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Abstract: Temperature is one of the most important factors controlling the phenology 19 

of winter wheat. Rapid urbanization in China dramatically modifies the microclimate, 20 

especially temperature, surrounding cities. However, it is unclear whether such urban-21 

induced changes in microclimate can influence the phenology of winter wheat and 22 

whether the influence is consistent across cities of different sizes. Here, we investigated 23 

the urban induced microclimate effects on winter wheat spring phenology (i.e., the 24 

regreen-up date, RGUD) in three cities spanning a range of sizes in northern China. These 25 

three cities include Shijiazhuang (350.98 km2), Baoding (118.95 km2), and Linqing (55.12 26 

km2), and the key data for this study are Sentinel-2 images. Based on the Sentinel-2 27 

images, we first calculated a vegetation index (normalized difference phenology index, 28 

NDPI), and then extracted winter wheat RGUD. Finally, we analyzed the distribution of 29 

the RGUD along an urban-rural gradient using buffers surrounding the urban areas. Our 30 

study has three main results: (1) The RGUD shows a significant increasing trend along 31 

the urban-rural gradients in both Shijiazhuang and Baoding, suggesting that urban-32 

induced increases in temperature indeed advance the spring phenology of winter wheat. 33 

(2) The maximum influence size of the urban-induced temperature effects on the RGUD 34 

is positively correlated with city size, i.e., 27 km for Shijiazhuang, 14 km for Baoding and 35 

7 km for Linqing. (3) The change rate of the RGUD with distance along the urban-rural 36 

gradient is significantly higher in the large city (Shijiazhuang: 0.26 day/km) than it is in 37 

the middle- and small-scale cities (Baoding: 0.21 day/km and Linqing: 0.11 day/km), 38 

which suggests that larger cities spread heat at a faster rate than that of smaller cities. 39 

This study suggests that the planting and management of winter wheat surrounding 40 

cities should consider the influence of city size to optimize yields. 41 

 42 
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 45 

1. Introduction 46 

Winter wheat is one of the staple food crops with a large cultivation area on the North 47 

China Plain. To ensure efficient crop management and food security, the winter wheat 48 

phenological features that generally indicate dates of sowing, emergence, onset of 49 

dormancy, regreening (regrowth in spring after dormancy), anthesis, and maturity are 50 

collected and supervised by multiple methods (e.g., wheat models, agro-meteorological 51 

stations, and satellite-based remotely sensed data) (He et al., 2015; Huang and Lu, 2009; 52 

Liu et al., 2018; Xiao et al., 2013). A typical winter wheat growth cycle in northern China 53 

corresponding to the vegetation index profile extracted by satellite images is shown in 54 

Figure 1. Previous studies have shown that winter wheat spring phenology, i.e., regreen-55 

up date (RGUD), is sensitive to climate and environmental conditions (e.g., temperature, 56 

photoperiod and precipitation) (He et al., 2015; Liu et al., 2018; Xiao et al., 2013), and that 57 

its shifts can have a substantial influence on energy and carbon exchange, ultimately 58 

affecting crop yield and quality (Anwar et al., 2015; Keenan et al., 2014; Tao et al., 2006). 59 

 60 



 61 

Figure 1. The typical winter wheat growth cycle in northern China corresponding to the 62 

NDPI profile extracted by satellite images 63 

 64 

Compared with the background of the global climate, urban-induced microclimate 65 

changes may be more influential for vegetation growing in urban areas and the 66 

surrounding areas (Meng et al., 2020; Wohlfahrt et al., 2010). The urban warming effect is 67 

one of the most influential indicators, considering that other environmental factors, for 68 

instance, background temperature determined by latitudes, elevations and climate zone, 69 

photoperiod and precipitation are very similar within individual cities (Kalnay and Cai, 70 

2003; Sun et al., 2016; Yang et al., 2017). Urban and suburban areas are prone to have 71 

higher temperatures than rural areas, a phenomenon referred to as the urban heat island 72 

(UHI), mainly induced by the relatively large amount of impervious surfaces as well as 73 

the increase in carbon emission into the atmosphere from human activity (Ren et al., 74 

