Xiaolin Zhu, Kwok Huen Leung, Wing Sze Li & Lek Kin Cheung (2020) Monitoring interannual dynamics of desertification in Minqin County, China, using dense Landsat time series, International Journal of Digital Earth, 13:8, 886-898. This is an Accepted Manuscript of an article published by Taylor & Francis in International Journal of Digital Earth on 04 Mar 2019 (Published online), available online: http://www.tandfonline.com/10.1080/17538947.2019.1585979.

1 Monitoring interannual dynamics of desertification in Minqin County,

2 China, using dense Landsat time series

3 Minqin County in northwestern China is highly affected by desertification. Campaigns have been initiated in recent decades to combat desertification in Minqin. To assess the 4 5 effectiveness of these campaigns, this study used dense Landsat time series from 1987 to 6 2017 to investigate the interannual dynamics of vegetation coverage and greenness over 7 the past 31 years. First, this study applied an advanced technology to reconstruct a high-8 quality Landsat annual time series. Specifically, one image in the vegetation-peak season 9 was selected as the base image in each year, and then problematic pixels were interpolated 10 by the neighborhood similar pixel interpolator using ancillary images in the same year. Second, the land cover map and the enhanced vegetation index (EVI) were derived from 11 12 all reconstructed images. Third, the change of vegetation coverage and EVI values over the 13 31 years were analyzed. The results show that the total vegetation coverage and greenness 14 increased during the 31 years. Linking this change trend to other factors suggests that 15 vegetation in Minqin County is highly affected by agriculture and groundwater supply 16 rather than by climate. To mitigate desertification in a sustainable way, agriculture should 17 be well managed to avoid overconsumption of natural resources such as underground water. 18

Keywords: Minqin County; desertification; agriculture; Landsat; time series; vegetation cover

21

19

20

23 Introduction

24	Desertification indicates land degradation and conversion to drylands (Zucca et
25	al., 2011). Currently, deserts occupy approximately 40% of the global land area, and
26	desertification affects more than 1 billion people around the world (Tang et al., 2016).
27	China is one of the countries facing serious desertification. By 2014, desertified lands
28	consist of 2.61 million km ² , accounting for 27.2% of the total land of China (Feng et al.,
29	2016), and 99.6% of these deserts are located in north and northwest China (Zhou et al.,
30	2015). Northwest China has most of the deserts of China and is the origin of sandstorms
31	in China (Wang et al., 2004). Northwest China still faces the threat of desertification.
32	Over 90% of the grassland in the region has suffered different degrees of land
33	degradation (Zhou et al., 2015).
34	The Chinese government has expressed high concern for slowing down
35	desertification. The government enacted the Law of Combating Desertification in 2002
36	and approved the National Plan for Combating Desertification in 2005. In addition, the
37	government has launched several national ecological engineering projects such as the
38	Three-North Shelterbelt Project (from 1978 to present) and Beijing and Tianjin
39	Sandstorm Source Treatment Project (from 2001 to 2010) (Wang et al., 2013). Since the
40	Chinese government has been combating desertification in recent decades, it is urgent to
41	monitor the interannual dynamics of vegetation to know whether these actions have been
42	effective or not.

43	Due to the moderate spatial resolution and free data policy, Landsat images are
44	widely used to detect land cover change on the regional scale, and several studies have
45	attempted to use Landsat images for monitoring the desertification process in China. For
46	example, using Landsat images from the years 1986 and 2000, Guo and Li (2005)
47	monitored and identified three types of sandy desertification of Minqin County. Sun and
48	Liu (2015) proposed a multiseasonal linear spectral mixture analysis method for
49	classifying the cover of vegetation, sand, saline land, and dark materials in Minqin
50	County from Landsat images collected in three seasons in 2008. Subsequently, Sun
51	(2015) applied this method to Landsat images collected in 2002 and 2008 and found that
52	the water resources are the key element of the desertification syndrome in the dryland
53	oasis. With Landsat images from the years 1991 and 2009, Wang et al. (2016) extracted
54	the land cover change from these two periods and found a reduction of deserts. Although
55	these studies tried to identify the desertification process and the driving forces of
56	desertification using remote sensing data, we cannot evaluate the effectiveness of policies
57	for protecting the vegetation because of two limitations. First, the monitoring period in
58	existing studies is relatively short (e.g., 7 years in Sun (2015); 15 years in Guo and Li
59	(2015); 19 years in Wang et al. (2016)), which cannot reveal the long-term effect of
60	policies against desertification. Second, the time interval of these studies is too wide.
61	Two images were typically used to infer the desertification process across the whole
62	study period, which cannot capture the interannual dynamics of desertification.

