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A B S T R A C T

Phenology is often considered the “leading indicator” of ecological responses to climate change, and therefore it
is important that researchers have accurate methods to track phenological changes. Remote sensing has been
widely used to study phenological responses to climate change. However, land surface phenology observed by
remote sensing is fundamentally different from that observed in the field, which raises the difficulty in under-
standing and validating phenological change observed using remote sensing. In this study, we revisited the
criteria of “good” phenological events and argued that the relationship between phenology and climate factors is
one of the most important meanings of phenological studies. Instead of validating remotely sensed phenology by
its consistency with field observations, this study aims to judge different possible definitions of phenological
events based on remote sensing by their temperature sensitivity and correlation. Using the winter wheat zone in
northern China as the study area, we compared the temperature correlation and sensitivities of winter wheat
phenology date derived from different methods: the relative threshold method with different thresholds, and the
curvature method, based on remotely sensed data. Our results show that there is no distinct phenological event
that is overwhelmingly more sensitive or correlative than any others. Therefore, there are no particular phe-
nological events that deserve emphasis when exploring the relationship between phenology date and the pre-
season temperature. Instead, the phenological stage (i.e. the threshold of relative threshold method) that is most
sensitive or correlative to pre-season temperature varies spatially, showing a good latitude gradient. On an
average, the thresholds of the most correlative and sensitive phenological stages to pre-season temperature
decreased by 9.92% and 14.69% per latitudinal degree, respectively. The results indicate that the traditional
emphasis on discrete phenological events could miss the phenological stages that are most sensitive and cor-
relative to pre-season temperature, thereby resulting in a limited understanding of phenological responses to
climate change.

1. Introduction

Phenology, commonly refers to the timing of recurring biological
life cycle, has attracted increasing attention due to its sensitivity to
climate change (Schwartz, 2013). Many studies have reported that
global warming has shifted the date of phenological events, like the

advancement of spring phenology and postponement of autumn phe-
nology (Menzel and Fabian, 1999; Cleland et al., 2007; Piao et al.,
2019). Accordingly, significant efforts have been devoted during the
past few decades in phenological monitoring (Zhang et al., 2003; Brown
et al., 2016; Templ et al., 2018) and exploring the relationship between
the phenology shifting and climate change (Menzel et al., 2006; Piao
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et al., 2006; Richardson et al., 2006; Shen, et al., 2011).
Researchers typically monitor vegetation phenology in two ways:

field observation and remote sensing. Field observation is the tradi-
tional method that documents the timings of key phenological events
that have clear physiological significance like bud burst, leaf unfolding,
flowering and leaf coloring (Schwartz, 2013). Unfortunately, the sparse
and uneven spatial distribution of ground stations limits the potential to
explore the spatial distribution of phenological responses to climate
change (Liu et al., 2017; Piao et al., 2019). Moreover, differences in
observation criteria, methods, and observers hardly guarantee spatio-
temporal consistency and data quality (Guo et al., 2016; Piao et al.,
2019). Phenology observed by remote sensing (also named as land
surface phenology, or LSP) overcomes the aforementioned short-
comings and thus has been widely applied in studies ranging from re-
gional to global scale thanks to its better space–time continuity and a
lower cost (e.g. Myneni et al., 1997; Zhang et al., 2004; Shen et al.,
2014). However, there are intrinsic discrepancies between the dates of
phenological events detected by remote sensing and field observations
(Friedl et al., 2006; White et al., 2009). Sharp phenological transitions
at the individual plant level are blurred in the remotely sensed time-
series data due to the coarse spatial resolution of satellite sensors with
significant mixed pixel effect (White et al., 2009; Chen et al., 2018) and
due to time-series preprocessing functions such as smoothing or fitting
(Henebry and De Beurs, 2013). Accordingly, the key phenological
events defined by remote sensing (e.g. green-up onset, senescence
onset) are sometimes criticized as “ill-defined” events with no clear
physiological significance (Henebry and De Beurs, 2013). Such funda-
mental discrepancies between satellite and field observations raises the
difficulty in understanding and validating the phenology change ob-
served by remote sensing (White et al., 2009).

