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Abstract 8 

 Spatiotemporal fusion is a feasible solution to resolve the tradeoff between the temporal 9 

and spatial resolutions of remote sensing images. However, the development of 10 

spatiotemporal fusion algorithms has not yet reached maturity, and existing methods still face 11 

many challenges, e.g., accurately retrieving land cover changes and improving the robustness 12 

of fusion algorithms. The Flexible Spatiotemporal DAta Fusion (FSDAF) method proposed 13 

by Zhu et al. in 2016 solved the abovementioned problems to some extent. However, FSDAF 14 

has two shortcomings that can be further improved: (1) FSDAF is prone to losing spatial 15 

details and predicting a “blurrier” image due to the input of coarse pixels containing type 16 

change information and a large amount of boundary information for unmixing calculation, 17 

and (2) FSDAF does not optimize the areas of land cover change. In this paper, an improved 18 

FSDAF method incorporating change detection technology and an optimized model for 19 

changed-type areas (FSDAF 2.0) was proposed to improve the aforementioned problems. 20 
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Based on the existing FSDAF algorithm, FSDAF 2.0 excludes changed pixels and boundary 21 

pixels for unmixing calculation, and establishes a model to optimize the changed pixels. Its 22 

performance was compared with that of the Spatial and Temporal Adaptive Reflectance 23 

Fusion Model (STARFM), the original FSDAF, and the enhanced FSDAF that incorporates 24 

sub-pixel class fraction change information (SFSDAF). Two sites consisting of landscapes 25 

with heterogeneous and large-scale abrupt land cover changes were employed for testing. The 26 

results of the experiments demonstrate that FSDAF 2.0 effectively improves the shortcomings 27 

of FSDAF, blends synthetic fine-resolution images with higher accuracy than that of the other 28 

three methods at two different sites, and strengthens the robustness of the fusion algorithm. 29 

More importantly, FSDAF 2.0 has a powerful ability to retrieve land cover changes and 30 

provides a feasible way to improve the performance of retrieving land cover changes. 31 

Consequently, FSDAF 2.0 has great potential for monitoring complex dynamic changes in the 32 

Earth’s surface. 33 
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1. Introduction 36 

 With the rapid development of remote sensing technology in the past decade, remote 37 

sensing has played an increasingly important role in monitoring urbanization (Taubenböck et 38 

al., 2012), ecological system dynamic changes (Shen et al., 2011; Zhu et al., 2019), natural 39 

disasters (Rudorff et al., 2018; Zhang et al., 2014), crop yield estimation (Battude et al., 2016) 40 

and other applications. Acquiring satellite images with high spatial and temporal resolution 41 
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means that high-precision monitoring of Earth systems by dense time-series can be achieved, 42 

which greatly improves the value of remote sensing images in applications. However, limited 43 

by relevant budget and satellite sensor technology, the spatial resolution of available satellite 44 

images can only be improved at the expense of other performance (Zhang et al., 2015), for 45 

instance, sacrifices of temporal and spectral resolution. Accordingly, existing remote sensing 46 

satellites have difficulty obtaining images with both high temporal resolution and high spatial 47 

resolution, which means that available satellite images cannot satisfy the needs for studying 48 

high-frequency changes on the Earth’s surface, especially in heterogeneous landscapes and in 49 

areas of frequent change (Zhu et al., 2018). The lack of high spatiotemporal resolution images 50 

greatly limits the application scenarios of remote sensing. 51 

 Moreover, a growing problem currently exists in the use of remote sensing data: the 52 

remote sensing community has accumulated a large amount of historical data since the first 53 

remote sensing satellite launched. However, due to the influence of thick cloud contamination 54 

and other factors (e.g., SLC-off problem in Landsat 7 ETM+), limited remote sensing data can 55 

be employed directly, which further increases the difficulty of obtaining dense time series 56 

with high spatial resolution data. 57 

 To solve the abovementioned problems, launching more satellites or improving the 58 

performance of sensors in a short period of time is impractical, while the spatiotemporal 59 

fusion of multisource images from multiple satellites to obtain high spatial resolution and 60 

dense time-series data is a feasible solution. Compared with traditional pansharpening fusion, 61 

spatiotemporal fusion is a relatively new concept (Zhu et al., 2018) and can obtain high 62 
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spatial and temporal resolution images by blending high-frequency but low-spatial-resolution 63 

images with high-spatial-resolution but low-frequency images. For convenience, images with 64 

low-spatial-resolution but high-frequency are referred to as “coarse-resolution images”, and 65 

the pixels in these images are referred to as “coarse pixels”. Correspondingly, the images with 66 

high-spatial-resolution but low-frequency are called “fine-resolution images”, and their pixels 67 

are referred to as “fine pixels”. 68 

 Due to a large number of satellite images being freely available to the public (e.g., 69 

Landsat, MODIS, and Sentinel) and the large demand for Earth monitoring with high spatial 70 

resolution and dense time series, in the last two decades, there has been increasing interest in 71 

spatiotemporal fusion. Recently, existing spatiotemporal fusion methods have been classified 72 

into five groups based on the specific principle: weight function-based, unmixing-based, 73 

Bayesian-based, learning-based, and hybrid methods. A comprehensive review of 74 

spatiotemporal fusion methods in these five groups can be found in the literature (Zhu et al., 75 

2018). 76 

 The Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) is the weight 77 

function-based method developed first (Gao et al., 2006). Most other weight function-based 78 

methods are developed by the principle of STARFM and improve the corresponding defects; 79 

for example, the Spatial Temporal Adaptive Algorithm for mapping Reflectance Change 80 

(STAARCH) (Hilker et al., 2009) and the Enhanced Spatial and Temporal Adaptive 81 

Reflectance Fusion Model (ESTARFM) (Zhu et al., 2010) were developed to improve the 82 

performance in disturbed landscapes and heterogeneous landscapes, respectively. 83 
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ATPPK-STARFM increases the performance in abrupt changes and heterogeneous landscapes 84 

(Wang et al., 2017), and the spatiotemporal fusion method by using a linear injection model 85 

and local neighborhood information retrieves land cover changes effectively (Sun et al., 2018). 86 

Among the unmixing-based methods, the Multisensor Multiresolution Technique (MMT) is 87 

the original method (Zhukov et al., 1999). Other unmixing-based methods subsequently 88 

developed, e.g., the Unmixing-Based Data Fusion (UBDF) (Zurita-milla et al., 2008), the 89 

Spatial Temporal Data Fusion Approach (STDFA) (Wu et al., 2012), the Landsat-MERIS 90 

fusion method (Amorós-lópez et al., 2013), and the Enhanced Spatial and Temporal Data 91 

Fusion Model (ESTDFM) (Zhang et al., 2013) can be considered improved methods of MMT. 92 

Bayesian-based methods consider spatiotemporal fusion to be a maximum a posterior (MAP) 93 

problem, and several Bayesian-based methods have been proposed and have acquired high 94 

accuracy; for example, the Bayesian Maximum Entropy method (BME) blends synthetic sea 95 

surface temperature data effectively (Li et al., 2013). The NDVI-BSFM method performs 96 

strength and robustness in providing NDVI datasets (Liao et al., 2016). Learning-based 97 

methods have grown considerably in recent years (Tan et al., 2018). The 98 

Sparse-representation-based Spatiotemporal reflectance Fusion Model (SPSTFM) is perhaps 99 

the first dictionary-pair learning method in the spatiotemporal fusion field (Huang and Song, 100 

2012). Moosavi et al. (2015) proposed the Wavelet-Artificial Intelligence Fusion Approach 101 

(WAIFA) to blend land surface temperature data. Sun and Zhang (2019) proposed a two-stage 102 

spatiotemporal fusion method to blend the Landsat and MODIS reflectance data. The hybrid 103 

methods combine several technologies from the above categories of methods. One of the 104 
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typical hybrid methods is Flexible Spatiotemporal DAta Fusion (FSDAF) proposed by Zhu et 105 

al. (2016). FSDAF integrates the unmixing method, weight function, and thin plate spline 106 