63	The aim of this study is to address these limitations of existing studies and
64	evaluate interannual dynamics of desertification in northwest China. To this end, first, a
65	cloud-and gap-free Landsat image in vegetation peak season per year from 1987 to 2017
66	was reconstructed. Then, vegetation covers and greenness from Landsat images were
67	extracted from these reconstructed images. Finally, the spatial and temporal pattern of
68	vegetation change over the past 31 years was analyzed. This study provides a paradigm
69	of studying desertification using long-term available historical Landsat images.
70	
71	Study Area and Data
72	Minqin County, located in northwest China, was selected as the study area (Figure
73	1). This area has become one of China's most severely desertified regions over the last
74	several decades. The size of the study area is 8,143 km ² . The study area has an arid
75	climate. The average annual precipitation is 115 mm, but the average annual evaporation
76	is as high as 2644 mm (Li, 2016). The precipitation is concentrated in May to August,
77	with large annual variations. Minqin County has a long sunshine duration and frost-free
78	period of 3073.5 hours and 162 days per year. Only 6% of the area of the county is
79	suitable for agriculture, and farmland is spatially distributed along the streams and
80	channels (Sun et al., 2005). Minqin County is surrounded by two deserts: Tengger Desert
81	and Badain Jaran Desert. Minqin County is considered the green barrier to prevent the
82	convergence of the Tengger Desert and the Badain Jaran Desert. Central and local
83	government took measures to protect the land from further desertification. For example,

the Grain to Green Program (GTGP) has saved 516,000 m³ of water in 2003 through
reducing irrigation on 4300 ha of the land in Minqin County (Liu et al., 2008). This area
was selected as the study site because it is not only good for monitoring the
environmental change and the corresponding impact but also good for assessing the
effectiveness of government policies.

90 Figure 1. Study area of Minqin County shown by a true color Landsat image in 2017

91 (Red star: the location of the weather station in Minqin County)

92

In each year, one Landsat image with minimal cloud cover (and missing pixels for Landsat-7 ETM+ images after 2003) during the vegetation peak season was selected as the base image. Through inspecting the seasonality of the Advanced very-high-resolution

Figure 2. Advanced very-high-resolution radiometer (AVHRR) Normalized Difference
 Vegetation Index (NDVI) time series averaged over study area from 2010 to 2014 (data

109 were extracted from Google Earth Engine)

Image file name	Date	Percentage of problematic pixels (%)
LT51310331987261BJC00	September 18, 1987	2.298
LT51310331988184BJC01	July 2, 1988	0.0523
LT51310331989266BJC01	September 23, 1989	0
LT51310331990173BJC00	June 22, 1990	0.0153
LT51310331991240BJC00	August 28, 1991	0
LT51310341992211BJC02	July 29, 1992	0
LT51310341993245BJC00	September 2, 1993	0.5664
LT51310341994200BJC00	July 19, 1994	0
LT51310331995187BJC00	July 6, 1995	0.0244
LT51310341996270BJC00	September 26, 1996	5.4515
LT51310331997224BJC00	August 12, 1997	2.9014
LT51310331998243BJC00	August 31, 1998	0.8625
LT51310331999214BJC00	August 2, 1999	0
LT51310332000201BJC00	July 19, 2000	1.976
LT51310332001203BJC00	July 22, 2001	0
LE71310332002198SGS00	July 17, 2002	4.8964
LT51310332003257BJC00	September 14, 2003	0
LE71310332004188SGS01	July 6, 2004	14.9778
LE71310332005158PFS00	June 7, 2005	22.0372
LE71310332006177PFS00	June 26, 2006	20.9881
LE71310332007196PFS00	July 15, 2007	20.1985
LE71310332008183PFS00	July 1, 2008	21.0963
LE71310342009265EDC00	September 22, 2009	20.8056
LE71310332010204PFS00	July 23, 2010	7.8123
LE71310332011175SGS00	June 24, 2011	21.321
LE71310342012242EDC00	August 29, 2012	22.557
LC81310332013156LGN00	June 5, 2013	7.8156
LC81310332014191LGN00	July 10, 2014	0
LC81310332015226LGN00	August 14, 2015	0
LC81310342016213LGN00	July 31, 2016	0
LC81310332017167LGN00	June 16, 2017	0.5852