2008). This warming effect is evident from the local to global scale, but the dispersion and 75 

gradient of the warming effect can be different across cities with different urban sizes. 76 

Given that vegetation growth is highly dependent on geoclimatic factors, it is reasonable 77 



to hypothesize that variability in the increase in temperature along an urban-rural 78 

gradient could affect the RGUD of winter wheat and that the strength of this effect may 79 

be correlated with urban size. 80 

 81 

Previous studies have demonstrated that cropland phenology has been largely affected 82 

by the rising temperature, highlighted by the earlier spring phenology and longer growth 83 

duration (Cleland et al., 2007; Keenan et al., 2014). The impact of UHIs on the advance of 84 

regreening dates shows a decreasing trend with increasing distance from urban areas 85 

(Jochner et al., 2012). The urban warming effect largely varies with latitudinal and 86 

climatic zone (Lu et al., 2006; Zhou et al., 2016). The species of vegetation is also an 87 

influencing factor affecting the phenological response to climate change (Luo et al., 2007). 88 

A significant difference in phenological shifts has been found between crops and other 89 

natural vegetation, such as grass and mixed forest (Zhang et al., 2004). Additionally, a 90 

recent study has also linked the warming effect with urban size, pointing out that a 91 

tenfold increase in city size leads to an earlier spring phenology (Li et al., 2016). Although 92 

previous studies have investigated the relationship between the urban warming effect 93 

and phenological shift, no agreement has been reached due to the inconsistent results 94 

from different cities (Lu et al., 2006; Zhang et al., 2004; Zhou et al., 2016). The 95 

inconsistency of these results may be attributed to the complex landscape and various 96 

vegetation species surrounding urban areas (Chen et al., 2018; Li et al., 2016; Zhang et al., 97 

2017). Using coarse and moderate spatial resolution images, in particular, i.e., the 98 

moderate resolution imaging spectroradiometer (MODIS) product, it is difficult to 99 

investigate the spatial heterogeneity of winter wheat RGUD along urban-rural gradients. 100 

In addition, to explore urban effects on vegetation phenology, previous studies have 101 

often focused on cities with similar sizes or individual cities (Qiu et al., 2017; Zhou et al., 102 

2016), so it is not clear whether urban effects on crop phenology differ with urban size. 103 



 104 

This study aims to obtain a better understanding of the effects of urban areas on crop 105 

phenology. Specifically, the objectives are to examine the spatial heterogeneity of winter 106 

wheat RGUD surrounding cities and to investigate whether the spatial pattern is driven 107 

by the heat dispersion from the urban heat island or by the microscale sensible heat flux 108 

of various land surface materials. Winter wheat was selected to control for the influence 109 

of different vegetation species. A dense series of high-resolution satellite images (a total 110 

of 23-27 Sentinel-2 images for each city) was used to extract winter wheat cultivation 111 

areas as well as phenological feature. A new vegetation index, the normalized difference 112 

phenology index (NDPI), which minimizes the effects of snowmelt and soil background, 113 

was employed to reflect the good performance of winter wheat growth (Wang et al., 114 

2017). Three cities of different sizes located in the same climatic zone were selected to 115 

conduct a comparison of urban effects on winter wheat RGUD while controlling 116 

confounding variables such as photoperiod and precipitation. 117 

 118 

2. Materials and Methods 119 

2.1. Study Area 120 

Three cities and their surrounding areas in northern China, namely, Shijiazhuang (38° 02' 121 

34"N, 114° 28' 48"E), Baoding (38° 51' 21"N, 115° 28' 48"E) and Linqing (36° 50' 27"N, 115° 122 

43' 12"E), were selected as study areas, as shown in Figure 2. These cities were selected 123 

because (1) winter wheat is the main grain crop surrounding them; (2) they are isolated, 124 

which reduces interference from other nearby cities; (3) they are on the North China Plain 125 

and have similar background climates and low altitudes (<50 m); and (4) they have 126 

sufficient clear observations from Sentinel-2 images with which a dense time series can 127 

be composed for monitoring the entire growth cycle of winter wheat. Additionally, these 128 

cities have different urban population sizes and scales (Figure 2); that is, Shijiazhuang 129 



represents a metropolis, with an urban population of over 5 million people; Baoding 130 

represents a medium-sized city (3 million people); and Linqing represents a small city, 131 

with a population of less than half a million. Therefore, the comparison among these three 132 

cities enables us to better understand the influence of urban effects on the winter wheat 133 