(TPS) interpolation method into one framework. As a result, FSDAF requires minimum input 107 

data and has satisfactory performance in most cases. 108 

 Consequently, spatiotemporal fusion technology has developed rapidly, but as a relatively 109 

new research topic in the remote sensing field, existing fusion methods based on different 110 

principles have their own strengths and weaknesses. The development of spatiotemporal 111 

fusion algorithms has not yet reached maturity, and existing solutions still face many 112 

challenges, such as the following typical problems. 113 

(1) Difficulty in retrieving land cover changes 114 

 Retrieving land cover changes is a difficult problem for spatiotemporal fusion (Zhu et al., 115 

2018). Unlike phenological changes, land cover type changes are usually caused by natural 116 

disasters or human activities, such as urbanization, deforestation, wildfires, floods and other 117 

land cover transitions. However, most of the existing spatiotemporal fusion algorithms are 118 

based on the assumption that the land cover type does not change during the fusion period. 119 

Accordingly, most algorithms, for example, the STARFM, ESTARFM, and MMT, fail to 120 

handle land cover changes. In particular, the overall accuracy and reliability of the fusion 121 

results are greatly affected by large-scale land cover changes. Among the existing 122 

spatiotemporal fusion methods, some learning-based methods, e.g., the SPSTFM, 123 

error-bound-regularized sparse coding (EBSPTM) (Wu et al., 2015) and WAIFA, can capture 124 

change information to some extent because of their specific principles. However, low 125 
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computing efficiency and time-consuming problem in learning step is a key factor that limits 126 

the development and application of learning-based methods (Zhu et al., 2018). Moreover, the 127 

accuracy of learning-based methods decreases when spatial heterogeneity is high and spectral 128 

scale differences between coarse- and fine-resolution images are large (Zhu et al., 2016). 129 

(2) Low robustness in different types of landscapes  130 

 Currently, existing spatiotemporal fusion algorithms have different advantages and 131 

limitations in different landscapes due to their various principles. For example, faced with a 132 

site with a heterogeneous landscape, a site with a homogeneous landscape, and a site with 133 

large-scale abrupt land cover changes, the blending results of using various spatiotemporal 134 

fusion algorithms are quite different; for example, STARFM has promising accuracy in 135 

homogeneous landscapes, but it is ineffective in the face of heterogeneous landscapes (Zhu et 136 

al., 2010). ESTARFM can produce a synthetic image more accurately in heterogeneous 137 

landscapes, but is even worse than STARFM for predicting abrupt changes in land cover types 138 

(Emelyanova et al., 2013). STAARCH has high accuracy in disturbed forest areas, but 139 

STAARCH cannot detect nonforest disturbance events and is sensitive to surface 140 

heterogeneity (Hilker et al., 2009). Fit-FC method can more effectively capture considerable 141 

phenological changes than STARFM (Wang and Atkinson, 2018), but it performs worse than 142 

FSDAF and STARFM in heterogeneous landscapes (Maolin Liu et al., 2019). Consequently, 143 

the robustness and reliability of the algorithm still need to be improved. The ability to 144 

guarantee accuracy and reliability in the prediction of images in all cases has become a 145 

challenge.  146 
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(3) High demand of input data 147 

 Many existing spatiotemporal fusion methods, including ESTARFM, STAARCH, 148 

STDFA, SPSTFM, etc., need more than one prior coarse- and fine-resolution image pair as 149 

input data. For real-time processing, some fusion methods like ESTARFM and STAARCH 150 

cannot be used because they need the image after the prediction time. For historical case, due 151 

to the influence of thick cloud contamination and other factors, it is difficult to acquire one 152 

more high-quality coarse- and fine-resolution image pair that has acceptable temporal distance 153 

or does not experience large-scale land cover changes between the image pairs, only one pair 154 

of prior images may be available in most cases (Zhu et al., 2016). In addition, finding another 155 

pair of prior images is time consuming (Song and Huang, 2013). Therefore, for the future 156 

proposed spatiotemporal fusion algorithm, guaranteeing the accuracy on the premise that only 157 

one pair of prior images is needed is a challenge. 158 

 The FSDAF proposed by Zhu et al. (2016) has solved the abovementioned problems to 159 

some extent. FSDAF is based on the spectral linear unmixing theory and thin-plate spline 160 

(TPS) interpolation method, combining the traditional unmixing-based method and weight 161 

function-based method. Compared with other blending methods, FSDAF requires minimum 162 

input data: one pair of coarse- and fine-resolution images acquired at T1 and one 163 

coarse-resolution image at T2. In addition, the FSDAF algorithm can capture more 164 

information of coarse-resolution image at T2 by using TPS interpolation and obtain higher 165 

fusion accuracy in various landscapes, especially in heterogeneous landscapes. Moreover, 166 

FSDAF has the ability to predict both gradual change and land cover type change. 167 
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Accordingly, FSDAF is considered to be a potential fusion method that can efficiently handle 168 

land cover change, as long as the change is detectable in coarse-resolution images (Zhu et al., 169 

2016).  170 

 Although FSDAF performs excellently in spatiotemporal fusion, it has two problems that 171 

can be improved: (1) in the unmixing process of FSDAF, coarse pixels with change values 172 

within the range of the 0.1–0.9 quantiles (or a narrower range, e.g., 0.2-0.8) are selected to 173 

participate in the unmixing calculation to filter out the changed pixels. However, this strategy 174 

is empirical and not strict. In addition, the coarse pixels containing a large amount of 175 

boundary information are not excluded. These pixels would introduce the wrong spectral 176 

information into the unmixing calculation once selected. As a result, FSDAF is prone to 177 

reducing the contrast between different objects, losing spatial details and predicting a “blurrier” 178 

image. This problem is particularly acute in the case of the large-scale type change occurring 179 

during the fusion period. (2) FSDAF can capture part of the change information from the 180 

coarse-resolution image at T2 by using the TPS interpolation method (Zhu et al., 2018); 181 

however, the FSDAF algorithm does not judge whether the land cover type has changed in a 182 

fine-resolution image. Therefore, FSDAF does not have the capacity to determine the crisp 183 

boundary of land cover type change and accurately estimate the values of the changed pixels. 184 

The accuracy and reliability of the blending result of FSDAF would be affected if the fusion 185 

processes do not include a land cover change detection module. Consequently, FSDAF needs 186 

further improvement and optimization. 187 

 To address the above problems, an improved FSDAF method incorporating change 188 
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detection technology and an optimized model for changed-type areas (FSDAF 2.0) is 189 

proposed in this paper. Its goal is to overcome the disadvantages of FSDAF and solve the 190 

three typical problems mentioned above. Specifically, FSDAF 2.0 employs change detection 191 

technology to find the changed-type pixels by detecting two coarse-resolution images of 192 

different phases and excludes the coarse pixels containing changed-type areas and a large 193 

amount of boundary information in the unmixing process. Furthermore, FSDAF 2.0 194 

establishes an optimized model that performs targeted optimization on the prediction values 195 

of changed-type pixels. To validate the effectiveness of the proposed method, we compared 196 

the performance of FSDAF 2.0 with the STARFM, the original FSDAF, and the enhanced 197 

FSDAF that incorporates sub-pixel class fraction change information (SFSDAF) (Li et al., 198 

2020) at two different sites, including a site with a heterogeneous landscape, and a site with 199 

large-scale abrupt land cover change. 200 

2. Methodology 201 

 FSDAF 2.0 only requires one pair of coarse- and fine-resolution images acquired at T1 202 

and one coarse-resolution image at T2. The flowchart of FSDAF 2.0 is shown in Fig. 1. The 203 

main idea of FSDAF 2.0 is employing a change detection algorithm to find changed-type 204 

areas and perform targeted optimization. These additional steps of FSDAF 2.0 are within 205 

yellow boxes in Fig. 1. Other steps remain the same as those of the original FSDAF.  206 
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Step3: Unmix and obtain the temporal prediction

Step4: Optimize and obtain the final prediction

 

Fig. 1. Flowchart of FSDAF 2.0 

 FSDAF 2.0 includes four main steps: (1) classify and detect edges; (2) obtain thin plate 207 

spline (TPS) interpolation images and detect changed pixels; (3) unmix and obtain the 208 

temporal prediction; and (4) optimize and obtain the final prediction. The specific steps and 209 

theories of FSDAF 2.0 are as follows: 210 

2.1.Classify and detect edges 211 

 This step involves acquiring the classification map and the edge image. The fraction of 212 
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each class within one coarse pixel, which needs to be used in the subsequent unmixing 213 

process, can be obtained from the classification map. In this paper, the unsupervised classifier 214 