111 Table 1. Base Landsat images selected for each year

117 Methodology

Figure 3 shows the flowchart of this study. The first step is reconstructing the high-quality (i.e., cloud- and gap-free) annual time series of Landsat images. Then, the reconstructed images are classified by supervised classifier to obtain the land cover map per year. The accuracy of classification is assessed using reference ground data. Following the classification, enhanced vegetation index (EVI) values are calculated from images in each year. The last step is analyzing the spatial and temporal pattern of vegetation change, including the cover change and greenness change, and exploring the

125 possible reasons for these changes.

126

- 127 Figure 3. Flowchart of this study
- 128

129 Cloud- and gap-free image reconstruction

- 130 When composing a long-term Landsat image time series, it is inevitable that some
- 131 images contain pixels contaminated by clouds and cloud shadows (Figure 4.a).

Additionally, Landsat 7 ETM+ images have a problem called Scan Line Corrector (SLC) failure after May 31, 2003. Without the compensation provided from SLC, the line of sight of ETM+ traces a zig-zag pattern along the satellite ground track. Because of the problem, there are approximately 22% of the pixels that cannot be scanned for each image (Figure 4.b). Therefore, these problematic pixels should be interpolated before the multiyear images are used to track the vegetation change. Otherwise, these images cannot be compared directly.

140 Figure 4. A Landsat 7 cloudy subimage in 2002 (a), a subimage with SLC-off gaps in

141 2007 (b). (c) and (d) are the reconstructed images of (a) and (b), respectively.

142	These problematic pixels can be interpolated by an advanced interpolator,
143	Neighborhood Similar Pixel Interpolator (NSPI) (Chen et al., 2011; Zhu et al., 2012 a, b;
144	Zhu et al., 2018). For the base images listed in Table 1, if the image has problematic
145	pixels, additional images captured in the same year are also downloaded and used as
146	ancillary data to interpolate the problematic pixels by the NSPI method. NSPI has been
147	widely used and can obtain satisfactory results in many scenarios. Visual inspection of
148	the reconstructed images also demonstrates that the problematic pixels were successfully
149	recovered, as shown in Figure 4(c) and (d).

150

151 Vegetation cover and greenness extraction

152 Two methods are used to quantify the status of vegetation in Minqin County: hard classification and enhanced vegetation index (EVI). Hard classification assigns a class 153 154 label (e.g., vegetation, water, soil, etc.) to each pixel (Tso & Mather, 2001). In this study, the Support Vector Machine is used to perform hard classification. SVM is a supervised 155 classifier that can produce an optimal separating hyperplane to separate classes with the 156 157 maximum distance among classes (Brereton & Lloyd, 2010). Considering that different desert types have very different spectral characteristics, the classification scheme 158 includes vegetation, water, and four other desert types (sandy desert, Gobi desert, 159 160 salinized land, and bare rock). These different desert types are grouped into one class in