Confronting with such dilemma in phenology study by remote
sensing, we reviewed the definition and fundamental meaning of the
commonly used phenological events. Leopold and Jones (1947) sys-
tematically summarized the characteristics of “good” phenological
events, which are simplified in Table 1 (Henebry and De Beurs, 2013).
Most of these points except (2) and (7) can be satisfied both by field and
remote sensing observations. Henebry and De Beurs (2013) argued that
remote sensing observation cannot satisfy the point (2) (“sharp/dis-
tinct”) due to mixed pixel effect and smoothing of time-series. In our
opinion, however, the “sharp/distinct” characteristics typically used to
minimize observers’ errors might not be necessary when using remote
sensing, considering that remotely sensed data is continuous and ob-
jective. Although uncertainty or inconsistencies exist among different
processing methods, they can be trackbacked through investigating the
processing chain (e.g. Shen et al., 2013; Liu et al., 2017). Thus, in this
study we target the point of (7) “evidence of newness” as the key
concept to be reconsidered. Leopold and Jones (1947) explained “evi-
dence of newness” as “stories” told by certain phenological events. One
of the most important stories is the relationship between the date of

phenological event and climate factors. For example, green-up date
(GUD) is particularly concerned because spring phenology is more
sensitive to climate change than others (Badeck et al., 2004; Niu et al.,
2013). Thus, phenology is often considered as the “leading indicator” of
ecological responses to climate change (USA National Phenology
Network, 2019). From this perspective, we attempt to judge the per-
formance of commonly defined phenological events from remote sen-
sing with the principle of “leading indicator” of climate change.

Using the winter wheat zone in Northern China as a case study, we
investigated whether there is a particular event derived from remote
sensing observation that is most sensitive or correlative to pre-season
temperature. Winter wheat was selected for our study for two reasons.
First, temperature is the primary controller of spring phenological
change for winter wheat (Wang et al., 2008), considering that good
farming management would simplify the relationship between phe-
nology and climate factors (e.g. irrigation could compensate the in-
sufficient rainfall). Second, the long-term and wide wheat cultivation
offers continuous spatiotemporal observations of both phenological
records and climate data in this area.

2. Material and methods

2.1. Study area and data

The study area is primarily located in the North China Plain (Fig. 1).
The Plain is the main wheat production zone in China and accounts for
44% of the total wheat planting area and 60% of the total wheat pro-
duction of China (Ren et al., 2008). Within the study area, winter wheat
is usually sowed in late-September–October and harvested in late-Ju-
ne–July the following year. Crops follow several key phenological
stages: sowing, seedling, tiller, green-up, jointing, heading, grouting,
maturity, and harvesting.

Climate data from 1981 to 2015 in this area were archived at 324
national meteorological stations, among which 130 stations are located
near winter wheat cropland (Fig. 1). The daily climate data of these 130
stations (temperature, sunshine duration and precipitation) were
downloaded from the Chinese Meteorological Agency. In addition,
winter wheat phenological data, GUD, jointing date (JD) and heading
date (HD), were documented in 54 stations (agro-meteorological ex-
perimental stations). The third generation NDVI dataset produced by
Global Inventory Modeling and Mapping Studies (GIMMS3g) (https://
ecocast.arc.nasa.gov/data/pub/gimms/3g.v1/) was collected for de-
riving winter wheat phenology considering its long-term observation
records. This dataset, obtained from Advanced Very High Resolution
Radiometer (AVHRR) instruments onboard the NOAA satellites (Tucker
et al., 2005), has been corrected for radiometric calibration, orbital
drift, view geometry, volcanic aerosols, and other effects unrelated to
vegetation change. Thus, the GIMMS3g NDVI dataset with a temporal
resolution of 15 days was widely used for detecting the phenology dates
for vegetation from regional to global scales (e.g. Shen et al., 2014; Liu
et al., 2017).

A winter wheat map at 20 m resolution created by a recent study
(Dong et al., 2020) was used to determine the winter wheat pixels at
8 km spatial scale. Considering the change of winter wheat distribution
during the study period, a manual discrimination procedure was further
conducted to confirm the stable winter wheat pixels near the meteor-
ological stations.

2.2. Methodology

This study aims to investigate whether there is a spring phenological
event deserving particular attention by comparing temperature corre-
lations and sensitivities of the phenology dates derived by different
methods. The main flowchart of this study is illustrated in Fig. 2.

Table 1
Comparison of field and remote sensing observations of “good” phenological
events.