ISODATA is used to classify the fine-resolution image at T1. The edge detection algorithm is 215 

employed to extract the features of the object boundary, i.e., obtain the edge image of the 216 

fine-resolution image at T1. For convenience, the edge of the surface is referred to as the 217 

“boundary area”. The fine pixels inside the boundary area are called “boundary pixels”. The 218 

boundary pixels can be found by using the threshold method in the edge image. The boundary 219 

pixel is mixed with two or more types of features, generally due to being located at the edges 220 

of different objects. Accordingly, its spectral features are quite different from the type to 221 

which it belongs. Therefore, the prediction accuracy can be affected once coarse pixels 222 

containing a large number of boundary pixels are employed to estimate the temporal change 223 

of each class, specifically, increasing the error of the unmixing calculation and reducing the 224 

contrast between different objects in the blending image. To avoid the above problems, 225 

determining the boundary pixels is a key process. FSDAF 2.0 employs the Sobel operator to 226 

obtain the edge image. The pixels in the edge image with values within the range of the 227 

0.96-1.0 quantiles are defined as boundary pixels.  228 

2.2.Obtain TPS interpolation images and detect changed pixels 229 

 Thin plate spline (TPS) interpolation is a kind of spatial interpolation method based on 230 

spatial dependence, and is a tool for interpolating surfaces from scattered datasets. TPS 231 

interpolation can produce a “smooth” interpolation image and capture the spatial patterns and 232 
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land cover type change signals. More information about TPS can be found in the literature 233 

(Dubrule, 1984). The interpolation image of the coarse-resolution image at T2 is defined as 234 

“spatial prediction” based on the above features. Different from the original FSDAF that 235 

downscales the coarse-resolution image of the prediction phase only, FSDAF 2.0 uses the TPS 236 

interpolation method to downscale the coarse-resolution images of two phases, and the 237 

interpolation images are used in the following process of change detection.  238 

 The ability of capturing change information in FSDAF mainly results from the TPS 239 

interpolation of coarse-resolution image at T2 (i.e., spatial prediction). However, FSDAF 240 

distributes residuals on the assumption that errors depend mainly on the homogeneity of the 241 

surface in step 3. In other words, the original FSDAF does not make targeted optimization to 242 

changed-type areas. The lack of this process affects the accuracy and reliability of the 243 

blending result when facing a site with land cover type changes. The key to settling this 244 

problem is to find the changed-type pixels during the fusion period. Therefore, it is reasonable 245 

to employ change detection technology to solve this problem. The selection of the change 246 

detection algorithm depends on many factors, e.g., image size, resolution, scale of the type 247 

changes, and calculation efficiency. For convenience, the fine pixels that have type changes 248 

during the fusion period are referred to as “changed pixels”, while other pixels are called 249 

“unchanged pixels”. 250 

 In this paper, two thresholding algorithms were employed: the thresholding method based 251 

on the Gaussian distribution model and OTSU (OTSU, 1979). The thresholding method based 252 

on the Gaussian model assumes difference values are in accordance with the Gaussian 253 
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distribution mathematical model and judges the probability of the change in pixel 254 

classification by the three-sigma rule. Specifically, when the difference value is larger than the 255 

sum of double standard deviations and the average change value or smaller than the difference 256 

between the average change value and double standard deviations, it has a 95.45% probability 257 

of classification change. It is reasonable to consider that these pixels have experienced type 258 

changes. The threshold values 𝑄 of the Gaussian model can be calculated as: 259 

𝑄𝑛𝑒𝑔 = 𝑚𝑒𝑎𝑛(𝐶𝑑) − 2 × 𝑠𝑡𝑑𝑑𝑣(𝐶𝑑) 𝑖𝑓 𝐶𝑑 < 0, 

(1) 

𝑄𝑝𝑜𝑠 = 𝑚𝑒𝑎𝑛(𝐶𝑑) + 2 × 𝑠𝑡𝑑𝑑𝑣(𝐶𝑑) 𝑖𝑓 𝐶𝑑 ≥ 0, 

where 𝐶1  and 𝐶2  are the coarse-resolution images at T1 and T2, respectively; 𝐶𝑑 =260 

(𝐶2 − 𝐶1); 𝑚𝑒𝑎𝑛(𝐶𝑑) is the average value of 𝐶𝑑; and 𝑠𝑡𝑑𝑑𝑣(𝐶𝑑) is the standard deviation 261 

of 𝐶𝑑. The thresholds are calculated separately for two cases. 262 

 In most cases, the difference values of remote sensing images in two phases 263 

approximately agree with the Gaussian distribution (Song et al., 2000), but it is false when 264 

large-scale change occurs on the land surface because large-scale change (e.g., floods and 265 

earthquakes) usually changes the boundaries of objects and has irregular spectral variations in 266 

the image. To address this limitation, OTSU was employed as a complementary algorithm. 267 

The OTSU algorithm is considered one of the most successful methods for image 268 

thresholding because of its simple calculation (Lai and Rosin, 2014). In the field of remote 269 

sensing change detection, OTSU is an adaptive thresholding method that is sensitive to 270 

spectral change. The threshold values of OTSU can be calculated as: 271 

𝑄𝑛𝑒𝑔 = 𝑚𝑎𝑥(𝜔0 × (𝜇0 − 𝜇)2 + 𝜔1 × (𝜇1 − 𝜇)2)  𝑖𝑓 𝐶𝑑 < 0, (2) 
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𝑄𝑝𝑜𝑠 = 𝑚𝑎𝑥(𝜔0 × (𝜇0 − 𝜇)2 + 𝜔1 × (𝜇1 − 𝜇)2)  𝑖𝑓 𝐶𝑑 ≥ 0, 

where 𝜔0 is the ratio of the unchanged pixels to the number of total pixels, 𝜔1 is the ratio 272 

of the changed pixels to the number of total pixels, 𝜇0 is the average value of the unchanged 273 

pixels, 𝜇1 is the average value of the changed pixels, and 𝜇 is the average value of the total 274 

pixels. OTSU employs the traversing method to obtain the threshold values. The thresholds 275 

are calculated separately for two cases. 276 

 Compared with the Gaussian distribution model, OTSU tends to mistakenly judge 277 

phenological changes as classification changes, but it is suitable for detecting areas where the 278 

land cover type changes on a large scale. Consequently, FSDAF 2.0 chooses the change 279 

detection algorithm according to whether the difference values of TPS interpolation result in 280 

two phases in accordance with the Gaussian distribution model. There are many methods that 281 

can judge whether the difference values agree with the Gaussian distribution model, such as 282 

the Shapiro-Wilk test (ROYSTON, 2000), Kolmogorov-Smirnov test (Lilliefors, 2012) and 283 

histogram judgment method. 284 

 In the above threshold calculation, coarse-resolution images are used instead of TPS 285 

interpolation images. We found that there is negligible difference between the threshold 286 

values obtained by using interpolation images and coarse-resolution images as input. This 287 

strategy effectively reduces the calculation amount. After thresholds are obtained, the 288 

difference image of two interpolation images is employed to make the change detection 289 

binary image. Specifically, the values of pixels in the range of the thresholds are selected as 290 

changed pixels.  291 
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 The specific steps of change detection include (1) acquiring a difference image by 292 

subtracting two coarse-resolution images; (2) judging whether the difference values are 293 

accordance with the Gaussian distribution model; (3) calculating thresholds; and (4) 294 

determining the changed pixels in the difference image of interpolation images. In this paper, 295 

the thresholds of each band are obtained, which need to be used to limit the results of the 296 

unmixing calculation in step 3. In the change detection process, the shortwave infrared band 297 

(e.g., SWIR1 or SWIR2 is chosen in Landsat 7 ETM+) is employed to calculate difference 298 

values only. The shortwave infrared band is often employed to distinguish rock (Y. Yamaguchi 299 

and Naito, 2010), soil water content (Sadeghi et al., 2015) and different types of vegetation 300 