161	the subsequent analyses, including accuracy assessment and spatiotemporal analysis. The
162	training samples were selected in the image of each year by visual interpretation with
163	help from high-resolution images in Google Earth. The classification accuracy was
164	assessed by confusion matrix and independent ground samples that were not used for
165	training the SVM. The confusion matrix is used to describe the classification error for
166	each class and errors related to incorrect classification (Congalton, 1991). Both overall
167	accuracy and the Kappa coefficient derived from the confusion matrix were reported. In
168	this study, the classification results are generally similar among years, so the
169	classification accuracy assessment was done for images every five years instead of all
170	images.
171	Hard classification has a large uncertainty for mixed pixels where pixels belong to
172	multiple classes (Fisher & Pathirana, 1990; Foody, 1996). In the vegetation study,
173	vegetation indices have been widely used to quantify the vegetation density and
174	greenness in a pixel. In this study, EVI was used because it is better than other indices for
175	vegetation monitoring through a decoupling of the canopy background signal and a
176	reduction in atmosphere influences. EVI can be calculated using following equation:
177	$EVI = G * \frac{(\rho_{NIR} - \rho_{RED})}{(\rho_{NIR} + C_1 * \rho_{RED} - C_2 * \rho_{BLUE} + L)},\tag{1}$
178	where ρ is the land surface reflectance in the NIR (near infrared), red and blue
179	bands, and G, C1, C2, and L are coefficients. For Landsat images, the coefficient C_1 is

6.0 and C_2 is 7.5. The soil adjustment factor L is 1.0 and the gain factor G is 2.5 (Jensen

2007). The value of EVI ranges from 0 to 1 (Sano et al., 2005). Compared with the
Normalized Difference Vegetation Index (NDVI), EVI corrects the distortion caused by
reflected light from particles in the air and from the ground below the vegetation. As
shown in Figure 5, EVI can describe the greenness of the vegetation well. Vegetation
pixels have much higher EVI values than other nonvegetation land covers such as desert,
water and buildings.

Figure 5. NIR-red-green composites of images (upper row) and EVI (lower row) of a
subregion surrounding the county seat of Minqin (a) and a subregion surrounding a lake
(b) in 2017.

191	All EVI images were stacked to compose a time series for all pixels. As EVI can
192	represent the greenness of vegetation, if desertification happens, i.e., a vegetation pixel
193	becomes desert over the 31 years, the curve of the EVI time series should have a
194	descending trend. The stable desert area should have consistent and very low EVI values
195	over the 31 years. Simple linear regression will be implemented to find the temporal
196	trend of EVI values for each pixel. P-values of the simple linear regression were used to
197	highlight the pixels with significant trends if their P-value was smaller than 0.05
198	(Greenland et al., 2016).
199	
200	Results

201 Figure 6 shows the land cover classification of all years from 1987 to 2017. The 202 accuracy assessment of selected images confirms that these classification results are 203 reliable for further analysis, overall accuracy >94.7% and kappa> 0.927 (Table 2). 204 Vegetation cover over all years distributes along the northeast-southwest direction, and 205 vegetation pixels are clustered along this direction. The vegetation area is surrounded by deserts. The distribution of vegetation among all years is generally similar, but the 206 distribution shows some variations in different years. From Figure 6, we can see that 207 208 vegetation pixels increase gradually in these 31 years. The comparison between the land

209	cover map of 1987 and 2017 shows a clear extension of the vegetation. The percentage of
210	vegetation cover over the whole study area in each year also demonstrates this increasing
211	trend (Figure 7). However, some years experienced vegetation loss in the past 31 years.
212	From 2007 to 2013, the desertification became serious. The vegetation cover continues to
213	decrease in these 7 years. After this period, desertification has been stopped, and the
214	vegetation cover continues to increase to reach the percentage in 2006.

- Figure 6. Classification results for each year in Minqin County from 1987 to 2017

222 Table 2. Accuracy assessment of classification results of selected images

Year	Overall Accuracy (%)	Kappa Value
1990	94.7276	0.9274
1995	99.5329	0.9629
2000	98.0844	0.8282
2005	98.2906	0.9659
2010	98.3189	0.9030
2015	99.5221	0.9443

Figure 7. Vegetation cover percentage in Minqin County from 1987 to 2017. Red line is the moving average to show the trend

EVI For each pixel in the study area, we can obtain the temporal change trend of EVI values over the 31 years by regressing EVI against years relabeled from 1987 (i.e., 1, 2, ... as 1987, 1988, ...) (Figure 8). From the temporal trend of EVI, there are 4 possible situations: (1) stable desert area with no change; (2) stable vegetation area with no change; (3) vegetation greenness increasing; and (4) vegetation greenness decreasing. In