Characteristics of “good” phenological
events

Field observation Remote sensing

low labor cost/simple to observe √ √
Sharp/distinct to minimize error among

observers
√ ?

Common/abundant √ √
High degree of accessibility √ √
Reliability of recurrence √ √
Continuity √ √
Evidence of newness √ ?
Locally-determined dynamics √ √
Prior knowledge exists to identify the

unusual
√ √
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2.2.1. Data preprocessing
Data preprocessing was conducted to extract and smooth the NDVI

time series of stable winter wheat pixels around each meteorological
station. First, a snow-free procedure (Zhang et al., 2007; Guo et al.,
2016) and iterative Savitzky-Golay filter (Chen et al., 2004) were em-
ployed to generate high-quality daily NDVI time series data. Second,
the stable winter wheat pixels (keeps unchanged during 1981–2015)
were determined manually by referencing the annual NDVI curves and
the winter wheat map at 20 m resolution (Dong et al. 2020). Here,
winter wheat cropland nearby the 130 meteorological stations were
selected as study sites. Five stable winter wheat pixels were identified
manually for each site. Finally, the NDVI time series of winter wheat in
each site was calculated by averaging NDVI time series of five stable
winter wheat pixels.

2.2.2. Determination of spring phenology dates for winter wheat by remote
sensing

Spring phenology (from green-up onset to heading) typically re-
ceives more attention than other phenological events in remote sensing
research, partly because the crop development is dominated by green-
ness increasing in this period (Guo et al., 2019) and partly because
spring phenology is more sensitive to temperature than others (He
et al., 2015). Therefore, the NDVI segment between the spring’s valley
before green-up and the main peak corresponding to the heading stage

Fig. 1. Study area and location of meteorological stations.

Climate dataset GIMMS3g dataset Winter wheat map

Preprocessing

NDVI time series 

…

Curvature method  Relative threshold 
method 

EP1a EP2b 100%5%

Phenology dates
Mean pre-season 

temperature

10%

Correlation and 
sensitivity analysis

a. EP1: Extreme point 1 of curvature change rate, which refers to the onset of green-up of winter wheat.
b. EP2: Extreme point 2 of curvature change rate, which refers to the onset of heading of winter wheat

Fig. 2. Flowchart of the study.
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Fig. 3. NDVI curve of winter wheat pixel (a) and phenology dates detected by relative thresholds and the curvature method (b).
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is selected for detecting spring phenology in this study (Fig. 3a). Key
phenology dates were identified from this NDVI segment by two widely
used methods: the relative threshold method (White et al., 1997) and
the curvature method (Zhang et al., 2003). In the relative threshold
method, GUD was identified as the day when the NDVI reached a
specific percentage of its annual amplitude (White et al., 1997). Dif-
ferent from the previous studies that used only one certain threshold, all
possible thresholds ranging from 5% to 100% were employed in this
study for a complete comparison (Fig. 3b). For the curvature method,
the logistic function was fitted to the NDVI data, followed by the
identification of the GUD and HD as the days when the rate of change in
the NDVI curvature reached the local maximum (Fig. 3b). In total, 20
phenology dates were derived by the relative threshold method and two
phenology dates were derived by curvature method.

2.2.3. Correlation and sensitivity analysis between phenology dates and pre-
season temperature

The correlation and regression coefficients between pre-season
temperature and phenology dates derived from NDVI time series were
compared. Despite other climate factors (e.g. precipitation, sunshine
duration) that may influence phenology dates, pre-season temperature
is the main controller of spring phenology for winter wheat (Wang
et al., 2008). Thus, we focused on pre-season temperature in this study.
Considering the pre-season period varies across different areas, we
determined the pre-season period uniformly starting from January 1st
and ending at the multi-year average (34 years from 1982 to 2015) of
spring phenology date for each site (Wang et al., 2015). Pearson cor-
relation and partial correlation analyses were both conducted to ana-
lyze the relationship between annual phenology dates and pre-season
temperature for each site. The partial correlation analysis with the
control variables of pre-season precipitation and sunshine duration was
conducted to remove the corresponding effects. The temperature sen-
sitivity (unit: days/°C) was determined as the linear regression coeffi-
cient between the annual phenology dates and pre-season temperature.
The temperature correlations and sensitivities of phenology dates de-
rived from relative threshold method and curvature method were then
compared to check whether a particular event that is most correlative
or sensitive to pre-season temperature exists.

