
1 

Monitoring interannual dynamics of desertification in Minqin County, 1 

China, using dense Landsat time series 2 

Minqin County in northwestern China is highly affected by desertification. Campaigns 3 

have been initiated in recent decades to combat desertification in Minqin. To assess the 4 

effectiveness of these campaigns, this study used dense Landsat time series from 1987 to 5 

2017 to investigate the interannual dynamics of vegetation coverage and greenness over 6 

the past 31 years. First, this study applied an advanced technology to reconstruct a high-7 

quality Landsat annual time series. Specifically, one image in the vegetation-peak season 8 

was selected as the base image in each year, and then problematic pixels were interpolated 9 

by the neighborhood similar pixel interpolator using ancillary images in the same year. 10 

Second, the land cover map and the enhanced vegetation index (EVI) were derived from 11 

all reconstructed images. Third, the change of vegetation coverage and EVI values over the 12 

31 years were analyzed. The results show that the total vegetation coverage and greenness 13 

increased during the 31 years. Linking this change trend to other factors suggests that 14 

vegetation in Minqin County is highly affected by agriculture and groundwater supply 15 

rather than by climate. To mitigate desertification in a sustainable way, agriculture should 16 

be well managed to avoid overconsumption of natural resources such as underground water. 17 
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 2 

Introduction 23 

Desertification indicates land degradation and conversion to drylands (Zucca et 24 

al., 2011). Currently, deserts occupy approximately 40% of the global land area, and 25 

desertification affects more than 1 billion people around the world (Tang et al., 2016). 26 

China is one of the countries facing serious desertification. By 2014, desertified lands 27 

consist of 2.61 million km2, accounting for 27.2% of the total land of China (Feng et al., 28 

2016), and 99.6% of these deserts are located in north and northwest China (Zhou et al., 29 

2015). Northwest China has most of the deserts of China and is the origin of sandstorms 30 

in China (Wang et al., 2004). Northwest China still faces the threat of desertification. 31 

Over 90% of the grassland in the region has suffered different degrees of land 32 

degradation (Zhou et al., 2015).  33 

The Chinese government has expressed high concern for slowing down 34 

desertification. The government enacted the Law of Combating Desertification in 2002 35 

and approved the National Plan for Combating Desertification in 2005. In addition, the 36 

government has launched several national ecological engineering projects such as the 37 

Three-North Shelterbelt Project (from 1978 to present) and Beijing and Tianjin 38 

Sandstorm Source Treatment Project (from 2001 to 2010) (Wang et al., 2013). Since the 39 

Chinese government has been combating desertification in recent decades, it is urgent to 40 

monitor the interannual dynamics of vegetation to know whether these actions have been 41 

effective or not. 42 
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Due to the moderate spatial resolution and free data policy, Landsat images are 43 

widely used to detect land cover change on the regional scale, and several studies have 44 

attempted to use Landsat images for monitoring the desertification process in China. For 45 

example, using Landsat images from the years 1986 and 2000, Guo and Li (2005) 46 

monitored and identified three types of sandy desertification of Minqin County. Sun and 47 

Liu (2015) proposed a multiseasonal linear spectral mixture analysis method for 48 

classifying the cover of vegetation, sand, saline land, and dark materials in Minqin 49 

County from Landsat images collected in three seasons in 2008. Subsequently, Sun 50 

(2015) applied this method to Landsat images collected in 2002 and 2008 and found that 51 

the water resources are the key element of the desertification syndrome in the dryland 52 

oasis. With Landsat images from the years 1991 and 2009, Wang et al. (2016) extracted 53 

the land cover change from these two periods and found a reduction of deserts. Although 54 

these studies tried to identify the desertification process and the driving forces of 55 

desertification using remote sensing data, we cannot evaluate the effectiveness of policies 56 

for protecting the vegetation because of two limitations. First, the monitoring period in 57 

existing studies is relatively short (e.g., 7 years in Sun (2015); 15 years in Guo and Li 58 