RGUD across cities with different sizes. 134 

 135 

 136 

Figure 2. Locations of the three selected cities in northern China and their urban extents 137 

(red line) extracted from nighttime light data: (a) Shijiazhuang, (b) Baoding and (c) 138 

Linqing. Background image is corresponding Sentinel-2 True Color imagery. 139 

 140 

2.2. Dataset 141 



The data used in this study include Sentinel-2 images, National Polar-orbiting 142 

Partnership visible infrared imaging radiometer suite (NPP-VIIRS) nighttime light data, 143 

and MODIS land surface temperature (LST) products. 144 

 145 

(1) Sentinel-2 Images 146 

Sentinel-2, an advanced optical satellite system for earth observations, offers free 147 

multispectral images at 10 m, 20 m, and 60 m spatial resolutions with a 5-day repeat cycle 148 

(ESA, 2015). Since Sentinel-2 was launched in 2015, we can collect Sentinel-2 images 149 

covering five complete growth cycles of winter wheat, i.e., October 2015 - June 2016, 150 

October 2016 - June 2017, October 2017 - June 2018, October 2018 - June 2019 and October 151 

2019 - June 2020, according to the winter wheat phenology in north China (Lu et al., 2014; 152 

Xiao et al., 2013). We compared the cloud cover ratios and data availability of all Sentinel-153 

2 L1C images from USGS EarthExplorer (https://earthexplorer.usgs.gov) during the 154 

above-mentioned five winter wheat growing cycles at three study cities (Figure 3). The 155 

winter wheat growth cycle of October 2017 - June 2018 has the largest number of available 156 

Sentinel-2 L1C images (less than 20% cloud cover) and the dates of these images have 157 

relatively even distribution. A large number of available images can ensure the accuracy 158 

and reliability of phenology detection, especially for the second growth stage of winter 159 

wheat growth trajectory applied to define RGUD. Besides, after investigation of the 160 

multi-year air temperature and precipitation records from meteorological stations, as 161 

well as the large-scale vegetation growth status from MODIS images (details are given in 162 

the Supplementary Data), we can confirm that October 2017 - June 2018 is not an 163 

anomalous period. Therefore, we selected Sentinel-2 images from October 2017 - June 164 

2018 for this study. A total of 76 images with less than 20% cloud cover were used to 165 

generate dense seasonal time series from which the winter wheat phenology for the three 166 

https://earthexplorer.usgs.gov/


cities was extracted. Each city has 23-27 images, which provides enough clear 167 

observations from the Sentinel-2 images to capture the growth process of winter wheat. 168 

 169 
Figure 3. Cloud cover of Sentinel-2 L1C images during October 2015 to June 2020 for 170 

each city: Shijiazhuang (T50SKH), Baoding (T50SLH&T50SLJ) and Linqing (T50SLF). 171 

The bars indicate the number of Sentinel-2 L1C available images (less than 20% cloud 172 

cover) in five winter wheat growth cycles at three study cities. The 1st growth stage of 173 

winter wheat means from the seeding to winter dormancy (October to January of the 174 

next year) while the 2nd growth stage is from regreening to maturity (February to June). 175 

 176 

(2) NPP-VIIRS Nighttime Light Data 177 

The NPP-VIIRS day/night band (DNB), a panchromatic band, can be used to monitor 178 

earth’s surface nighttime lights because of its ability to sense visible and near-infrared 179 

(NIR) wavelengths (Cao et al., 2017). Compared with other nighttime light imagery, such 180 

as the Defense Meteorological Satellite Program/Operation Line-Scan (DMSP/OLS), NPP-181 

VIIRS nighttime light images have a higher spatial resolution (750 m) and better 182 



performance for monitoring urban dynamics (Ou et al., 2015; Shi et al., 2014b). In this 183 

study, to define the urban extent of each city, an annually-averaged nighttime light image 184 

was generated using data from October 2017 to June 2018 for tile 3 (75N060E) of the NPP-185 

