝑜𝑟(𝑅𝑝_𝑖) to calculate 

the similarity index of the ith image (𝑆𝐼𝑖) as follows: 

                     𝑆𝐼𝑖 =
(1−𝑑𝑖𝑓𝑓(𝑅𝑝_𝑖))

∑ (1−𝑑𝑖𝑓𝑓(𝑅𝑝_𝑖))𝑚
𝑖=1

×
𝑐𝑜𝑟(𝑅𝑝_𝑖)

∑ 𝑐𝑜𝑟(𝑅𝑝_𝑖)𝑚
𝑖=1

                       (2) 

Eq. (2) suggests that a smaller reflectance difference and a 

higher correlation coefficient lead to a larger SI value. 

Therefore, the candidate image pairs are determined to be 

those that have the largest five SI values. We also tested more 

or fewer images pairs and found that five is the best choice 

considering the balance between accuracy and computing time 

(see the discussion section for details).   

 

2) Step 2: Cross-fusion among the candidate base image pairs 

Assuming that the five candidate image pairs (coarse 

image, fine image) are denoted as (C1, F1), (C2, F2), (C3, F3), 

(C4, F4) and (C5, F5), we perform cross-fusion using these 

image pairs. For example, we can use (C2, F2), (C3, F3), (C4, 

F4), and (C5, F5) to predict F1. For the reflectance at a given 

pixel (x, y) in the image F1 (i.e., F1(x, y)), the predictions of 

F1(x, y) from spatiotemporal data fusion are 

𝐹𝑢𝑠𝑖𝑜𝑛(𝐹2(𝑥, 𝑦) → 𝐹1(𝑥, 𝑦)) , 𝐹𝑢𝑠𝑖𝑜𝑛(𝐹3(𝑥, 𝑦) → 𝐹1(𝑥, 𝑦)) , 

𝐹𝑢𝑠𝑖𝑜𝑛(𝐹4(𝑥, 𝑦) → 𝐹1(𝑥, 𝑦)) , and 𝐹𝑢𝑠𝑖𝑜𝑛(𝐹5(𝑥, 𝑦) →

𝐹1(𝑥, 𝑦)) . We assume that the final prediction of F1(x, y) 

(denoted as 𝐹1̂(𝑥, 𝑦)) can be calculated as 

𝐹1̂(𝑥, 𝑦) = 𝑎21 × 𝐹𝑢𝑠𝑖𝑜𝑛(𝐹2(𝑥, 𝑦) → 𝐹1(𝑥, 𝑦)) + 

                𝑎31 × 𝐹𝑢𝑠𝑖𝑜𝑛(𝐹3(𝑥, 𝑦) → 𝐹1(𝑥, 𝑦)) +

                       𝑎41 × 𝐹𝑢𝑠𝑖𝑜𝑛(𝐹4(𝑥, 𝑦) → 𝐹1(𝑥, 𝑦)) +

                       𝑎51 × 𝐹𝑢𝑠𝑖𝑜𝑛(𝐹5(𝑥, 𝑦) → 𝐹1(𝑥, 𝑦))       

s.t.       𝑎21 + 𝑎31 + 𝑎41 + 𝑎51=1.0    and 

                      0 ≤ (𝑎21,  𝑎31,   𝑎41,   𝑎51) ≤ 1.0                        (3) 

To estimate the four regression parameters in Eq. (3), we 

employ all pixels in a 5 × 5 local window with (x, y) as the 

central pixel and minimize the following objective function. 

We chose the local window size of 5 × 5 to generate enough 

equations to solve the four regression parameters for all the 

pixels including the pixels in the edge and corner of the image 

(see Fig. S1 in the supplementary materials). 

𝐚𝐫𝐠 𝐦𝐢𝐧
(𝑎21,   𝑎31 ,   𝑎41,  𝑎51)

∑ (𝐹1(𝑥𝑖 , 𝑦𝑖) − 𝐹1̂(𝑥𝑖 , 𝑦𝑖))2 25
𝑖=1                (4) 

The four regression parameters are constrained between 0 and 

1 and their sum is 1. Therefore, the regression parameter for a 

prediction item in Eq. (3) (e.g., 𝑎21 ) could be small if this 

prediction item (e.g., 𝐹𝑢𝑠𝑖𝑜𝑛(𝐹2(𝑥, 𝑦) → 𝐹1(𝑥, 𝑦))) deviates 

much from the true value. The larger prediction error at (x, y) 

can be explained by the inconsistency between MODIS and 

Landsat because all of the candidate image pairs are chosen 

according to the “similarity” criterion. In the same way, we can 

estimate all regression parameters for the cross-fusion, 

expressed as: 

                

0 𝑎21 𝑎31 𝑎41 𝑎51

𝑎12 0 𝑎32 𝑎42 𝑎52

𝑎13 𝑎23 0 𝑎43 𝑎53

𝑎14 𝑎24 𝑎34 0 𝑎54

𝑎15 𝑎25 𝑎35 𝑎45 0

                              (5) 

According to Eq. (3), the sum of each row of Eq. (5) is 1.0 (e.g., 

𝑎21 + 𝑎31 + 𝑎41 + 𝑎51 = 1.0). The values in each column of 

Eq. (5) represent the regression parameters for using a 

candidate image pair to generate other candidate image pairs. 

For example, 𝑎12,  𝑎13,   𝑎14,  and 𝑎15  in the first column are 

the parameters when using (C1, F1) to produce the pixel (x, y) 

in (C2, F2), (C3, F3), (C4, F4) and (C5, F5), respectively. As 

mentioned above, a smaller parameter for a given image pair 

generally indicates a larger prediction error which is likely 

caused by inconsistency between MODIS and Landsat data for 

this image pair. Therefore, we use the average value of each 

column to represent the contribution of each image pair to the 

final prediction of 𝑅𝑝(𝑥, 𝑦) (𝑅�̂�(𝑥, 𝑦)), expressed as: 

 𝑅�̂�(𝑥, 𝑦) =  ∑ [𝑎𝑗_ × 𝐹𝑢𝑠𝑖𝑜𝑛 (𝐹𝑗(𝑥, 𝑦) → 𝐹𝑝(𝑥, 𝑦))]5
𝑗=1      

with  𝑎𝑗_ =
1

5
∑ 𝑎𝑗𝑖

5
𝑖=1                                                                  (6) 

where 𝐹𝑢𝑠𝑖𝑜𝑛 (𝐹𝑗(𝑥, 𝑦) → 𝐹𝑝(𝑥, 𝑦)) is to use the jth candidate 

image pair to produce the pixel (x, y) in the fusion image at the 

prediction date. Using Eqs. (3-6) and the moving window, we 



 

 

can perform spatiotemporal fusion to predict all pixels. In 

actuality, the cross-fusion uses not one but five base image 

pairs, and different candidate image pairs may contribute 

differently to predict different pixels.  