(2015); 19 years in Wang et al. (2016)), which cannot reveal the long-term effect of 59 

policies against desertification. Second, the time interval of these studies is too wide. 60 

Two images were typically used to infer the desertification process across the whole 61 

study period, which cannot capture the interannual dynamics of desertification.  62 
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The aim of this study is to address these limitations of existing studies and 63 

evaluate interannual dynamics of desertification in northwest China. To this end, first, a 64 

cloud-and gap-free Landsat image in vegetation peak season per year from 1987 to 2017 65 

was reconstructed. Then, vegetation covers and greenness from Landsat images were 66 

extracted from these reconstructed images. Finally, the spatial and temporal pattern of 67 

vegetation change over the past 31 years was analyzed. This study provides a paradigm 68 

of studying desertification using long-term available historical Landsat images. 69 

 70 

Study Area and Data 71 

Minqin County, located in northwest China, was selected as the study area (Figure 72 

1). This area has become one of China’s most severely desertified regions over the last 73 

several decades. The size of the study area is 8,143 km2. The study area has an arid 74 

climate. The average annual precipitation is 115 mm, but the average annual evaporation 75 

is as high as 2644 mm (Li, 2016). The precipitation is concentrated in May to August, 76 

with large annual variations. Minqin County has a long sunshine duration and frost-free 77 

period of 3073.5 hours and 162 days per year. Only 6% of the area of the county is 78 

suitable for agriculture, and farmland is spatially distributed along the streams and 79 

channels (Sun et al., 2005). Minqin County is surrounded by two deserts: Tengger Desert 80 

and Badain Jaran Desert. Minqin County is considered the green barrier to prevent the 81 

convergence of the Tengger Desert and the Badain Jaran Desert. Central and local 82 

government took measures to protect the land from further desertification. For example, 83 
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the Grain to Green Program (GTGP) has saved 516,000 m3 of water in 2003 through 84 

reducing irrigation on 4300 ha of the land in Minqin County (Liu et al., 2008). This area 85 

was selected as the study site because it is not only good for monitoring the 86 

environmental change and the corresponding impact but also good for assessing the 87 

effectiveness of government policies.  88 

 89 

Figure 1. Study area of Minqin County shown by a true color Landsat image in 2017 90 

(Red star: the location of the weather station in Minqin County) 91 

 92 

In each year, one Landsat image with minimal cloud cover (and missing pixels for 93 

Landsat-7 ETM+ images after 2003) during the vegetation peak season was selected as 94 

the base image. Through inspecting the seasonality of the Advanced very-high-resolution 95 
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radiometer (AVHRR) Normalized Difference Vegetation Index (NDVI) curve over the 96 

study area (Figure 2, data were extracted from Google Earth Engine), the vegetation peak 97 

season is from June to September. The AVHRR NDVI curve was used to define the 98 

vegetation peak season because AVHRR has very high temporal resolution to obtain a 99 

reliable temporal profile of vegetation growth. Table 1 lists the base Landsat image 100 

selected for each year, including the file names, dates, and the percentage of problematic 101 

pixels (including clouds, cloud shadows, and ETM+ gaps) derived from their quality flag 102 

mask. Some manual edits were done to correct errors in the quality flag mask. All the 103 

Landsat images used in this study were downloaded from Google Earth Engine and 104 

USGS Earth Explorer. 105 

 106 

Figure 2. Advanced very-high-resolution radiometer (AVHRR) Normalized Difference 107 

Vegetation Index (NDVI) time series averaged over study area from 2010 to 2014 (data 108 

were extracted from Google Earth Engine) 109 

  110 
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Table 1. Base Landsat images selected for each year 111 

Image file name Date Percentage of problematic pixels (%) 