(Panigrahy and Panigrahy, 2009), and the image of this band has a high contrast. Moreover, 301 

using the shortwave infrared band can effectively detect the changes caused by geological 302 

disasters such as floods and landslides. 303 

2.3.Unmix and obtain the temporal prediction 304 

 This step employs linear unmixing technology to estimate the change value between two 305 

phases and then calculate the temporal prediction. In the classification process, the class 306 

fractions within a coarse pixel 𝑓𝑐(𝑥𝑖, 𝑦𝑖) are acquired. According to the spectral linear 307 

unmixing theory, and assuming no type change occurs during the blending period, the 308 

temporal change of a coarse pixel is the weighted sum of the temporal change of all classes 309 

within it: 310 

∆𝐶(𝑥𝑖, 𝑦𝑖, 𝑏) = ∑ 𝑓𝑐(𝑥𝑖, 𝑦𝑖)
𝑛
𝑐=1 × ∆𝐹(𝑐, 𝑏), (3) 



17 

 

where 𝑛 means the number of classes and ∆𝐹(𝑐, 𝑏) indicates the change value of class 𝑐 in 311 

band 𝑏. Assuming the temporal change in each class is the same, theoretically, we can choose 312 

𝑚 (𝑚 > 𝑛) coarse pixels to construct the following matrix Eq. (3), and solve it by using the 313 

least square method. 314 

[
 
 
 
 
∆𝐶(𝑥1, 𝑦1, 𝑏)

⋮
∆𝐶(𝑥𝑖, 𝑦𝑖 , 𝑏)

⋮
∆𝐶(𝑥𝑚, 𝑦𝑚, 𝑏)]

 
 
 
 

=

[
 
 
 
 
𝑓1(𝑥1, 𝑦1) 𝑓2(𝑥1, 𝑦1) … 𝑓𝑛(𝑥1, 𝑦1)

⋮ ⋮  ⋮
𝑓1(𝑥𝑖, 𝑦𝑖)

⋮
𝑓1(𝑥𝑚, 𝑦𝑚)

𝑓2(𝑥𝑖, 𝑦𝑖)
⋮

𝑓2(𝑥𝑚, 𝑦𝑚)

…
 
…

𝑓𝑛(𝑥𝑖, 𝑦𝑖)
⋮

𝑓𝑛(𝑥𝑚, 𝑦𝑚)]
 
 
 
 

×

[
 
 
 
 
∆𝐹(1, 𝑏)

⋮
∆𝐹(𝑐, 𝑏)

⋮
∆𝐹(𝑛, 𝑏)]

 
 
 
 

., 

with s. t. 𝑄𝑛𝑒𝑔 ≤ ∆𝐹 ≤ 𝑄𝑝𝑜𝑠,  

(4) 

 Considering that the changed pixels involved in the inversion calculation can affect the 315 

accuracy, the original FSDAF excludes the pixels with ∆𝐶 outside of the range of the 0.1-0.9 316 

quantiles. This strategy is empirical and has no theoretical basis. Instead, FSDAF 2.0 excludes 317 

the changed pixels according to the result of change detection in step 2 and limits the change 318 

value of class ∆𝐹 in the closed interval [𝑄𝑛𝑒𝑔, 𝑄𝑝𝑜𝑠]. Furthermore, FSDAF 2.0 takes into 319 

account the effect of boundary pixels, and coarse pixels containing more than 10% of 320 

boundary pixels are also excluded. The process of filtering pixels is shown in Fig. 2. 321 
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Fig. 2. The process of filtering pixels for unmixing calculation in FSDAF 2.0 

 After the calculation of temporal change is completed, and the change value of each class 322 

is assigned to fine pixels in the T1 phase of the corresponding class, and the temporal 323 

prediction can be obtained. 324 

2.4.Optimize and obtain the final prediction 325 

 Similar to FSDAF, FSDAF 2.0 distributes residuals on the assumption that errors depend 326 

mainly on the homogeneity of the surface. Consequently, the change value of each class is 327 

corrected. However, the above calculation is on a pixel-by-pixel basis; thus, the neighborhood 328 

information is employed to reduce the block effect and obtain a more robust prediction 𝐹𝑐. 329 

The specific processes of distributing residuals and using neighborhood information to obtain 330 

robust prediction can be found in the literature (Zhu et al., 2016). 331 

 Theoretically, the TPS interpolation result of the coarse-resolution image at T2 preserves 332 

most of the actual information of the fine-resolution image at T2 in homogeneous areas. In that 333 

case, using the TPS interpolation result to replace the changed pixels is a reasonable 334 

optimization method. The TPS interpolation result, however, only uses the spatial dependence 335 

of the coarse pixels, which means it produces a “smooth” result. Compared with the real 336 

fine-resolution image at T2, the TPS interpolation result loses many spatial details, and may 337 

lead to many spectral and structural errors. In addition, the spectral differences between two 338 

sensor platforms should also be considered. Therefore, replacing the changed pixels directly 339 

by TPS interpolation results is not rigorous.  340 
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 To address this problem, FSDAF 2.0 proposes the TPS reliability coefficient (𝑇𝑅𝐶) to 341 

describe the reliability degree to which the changed pixels are replaced by the TPS 342 

interpolation result. The similarity, homogeneity and consistency index between two images 343 

in different phases are used to calculate the TPS reliability coefficient. 344 

 The similarity index (𝑆𝐼) describes the spectral similarity between the TPS interpolation 345 

image and the real fine-resolution image. Specifically, the similarity index not only describes 346 

the difference in pattern between the fine-resolution image and TPS interpolation image but 347 

also reflects the spectral difference of different sensor platforms. Theoretically, more 348 

similarity between the real image and TPS interpolation image leads to more reliable 349 

employment of the TPS interpolation result at T2 to correct the changed pixels. Logically, the 350 

values of 𝑆𝐼 in the T2 phase need be obtained. However, the fine-resolution image at T2 is 351 

unknown; instead, the images at T1 are employed to calculate the 𝑆𝐼. Before calculating the 352 

similarity index, the difference values of the TPS interpolation image and fine-resolution 353 

image at T1 need to be obtained, as shown in the following equation: 354 

𝐹𝑑(𝑥𝑖𝑗 , 𝑦𝑖𝑗, 𝑏) = 𝐹1
𝑇𝑃𝑆(𝑥𝑖𝑗 , 𝑦𝑖𝑗, 𝑏) − 𝐹1(𝑥𝑖𝑗 , 𝑦𝑖𝑗, 𝑏),  (5) 

where (𝑥𝑖𝑗 , 𝑦𝑖𝑗 , 𝑏) is the coordinate index of the 𝑗th fine pixel within the coarse pixel at 355 

location (𝑥𝑖, 𝑦𝑖) in band 𝑏, 𝐹1
𝑇𝑃𝑆(𝑥𝑖𝑗, 𝑦𝑖𝑗, 𝑏) is the value of the TPS interpolation result at 356 

T1, and 𝐹1(𝑥𝑖𝑗 , 𝑦𝑖𝑗, 𝑏) is the value of the fine-resolution image in T1 phase. 357 

 To simplify the calculation, we assume that the difference values 𝐹𝑑(𝑥𝑖𝑗 , 𝑦𝑖𝑗 , 𝑏) are in 358 

accordance with the Gaussian distribution model and consider that there is no spectral 359 

similarity between the TPS interpolation image and the real image when the difference value 360 
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is beyond the triple standard deviations of the average difference. In that case, the similarity 361 

index is 0. For other changed pixels, the calculation process is as follows: 362 

𝑆𝐼(𝑥𝑖𝑗 , 𝑦𝑖𝑗 , 𝑏) = 1 − |𝐹𝑑(𝑥𝑖𝑗 , 𝑦𝑖𝑗 , 𝑏) − 𝑚𝑒𝑎𝑛(𝐹𝑑)| (3 × 𝑠𝑡𝑑𝑑𝑒𝑣(𝐹𝑑))⁄ ,  (6) 

where 𝑚𝑒𝑎𝑛(𝐹𝑑) is the average difference value and 𝑠𝑡𝑑𝑑𝑒𝑣(𝐹𝑑) is the standard deviation 363 

of the difference value. The 𝑆𝐼 ranges from 0 to 1, and larger values indicate more spectral 364 

similarity between the TPS interpolation image and the real image. 365 

 The homogeneity index reflects the complexity of the land surface. Logically, the higher 366 