To test the cross-fusion, we chose the FSDAF algorithm 

as the spatiotemporal data fusion algorithm (i.e., using FSDAF 

in Eqs. (3) and (6)) because of two reasons. First, the cross-

fusion method is only applicable for spatiotemporal data fusion 

algorithms that require one input image pair, such as FSDAF 

[24]. Therefore, those multi-input-pair fusion algorithms (e.g., 

ESTARFM [19]) were not considered. Second, The FSDAF 

fusion algorithm was found to performs well in various 

scenarios, even in some challenging cases such as 

heterogeneous landscapes and abrupt changes of land cover 

types [11]. For more details about the FSDAF algorithm, 

please refer to Zhu et al. [24]. In the following experiments, 

we compared the performance of FSDAF when using the base 

image pair determined by the cross-fusion and other methods 

(see section 3.1). 

 

III. EXPERIMENTAL DESIGN 

A. Experiment I: Quantitative assessments at random 

prediction dates 

We performed quantitative evaluations when using 

different selection strategies to determine the base image pair 

for FSDAF. We considered the strategies ND (nearest date), 

HC (highest correlation), Diff (smallest differences; Eq. 1), SI 

(largest similarity index; Eq. 2), and the cross-fusion method. 

In this experiment, we randomly selected 10% of the NDVI 

images in each testing area and used these images as the truth. 

The quantitative evaluations were performed by comparing the 

truth image with the fused image. Owing to a failure of the 

scan-line corrector (referred to as SLC-off), there are missing 

strips in Landsat 7 ETM+ images after May 2003. These SLC-

off images were not chosen. As a result, 12, 14, 11, and 14 

Landsat images were selected in the testing areas of deciduous 

forest, cropland, evergreen forest, and alpine grassland, 

respectively. Table 1 showed the detailed information for all 

the selected images. Two accuracy evaluation indices were 

used: the average absolute difference (𝐴𝐴𝐷 = |𝑁𝐷𝑉𝐼𝑓𝑢𝑠𝑖𝑜𝑛 −

𝑁𝐷𝑉𝐼𝑡𝑟𝑢𝑒|) and the correlation coefficient between the fused 

and true Landsat images. For the quantitative evaluations in 

this experiments and other experiments below, AAD and the 

Correlation Coefficient were computed for only the clear 

pixels. 

 

B. Experiment II: Simulated the inconsistence between 

MODIS and Landsat 

Compared with previous base-image pairs selection 

methods, the most significant improvement of the new method 

is that it can really quantify the inconsistence between the 

coarse and fine images at the base date. We thus performed a 

simulation experiment to illustrate this point. To be exact, we 

simulated the scenarios for the inconsistence between MODIS 

and Landsat data, in which each pixel in the Landsat base 

image is multiplied by a random number between 0.8 and 1.2. 

This simulation experiment was performed on the same images 

as those used in Experiment I (i.e., all images in Table 1). 

Because the cross-fusion method chose five candidate image 

pairs, we assume that the inconsistence occurs in a different 

number of image pairs (varying from 1 to 5). Specifically, at 

each predication date, we randomly chose 1, 2, 3, 4, and 5 

image pairs from the five candidate image pairs, respectively, 

and simulated noise on these selected images. We tested the 

performance of the cross-fusion method under these simulated 

scenarios. 

 

C. Experiment III: Effect of cloud omission errors on the 

cross-fusion method 

Only a cloud-free Landsat image can be used as the base 

image. Currently, cloud pixels in Landsat images are identified 

by the Fmask method [35]-[36]. However, there are cloud 

detection errors in Landsat images [39]-[40]. In this 

experiment, we assume that one of the five candidate image 

pairs have a small amount of clouds. This experiment was also 

performed on all the randomly selected images (i.e., all images 

in Table 1). We investigate whether and to what extent the 

cross-fusion method is affected by cloud omission errors. 

 

D. Experiment IV: Generating the fused NDVI time-series 

data 

In this experiment, we investigate the performance of the 

cross-fusion method to generate the fused NDVI time-series 

data. Because there are 46 MODIS images in a year (8-d 

temporal resolution), we employed the new method to produce 

92 fused NDVI images in two consecutive years. The years 

were selected randomly for each testing region. For 

comparisons, we also generated the fused NDVI time series by 

using the ND, HC, Diff, and SI strategies, respectively. 

 

E. Experiment V: Visual inspection for block effect of the 

fused image 

We choose candidate image pairs based on the subset 

MODIS images (12 × 12 km2). Therefore, different candidate 

image pairs may be chosen for a different subset area when 

applying the cross-fusion method to a larger area. In this 

experiment, we test the performance of the cross-fusion 

method in a 108 × 108 km2 region (i.e., 9 × 9 subset image), 

and investigate whether there is a block effect in the Landsat 

fused image. We performed this experiment for one image per 

vegetation type. The predication dates are 2014/105 (year/day 

of year) for deciduous forest, 2005/145 for cropland, 2010/144 

for evergreen forest, and 2004/254 for grassland. 

Table 1. The imaging dates (Year/Day) and the sensors for the randomly 

selected images for comparisons. L5 TM: Landsat 5 TM; L7 ETM+: Landsat 

7 ETM+; L8 OLI: Landsat 8 OLI. 

Deciduous Forest                                      Evergreen Forest         

Year/Day Sensor  Year/Day Sensor  

2001/157 L7 ETM+  2001/327 L5 TM 

2004/014 L5 TM  2002/314 L5 TM 

2004/062 L5 TM  2003/269 L5 TM 

2006/323 L5 TM  2003/349 L5 TM 

2007/158 L5 TM  2004/208 L5 TM 

2008/209 L5 TM  2006/213 L5 TM 



 

 

2010/326 L5 TM  2008/003 L5 TM 

2011/313 L5 TM  2008/187 L5 TM 

2013/302 L8 OLI  2010/144 L5 TM 

2014/241 L8 OLI  2011/139 L5 TM 

2015/028 L8 OLI  2013/296 L8 OLI 

2016/143 L8 OLI    

 

Cropland                                                          Grassland         

Year/Day Sensor  Year/Day Sensor  

2001/067 L7 ETM+  2003/115 L5 TM 

2001/187 L5 TM  2003/339 L5 TM 

2004/100 L5 TM  2004/326 L5 TM 

2005/094 L5 TM  2005/312 L5 TM 

2005/142 L5 TM  2005/320 L5 TM 

2006/073 L5 TM  2006/299 L5 TM 

2006/161 L5 TM  2007/118 L5 TM 

2008/207 L5 TM  2007/318 L5 TM 

2009/353 L5 TM  2007/334 L5 TM 

2010/140 L5 TM  2010/326 L5 TM 

2014/359 L8 OLI  2011/033 L5 TM 

2015/138 L8 OLI  2012/140 L5 TM 

2015/282 L8 OLI  2013/342 L8 OLI 

2016/013 L8 OLI  2013/350 L8 OLI 

 

IV. RESULTS 

A. Results for fusion at random prediction dates 

(Experiment I) 

Figure 4 shows the average values of both the AAD and 

the correlation coefficient with different selection strategies for 

different vegetation types (for the detailed results of each 

Landsat image, please refer to the Table. S1 in the 

supplementary materials). We found that the cross-fusion 

method achieved the lowest AAD values and the highest 

correlation coefficient compared with other selection strategies, 

suggesting better and stable performance of the new method 

(Fig. 4). The SI strategy seemed to be the second best, except 

that SI had a larger AAD value than the Diff strategy for 

deciduous forest. This result indicates that combining HC and 

Diff in SI (Eq. 2) is effective. The ND strategy performed the 

worst, especially for cropland, which may be explained as 

follows. Although the closest date was chosen, there may still 

have been a large difference in land cover between the base 

and prediction dates if there was temporally continuous cloud 

contamination or the land cover changed quickly, such as for 

multi-season cropland. 