3. Results

Fig. 4 compares the correlation and regression coefficients between
pre-season temperature and the phenology dates derived from relative
threshold method (twenty phenology dates corresponding to 5%, 10%
… 100%) and the curvature method (two phenology dates corre-
sponding to two inflection points) for all of the study sites. The result of
partial correlation (Fig. 4b) is similar to that of Pearson correlation
(Fig. 4a), indicating that the effect of sunshine duration and pre-
cipitation could be neglected for the regression analysis between phe-
nology dates and pre-season temperature. Both of the correlation and
regression coefficients between pre-season temperature and phenology
dates are negative for all of the methods, indicating that increasing
temperatures advances the phenology dates throughout the growth
period no matter how the phenological event was defined. More im-
portantly, the values of correlation and regression coefficients of dif-
ferent phenology definition methods are comparable, each of which
exhibited large variation. Although there is a slight trend that the
phenological events in later stages are more sensitive or correlative to
pre-season temperature than those in earlier stages, overall, this trend
actually varied spatially. When the whole study area was divided into
three subzones, we found that the phenological events in earlier stages
are more sensitive or correlative to pre-season temperature in the
northern zone, whereas the phenological events in the later stages are
more sensitive or correlative to pre-season temperatures in the middle
and southern zones (Fig. 5). This indicates that none of phenological
events defined by remote sensing were especially correlative or

sensitive to pre-season temperatures across the whole area among all
the competed definitions.

We further examined the phenological event (i.e. threshold of re-
lative threshold method) with the highest correlation coefficient and
regression coefficient among the events of all possible thresholds for
each site (Fig. 6a-b). As shown in Fig. 6 c-d, it exhibits latitude gradients
for the thresholds of the most correlative and sensitive phenological
stage, decreasing with increasing latitude (−9.92% and −14.69% per
latitudinal degree respectively). This suggests that the phenology of
winter wheat in the northern area is more sensitive to pre-season
temperatures in its early growth stage, whereas in the southern area is
more sensitive in its late growth stage. Thus, there is a potential to
analyze continuous phenological processes in order to better capture
the spatial pattern of the phenological response to rising temperatures.

To confirm the reliability of the observed latitudinal gradient of the
most sensitive phenological stages to pre-season temperatures, field
observed phenology data was used for comparison. With a similar re-
gression process as described in Section 2.2.3, the temperature-sensi-
tivity of GUD, JD, and HD were calculated for 54 sites with field-ob-
served phenology data. As shown in Fig. 7, although the latitudinal
gradient of the most sensitive phenological event (field observed GUD,
JD and HD) to pre-season temperature is not as obvious as that shown
in Fig. 6, GUD is more likely to be the most sensitive phenological event
to pre-season temperature in the northern area, whereas HD is more
likely to be the most sensitive one in southern area (Fig. 7b). This result
is consistent with the latitudinal gradient observed by remote sensing to
some extent. However, the phenological stage with the highest tem-
perature sensitivity was missed for the field observation data because
only three phenological events were observed. Instead, remote sensing
that observed vegetation growth continuously was able to capture the
phenological stage that is most sensitive to pre-season temperature.
Therefore, these results not only confirm the reliability of the result
derived from remotely sensed data, but also imply a potential of remote
sensing to provide more information about the response of the pheno-
logical process to climate change than limited phenological events.

4. Discussion

This study suggests that no phenological event defined by remote
sensing worth particular attentions in term of temperature sensitivity or
temperature correlation. Actually, the phenology dates derived by re-
lative threshold methods with different thresholds showed a high cor-
relation with each other (Table 2), indicating that these derived phe-
nology dates provide similar information when the defined thresholds
are closed. As mentioned earlier, mixed pixel effect and time-series
smoothing could blur the sharp phenological transition observed at
individual plant scale (Henebry and De Beurs, 2013; Chen et al., 2018).
From the perspective of temperature sensitivity, another important
reason should be noted. The response of vegetation phenology to cli-
mate variation is reflected on not only the discrete phenological events,
but also the growth process. In general, the response of phenology date
to climate factors originates from the response of developmental rate to
climate factors. This is usually described with following formula
(Chuine et al., 2013).