the homogeneity of the image is, the less spatial details the surface has; thus, less information 367 

can be lost by TPS interpolation. In that case, it is more suitable to use the TPS interpolation 368 

result to modify the value of the changed pixel. FSDAF 2.0 uses a modified version of the 369 

homogeneity index in the original FSDAF to describe the homogeneity of the fine-resolution 370 

image in the T1 phase: 371 

𝑀𝐻𝐼(𝑥𝑖𝑗 , 𝑦𝑖𝑗) = 𝑠𝑖𝑛 [(
1

𝑘
∑ 𝐼𝑝

𝑘
𝑝=1 ) × 𝜋/2], (7) 

where 𝐼𝑝 = 1 means the 𝑝th fine pixel within a moving window with the same land cover 372 

type as the central pixel (𝑥𝑖𝑗, 𝑦𝑖𝑗); otherwise, 𝐼𝑝 = 0. 𝑘 is the number of fine pixels within 373 

one coarse pixel; 𝑀𝐻𝐼 ranges from 0 to 1, and larger values indicate a more homogenous 374 

landscape (Zhu et al., 2016); 𝑠𝑖𝑛  is the sine function; and 𝜋  is PI. Using the above 375 

empirical formula to determine the weight parameter may not be the most accurate solution. 376 

However, this strategy can simplify the calculation and achieve satisfactory results, 377 

reasonably balancing the calculation efficiency and fusion performance. 378 

 Because the similarity index and homogeneity index at the prediction phase cannot be 379 
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calculated without the fine-resolution image of the T2 phase, instead, the similarity index and 380 

homogeneity index mentioned above are the values of the T1 phase. These indexes of the two 381 

phases are different mainly because of the land cover changes. The reliability of the blending 382 

result cannot be guaranteed by using the calculated value of the T1 phase to correct the values 383 

of the changed pixels. To solve this problem, the consistency index (𝐶𝐼 ) of the two 384 

coarse-resolution images is proposed to reflect the consistency of the spatial information and 385 

structural relations in different phases. A larger consistency index indicates a smaller change 386 

in the internal spatial relation between two phases; furthermore, a larger index means that the 387 

similarity index and homogeneity index of the two phases are closer. The calculation formula 388 

of 𝐶𝐼 is as follows:  389 

𝐶𝐼(𝑏) = 1 − |𝑠𝑡𝑑𝑑𝑒𝑣(𝐶2) − 𝑠𝑡𝑑𝑑𝑒𝑣(𝐶1)| (𝑠𝑡𝑑𝑑𝑒𝑣(𝐶2) + 𝑠𝑡𝑑𝑑𝑒𝑣(𝐶1))⁄ , (8) 

where 𝑠𝑡𝑑𝑑𝑒𝑣(𝐶1) is the standard deviation of the coarse-resolution image value at T1 and 390 

𝑠𝑡𝑑𝑑𝑒𝑣(𝐶2) is the standard deviation of the values of the coarse-resolution image at T2. The 391 

standard deviation can describe the internal relationship characteristics of the image data. 392 

Theoretically, 𝐶𝐼 can reflect the changes in the internal characteristics of the two phases. 393 

 The TPS reliability coefficient 𝑇𝑅𝐶 is the product of the similarity index, homogeneity 394 

index and consistency index, as follows: 395 

𝑇𝑅𝐶(𝑥𝑖𝑗 , 𝑦𝑖𝑗 , 𝑏) = 𝑆𝐼(𝑥𝑖𝑗 , 𝑦𝑖𝑗 , 𝑏) × 𝑀𝐻𝐼(𝑥𝑖𝑗 , 𝑦𝑖𝑗, 𝑏) × 𝐶𝐼(𝑏). (9) 

 The list optimization model for changed pixels is as follows: 396 

𝐹𝑜𝑝(𝑥𝑖𝑗 , 𝑦𝑖𝑗, 𝑏) = [1 − 𝑇𝑅𝐶(𝑥𝑖𝑗 , 𝑦𝑖𝑗 , 𝑏)] × 𝐹𝑐(𝑥𝑖𝑗 , 𝑦𝑖𝑗 , 𝑏) + 𝑇𝑅𝐶(𝑥𝑖𝑗 , 𝑦𝑖𝑗 , 𝑏) × (10) 
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𝐹2
𝑇𝑃𝑆(𝑥𝑖𝑗 , 𝑦𝑖𝑗 , 𝑏), if (𝑥𝑖𝑗 , 𝑦𝑖𝑗) belongs to changed pixel, 

where (𝑥𝑖𝑗 , 𝑦𝑖𝑗 , 𝑏) is the index of the changed pixel, 𝐹𝑐(𝑥𝑖𝑗 , 𝑦𝑖𝑗 , 𝑏) is the value of the 397 

changed pixel in the robust prediction, and 𝐹2
𝑇𝑃𝑆(𝑥𝑖𝑗 , 𝑦𝑖𝑗, 𝑏) is the TPS interpolation result in 398 

the coarse-resolution image at T2, i.e., the spatial prediction. After optimizing each changed 399 

pixel, the final synthetic image is obtained. 400 

3. Testing experiment 401 

3.1.Study area and data 402 

 FSDAF 2.0 was tested by two challenging landscapes that were intercepted from Irina V. 403 

Emelyanova's open spatiotemporal fusion experimental data (Emelyanova et al., 2013), 404 

including a site with a heterogeneous landscape, and a site with large-scale abrupt land cover 405 

change. 406 

 The heterogeneous site is located in the southern part of New South Wales, Australia 407 

(145.0675° E, 34.0034° S), as shown in Fig. 3. This site has many small patches of farmland 408 

with apparent spectral differences. These images (600 × 600 pixels, 15 km × 15 km, 409 

resampling resolution is 25 m) were acquired by Landsat 7 ETM+ on 04 December 2001 (T1) 410 

and 12 January 2002 (T2). Farmland is the main type in this study area; its terrain is flat and 411 

the soil is fertile, suggesting that it is conducive to crop growth. After the crops went through 412 

the summer growing season in the Southern Hemisphere, the land surface had rapid 413 

phenological changes. The MOD09GA images were employed as coarse-resolution images 414 

and were oversampled to 25 m resolution to match the Landsat data resolution. 415 
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 The site with large-scale abrupt land cover changes is located in the northern part of New 416 

South Wales, Australia (149.2818° E, 29.0855° S), as shown in Fig. 4. Two Landsat 5 TM 417 

images (2400 × 2400 pixels, 60 km × 60 km, resampling resolution is 25 m) on 26 418 

November 2004 (T1) and 12 December 2004 (T2) were employed. In mid-December 2004, a 419 

flood occurred in the farmland, which resulted in a large-scale type change in the land surface, 420 

and more than half of the land surface was affected by floods. Different from those of the first 421 

site, the MODIS images employed for spatiotemporal fusion were derived from Landsat 422 

resampling instead of MOD09GA data. Some information on land cover change was 423 

inconsistent between Landsat image and MODIS image in the T2 phase (Shi et al., 2019). 424 

Using simulated MODIS-like images as input data can eliminate the influence of this problem 425 

on visual contrast and make the study focus on spatiotemporal fusion itself (Zhu et al., 2016). 426 

However, considering the need to further test the performance of FSDAF 2.0 to fuse real data, 427 

MOD09GA data were also used for fusion as an additional experiment, and only quantitative 428 

analysis was conducted. 429 

 There were four images from each landscape: two pairs of Landsat and MODIS images at 430 

T1 and T2. The Landsat image at T2 was employed to compare the experimental results and 431 

calculate the blending accuracy. All experimental images were pre-processed for radiation 432 

calibration and atmospheric correction before experimentation.  433 
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(a) (b) 

  

(c) (d) 

Fig. 3. Experimental data in a heterogeneous landscape: Landsat images (600×600 pixels) were 

acquired on (a) 04 December 2001 and (b) 12 January 2002; (c) and (d) are MOD09GA images. All 

images use NIR-red-green as RGB, and MOD09GA images are resampled to have the same size as 

the Landsat images. 