LT51310331987261BJC00 September 18, 1987 2.298 

LT51310331988184BJC01 July 2, 1988 0.0523 

LT51310331989266BJC01 September 23, 1989 0 

LT51310331990173BJC00 June 22, 1990 0.0153 

LT51310331991240BJC00 August 28, 1991 0 

LT51310341992211BJC02 July 29, 1992 0 

LT51310341993245BJC00 September 2, 1993 0.5664 

LT51310341994200BJC00 July 19, 1994 0 

LT51310331995187BJC00 July 6, 1995 0.0244 

LT51310341996270BJC00 September 26, 1996 5.4515 

LT51310331997224BJC00 August 12, 1997 2.9014 

LT51310331998243BJC00 August 31, 1998 0.8625 

LT51310331999214BJC00 August 2, 1999 0 

LT51310332000201BJC00 July 19, 2000 1.976 

LT51310332001203BJC00 July 22, 2001 0 

LE71310332002198SGS00 July 17, 2002 4.8964 

LT51310332003257BJC00 September 14, 2003 0 

LE71310332004188SGS01 July 6, 2004 14.9778 

LE71310332005158PFS00 June 7, 2005 22.0372 

LE71310332006177PFS00 June 26, 2006 20.9881 

LE71310332007196PFS00 July 15, 2007 20.1985 

LE71310332008183PFS00 July 1, 2008 21.0963 

LE71310342009265EDC00 September 22, 2009 20.8056 

LE71310332010204PFS00 July 23, 2010 7.8123 

LE71310332011175SGS00 June 24, 2011 21.321 

LE71310342012242EDC00 August 29, 2012 22.557 

LC81310332013156LGN00 June 5, 2013 7.8156 

LC81310332014191LGN00 July 10, 2014 0 

LC81310332015226LGN00 August 14, 2015 0 

LC81310342016213LGN00 July 31, 2016 0 

LC81310332017167LGN00 June 16, 2017 0.5852 

 112 

 113 

 114 

 115 

 116 
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Methodology 117 

Figure 3 shows the flowchart of this study. The first step is reconstructing the 118 

high-quality (i.e., cloud- and gap-free) annual time series of Landsat images. Then, the 119 

reconstructed images are classified by supervised classifier to obtain the land cover map 120 

per year. The accuracy of classification is assessed using reference ground data. 121 

Following the classification, enhanced vegetation index (EVI) values are calculated from 122 

images in each year. The last step is analyzing the spatial and temporal pattern of 123 

vegetation change, including the cover change and greenness change, and exploring the 124 

possible reasons for these changes.  125 

  126 

Figure 3. Flowchart of this study 127 

 128 

Cloud- and gap-free image reconstruction 129 

When composing a long-term Landsat image time series, it is inevitable that some 130 

images contain pixels contaminated by clouds and cloud shadows (Figure 4.a). 131 
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Additionally, Landsat 7 ETM+ images have a problem called Scan Line Corrector (SLC) 132 

failure after May 31, 2003. Without the compensation provided from SLC, the line of 133 

sight of ETM+ traces a zig-zag pattern along the satellite ground track. Because of the 134 

problem, there are approximately 22% of the pixels that cannot be scanned for each 135 

image (Figure 4.b). Therefore, these problematic pixels should be interpolated before the 136 

multiyear images are used to track the vegetation change. Otherwise, these images cannot 137 

be compared directly.   138 

 139 

Figure 4. A Landsat 7 cloudy subimage in 2002 (a), a subimage with SLC-off gaps in 140 
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2007 (b). (c) and (d) are the reconstructed images of (a) and (b), respectively. 141 

These problematic pixels can be interpolated by an advanced interpolator, 142 

Neighborhood Similar Pixel Interpolator (NSPI) (Chen et al., 2011; Zhu et al., 2012 a, b; 143 