VIIRS DNB dataset, which was downloaded from 186 

https://ladsweb.modaps.eosdis.nasa.gov/search/. 187 

 188 

(3) MODIS Land Surface Temperature Product 189 

The MODIS LST product is able to model UHI intensity, especially for nighttime LST (Lac 190 

et al., 2013; Li et al., 2018; Qiao et al., 2013), with errors within ± 2 K according to ground 191 

validation sites (Wan, 2014). MOD11A1 is a daily MODIS LST product with a spatial 192 

resolution of 1 km from which the contaminated LST pixels have been removed. In this 193 

study, nighttime LST data from MOD11A1 were used to compute the cumulative 194 

temperature of winter wheat cultivation sites pre-RGUD. Two tiles (h26v05 and h27v05) 195 

of MOD11A1 images were downloaded from 196 

https://ladsweb.modaps.eosdis.nasa.gov/search/ to cover the study area. 197 

 198 

2.3. Methodology 199 

As illustrated in Figure 4, this study has five major steps: (1) generating smooth NDPI 200 

time series, (2) detecting winter wheat planting areas by a multi-hierarchical classification 201 

method, (3) extracting the winter wheat RGUD, (4) extracting the urban extents and 202 

buffer zones, and (5) analyzing the winter wheat RGUD patterns in the different buffer 203 

zones surrounding the urban areas. 204 

 205 

https://ladsweb.modaps.eosdis.nasa.gov/search/
https://ladsweb.modaps.eosdis.nasa.gov/search/


 206 

Figure 4. A flowchart of the steps in this study 207 

 208 

2.3.1. Generation of a Smooth NDPI Time Series 209 

In this study, NDPI, a three-band vegetation index, was selected to extract winter wheat 210 

spring regreening phenology because it is insensitive to the soil and snow background; 211 

moreover, it has been shown that NDPI has better performance and superiority than 212 

those of other vegetation indexes (e.g., NDVI, EVI and EVI2) for monitoring spring 213 

phenology (Wang et al., 2017) and capturing the greenness signal of winter wheat (Dong 214 

et al., 2020). There are five substeps to generate smooth NDPI time series. The 1st step is 215 

atmospheric correction. Sentinel-2 L1C multispectral images have been geometrically and 216 

radiometrically corrected but are available for download without atmospheric correction 217 

(ESA, 2015). Therefore, we used the official Sen2cor software to convert Sentinel-2 L1C to 218 

L2A, an orthoimage bottom-of-atmosphere corrected reflectance product (Manual, 2018). 219 

The 2nd step is screening cloudy pixels. Cloudy pixels were flagged by the Sentinel-CLD 220 



(cloud confidence) band, with values ranging from 0 (clear sky) to 100 (clouds) (Louis, 221 

2017). The Sentinel-CLD band consists of three levels: low (below 35%), medium (35% to 222 

65%) and high (above 65%) cloud probability (Main-Knorn et al., 2015). After visual 223 

inspection of the actual images, we defined the pixels with cloud confidence less than 224 

35% as noncontaminated pixels. The 3rd step is to calculate the NDPI time series using the 225 

near-infrared (NIR), red and short wavelength infrared (SWIR) bands of the Sentinel-2 226 

L2A images, which have a spatial resolution of 20 m (Equation (1)).  227 

𝑵𝑫𝑷𝑰 =
𝝆𝑵𝑰𝑹 − (𝜶 × 𝝆𝒓𝒆𝒅 + (𝟏 − 𝜶) × 𝝆𝑺𝑾𝑰𝑹)

𝝆𝑵𝑰𝑹 + (𝜶 × 𝝆𝒓𝒆𝒅 + (𝟏 − 𝜶) × 𝝆𝑺𝑾𝑰𝑹)
 (1) 

where, 𝝆𝑵𝑰𝑹, 𝝆𝒓𝒆𝒅 and 𝝆𝑺𝑾𝑰𝑹 are the surface reflectance at Sentinel-2 band 8 (NIR), band 228 

4 (red) and band 11 (SWIR), respectively, and the weight value (𝜶) was set to 0.78, the 229 

recommended optimal value that has been validated for Sentinel-2 images (Chen et al., 230 