∑= =
=

∗t S R Ssuch thatp t
i

t

t
0 (1)

wheretp is the date of a specific phenological transition event; St is the
state of development on day t; Rt is the development rate on day t,
which is a function of climate factors. S* is the critical state required to
reach the phenological event (tp). The state of development (St), to a
large extent, refers to observed greenness by remote sensing, especially
in the period from GUD to HD. Thus, any points in the NDVI curve,
other than particular defined point (phenological event), could respond
to climate variation. In the traditional field observations, the growth
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process is neglected to a large extent due to the difficulty in quantifying
it by human observation; thus the “sharp/distinct” events are preferred
as they are easier to be observed. On the contrary, the growth process
represented by greenness is easily observed by remote sensing; whereas
the signal of “sharp/distinct” phenological events are blurred. There-
fore, it is worth questioning whether the commonly defined phenolo-
gical events from remote sensing deserve particular attention from the
perspective of “leading indicator” of ecological response to climate
change.

Concern on phenological process instead of discrete events is more
suitable for exploring the phenological responses to climate change by
remote sensing. In this study, such concern helped to reveal the lati-
tudinal gradient of the most sensitive phenological stage to pre-season
temperature. We surmise that such a latitudinal gradient might be at-
tributed to the different temperature stresses on different phenological
periods for the winter wheat in different areas. For the northern area,

the lower temperature in the early spring is the main limiting factors of
the growth of winter wheat, thus the earlier spring phenological stage
tends to be more sensitive to pre-season temperatures. For the southern
area, in contrast, the temperature is relatively insufficient in the later
spring due to the increased rainy days with lower solar radiation
compared to the northern area. Thus, the later spring phenological
stage is relatively more sensitive to pre-season temperature in the
southern area. However, such hypotheses need to be validated by ad-
ditional data analyses.

Existing studies used different temporal time spans before spring
phenology to calculate the pre-season temperature when they examined
the response or sensitivity of spring phenology to temperature (Shen
et al., 2011; He et al., 2015; Wu et al., 2019). To investigate whether
these different time spans in the definition of pre-season temperature
affect the observed latitudinal gradient of the most sensitive phenolo-
gical stages, we recalculated the temperature correlation and
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sensitivities by using pre-season temperatures with three different time
spans (one, two, and three months before multi-year averaged phe-
nology date). As shown in Fig. 8, the thresholds of phenological stages
most correlated and most sensitive to temperature both decreases with
latitude for all the three of the stated definitions of pre-season tem-
perature. These results further confirm that the latitudinal gradient of
the most sensitive phenological stage is robust to the different defini-
tions of the pre-season temperature.

The 15-day temporal resolution of the composited GIMMS3g NDVI
might be another concern. Wang & Zhu (2019) reported an over-
estimation of the absolute date of spring phenology with such datasets
without consideration of the actual day of observed NDVI. Fortunately,
they also mentioned that the temporal variation of phenology date is
not affected (Wang & Zhu, 2019). Thus, the calculation of temperature
sensitivity or correlation could also be influenced marginally.

Finally, shifting of phenological events are also linked with the
carbon cycle, ecosystem functions and community structure (e.g.
Richardson et al., 2009; Cleland et al., 2007; CaraDonna et al., 2014;
Valdes & Ehrlen, 2017). Thus, it is important to note that this study only
proposed an additional perspective for phenological study by remote
sensing, rather than denying the importance of particular phenological
events. However, it is worth noting that that particular phenological
events that occur at the individual plant level will also become in-
creasingly blurred at population levels and community levels, even for
the field observation (Inouye et al., 2019).

5. Conclusion

This study examined the temperature sensitivities and correlations
of different definitions of phenological events by remote sensing. The
results suggest that none of the phenological events defined by remote
sensing deserve particular attention when exploring the relationship
between phenology and pre-season temperature. Based on the analysis
of phenological process, we revealed the latitudinal gradient of the
most sensitive phenological event to pre-season temperature, which
could help to capture the phenological response to increasing tem-
perature more completely. Thus, we call for more attention to be paid
to phenological process instead of phenological events when using re-
mote sensing data. That is, remote sensing, as a continuous observation
manner, could better capture the phenological responses to climate
change, when focusing on the phenological process (e.g. all of the
phenological “events” corresponding to all possible thresholds from 5%
to 100%) rather than limited particular events.
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