232	Figure 8, the black region indicates that EVI changes are very small (change ranging
233	from -0.1 to 0.1 over the 31 years) or not significant (P-value > 0.05). The green area is
234	where the vegetation greenness becomes gradually better. These pixels may be threatened
235	by desertification in some years but the overall trend over the 31 years is increasing
236	vegetation. The red area is where vegetation has degraded over the 31 years. This
237	scenario happens mainly in the region surrounding the urban area (marked by the circle in
238	Figure 8) where intensive human activities exist. Another region surrounding the lake in
239	the lower left of study area also experienced EVI decrease. Through inspecting the high-
240	resolution images between 1984 and 2016, we found that the lake is extended so that
241	vegetation pixels become water in this region. For the whole study area, the average EVI
242	values of all pixels increased gradually over the 31 years (Figure 9), but with a short
243	decreasing period from 2007 to 2013 that is consistent with the temporal trend of
244	vegetation overage in Figure 7.

Figure 8. EVI temporal change over the past 31 years (green: EVI increasing, red: EVI

247 decreasing). The circle marks the county seat.

Figure 9. Mean EVI value of Minqin County from 1987 to 2017. Red line is the movingaverage to show the trend.

252 Discussion and Conclusions

According to the results, the vegetation cover of Minqin County is increasing during the study period, although some years have drops in vegetation cover and greenness. To explore the possible driving forces for these changes, both the climate and human factors were investigated. Climate change, especially global warming and acidification, can increase

evaporation of water and dry the soil, which, in turn, can decrease the vegetation cover

- and then cause land degradation. The geographic location is another nature factor
- associated with land degradation. Northwest China is located far from the sea, and the
- 261 precipitation is low, erratic and concentrated mostly in the warmer months with high
- 262 interannual variations. The low and irregular precipitation, along with Aeolian soil

263	texture, erodible land surface, and strong and frequent winds, provides the dynamic force
264	for soil erosion (Tao, 2014). Figures 10 and 11 show the temporal trend of annual
265	average temperature and precipitation in Minqin County. The temperature in Minqin
266	County is increasing from 1987 to 2013, while the precipitation shows no significant
267	change trend. Given the annual change of temperature and precipitation, the study area
268	should become gradually drier over the study period. Under this scenario, the
269	desertification would become more serious. As the result, the vegetation coverage and
270	greenness would have declined over the past 31 years. However, the Landsat EVI data
271	show an increasing trend. Therefore, climate may not be the dominant factor influencing
272	the vegetation in Minqin County from 1987 to 2017, or the negative effect of climate has
273	been weakened by the governmental policies against desertification that will be discussed
274	in the following paragraphs.

Figure 10. Annually average temperature in Minqin County from 1987 to 2013. Red line is the moving average to show the trend.

Figure 11. Annually average precipitation in Minqin County from 1987 to 2013. Red lineis the moving average to show the trend.

281 In addition to nature factors, human activities can also speed up or slow down the 282 desertification process (Tao, 2014). The increasing trend of vegetation coverage and greenness over the recent 31 years also suggests the effectiveness of policies from the 283 284 Chinese Government for slowing down desertification. The state council of China proposed strategies for combating the desertification: (1) manage the Shiyang River 285 286 sustainably; (2) protect the ecology and water; and (3) plant trees (Chang, 2008). This 287 strategy gives the instructions to the local officers and citizens for defending against desertification. 288

289	Another important policy for combating desertification in Minqin County is
290	implementing water-saving irrigated agriculture. From the high-resolution images in
291	Google Earth, most of the vegetation areas in Minqin County are actually croplands.
292	Groundwater is the major source for the irrigated agriculture. According to the data
293	retrieved from a data sharing platform (tjsql.com), groundwater supply in Gansu province
294	has dramatically decreased during 2007 to 2012 (Figure 12), which is well consistent
295	with the drop of vegetation cover and greenness during this period (Figures 8 and 10). To
296	reduce the water demand for irrigation, the planting of high water-consumption crops
297	such as corn and onion has been limited (Ma et al., 2017). Some crops such as grape and
298	jujube are perennial plants. The demand for fertilizer and water for the growth of these
299	plants is lower than for other crops. In addition, the roots of these plants can grasp the
300	soil to prevent soil erosion. Minqin County has high production of these plants. Thus, the
301	government encourages the planting of grape and jujube and the relative food processing
302	technologies such as intensive food processing and the wine-brewing industry (Pan et al.,
303	2007).