Zhu et al., 2018). For the base images listed in Table 1, if the image has problematic 144 

pixels, additional images captured in the same year are also downloaded and used as 145 

ancillary data to interpolate the problematic pixels by the NSPI method. NSPI has been 146 

widely used and can obtain satisfactory results in many scenarios. Visual inspection of 147 

the reconstructed images also demonstrates that the problematic pixels were successfully 148 

recovered, as shown in Figure 4(c) and (d). 149 

 150 

Vegetation cover and greenness extraction 151 

Two methods are used to quantify the status of vegetation in Minqin County: hard 152 

classification and enhanced vegetation index (EVI). Hard classification assigns a class 153 

label (e.g., vegetation, water, soil, etc.) to each pixel (Tso & Mather, 2001). In this study, 154 

the Support Vector Machine is used to perform hard classification. SVM is a supervised 155 

classifier that can produce an optimal separating hyperplane to separate classes with the 156 

maximum distance among classes (Brereton & Lloyd, 2010). Considering that different 157 

desert types have very different spectral characteristics, the classification scheme 158 

includes vegetation, water, and four other desert types (sandy desert, Gobi desert, 159 

salinized land, and bare rock). These different desert types are grouped into one class in 160 
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the subsequent analyses, including accuracy assessment and spatiotemporal analysis. The 161 

training samples were selected in the image of each year by visual interpretation with 162 

help from high-resolution images in Google Earth. The classification accuracy was 163 

assessed by confusion matrix and independent ground samples that were not used for 164 

training the SVM. The confusion matrix is used to describe the classification error for 165 

each class and errors related to incorrect classification (Congalton, 1991). Both overall 166 

accuracy and the Kappa coefficient derived from the confusion matrix were reported. In 167 

this study, the classification results are generally similar among years, so the 168 

classification accuracy assessment was done for images every five years instead of all 169 

images.  170 

Hard classification has a large uncertainty for mixed pixels where pixels belong to 171 

multiple classes (Fisher & Pathirana, 1990; Foody, 1996). In the vegetation study, 172 

vegetation indices have been widely used to quantify the vegetation density and 173 

greenness in a pixel. In this study, EVI was used because it is better than other indices for 174 

vegetation monitoring through a decoupling of the canopy background signal and a 175 

reduction in atmosphere influences. EVI can be calculated using following equation:  176 

                                  (1) 177 

where ρ is the land surface reflectance in the NIR (near infrared), red and blue 178 

bands, and G, C1, C2, and L are coefficients. For Landsat images, the coefficient 𝐶1 is 179 

6.0 and 𝐶2 is 7.5. The soil adjustment factor 𝐿 is 1.0 and the gain factor 𝐺 is 2.5 (Jensen 180 

https://en.wikipedia.org/wiki/Canopy_(biology)
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2007). The value of EVI ranges from 0 to 1 (Sano et al., 2005). Compared with the 181 

Normalized Difference Vegetation Index (NDVI), EVI corrects the distortion caused by 182 

reflected light from particles in the air and from the ground below the vegetation. As 183 

shown in Figure 5, EVI can describe the greenness of the vegetation well. Vegetation 184 

pixels have much higher EVI values than other nonvegetation land covers such as desert, 185 

water and buildings.  186 

 187 
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Figure 5. NIR-red-green composites of images (upper row) and EVI (lower row) of a 188 

subregion surrounding the county seat of Minqin (a) and a subregion surrounding a lake 189 

(b) in 2017. 190 

All EVI images were stacked to compose a time series for all pixels. As EVI can 191 

represent the greenness of vegetation, if desertification happens, i.e., a vegetation pixel 192 

becomes desert over the 31 years, the curve of the EVI time series should have a 193 

descending trend. The stable desert area should have consistent and very low EVI values 194 

over the 31 years. Simple linear regression will be implemented to find the temporal 195 

trend of EVI values for each pixel. P-values of the simple linear regression were used to 196 

highlight the pixels with significant trends if their P-value was smaller than 0.05 197 