 
Fig. 4. Quantitative evaluation results (AAD and correlation coefficient) for 

data fusion with different selection strategies for different vegetation types. 

Note that: the AAD for the ND strategy and cropland is 0.11, which is beyond 
the range of the y-axis. 

 

The new method implements cross-fusion using the five 

candidate image pairs. To investigate the effectiveness of such 

treatment, we compared the spatiotemporal data fusion 

accuracy when using the cross-fusion method to determine the 

base image pair or using each of the five candidates as the base 

image pair (referred to as SI_1, SI_2, SI_3, SI_4, and SI_5, 

respectively). The results showed that the cross-fusion method 

had the lowest AAD values and the highest correlation 

coefficient (Fig. 5). Interestingly, a candidate image pair with 

a higher similarity index (Eq. 2) did not necessarily achieve 

better performance. For example, SI_1 (highest similarity 

index) had lower AAD values than the other four candidate 

image pairs for deciduous and evergreen forests but not for 

cropland and grassland (Fig. 5). This result may be due to the 

inconsistency between the MODIS and Landsat base images 

and the inconsistency between the time-series of MODIS and 

Landsat images due to heterogeneous landscape. This 

investigation further highlights the importance of considering 

the “inconsistence” criterion in spatiotemporal data fusion. 

Table 2 shows detailed comparisons at each prediction 

date for deciduous forest.  It can be seen that the cross-fusion 

method performs better (lowest AAD value) than any one of 

the five candidate image pairs for 7 out of 12 prediction dates 

(i.e., 7/12). The percentages were 10/14, 5/11, and 10/14 for 

cropland, evergreen forest, and grassland (see Table S2 in the 

supplementary materials). The explanation for these results is 

that the five candidate image pairs used by the cross-fusion 

method contributed differently to different pixels; thus, the 

cross-fusion could achieve higher accuracy than any of the 

candidate image pairs at most of the prediction dates. We also 

noted that the cross-fusion is not the best at some prediction 

dates. However, the new method is still reliable in practical 

applications, which can be explained as: for those dates at 

which the cross-fusion did not achieve the lowest AAD values, 

it is almost impossible for the users to select the best candidate 

image pair (i.e., the lowest AAD value) because the best pair 



 

 

seemed to randomly occur in one of the five candidate image 

pairs (Table S2). However, the AAD values of the cross-fusion 

tends to be closer to, albeit somewhat larger than, the AAD 

values of the best candidate image pair. For example, for the 

11 prediction dates of the evergreen forest, the cross-fusion 

performed the best for 5 dates and achieved the second lowest 

AAD values for other 6 prediction dates. On average, the cross-

fusion method achieved the highest accuracy for all the 

vegetation types (Fig. 5). 

 
Fig. 5. Quantitative comparisons (AAD and correlation coefficient) between 

the cross-fusion method and the five candidate image pairs (denoted as SI_1, 
SI_2, SI_3, SI_4, and SI_5, respectively) for different vegetation types. Noted: 

results are the averaged AAD values and correlation coefficients for all the 
randomly selected images. 

 

Table 2. Performance of spatiotemporal data fusion for both the cross-fusion method and the five candidate image pairs (denoted as SI_1, SI_2, SI_3, SI_4, and 

SI_5, respectively) at each prediction date for deciduous forest. We show (AAD/correlation coefficient) in the table. The highest AAD value at each predication date 

is in bold 

Year/Day Cross-fusion SI_1 SI_2 SI_3 SI_4 SI_5 

2001/157 0.0688 
/0.923 

0.0481 

/0.958 
0.0599 
/0.777 

0.0685 
/0.915 

0.0975 
/0.857 

0.093 
/0.780 

2004/014 0.0399 

/0.785 

0.0444 

/0.423 

0.0462 

/0.735 

0.0403 

/0.738 

0.0432 

/0.647 

0.0648 

/0.784 
2004/062 0.0149 

/0.694 

0.0215 

/0.633 

0.0178 

/0.411 

0.0189 

/0.503 

0.0192 

/0.591 

0.0169 

/0.483 

2006/323 0.0797 
/0.770 

0.0669 
/0.594 

0.0998 
/0.704 

0.1406 
/0.415 

0.0423 

/0.573 
0.0816 
/0.563 

2007/158 0.0297 

/0.934 

0.0834 

/0.914 

0.0371 

/0.940 

0.0622 

/0.698 

0.0416 

/0.807 

0.0459 

/0.762 
2008/209 0.0181 

/0.853 

0.0376 

/0.734 

0.0353 

/0.824 

0.0537 

/0.811 

0.0556 

/0.829 

0.0466 

/0.813 

2010/326 0.0333 
/0.751 

0.041 
/0.290 

0.2565 
/0.742 

0.0431 
/0.657 

0.0325 

/0.657 
0.0383 
/0.638 

2011/313 0.0518 

/0.665 

0.0662 

/0.562 

0.0721 

/0.580 

0.0457 

/0.542 

0.0535 

/0.664 

0.0642 

/0.137 
2013/302 0.0346 

/0.676 

0.0366 

/0.741 

0.0436 

/0.556 

0.095 

/0.406 

0.0457 

/0.384 

0.0395 

/0.688 

2014/241 0.0246 

/0.799 
0.0287 
/0.823 

0.0472 
/0.594 

0.0329 
/0.707 

0.0273 
/0.738 

0.0431 
/0.654 

2015/028 0.0156 

/0.916 

0.023 

/0.939 

0.026 

/0.815 

0.0232 

/0.835 

0.0247 

/0.787 

0.0232 

/0.822 
2016/143 0.0458 

/0.933 

0.0598 

/0.88 

0.0415 

/0.903 

0.0866 

/0.872 

0.0674 

/0.883 

0.0493 

/0.787 

Average 0.0381 

/0.808 

0.0464 

/0.707 

0.0652 

/0.715 

0.0592 

/0.675 

0.0459 

/0.701 

0.0505 

/0.659 

 

B. Results for the simulated inconsistence between MODIS 

and Landsat (Experiment II) 

We simulated inconsistence between MODIS and 

Landsat data by multiplying each pixel in the Landsat image 

by a random number within the range 0.8-1.2. Due to page 

limitations, here we showed the results for one prediction date 

per vegetation type in Table 3. For the results at all the 

prediction dates, please refer to Table. S3 in the supplementary 

materials. We considered different numbers of candidate 

image pairs with the simulated inconsistence (see the second 

column in Table 3). As expected, inconsistence between 

MODIS and Landsat data greatly reduces the accuracy of 

spatiotemporal data fusion (see the bold numbers in Table 3). 