 434 
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(a) (b) 

  

(c) (d) 

Fig. 4. Experimental data in a large-scale abrupt land cover change landscape: Landsat images 

(2400 × 2400 pixels) were acquired on (a) 26 November 2004 and (b) 12 December 2004, (c) and 

(d) are MODIS-like images aggregated from (a) and (b). All images use NIR-red-green as RGB, and 

MODIS-like images are resampled to have the same size as the Landsat images. 

3.2.Comparison and evaluation 435 

 The performance of FSDAF 2.0 was compared with that of the STARFM, FSDAF and 436 
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SFSDAF algorithms. Each method requires the same input data: one pair of coarse- and 437 

fine-resolution images and one coarse-resolution image in the prediction phase. Blended 438 

images predicted by the four methods were compared with the real image in the T2 phase 439 

visually and quantitatively in this section. It should be noted that SFSDAF only participated 440 

in the comparison of inputting simulated MODIS-like images in experiment 2. Because 441 

SFSDAF requires the input MODIS pixel should be the original pixel, while the process of 442 

resampling MOD09GA images to 25 m may incorrectly determine the range of the MODIS 443 

pixel. This registration error could affect the final result of SFSDAF. 444 

 Visual analysis of the fusion results was used to judge the similarity between the 445 

synthetic image and the real image in the spectrum and structure of objects by visual 446 

comparison, with the purpose of comprehensively evaluating the advantages of the improved 447 

algorithm.  448 

 To achieve quantitative analysis, three precision indexes were proposed to reflect 449 

different aspects of accuracy. The root mean square error (RMSE) was used to gauge the 450 

difference between the predicted reflectance and the actual reflectance and describe the 451 

overall errors in the spectrum. The visual assessment index structure similarity (SSIM) was 452 

used to evaluate the similarity of the overall structure between the real and blended images. In 453 

addition, the correlation coefficient (r) was used to show the linear relationship between the 454 

predicted and actual reflectance. Theoretically, a smaller value of RMSE and larger values of 455 

SSIM and r indicate a more accurate blending result.  456 

4. Results 457 



27 

 

4.1.Blending results and evaluation in a heterogeneous landscape 458 

 In this experiment, there was no distinct type change in the heterogeneous images but 459 

rapid phenological changes between two time periods. Therefore, the experimental 460 

comparison of blended heterogeneous images focused on the observation of the ecosystem 461 

dynamics and overall improvement of FSDAF 2.0 over the original FSDAF. In addition, this 462 

experiment also tested the robustness of FSDAF 2.0 and its performance in blending real 463 

MODIS images.  464 

 The blending results are shown in Fig. 5. It is apparent that the predicted image of 465 

STARFM has problems of boundary ambiguity and spectral anomalies, and the predicted 466 

images of FSDAF and FSDAF 2.0 are more similar to the original Landsat image. Due to 467 

there was no distinct type change in the heterogeneous images, the improvement of FSDAF 468 

2.0 mainly comes from excluding the coarse pixels that contain a large amount of boundary 469 

information in unmixing calculation. As a result, the predicted image of FSDAF 2.0 has 470 

higher accuracy in overall spectrum than that of original FSDAF. 471 

    

(a) (b) (c) (d) 

Fig. 5. Original Landsat image of 12 January 2002 (a), and the predicted images by STARFM (b), FSDAF (c), and 

FSDAF 2.0 (d). 

 472 
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 The quantitative evaluation data of the experimental results are shown in Table 1. The 473 

blended image predicted by FSDAF 2.0 has the smallest RMSE and highest SSIM of six 474 

bands compared with those of STARFM and FSDAF. Among all bands, the NIR band, which 475 

changes rapidly with vegetation growth cycles, has the largest difference in accuracy between 476 

FSDAF 2.0 and other two methods, suggesting that FSDAF 2.0 has higher accuracy in 477 

capturing ecosystem dynamics. Consequently, FSDAF 2.0 has higher accuracy than FSDAF 478 

in blending heterogeneous images, and shows satisfactory stability in blending real MODIS 479 

images.  480 

Table 1 481 

Accuracy assessment of STARFM, FSDAF and FSDAF 2.0 in a heterogeneous landscape. The units are 482 

reflectance (RMSE = root mean square error, SSIM = structural similarity, r = correlation coefficient). 483 

 
STARFM  FSDAF  FSDAF 2.0 

RMSE SSIM r  RMSE SSIM r  RMSE SSIM r 

Blue 0.0193 0.9077 0.8166  0.0167 0.9309 0.8611  0.0163 0.9348 0.8690 

Green 0.0268 0.9294 0.8380  0.0234 0.9425 0.8668  0.0229 0.9457 0.8735 

Red 0.0427 0.8678 0.8697  0.0360 0.8953 0.9009  0.0353 0.9019 0.9054 

NIR 0.0609 0.8387 0.5218  0.0606 0.8432 0.5785  0.0592 0.8487 0.5946 

SWIR1 0.0535 0.8776 0.8603  0.0475 0.8835 0.8894  0.0472 0.8873 0.8911 

SWIR2 0.0423 0.8830 0.8542  0.0368 0.8984 0.8984  0.0362 0.9055 0.8949 

4.2.Blending results and evaluation of a landscape with large-scale abrupt land cover change  484 

 Fig. 6(b), (c), (d) and (e) present blended images of STARFM, FSDAF, SFSDAF and 485 

FSDAF 2.0, respectively. Fig. 6(d) is the binary image of the change detection result in 486 

FSDAF 2.0. It can be found that the change detection algorithm is extremely sensitive in 487 

detecting areas affected by flooding. 488 
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 Fig. 7 presents the enlarged areas (the areas inside the yellow bounding box in Fig. 6(a)) 489 

of the synthetic images. The predicted image of FSDAF 2.0 is the most accurate visually. 490 

Specifically, in subarea A, which is unaffected by flooding, FSDAF 2.0 preserves more spatial 491 

details than those of the other three methods. For example, only the predicted image of 492 

FSDAF 2.0 can distinguish the river indicated by the yellow arrow in Fig. 7(e). In subarea B, 493 

which was impacted by small-scale floods, it can be found that there are many spectral errors 494 

in the predicted image of FSDAF, e.g., the areas highlighted in yellow circles in Fig. 7(h). 495 

This problem is most likely caused by employing coarse pixels that contain a large number of 496 

changed pixels for the unmixing calculation. Compared with the other three methods, FSDAF 497 

2.0 retains the most spatial details. Subarea C presents a widespread flood, and the predicted 498 

image of STARFM has obvious errors in the spectrum. This problem also occurs in the 499 

flooding areas of subarea D and subarea E. The predicted image of FSDAF has distinct 500 

boundaries between the flood area at T2 and the flood area at T1, see the example highlighted 501 

in the yellow circle in Fig. 7(m), while SFSDAF and FSDAF 2.0 effectively solve this 502 

problem. In subarea D, FSDAF misjudges the boundary of the flood, e.g., the area highlighted 503 

in a yellow circle in Fig. 7(r), while both SFSDAF and FSDAF 2.0 correctly judged the flood 504 

boundary. In subarea E, the predicted image of FSDAF is “blurrier”, and it is difficult to 505 

distinguish the boundary of flood effects, as shown in Fig. 7(w). Both SFSDAF and FSDAF 506 

2.0 have corrected this error. In addition, the predicted images of FSDAF and SFSDAF have 507 

many “spots” on the surface of flowing water, which means that the spectral properties are not 508 

uniform. It is apparent that the flowing water in predicted image of FSDAF 2.0 seems to be 509 
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smoother and closer to the actual flowing water in the real image. Consequently, all four 510 

algorithms have the ability to retrieve land cover changes, among which STARFM is the 511 

weakest and prone to error in the areas with drastic changes. FSDAF is likely to misjudge the 512 

retrieval of type change boundaries, and it is prone to produce errors such as speckle noise in 513 

the changed-type areas. Although its ability to retain spatial details is stronger than that of 514 

STARFM, it is not satisfactory. SFSDAF has a more powerful performance in retrieving land 515 

cover changes than that of STARFM and FSDAF, but its ability to retain spatial details has no 516 

advantage in this experiment. As a result, FSDAF 2.0 is better than the other three algorithms 517 

in terms of restoring changed features and preserving spatial details. 518 

   

(a) (b) (c) 

   

(d) (e) (f) 
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Fig. 6. Original Landsat image of 12 December,2004 (a), its predicted images by STARFM (b), FSDAF (c), 

SFSDAF (d), FSDAF 2.0 (e), and the binary image of change detection result in FSDAF 2.0 (f). 