Figure 12. Groundwater supply in Gansu province from 2000 to 2014 derived from a
data-sharing platform (tjsql.com)

Desertification is a global issue. Many countries are facing this problem. As a 309 310 place that has been highly affected by desertification, Minqin County is an idea natural 311 laboratory for studying the dynamic process of desertification and for investigating the effectiveness of policies aimed at slowing down desertification. This study is the first to 312 313 use dense Landsat time series to assess the interannual vegetation coverage and greenness 314 over a long period. The results of this study show that the desertification in Minqin 315 County has temporally eased in recent years. For other places facing similar problems, 316 Minqin County can be a positive example for mitigating desertification. 317

318

320 **References**

321 322	Brereton, R.G., Lloyd, G.R., 2010. Support Vector Machines for classification and regression. Analyst 135, 230–267. <u>https://doi.org/10.1039/B918972F</u>
323 324	Chang, Z., 2008. Study on Formation, Evolution and Sustainability of the Minqin Artificial Oasis. Arid Zone Research. 25, 1–9.
325 326 327	Chen, J., Zhu, X., Vogelmann, J. E., Gao, F., Jin, S. 2010. A simple and effective method for filling gaps in Landsat ETM+ SLC-off images. <i>Remote Sensing of Environment</i> , <i>115</i> , 1053–1064.
328 329	Congalton, R.G., 1991. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 37 (1), 35–46.
330 331 332	Feng, L., Jia, Z., Li, Q., 2016. The dynamic monitoring of aeolian desertification land distribution and its response to climate change in northern China. Sci. Rep. <u>https://doi.org/10.1038/srep39563</u>
333 334	Fisher, P., & Pathirana, S. (1990). The evaluation of fuzzy membership of land cover classes in the suburban zone. Remote Sensing of Environment, 34(2), 121-132.
335 336 337	Foody, G.M., 1996. Approaches for the production and evaluation of fuzzy land cover classifications from remotely-sensed data. Int. J. Remote Sens. 17, 1317–1340. https://doi.org/10.1080/01431169608948706
338 339 340 341	Greenland, S., Senn, S.J., Rothman, K.J., Carlin, J.B., Poole, C., Goodman, S.N., Altman, D.G., 2016. Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations. Eur. J. Epidemiol. 31, 337–350. https://doi.org/10.1007/s10654- 016-0149-3
342 343 344	Guo, M., Li, X., 2005. Monitoring sandy desertification of Minqin oasis, northwest China by remote sensing and GIS. Int. Geosci. Remote Sens. Symp. 1, 206–209. <u>https://doi.org/10.1109/IGARSS.2005.1526143</u>
345 346 347	Jensen, J. (2007). Remote sensing of the environment: An earth resource perspective (2nd ed., Prentice Hall series in geographic information science). Upper Saddle River, NJ: Pearson Prentice Hall.
348 349	Li, M., Guo, P., Singh V.P., 2016. An efficient irrigation water allocation model under uncertainty. Agriculture Systems. 144, 46–57.