For example, the AAD value increased from 0.0376 to 0.0818 



 

 

when simulating inconsistence for SI_1 of deciduous forest 

(compare Table 2 with Table 3). These results confirm that the 

“inconsistence” issue should be addressed for spatiotemporal 

data fusion. 

We found that the cross-fusion method was less affected 

by these simulated inconsistences (Table 3). More importantly, 

the cross-fusion method performed better than any one of the 

five candidate image pairs, even for the case in which all of the 

five candidate image pairs were inconsistent. To further 

understand the performance of the cross-fusion method, we 

show the regression parameters (Eq. 6) for the five candidate 

image pairs of deciduous forest at the prediction date (year/day 

of year: 2008/209) (Fig. 6). We expect a small parameter for 

the image pair with simulated inconsistence, which suggests 

small contribution for the fusion from this image pair. The 

results confirmed that the parameters for the image pairs with 

simulated inconsistence were substantially smaller than the 

parameters for other candidate image pairs (e.g., 0.02 for SI_1 

vs. 0.2-0.3 for the other four in Fig. 6A). This investigation 

suggests that inconsistence between MODIS and Landsat data 

is truly accounted for by the new method. For the extreme case 

of inconsistence existing in all of the five candidate image 

pairs, we found that the parameters of the five candidate image 

pairs were around 0.2 and their differences were relatively 

small (Fig. 6E). In summary, the cross-fusion method provides 

an automatic way to determine the base image pair by 

considering both “similarity” and “consistency” criteria. 

Table 3. Performance of spatiotemporal data fusion for both the cross-fusion method and the five candidate image pairs (denoted as SI_1, SI_2, SI_3, SI_4, and 
SI_5, respectively) for the simulated scenarios of “inconsistence” between MODIS and Landsat. We simulated different numbers of image pairs with inconsistence 

(see the second column) and the simulated image pairs are expressed in bold. We show (AAD / correlation coefficient) in the table

Types 

/Day 

Pairs ·Cross 

-fusion 

SI_1 SI_2 SI_3 SI_4 SI_5 

 1 0.0189 

/0.848 

0.0818 

/0.472 

0.0353 

/0.824 

0.0537 

/0.811 

0.0556 

/0.829 

0.0466 

/0.813 
 2 0.0200 

/0.847 

0.0376 

/0.734 

0.0353 

/0.824 

0.0710 

/0.599 

0.0681 

/0.581 

0.0466 

/0.813 

Deciduous 

(2008/209) 
3 0.0218 

/0.833 
0.0376 
/0.734 

0.0728 

/0.536 

0.0681 

/0.608 

0.0677 

/0.581 

0.0466 
/0.813 

 4 0.0296 

/0.783 

0.0819 

/0.470 

0.0738 

/0.533 

0.0701 

/0.603 

0.0556 

/0.829 

0.0570 

/0.642 

 5 0.0319 

/0.762 

0.0821 

/0.465 

0.0745 

/0.531 

0.0687 

/0.609 

0.0698 

/0.572 

0.0558 

/0.652 

 1 0.0188 

/0.786 

0.0348 

/0.658 

0.0223 

/0.700 

0.0595 

/0.615 

0.0227 

/0.644 

0.0219 

/0.612 
 2 0.0187 

/0.786 

0.0347 

/0.659 

0.0223 

/0.700 

0.0596 

/0.584 

0.0227 

/0.644 

0.0219 

/0.612 

Cropland 

(2006/073) 
3 0.0197 

/0.783 
0.0306 
/0.719 

0.0264 

/0.644 
0.0595 
/0.615 

0.0275 

/0.582 

0.0249 

/0.553 

 4 0.0194 

/0.776 

0.0350 

/0.656 

0.0263 

/0.643 

0.0596 

/0.589 

0.0274 

/0.581 

0.0219 

/0.612 
 5 0.0198 

/0.772 

0.0352 

/0.653 

0.0262 

/0.644 

0.0596 

/0.582 

0.0273 

/0.583 

0.0249 

/0.554 

 1 0.0263 

/0.965 

0.0678 

/0.866 

0.0581 

/0.798 

0.0345 

/0.922 

0.0635 

/0.723 

0.0357 

/0.924 
 2 0.0232 

/0.965 

0.0355 

/0.947 

0.0861 

/0.596 

0.0345 

/0.922 

0.0929 

/0.499 

0.0357 

/0.924 

Evergreen 

(2013/296) 
3 0.0278 

/0.953 
0.0681 

/0.866 
0.0581 
/0.798 

0.0812 

/0.733 

0.0940 

/0.491 

0.0357 
/0.924 

 4 0.0289 

/0.951 

0.0686 

/0.863 

0.0865 

/0.596 

0.0345 

/0.922 

0.0934 

/0.496 

0.0641 

/0.838 
 5 0.0361 

/0.919 

0.0685 

/0.864 

0.0864 

/0.596 

0.0807 

/0.734 

0.0925 

/0.500 

0.0638 

/0.838 

 1 0.0148 

/0.981 

0.0407 

/0.868 

0.0220 

/0.950 

0.0299 

/0.916 

0.0276 

/0.930 

0.0236 

/0.946 
 2 0.0155 

/0.980 

0.0366 

/0.891 

0.0296 

/0.934 

0.0299 

/0.916 

0.0276 

/0.930 

0.0327 

/0.926 

Grassland 

(2013/342) 
3 0.0163 

/0.978 
0.0366 
/0.891 

0.0295 

/0.935 

0.0373 

/0.894 
0.0276 
/0.930 

0.0326 

/0.894 

 4 0.0166 

/0.978 

0.0407 

/0.867 

0.0296 

/0.934 

0.0299 

/0.916 

0.0346 

/0.916 

0.0327 

/0.924 

 5 0.0178 

/0.976 

0.0407 

/0.867 

0.0296 

/0.934 

0.0374 

/0.893 

0.0346 

/0.916 

0.0326 

/0.925 



 

 

 

Fig. 6. Estimated parameters (Eq. 6) for the five candidate image pairs for deciduous forest at the prediction date 2008/209 in the five simulated scenarios (A-E). 
The average value of each image is shown in parentheses above each image. 

 

C. Results for the effect of cloud omission errors on the 

cross-fusion method (Experiment III) 

We investigated the effect of cloud omission errors on the 

cross-fusion method by using a cloud-contaminated Landsat 

image as one of the five candidate base image pairs. Here, we 

showed the result for the prediction date (year/day of year: 

2007/158) for the deciduous forest as an example. We found 

that compared with the fused image from the cloud-

contaminated base image pair (i.e., SI_3), the fused image 

from the cross-fusion method was less affected by the cloud 



 

 

contamination (Fig. 7A). The pixels with cloud contamination 

have obvious fusion errors in SI_3 (see the red polygons in Fig. 