(Greenland et al., 2016).  198 

 199 

Results 200 

Figure 6 shows the land cover classification of all years from 1987 to 2017. The 201 

accuracy assessment of selected images confirms that these classification results are 202 

reliable for further analysis, overall accuracy >94.7% and kappa> 0.927 (Table 2). 203 

Vegetation cover over all years distributes along the northeast-southwest direction, and 204 

vegetation pixels are clustered along this direction. The vegetation area is surrounded by 205 

deserts. The distribution of vegetation among all years is generally similar, but the 206 

distribution shows some variations in different years. From Figure 6, we can see that 207 

vegetation pixels increase gradually in these 31 years. The comparison between the land 208 
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cover map of 1987 and 2017 shows a clear extension of the vegetation. The percentage of 209 

vegetation cover over the whole study area in each year also demonstrates this increasing 210 

trend (Figure 7). However, some years experienced vegetation loss in the past 31 years. 211 

From 2007 to 2013, the desertification became serious. The vegetation cover continues to 212 

decrease in these 7 years. After this period, desertification has been stopped, and the 213 

vegetation cover continues to increase to reach the percentage in 2006. 214 



 15 

 215 

Figure 6. Classification results for each year in Minqin County from 1987 to 2017 216 

 217 

 218 

 219 

 220 

 221 
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Table 2. Accuracy assessment of classification results of selected images 222 

Year Overall Accuracy (%) Kappa Value 

1990 94.7276 0.9274 

1995 99.5329 0.9629 

2000 98.0844 0.8282 

2005 98.2906 0.9659 

2010 98.3189 0.9030 

2015 99.5221 0.9443 

 223 

 224 

Figure 7. Vegetation cover percentage in Minqin County from 1987 to 2017. Red line is 225 

the moving average to show the trend 226 

For each pixel in the study area, we can obtain the temporal change trend of EVI 227 

values over the 31 years by regressing EVI against years relabeled from 1987 (i.e., 1, 2, 228 

… as 1987, 1988, …) (Figure 8). From the temporal trend of EVI, there are 4 possible 229 

situations: (1) stable desert area with no change; (2) stable vegetation area with no 230 

change; (3) vegetation greenness increasing; and (4) vegetation greenness decreasing. In 231 
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Figure 8, the black region indicates that EVI changes are very small (change ranging 232 

from -0.1 to 0.1 over the 31 years) or not significant (P-value > 0.05). The green area is 233 

where the vegetation greenness becomes gradually better. These pixels may be threatened 234 

by desertification in some years but the overall trend over the 31 years is increasing 235 

vegetation. The red area is where vegetation has degraded over the 31 years. This 236 

scenario happens mainly in the region surrounding the urban area (marked by the circle in 237 

Figure 8) where intensive human activities exist. Another region surrounding the lake in 238 

the lower left of study area also experienced EVI decrease. Through inspecting the high-239 

resolution images between 1984 and 2016, we found that the lake is extended so that 240 

vegetation pixels become water in this region. For the whole study area, the average EVI 241 

values of all pixels increased gradually over the 31 years (Figure 9), but with a short 242 

decreasing period from 2007 to 2013 that is consistent with the temporal trend of 243 

vegetation overage in Figure 7. 244 
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 245 

Figure 8. EVI temporal change over the past 31 years (green: EVI increasing, red: EVI 246 

decreasing). The circle marks the county seat. 247 
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 248 