350	Liu, J., Li, S., Ouyang, Z., Tam, C., Chen, X., 2008. Ecological and socioeconomic
351	effects of China's policies for ecosystem services. Proceedings of the National
352	Academy of Sciences. 28, 9477-9482.
353	Ma, J., Yan, Z., Fu, G., Liu, H., Yuan, H., Liu, S. 2017. Impacts of disposal projects on
354	the groundwater level and degree of mineralization in the lower reaches of Shiyang
355	River. Journal of Lanzhou University (Natural Science). 53, 489–493.
356	https://doi.org/10.13885/j.issn.0455-2059.2017.04.008
357	Pan, J., Liu, P., Sun G., Bai, Y, Cheng, Y., 2007. Modern Agricultural Development
358	Countermeasures in Minqin Oasis. Res. Agric. Mod. 28, 749–752.
359	Sano, E.E., Ferreira, L.G., Huete, A.R., Sano, E.E., Ferreira, L.G., Huete, A.R., 2005.
360	Synthetic Aperture Radar (L band) and Optical Vegetation Indices for
361	Discriminating the Brazilian Savanna Physiognomies: A Comparative Analysis.
362	Earth Interact. 9, 1–15. https://doi.org/10.1175/EI117.1
363	Sun, D., 2015. Detection of dryland degradation using Landsat spectral unmixing remote
364	sensing with syndrome concept in Minqin County, China. Int. J. Appl. Earth Obs.
365	Geoinf. 41, 34–45. https://doi.org/10.1016/j.jag.2015.04.015
366	Sun, D., Dawson, R., Li, H., Li, B., 2005. Modeling desertification change in Minqin
367	County, China. Environ. Monit. Assess. 108, 169–188.
368	https://doi.org/10.1007/s10661-005-4221-9
369	Sun, D., Liu, N., 2015. Coupling spectral unmixing and multiseasonal remote sensing for
370	temperate dryland land-use/land-cover mapping in Minqin County, China. Int. J.
371	Remote Sens. 36, 3636–3658. https://doi.org/10.1080/01431161.2015.1047046
372	Tang, Z., An, H., Deng, L., Wang, Y., Zhu, G., Shangguan, Z., 2016. Effect of
373	desertification on productivity in a desert steppe. Sci. Rep. 6, 27839.
374	<u>https://doi.org/10.1038/srep27839</u>
375	Tao, W., 2014. Aeolian desertification and its control in Northern China. Int. Soil Water
376	Conserv. Res. 2, 34–41.
377 378	TSO, B. and MATHER, P.M., 2001, Classification Methods for Remotely Sensed Data (NewYork: Taylor and Francis Inc).
379 380	Wang, H., Ren, J., Wang, L., et al. 2016. Study on the Changes of Land Use Based on TM in Minqin County. Geomatics & Spat. Inf. Technol. 39, 99–101.

381 382	Wang F., Pan, X., Wang, D., Shen, C., Lu, Qi. 2013. Combating desertification in China: Past, present and future. Land Use Policy. 31, 311–313.
383 384	Wang, X., Dong, Z., Zhang, J., Liu, L., 2004. Modern dust storms in China: An overview. J. Arid Environ. https://doi.org/10.1016/j.jaridenv.2003.11.009
385	Zhou, W., Gang, C., Zhou, F., Li, J., Dong, X., Zhao, C., 2015. Quantitative assessment
386	of the individual contribution of climate and human factors to desertification in
387	northwest China using net primary productivity as an indicator. Ecol. Indic.
388	<u>https://doi.org/10.1016/j.ecolind.2014.08.043</u>
389	Zhu, X., Gao, F., Liu, D., and Chen, J., 2012. A Modified Neighborhood Similar Pixel
390	Interpolator Approach for Removing Thick Clouds in Landsat Images. IEEE
391	Geoscience and Remote Sensing Letters 9(3):521–25.
392	Zhu, X., Helmer, E.H., Chen, J., Liu, D., 2018. An Automatic System for Reconstructing
393	High-Quality Seasonal Landsat Time Series. In Weng Q (Eds.), Remote Sensing
394	Time Series Image Processing (pp. 25-42). CRC Press.
395	Zhu, X., Liu, D., and Chen, J. 2012. A New Geostatistical Approach for Filling Gaps in
396	Landsat ETM+ SLC-off Images. Remote Sensing of Environment 124:49–60.
397	Zucca, C., Della Peruta, R., Salvia, R., Sommer, S., Cherlet, M., 2011. Towards a World
398	Desertification Atlas. Relating and selecting indicators and data sets to represent
399	complex issues. Ecol. Indic. 15, 157–170.
400	https://doi.org/10.1016/j.ecolind.2011.09.012
401	