7A), whereas these pixels can be successfully predicted by the 

new method. This result is because clouds in the Landsat image 

led to inconsistency between Landsat and MODIS data, and 

this inconsistency in local area can also be quantified by the 

new method. To verify this explanation, we further 

investigated the regression parameters (Eq. 6) for the five 

candidate image pairs (Fig. 7B). Interestingly, cloud-

contaminated pixels have much smaller values than other 

pixels in SI_3 (see the black polygons in SI_3 of Fig. 7B), 

which suggests that inconsistency between Landsat and 

MODIS can be determined by the cross-fusion method at the 

pixel scale. Similar results for other prediction dates and 

vegetation types can be found in Table. S4 and Fig. S2 in the 

supplementary materials. It is almost impossible when cloud 

omission exists in the same location in all five candidate 

Landsat base images. Therefore, the cross-fusion method is 

resistant to noise such as cloud omission errors.

 

Fig. 7. (A) The true NDVI image for the date (2007/158) for deciduous forest, and the fused NDVI images using both the cross-fusion method and the SI strategy 
(i.e., SI_3). We highlighted the pixels with cloud omission errors with red polygons in SI_3. (B) The estimated parameters (Eq. 6) for the five candidate image 

pairs used by the cross-fusion method. The average values for each image are shown in the bracket above each image. Note that: The corresponding pixels with 

cloud omission errors are highlighted by black polygons. The last panel shows the performance of data fusion for all candidate image pairs. 

 



 

 

D. Results for the generation of the fused NDVI time-series 

data (Experiment IV) 

We calculated the averaged NDVI values for all pixels in 

each fused image and showed the time series of the average 

values in Figure 8. We found that the fused NDVI time series 

generated by cross-fusion were visually much better than those 

generated by other selection strategies. The cross-fusion 

method produced smoother NDVI time-series data. We further 

compared the fused NDVI time series with the existing true 

NDVI values at some dates by calculating the deviations 

between them (i.e., deviation = |fused NDVI – true NDVI|). 

Results showed that the averaged deviations were the smallest 

for the cross-fusion method in all the four testing regions. For 

example, for the area covered by deciduous forest, the 

averaged deviations are 0.029, 0.040, 0.053, 0.056, and 0.045 

for cross-fusion, SI, HC, Diff, and ND strategies, respectively 

(Fig. 8). 

 

E. Results of visual inspection for the block effect in the 

fused image (Experiment IV) 

We performed the cross-fusion method in the large area 

for one image per vegetation type. Because the size of the 

image is 108 × 108 km2, there are a total of 81 subset images 

(12 × 12 km2 for each subset). Results showed that there is no 

block effect in the fused image for 2005/145 (year/day of year) 

for cropland (Fig. 9). Similar results were also found for other 

vegetation types (see Fig. S3 in the supplementary materials). 

Fig. 8. The time series of the NDVI values averaged over all pixels in each fused image. The deviation values were calculated between the fused NDVI time 
series and the existing true NDVI values at some dates.



 

 

Fig. 9. The true image and the fused image by the cross-fusion method for 

cropland for 2005/145 (year/day of year). The size of the image is 108 × 108 

km2 

V. DISCUSSION AND CONCLUSIONS 

A. Performances of the cross-fusion method 

The performance of spatiotemporal data fusion is mainly 

affected by two factors. One factor is to model the reflectance 

changes between the base and prediction dates, and the other 

is the selection of base image pairs. Most previous efforts to 

improve data fusion accuracy have focused on the first factor, 

and little effort has been made in exploring how to determine 

the optimal base image pair. A few studies compared some 

selection strategies such as the nearest date or the highest 

similarity [25][27]. However, these strategies consider only 

the “similarity” criterion (Fig. 1). As far as we know, the cross-

fusion method may be the first to quantitatively take both 

“similarity” and “consistency” criteria into account for the 

selection of the optimal base image pair.  

The cross-fusion method improves the accuracy of 

spatiotemporal data fusion. Our experiments showed that the 

cross-fusion method performs better than other selection 

strategies (i.e., ND, HC, Diff and SI) in various regions covered 

by different vegetation types (Fig. 4). Two reasons may 

explain the better performance of the new method. First, multi-

year Landsat image data are employed for the selection of 

candidate image pairs. Wang et al. [25] indicated that 

spatiotemporal data fusion performs poorly when the base 

image pair is chosen from a season different from that of the 

prediction date. Their results are confirmed by our study. We 

found that using the ND strategy had the lowest fusion 

accuracy (Fig. 4), which may be because in some cases the 

base and prediction dates were from different seasons. These 

investigations suggest that it is better choice to choose the base 

image pairs from multi-year Landsat images instead of using 

single-year data. Second, the cross-fusion method considers 

the “consistency” criteria. Our simulation experiments 

confirmed that simulated inconsistence between Landsat and 

MODIS images can be well accounted for by the new method 

(see Table 3 and Fig. 6). This may also explain why the cross-

fusion method outperforms any of the five candidate base 

image pairs in terms of the average AAD values (Fig. 5). It is 

worth noting that using multi-year Landsat data may involve 

different Landsat sensors (e.g., Landsat 5 or 8), which may 

lead to different levels of consistency between MODIS and 

Landsat data [27]. However, it is unnecessary to choose the 

five candidate image pairs from the same Landsat sensor, 

because clear Landsat images may be rarely available in some 

cloudy areas. More importantly, the cross-fusion method is 

developed to address the issue of inconsistency between the 

coarse and fine images of the input image pair. 

Spatiotemporal data fusion that uses a single base image 

pair may suffer from some uncertainties. For example, we 

showed that cloud omission errors have less of an effect with 

the new method, but fusion accuracy greatly decreases when 

using a single Landsat base image with cloud omission (Fig. 

7). This result is because cloud omission errors in Landsat 

images can be regarded as a type of inconsistence between 

Landsat and MODIS data in the local areas, and this 

inconsistence can also be considered in the process of cross-

fusion. For stable performance of spatiotemporal data fusion, 

it is therefore essential to employ multiple base image pairs. In 

the cross-fusion method, we determined empirically to use five 

candidate base image pairs. Here, we further tested the 

performance of the new method by using different numbers of 

candidate base image pairs. Results show that the AAD values 

initially decrease with increasing candidate numbers and then 

vary little when the number is above five for all the four 

vegetation types (Fig. 10). According to the results of the 

current experiment, the use of five candidate base image pairs 

is acceptable, considering the balance between accuracy and 

computing time. 

We determined that a Landsat subset image (12×12 km2) 

with cloud contamination below 1% can be used by the new 

method. To produce an NDVI fusion image for a large area 

(e.g., one Landsat scene), we recommend running subset 

images one by one and then combining the fused subset images 

into a mosaic. In such a way, we can make full use of all the 

Landsat scenes that are partially cloudy. Because the new 

method works at the pixel scale, we found no block effect 

when combining the fused subset images (Fig.9). However, we 

cannot test the new method in all cases. In case of block effect, 

the smoothing process based on similarity of pixel can be 

further applied to the fused image, as suggested by Zhu et al. 