Figure 9. Mean EVI value of Minqin County from 1987 to 2017. Red line is the moving 249 

average to show the trend. 250 

 251 

Discussion and Conclusions 252 

According to the results, the vegetation cover of Minqin County is increasing 253 

during the study period, although some years have drops in vegetation cover and 254 

greenness. To explore the possible driving forces for these changes, both the climate and 255 

human factors were investigated.   256 

Climate change, especially global warming and acidification, can increase 257 

evaporation of water and dry the soil, which, in turn, can decrease the vegetation cover 258 

and then cause land degradation. The geographic location is another nature factor 259 

associated with land degradation. Northwest China is located far from the sea, and the 260 

precipitation is low, erratic and concentrated mostly in the warmer months with high 261 

interannual variations. The low and irregular precipitation, along with Aeolian soil 262 
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texture, erodible land surface, and strong and frequent winds, provides the dynamic force 263 

for soil erosion (Tao, 2014). Figures 10 and 11 show the temporal trend of annual 264 

average temperature and precipitation in Minqin County. The temperature in Minqin 265 

County is increasing from 1987 to 2013, while the precipitation shows no significant 266 

change trend. Given the annual change of temperature and precipitation, the study area 267 

should become gradually drier over the study period. Under this scenario, the 268 

desertification would become more serious. As the result, the vegetation coverage and 269 

greenness would have declined over the past 31 years. However, the Landsat EVI data 270 

show an increasing trend. Therefore, climate may not be the dominant factor influencing 271 

the vegetation in Minqin County from 1987 to 2017, or the negative effect of climate has 272 

been weakened by the governmental policies against desertification that will be discussed 273 

in the following paragraphs. 274 

 275 
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Figure 10. Annually average temperature in Minqin County from 1987 to 2013. Red line 276 

is the moving average to show the trend. 277 

 278 

Figure 11. Annually average precipitation in Minqin County from 1987 to 2013. Red line 279 

is the moving average to show the trend. 280 

In addition to nature factors, human activities can also speed up or slow down the 281 

desertification process (Tao, 2014). The increasing trend of vegetation coverage and 282 

greenness over the recent 31 years also suggests the effectiveness of policies from the 283 

Chinese Government for slowing down desertification. The state council of China 284 

proposed strategies for combating the desertification: (1) manage the Shiyang River 285 

sustainably; (2) protect the ecology and water; and (3) plant trees (Chang, 2008). This 286 

strategy gives the instructions to the local officers and citizens for defending against 287 

desertification.  288 
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Another important policy for combating desertification in Minqin County is 289 

implementing water-saving irrigated agriculture. From the high-resolution images in 290 

Google Earth, most of the vegetation areas in Minqin County are actually croplands. 291 

Groundwater is the major source for the irrigated agriculture. According to the data 292 

retrieved from a data sharing platform (tjsql.com), groundwater supply in Gansu province 293 

has dramatically decreased during 2007 to 2012 (Figure 12), which is well consistent 294 

with the drop of vegetation cover and greenness during this period (Figures 8 and 10). To 295 

reduce the water demand for irrigation, the planting of high water-consumption crops 296 

such as corn and onion has been limited (Ma et al., 2017). Some crops such as grape and 297 

jujube are perennial plants. The demand for fertilizer and water for the growth of these 298 

plants is lower than for other crops. In addition, the roots of these plants can grasp the 299 

soil to prevent soil erosion. Minqin County has high production of these plants. Thus, the 300 

government encourages the planting of grape and jujube and the relative food processing 301 

technologies such as intensive food processing and the wine-brewing industry (Pan et al., 302 

2007).  303 

 304 

 305 
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 306 

Figure 12. Groundwater supply in Gansu province from 2000 to 2014 derived from a 307 

data-sharing platform (tjsql.com) 308 

Desertification is a global issue. Many countries are facing this problem. As a 309 

place that has been highly affected by desertification, Minqin County is an idea natural 310 

laboratory for studying the dynamic process of desertification and for investigating the 311 

effectiveness of policies aimed at slowing down desertification. This study is the first to 312 

use dense Landsat time series to assess the interannual vegetation coverage and greenness 313 

over a long period. The results of this study show that the desertification in Minqin 314 

County has temporally eased in recent years. For other places facing similar problems, 315 

Minqin County can be a positive example for mitigating desertification. 316 

 317 

 318 

  319 
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