 519 

 Real image at T2 STARFM FSDAF SFSDAF FSDAF 2.0 
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Fig. 7. The subarea images marked in Fig. 6(a). 

 The quantitative evaluation data of the experimental results are shown in Table 2. For all 520 

six bands, the predicted image of FSDAF 2.0 has the smaller RMSE, higher SSIM and r 521 

compared with those of STARFM and FSDAF. This suggests that FSDAF 2.0 is more 522 

powerful for retrieving spectral and structural information of the surface. Furthermore, 523 

FSDAF 2.0 has better performance than SFSDAF except in the NIR band. Taking the blue 524 

band as an example, FSDAF 2.0 has a 6.0% improvement over FSDAF and a 4.1% 525 

improvement over SFSDAF according to RMSE. Scatterplots of the blue band shown in Fig. 526 

8 also suggest that the values predicted by FSDAF 2.0 are closer to the actual values than 527 

those predicted by the other three methods (e.g., the area indicated by the blue arrow in the 528 

scatter plot of FSDAF 2.0). Moreover, to further test the robustness of FSDAF 2.0 in the face 529 

of real data, MOD09GA images were also used for fusion as an additional experiment. 530 

Similar to the experiment in heterogeneous landscape, the SFSDAF was not used to 531 

participate in this comparison. The experimental results are shown in Table 3. Apparently, 532 

FSDAF 2.0 provided the most accurate prediction, and the progress is obvious in the SWIR1 533 

band and SWIR2 band, which had the most change when flooded. Consequently, FSDAF 2.0 534 

can better retrieve pixels that have undergone large-scale land cover type-change events. 535 

Table 2 536 

Accuracy assessment of STARFM, FSDAF, SFSDAF and FSDAF 2.0 in a landscape with large-scale change 537 

in land cover type by inputting simulated MODIS data as coarse-resolution images. The units are reflectance 538 

(RMSE = root mean square error, SSIM = structural similarity, r = correlation coefficient). 539 
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Band 
STARFM  FSDAF  SFSDAF  FSDAF 2.0 

RMSE SSIM r  RMSE SSIM r  RMSE SSIM r  RMSE SSIM r 

Blue 0.0106 0.9781 0.8454  0.0100 0.9783 0.8617  0.0098 0.9794 0.8696  0.0094 0.9812 0.8792 

Green 0.0153 0.9694 0.8486  0.0146 0.9689 0.8642  0.0142 0.9710 0.8721  0.0138 0.9728 0.8791 

Red 0.0190 0.9589 0.8515  0.0180 0.9589 0.8680  0.0174 0.9623 0.8774  0.0171 0.9639 0.8815 

NIR 0.0340 0.9111 0.8476  0.0296 0.9190 0.8868  0.0284 0.9288 0.8964  0.0290 0.9250 0.8925 

SWIR1 0.0472 0.8055 0.8138  0.0452 0.7994 0.8311  0.0435 0.8178 0.8459  0.0429 0.8171 0.8494 

SWIR2 0.0338 0.8467 0.8113  0.0319 0.8508 0.8352  0.0311 0.8601 0.8444  0.0305 0.8606 0.8501 

Table 3 540 

Accuracy assessment of STARFM, FSDAF and FSDAF 2.0 in a landscape with large-scale change in land 541 

cover type by inputting MOD09GA data as coarse-resolution images. The units are reflectance (RMSE = root 542 

mean square error, SSIM = structural similarity, r = correlation coefficient). 543 

Band 
STARFM  FSDAF  FSDAF 2.0 

RMSE SSIM r  RMSE SSIM r  RMSE SSIM r 

Blue 0.0160 0.9577 0.6791  0.0157 0.9577 0.6923  0.0151 0.9608 0.6955 

Green 0.0224 0.9507 0.6801  0.0218 0.9512 0.6934  0.0217 0.9526 0.6968 

Red 0.0280 0.9360 0.6819  0.0269 0.9391 0.6963  0.0269 0.9403 0.6988 

NIR 0.0416 0.8994 0.7810  0.0401 0.9027 0.8022  0.0399 0.9061 0.8010 

SWIR1 0.0612 0.7400 0.6952  0.0628 0.7396 0.6988  0.0598 0.7530 0.7128 

SWIR2 0.0470 0.7568 0.6801  0.0493 0.7565 0.6746  0.0461 0.7790 0.6957 

 544 

    

Fig. 8. Scatterplots of the actual and predicted values for the blue band (brighter color indicates a higher density of points, 

the line is 1:1 line). 

5. Discussion 545 
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 The proposed spatiotemporal data fusion model FSDAF 2.0 shows satisfactory 546 

performance in two experiments. In particular, compared with the original FSDAF, FSDAF 547 

2.0 can more accurately capture the ecosystem dynamics and changing type boundaries of 548 

objects and retain more details. In this section, a theoretical comparison of the rationale 549 

behind the key steps in retrieving land cover changes between FSDAF and FSDAF 2.0 and 550 

how FSDAF 2.0 outperforms FSDAF are discussed. Moreover, a comparative experiment of 551 

the various steps in FSDAF and FSDAF 2.0 was added. In addition, the efficiency of the 552 

algorithm should be considered in the application; thus, a computation time comparison 553 

among the four methods was discussed. Finally, we discussed the further improvement of 554 

FSDAF 2.0. 555 

5.1.Comparison of the processes of FSDAF and FSDAF 2.0 in retrieving land cover changes 556 

 The results of experiment 2 in section 4 demonstrate that both FSDAF and FSDAF 2.0 557 

have the ability to retrieve land cover changes. The ability of FSDAF to retrieve changed 558 

pixels is mainly come from the spatial prediction. Theoretically, spatial prediction describes 559 

the information of the real surface in the T2 phase, which can maintain the signals of land 560 

cover type change and local variability in the fusion result (Zhu et al., 2016). In the following 561 

process, however, FSDAF distributes residuals on the assumption that errors depend mainly 562 

on the homogeneity of the surface. This strategy guarantees that FSDAF can preserve more 563 

detailed information but limits its ability to retrieve land cover changes. 564 

 The reconversion capability of FSDAF 2.0 comes from the spatial prediction and the 565 
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optimization model for the changed pixels. FSDAF 2.0 employs edge detection technology 566 

and change detection technology to exclude the coarse pixels that contain changed pixels or 567 

more than 10% of the boundary pixels. As a result, FSDAF 2.0 obtains more accurate 568 

predicted values in the area where the types of objects are unchanged. These differences are 569 

the main reason why FSDAF 2.0 obtains more details and more accurate spectral information 570 

than the original FSDAF. In addition, FSDAF 2.0 establishes an optimization model for 571 

changed areas in the final step to offset the error caused by unreasonable assumptions in the 572 

residual distribution process. Theoretically, FSDAF 2.0 can achieve higher accuracy. 573 

 To demonstrate the above points explicitly, a comparison of various steps in FSDAF and 574 

FSDAF 2.0 to retrieve land cover changes was added. As shown in Fig. 9, the experimental 575 

data (2.5 km × 2.5 km, 100 × 100 pixels) is the subarea E in experiment 2. Fig. 9(a) and (b) 576 

show the coarse-resolution images at T1 and T2. Fig. 9(c) and (d) show the fine-resolution 577 

images at T1 and T2. Apparently, this area experienced flooding and phenological changes 578 

during fusion period. Fig. 9(e) and Fig. 9(f) show the processes of FSDAF and FSDAF 2.0, 579 

respectively, in retrieving land cover changes. Compared with the temporal predictions of the 580 

two methods, it is obvious that the temporal prediction of FSDAF is “blurrier”, it is difficult 581 

to distinguish the boundary of the flood effects and has significant spectral errors around the 582 

flood. In addition, these problems also exist in the final prediction. While the temporal 583 

prediction of FSDAF 2.0 is closer to that of the real image than that of FSDAF, not only in 584 

spatial details but also in spectrum, quantitative analysis also confirmed this conclusion 585 