[24]. 

B. Uncertainties in the cross-fusion method 

We recognize that some issues regarding the application 

of the cross-fusion method may need to clarify. First, 

spatiotemporal fusion algorithms are far from perfect and the 

fusion algorithms will also introduce errors. Different fusion 

algorithms have different fusion errors. We tested the cross-

fusion method by using FSDAF to perform fusion. How about 

the performance of cross-fusion when using some other 

spatiotemporal data fusion algorithms? To address the concern, 

we further tested cross-fusion by using the pioneering 

algorithm STARFM [16]. We used the same data as in Table 1 

and investigated the experiment in Fig. 5 again. Results 

showed that fusion accuracy was also improved by cross-

fusion when using STARFM to perform data fusion (Fig. S4 

in the supplementary materials), further suggesting the 

robustness of the cross-fusion method.  

Second, cross-fusion used the five candidate image pairs 

that have the largest five SI values. Because the total number 

of image pairs (i.e., m in Eq. 2) is different in different regions, 

the SI values may vary a lot in different regions. Therefore, it 



 

 

is impossible to determine a SI threshold above which the 

image pairs can be used as candidates. However, one concern 

may be whether cross-fusion is still effective if the five 

candidate image pairs are not so similar to the MODIS image 

at the prediction date (i.e., SI is not so high). To test it, we 

investigated the experiment in Fig. 5 again but using the five 

candidates that have the median SI values. More specifically, 

we sorted all the candidates according to SI and selected the 

image-pairs with median SI values from the sorted image-pairs 

sequence.  As we expected, compared with the fusion accuracy 

for the five candidate image pairs with the five largest SI (Fig. 

5), the fusion accuracy greatly decreased for the candidates 

with median SI (see SI_1-SI_5 in Fig. S5 in the supplementary). 

For example, the AAD value of SI_1 increased from 0.046 (Fig. 

5) to about 0.13 for deciduous forest (Fig. S5), suggesting the 

 
Fig. 10. The performance of the cross-fusion method when using different numbers of candidate base image pairs. Each point in the figure is the average of AAD 

values or correlation coefficients at all the random prediction dates. 

 

necessity of considering the “similarity” criterion for the 

selection of base image pair. Under this scenario (i.e., median 

SI), however, the cross-fusion method still further improved 

the fusion accuracy (Fig. S5). This additional investigation 

highlights that the new method can be applied to the scenario 

in which all the candidate image pairs are not so similar to the 

MODIS image at the prediction data. 

Third, in spatiotemporal data fusion, MODIS images are 

required to be resampled to match the Landsat spatial 

resolution. In our experiment, the nearest neighbor resample 

method was adopted. Here, we further investigated how the 

different resample methods can affect the fused images. We 

first used the bilinear interpolation method to resample 

MODIS images and then performed the experiment in Fig. 5 

again. Results showed that the fusion accuracy was 

comparable between two resample methods, and more 

importantly, cross-fusion method was still effective when the 

bilinear interpolation method was used (Fig. S6 in the 

supplementary materials).     

Fourth, the cross-fusion method combined the five fused 

images that were generated by the five candidate image pairs 

(according to Eq. 6). We noted that the fusion method IFSDAF 

also generated the final prediction by the weighted sum of 

several different fused images [26]. The weights in IFSDAF 

were estimated by using the difference in MODIS scale NDVI 

between the base date and the prediction date (see Eq. 10 in 

[26]). Here, we further performed the experiment in Fig. 5 but 

using the combination method of IFSDAF (referred to as 

IFSDAF_combination) to combine the five fused images (i.e., 

SI_1 - SI_5). Results showed that IFSDAF_combination 

improved the fusion accuracy by combining the five fused 

images; however, cross-fusion performed better than 

IFSDAF_combination (Fig. S7 in the supplementary 

materials). Theoretically, the IFSDAF_combination method 

has two obvious limitations. First, because the weights in 

IFSDAF_combination are completely based on MODIS NDVI 

differences, IFSDAF_combination cannot address the issue of 

inconsistency between coarse and fine images (see Fig. S8 in 

the supplementary materials). Second, there is obvious block 

effect in the fused image by using IFSDAF_combination 

because the NDVI difference is calculated at the MODIS scale 

(see Fig. S9 in the supplementary materials). As a result, a 

smoothing postprocessing is necessary which may bring a 

certain uncertainty.   

Fifth, in this study the cross-fusion method was tested for 

MODIS-Landsat NDVI fusion. One may wonder whether 

cross-fusion can be extended to reflectance images? 

Theoretically, cross-fusion can work because the fusion error 

of reflectance can be quantified during the process of cross 

fusion. It is worth noting that many methods have been 

developed to reconstruct high-quality MODIS NDVI time-

series data, but few efforts have been made for the 

reconstruction of MODIS reflectance data [37]. As a result, the 

selected candidate image pairs may be not so similar to the 



 

 

MODIS reflectance image at the prediction date due to the 

remaining noise in MODIS reflectance data. Our experiment 

suggests that under these scenarios (i.e., SI is not so high), the 

cross-fusion method is still effective (Fig. S5). 

 Sixth, some limitations in the cross-fusion method 

should be mentioned. The cross-fusion method is only 

applicable for one-input-pair fusion algorithms such as 

STARFM [16], FSDAF [24] and IFSDAF [26]. These one-

input-pair fusion algorithms have been widely used and their 

fusion accuracy has been gradually improved [41]-[42]. 

Nevertheless, it is also necessary to address the issue of the 

selection of base image pairs for multi-input-pair fusion 

algorithms such as ESTARFM [19], which will be considered 

in our future research. Another limitation is that cross-fusion 

takes more computing time. For a 108 × 108 km2 region, it 

takes about 15 hours to complete the spatiotemporal data 

fusion on a personal computer (CPU: Inter Core i7-8700). In 

fact, estimating the regression parameters with the least square 

method (Eq. 3) is very fast. Thus, the computing time of the 

cross-fusion method can be greatly reduced by faster 

spatiotemporal data fusion algorithms. The GPU version of the 

STARFM algorithm (https://github.com/HPSCIL/cuSTARFM) 

speeds up the estimation by a factor of 342. We hope that GPU 

versions of more spatiotemporal data fusion algorithms can be 

developed, which will popularize the cross-fusion method.  

 

C. A short summary 

For spatiotemporal data fusion, at least one pair of fine 

and coarse images at a base date is required for most fusion 

algorithms to produce the fusion image at the prediction date. 

It has been recognized that the performances of spatiotemporal 

data fusion were greatly affected by using different input base 

image pairs, but the selection of the input image pair was not 

well addressed by previous studies.  We thus developed a new 

cross-fusion method for the determination of the input image 

pair. The new method considers both the “similarity” criterion 

(i.e., the coarse images at the base and prediction dates should 

be similar) and in particular the “consistency” criterion (the 

coarse and fine images at the base date should be consistent). 

We tested the cross-fusion method by using MODIS-Landsat 

NDVI fusion in the testing regions covered by different 

vegetation types (deciduous forest, evergreen forests, cropland, 

and alpine grassland). The experimental results showed that 

compared with four other selection strategies, the cross-fusion 

method performed better and achieved smaller fusion error. We 

simulated scenarios for the inconsistence between MODIS and 

Landsat data and found the new method successfully 

quantified the inconsistence even the local inconsistence (e.g., 

cloud omission in the Landsat image). Furthermore, the fused 

NDVI time-series data generated by the new method tracked 

various vegetation growth trajectories better than previous 

selection strategies. The cross-fusion method provides an 

effective way to determine the input image pair and improves 

the practical application of spatiotemporal fusion technology. 

 

ACKNOWLEDGMENT 

The authors would like to thank the Landsat team to make 

the Landsat data freely available. 

 

REFERENCES 

[1] J.W. Rouse, Jr. Haas, and R.H. Schell et al, “Monitoring vegetation 

systems in the Great Plains,” NASA Special Publication., vol. 1, pp. 309-

317, 1974. 
[2] R.B. Myneni, S. Hoffman, and Y. Knyazikhin et al, “Global products of 

vegetation leaf area and fraction absorbed PAR from year one of 

MODIS data,” Remote Sens. Environ., vol. 83, no. 1-2, pp. 214-231, 
Nov. 2002. 

[3] R.Y. Cao, M.G. Shen, J. Zhou, and J. Chen, “Modeling vegetation 

green-up dates across the Tibetan Plateau by including both seasonal 
and daily temperature and precipitation,” Agric. For. Meteorol., vol. 249, 

pp. 176-186, Feb. 2018. 

[4] N. Delbart, T. Le Toan, and L. Kergoat et al, “Remote sensing of spring 
phenology in boreal regions: A free of snow-effect method using 

NOAA-AVHRR and SPOT-VGT data (1982-2004),” Remote Sens. 

Environ., vol. 101, no. 1, pp. 52-62, Mar. 2006. 

[5] E. Chuvieco, D. Cocero, and D. Riaño et al, “Combining NDVI and 

surface temperature for the estimation of live fuel moisture content in 

forest fire danger rating,” Remote Sens. Environ., vol. 92, no. 3, pp. 322-
331, Aug. 2004. 

[6] T.R. Loveland, B.C. Reed, and J.F. Brown et al, “Development of a 

global land cover characteristics database and IGBP DISCover from 1 
km AVHRR data,” Int. J. Remote Sens., vol. 21, no. 6-7, pp. 1303-1365, 

Nov. 2000. 

[7] Y. Rao, X. Zhu, and J. Chen et al, “An Improved Method for Producing 
High Spatial-Resolution NDVI Time Series Datasets with Multi-

Temporal MODIS NDVI Data and Landsat TM/ETM+ Images,” 

Remote Sens., vol. 7, no. 6, pp. 7865-7891, Jun. 2015. 
[8] T. Hwang, C. Song, and P.V. Bolstad et al, “Downscaling real-time 

vegetation dynamics by fusing multi-temporal MODIS and Landsat 

NDVI in topographically complex terrain,” Remote Sens. Environ., vol. 
115, no. 10, pp. 2499-2512, Oct. 2011. 

[9] I.V. Emelyanova, T.R. McVicar, and T.G. Van Niel et al, “Assessing the 

accuracy of blending Landsat–MODIS surface reflectances in two 
landscapes with contrasting spatial and temporal dynamics: A 

framework for algorithm selection,” Remote Sens. Environ., vol. 133, 

pp. 193-209, Jun. 2013. 
[10] H.K. Zhang, B. Huang, and M. Zhang et al, “A generalization of spatial 

and temporal fusion methods for remotely sensed surface parameters,” 

Int. J. Remote Sens., vol. 36, no. 17, pp. 4411-4445, Sep. 2015. 
[11] X.L. Zhu, F.Y. Cai, and J.Q. Tian et al, “Spatiotemporal Fusion of 

Multisource Remote Sensing Data: Literature Survey, Taxonomy, 

Principles, Applications, and Future Directions,” Remote Sens., vol. 10, 
pp. 527, Mar. 2018. 

[12] F. Maselli, and F. Rembold, “Integration of LAC and GAC NDVI data 

to improve vegetation monitoring in semi-arid environments,” Int. J. 
Remote Sens., vol. 23, no. 12, pp. 2475-2488, Nov. 2002. 

[13] M.Q. Wu, Z. Niu, C.Y. Wang, C.Y. Wu, and L. W, “Use of MODIS and 
Landsat time series data to generate high-resolution temporal synthetic 

Landsat data using a spatial and temporal reflectance fusion model,” J. 

Appl. Remote Sens., vol. 6, no. 1, pp. 63507.1-63507.13, 2012. 
[14] B. Zhukov, D. Oertel, and F. Lanzl et al, “Unmixing-based multisensor 

multiresolution image fusion,” IEEE Trans. Geosci. Remote Sens., vol. 

37, no. 3, pp. 1212-1226, May. 1999. 
[15] Q. Cheng, H. Liu, and H. Shen et al, “A Spatial and Temporal Nonlocal 

Filter-Based Data Fusion Method,” IEEE Trans. Geosci. Remote Sens., 

vol. 55, no. 8, pp. 4476-4488, May. 2017. 
[16] F. Gao, J. Masek, and M. Schwaller et al, “On the Blending of the 

Landsat and MODIS Surface Reflectance: Predicting Daily Landsat 

Surface Reflectance,” IEEE Trans. Geosci. Remote Sens., vol. 44, no. 8, 
pp. 2207-2218, Aug. 2006. 

[17] T. Hilker, M.A. Wulder, and N.C. Coops et al, “A new data fusion model 

for high spatial- and temporal-resolution mapping of forest disturbance 
based on Landsat and MODIS,” Remote Sens. Environ., vol. 113, no. 8, 

pp. 1613-1627, Aug. 2009. 

[18] D.P. Roy, J. Ju, and P. Lewis et al, “Multi-temporal MODIS-Landsat 
data fusion for relative radiometric normalization, gap filling, and 

prediction of Landsat data,” Remote Sens. Environ., vol. 112, no. 6, pp. 

3112-3130, Jun. 2008. 
[19] X.L. Zhu, J. Chen, and F. Gao et al, “An enhanced spatial and temporal 



 

 

adaptive reflectance fusion model for complex heterogeneous regions,” 
Remote Sens. Environ., vol. 114, no. 11, pp. 2610-2623, Nov. 2010. 

[20] B. Huang, and H. Song, “Spatiotemporal Reflectance Fusion via Sparse 

Representation,” IEEE Trans. Geosci. Remote Sens., vol. 50, no. 10, pp. 
3707-3716, Oct. 2012. 

[21] A. Li, Y. Bo, and Y. Zhu et al, “Blending multi-resolution satellite sea 

surface temperature (SST) products using Bayesian maximum entropy 
method,” Remote Sens. Environ., vol. 135, pp. 52-63, Aug. 2013. 