(average RMSE of 0.0337 vs. 0.0328). Furthermore, the accuracies of the predictions are 586 
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improved after the following residual distribution process and optimization process, as shown 587 

in Fig. 9(f). The flowing water in the final prediction of FSDAF 2.0 seems to be smoother, 588 

closer to the actual flowing water in Fig. 9(d), and the newly added flood areas are more 589 

visible and easier to distinguish. Quantitative analysis also confirmed that the overall 590 

accuracy is gradually improved after residual distribution and optimization, and the average 591 

RMSE values are 0.0328, 0.0315, and 0.0312. The average RMSE values of the temporal 592 

prediction and final prediction of FSDAF are 0.0337 and 0.0325, respectively, which is worse 593 

than that of FSDAF 2.0. Consequently, the processes of improving the temporal prediction 594 

and increasing targeted optimization for changed areas in FSDAF 2.0 make the final 595 

prediction more accurate.  596 

 

    

 

(a) (b) (c) (d) 
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(e) 

 

(f) 

Fig. 9. The comparison of the key steps in retrieving land cover changes between FSDAF and FSDAF 2.0: the 

coarse-resolution images of subarea E in experiment 2 at T1 (a) and T2 (b), the fine-resolution images of subarea E in 

experiment 2 at T1 (c) and T2 (d), the processes of FSDAF (e) and FSDAF 2.0 (f) in retrieving land cover changes. 

5.2.Comparison of computation time 597 

 The computation times of the four methods in section 4 are shown in Table 4. The 598 
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calculation platform used in two experiments is i7-6700HQ (2.60 GHz) and 16 G RAW. The 599 

results show that FSDAF 2.0 consumes more time due to more steps than in the original 600 

FSDAF, but not too much time; it has comparable efficiency with STARFM and SFSDAF 601 

because effective but less computation algorithms were employed in the additional steps. 602 

Considering the advantages of FSDAF 2.0 over the other three algorithms, its efficiency is 603 

acceptable. 604 

Table 4 605 

The computation time of STARFM, FSDAF, SFSDAF and FSDAF 2.0 in two experiments. 606 

 Experiment 1 Experiment 2 

STARFM 228 s 4574 s 

FSDAF 189 s 3757 s 

SFSDAF / 4553 s 

FSDAF 2.0 245 s 4629 s 

5.3.Further improvement of FSDAF 2.0 607 

 The results of the experiments in section 4 demonstrate that FSDAF 2.0 can obtain 608 

satisfactory overall accuracy in two challenging landscapes: heterogeneous and large-scale 609 

abrupt land cover changes. The blending results of the improved method have higher overall 610 

spectral accuracy, more similar structure and closer correlation to real images, especially in 611 

areas where the types of land cover changed. These improvements are due to overcoming the 612 

shortcomings of the original FSDAF. Although FSDAF 2.0 has satisfactory performance, it 613 

still has the potential to improve. 614 

 First, the improvement of FSDAF 2.0 can mainly be achieved through improved temporal 615 

prediction and increased targeted optimization in the final step, but the step of obtaining 616 
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spatial prediction is consistent with that of the original FSDAF; for example, the result of TPS 617 

interpolation is used as the spatial prediction. However, the TPS interpolation image is 618 

“smooth” and loses many spatial details; if the spatial prediction could be replaced by a better 619 

scale-down algorithm without consuming too much time, FSDAF could theoretically retain 620 

more image details. 621 

 Second, similar to FSDAF, FSDAF 2.0 still distributes residuals on the assumption that 622 

errors depend mainly on the homogeneity of the surface. This strategy is very empirical and 623 

has no theoretical basis. It may not be an optimal way to distribute residuals for different 624 

scenarios (Meng Liu et al., 2019). Theoretically, a more rigorous method of weight 625 

assignment can improve this problem. 626 

 Third, on account of the lack of fine-resolution image in the T2 phase, FSDAF 2.0 627 

employs the TPS interpolation images of coarse-resolution images in two phases to detect 628 

changed areas. Therefore, it is difficult to capture tiny land cover changes. Theoretically, 629 

fine-resolution images acquired from other satellites can be employed to solve this problem in 630 

the future research process. In addition, long time-series observations or the use of more 631 

flexible change detection algorithms can also improve the performance and robustness of 632 

FSDAF 2.0. 633 

6. Conclusions 634 

 This study described the theoretical basis, implementation process and performance of an 635 

improved flexible spatiotemporal data fusion method incorporating change detection 636 

technology and an optimized model for changed-type areas. Landsat and MODIS images of 637 
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two different sites were employed to test the performance of the improved method. All results 638 

demonstrate that FSDAF 2.0 improves the shortcomings of FSDAF, blends synthetic 639 

fine-resolution images with higher accuracy in different landscapes, and strengthens the 640 

robustness of the algorithm and the ability of retrieving land cover changes compared with 641 

those of the original FSDAF algorithm. In addition, FSDAF 2.0 has acceptable efficiency 642 

even though it has more steps than the original FSDAF, because effective but fewer 643 

computation algorithms were employed in the additional steps. 644 

 The key idea of FSDAF 2.0 is using the change detection technology to label the changed 645 

pixels. This is a precondition for the subsequent improvement of the unmixing step and 646 

targeted optimization, which effectively helps improve the fusion accuracy in changed-type 647 

areas. In the spatiotemporal fusion field, retrieving land cover changes is a challenge, and 648 

FSDAF 2.0 provides a feasible way to overcome this problem. Moreover, this field has great 649 

potential for improvement, such as improving the accuracy of change detection through long 650 

time-series observations or using other satellite data to assist in change detection. 651 

 Similar to FSDAF and other spatiotemporal methods, FSDAF 2.0 can also be used to 652 

blend other products that are derived from reflectance data, e.g., normalized difference 653 

vegetation index (NDVI), surface temperature and leaf area index. FSDAF has been shown to 654 

have high accuracy in fusing other products (Meng Liu et al., 2019; Alves et al., 2018). 655 

FSDAF 2.0 retains the advantages of FSDAF and improves fusion performance. Theoretically, 656 

FSDAF 2.0 can achieve higher accuracy in fusing other products compared with that of 657 

FSDAF. 658 
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 In conclusion, the FSDAF 2.0 algorithm improves the capability for blending 659 

fine-resolution remote sensing images, especially for areas of land cover changes. This 660 

improvement is beneficial for monitoring the land surface and dynamics of our Earth systems.  661 
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List of Figure Captions 808 

Figure number Figure caption  

Fig. 1. Flowchart of FSDAF 2.0 

Fig. 2. The process of filtering pixels for unmixing calculation in FSDAF 2.0 

Fig. 3. 

Experimental data in a heterogeneous landscape: Landsat images (600×600 pixels) 

were acquired on (a) 04 December 2001 and (b) 12 January 2002; (c) and (d) are 

MOD09GA images. All images use NIR-red-green as RGB, and MOD09GA 

images are resampled to have the same size as the Landsat images. 

Fig. 4. 

Experimental data in a large-scale abrupt land cover change landscape: Landsat 

images (2400 × 2400 pixels) were acquired on (a) 26 November 2004 and (b) 12 

December 2004, (c) and (d) are MODIS-like images aggregated from (a) and (b). 

All images use NIR-red-green as RGB, and MODIS-like images are resampled to 

have the same size as the Landsat images. 

Fig. 5. 

Original Landsat image of 12 January 2002 (a), and the predicted images by 

STARFM (b), FSDAF (c), and FSDAF 2.0 (d). 

Fig. 6. 

Original Landsat image of 12 December,2004 (a), its predicted images by STARFM 

(b), FSDAF (c), SFSDAF (d), FSDAF 2.0 (e), and the binary image of change 

detection result in FSDAF 2.0 (f). 

Fig. 7. The subarea images marked in Fig. 6(a). 

Fig. 8. Scatterplots of the actual and predicted values for the blue band (brighter color 
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indicates a higher density of points, the line is 1:1 line). 

Fig. 9. 

The comparison of the key steps in retrieving land cover changes between FSDAF 

and FSDAF 2.0: the coarse-resolution images of subarea E in experiment 2 at T1 

(a) and T2 (b), the fine-resolution images of subarea E in experiment 2 at T1 (c) 

and T2 (d), the processes of FSDAF (e) and FSDAF 2.0 (f) in retrieving land cover 

changes. 
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