[22] B. Wu, B. Huang, and L. Zhang, “An Error-Bound-Regularized Sparse 

Coding for Spatiotemporal Reflectance Fusion,” IEEE Trans. Geosci. 
Remote Sens., vol. 53, no. 12, pp. 6791-6803, Jul. 2015. 

[23] C.M. Gevaert, and F.J. García-Haro, “A comparison of STARFM and 

an unmixing-based algorithm for Landsat and MODIS data fusion,” 
Remote Sens. Environ., vol. 156, pp. 34-44, Jan. 2015. 

[24] X.L. Zhu, E.H. Helmer, and F. Gao et al, “A flexible spatiotemporal 

method for fusing satellite images with different resolutions,” Remote 
Sens. Environ., vol. 172, pp. 165-177, Jan. 2016. 

[25] P. Wang, F. Gao, and J.G. Masek, “Operational data fusion framework 

for building frequent landsat-like imagery,” IEEE Trans. Geosci. 
Remote Sens., vol. 52, no. 11, pp. 7353-7365, Nov. 2014. 

[26] M. Liu, W. Yang, and X.L. Zhu et al, “An Improved Flexible 

Spatiotemporal DAta Fusion (IFSDAF) method for producing high 
spatiotemporal resolution normalized difference vegetation index time 

series,” Remote Sens. Environ., vol. 227, pp. 74-89, Jun. 2019. 

[27] D. Xie, F. Gao, L. Sun, and M. Anderson, “Improving Spatial-Temporal 
Data Fusion by Choosing Optimal Input Image Pairs,” Remote Sens., 

vol. 10, no. 7, pp. 1142, Jul. 2018. 
[28] J.J. Walker, K.M. De Beurs, R.H. Wynne and F. Gao, “Evaluation of 

Landsat and MODIS data fusion products for analysis of dryland forest 

phenology,” Remote Sens. Environ., vol. 117, pp. 381-393, Feb. 2012. 
[29] F. Gao, M.C. Anderson, and X. Zhang et al, “Toward mapping crop 

progress at field scales through fusion of Landsat and MODIS imagery,” 

Remote Sens. Environ., vol. 188, pp. 9-25, Jan. 2017. 
[30] F. Gao, T. He, J.G. Masek, Y. Shuai, C.B. Schaaf and Z. Wang, “Angular 

Effects and Correction for Medium Resolution Sensors to Support Crop 

Monitoring,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., Vol. 7, 
pp. 4480-4489, Aug. 2014. 

[31] D.P. Roy, H.K. Zhang, J.C. Ju, J.L. Gomez-Dans, P.E. Lewis, and C.B. 

Schaaf et al, “A general method to normalize Landsat reflectance data 

to nadir BRDF adjusted reflectance,” Remote Sens. Environ., vol. 176, 

pp. 255–271, Apr. 2016. 

[32] J.G. Masek, E.F. Vermote, and N.E. Saleous et al, “A Landsat surface 
reflectance dataset for North America 1990-2000,” IEEE Geosci. 

Remote Sens. Lett., vol. 3, no. 1, pp. 68-72, Jan. 2006. 

[33] J. Chen, P. Jönsson, and M. Tamura et al, “A simple method for 
reconstructing a high-quality NDVI time-series data set based on the 

Savitzky-Golay filter,” Remote Sens. Environ., vol. 91, no. 3-4, pp. 332-

344, Jun. 2004. 
[34] R.Y. Cao, Y. Chen, and M.G. Shen et al, “A simple method to improve 

the quality of NDVI time-series data by integrating spatiotemporal 

information with the Savitzky-Golay filter,” Remote Sens. Environ., vol. 
217, pp. 244-257, Nov. 2018. 

[35] Z. Zhu, and C.E. Woodcock, “Object-based cloud and cloud shadow 

detection in Landsat imagery,” Remote Sens. Environ., vol. 118, pp. 83-
94, Mar. 2012. 

[36] Z. Zhu, S. Wang, and C.E. Woodcock, “Improvement and expansion of 

the Fmask algorithm: cloud, cloud shadow, and snow detection for 

Landsats 4–7, 8, and Sentinel 2 images,” Remote Sens. Environ., vol. 

159, pp. 269-277, Mar. 2015. 

[37] A. Jarihani, T. McVicar, and T. Van Niel et al, “Blending Landsat and 
MODIS Data to Generate Multispectral Indices: A Comparison of 

“Index-then-Blend” and “Blend-then-Index” Approaches,” Remote 

Sens., vol. 6, no. 10, pp. 9213-9238, Sep. 2014. 
[38] Editorial Board of Vegetation Map of China Cas (2001) 1:1000, 000 

Vegetation Atlas of China, Science Press, Beijing, China, 2001, pp. 434 

[39] S. Foga, P.L. Scaramuzza, and S. Guo et al, “Cloud detection algorithm 
comparison and validation for operational Landsat data products,” 

Remote Sens. Environ., vol. 194, pp. 379-390, Jun. 2017. 

[40] X.L. Zhu, and E.H. Helmer, “An automatic method for screening clouds 
and cloud shadows in optical satellite image time series in cloudy 

regions,” Remote Sens. Environ., vol. 214, pp. 135-153, Sep. 2018. 

[41] Y. Luo, K. Guan, and J. Peng et al, “STAIR: A generic and fully-
automated method to fuse multiple sources of optical satellite data to 

generate a high-resolution, daily and cloud-/gap-free surface reflectance 

product,” Remote Sens. Environ., vol. 214, pp. 87-99, Sep. 2018. 

[42] H. Song, and B. Huang, “Spatiotemporal Satellite Image Fusion through 
One-Pair Image Learning,” IEEE Trans. Geosci. Remote Sens., vol. 51, 

no. 4, pp. 1883-1896, Oct. 2013. 


	I. INTRODUCTION
	II. MATERIALS AND METHODS
	A. MODIS and Landsat NDVI data and preprocessing
	B. Developing the cross-fusion method

	III. EXPERIMENTAL DESIGN
	A. Experiment I: Quantitative assessments at random prediction dates
	B. Experiment II: Simulated the inconsistence between MODIS and Landsat
	C. Experiment III: Effect of cloud omission errors on the cross-fusion method
	D. Experiment IV: Generating the fused NDVI time-series data
	E. Experiment V: Visual inspection for block effect of the fused image

	IV. RESULTS
	A. Results for fusion at random prediction dates (Experiment I)
	B. Results for the simulated inconsistence between MODIS and Landsat (Experiment II)
	C. Results for the effect of cloud omission errors on the cross-fusion method (Experiment III)
	D. Results for the generation of the fused NDVI time-series data (Experiment IV)
	E. Results of visual inspection for the block effect in the fused image (Experiment IV)

	V. DISCUSSION AND CONCLUSIONS
	A. Performances of the cross-fusion method
	B. Uncertainties in the cross-fusion method
	C. A short summary

	Acknowledgment
	References
	Word 书签
	PointTmp