2019). The 4th step is to interpolate the original NDPI time series to a new time series with 231 

an interval of 5 days using the spline interpolation method. The 5th step is to smooth the 232 

NDPI time series using the enhanced Savitzky–Golay (SG) filter algorithm (Chen et al., 233 

2004). The enhanced SG filter is one of the most common smoothing methods used to 234 

filter contaminated values (e.g., cloud, cloud shadow and noise) from vegetation index 235 

profiles, and it has been demonstrated that data smoothed by the SG filter have high 236 

similarity with ground observations (Cai et al., 2017; CHU et al., 2016; Han and Xu, 2013). 237 

 238 

2.3.2. Hierarchical Classification to Identify Winter Wheat Cultivation Areas 239 

To identify accurate winter wheat cultivation areas, a hierarchical classification method 240 

was proposed and used. It consists of two hierarchies. The 1st hierarchy is used to obtain 241 

an initial cropland map based on a method combining both pixel- and object-oriented 242 

classification results, and the 2nd hierarchy uses curve similarity matching to extract pure 243 

winter wheat pixels. 244 



 245 

(1) 1st Hierarchy for Detecting All Cropland Types 246 

Traditionally, pixel-oriented and object-oriented methods have been widely used for the 247 

classification of remotely sensed imagery (Yan et al., 2006; Zhou et al., 2016). Pixel-248 

oriented classification is based on information (both spectral and temporal) in the 249 

individual pixels. For example, the maximum likelihood classification, which assigns 250 

pixels to classes based on their probability of belonging to a particular class, is one of the 251 

most common pixel-oriented classification methods (Sisodia et al., 2014). Object-oriented 252 

classification has the advantage of extracting the attributes of segmented objects and is 253 

focused on the characteristic information of image objects, such as texture and spatial 254 

features (Benz et al., 2004). Because cropland has unique spectral, temporal, and textural 255 

characteristics compared those of other land cover types (e.g., built-up, natural 256 

vegetation, water body and soil), we applied both pixel- and object-oriented approaches 257 

to classify the Sentinel-2 images into broad land cover types and then selected the 258 

intersection of the cropland class in both results as the final cropland map to increase the 259 

reliability of cropland detection. 260 

 261 

(2) 2nd Hierarchy for Detecting Winter Wheat 262 

The cropland detected by the 1st hierarchical classification should be further refined by 263 

the cross correlogram spectral matching (CCSM) method (Chen et al., 2016; Wang et al., 264 

2009). First, we manually selected pure winter wheat pixels, referring to high-resolution 265 

images in Google Earth, and calculated the average values of these pixels as reference 266 

winter wheat NDPI profiles. Then, the NDPI profiles of the other cropland pixels were 267 

regarded as the target NDPI profiles to be judged by CCSM similarity, as shown in Figure 268 

5 (a). Then, the similarity between the target NDPI profiles and the reference NDPI profile 269 

was measured by the CCSM method. Specifically, the target NDPI profile moves to 270 



different positions to find a match (i.e., forward and backward up to 25 days, with 5 days 271 

per step). Then, a correlation coefficient (Rm) was calculated between the reference 272 

winter wheat NDPI profile and each target NDPI profile at different matching positions 273 

(Wang et al., 2009) (Equation (2)): 274 

𝑹𝒎 =
𝒏∑𝝀𝒓𝝀𝒕 − ∑𝝀𝒓𝝀𝒕

√[𝒏∑𝝀𝒓
𝟐 − (∑𝝀𝒓)

𝟐][𝒏∑𝝀𝒕
𝟐 − (∑𝝀𝒕)

𝟐]

 
(2) 

 275 

Here, 𝝀𝒓, and 𝝀𝒕 are the reference winter wheat NDPI profile and target NDPI profile, 276 

respectively, and n is the number of overlapping positions. The largest Rm value selected 277 

from all the matching positions, as shown in Figure 5 (b), was used to judge whether the 278 

target pixel was planted as winter wheat. Since winter wheat is the target of our study, 279 

the user’s accuracy of winter wheat mapping is a significant metric for the control of the 280 

errors and uncertainty in the following analysis. As a result, in this study, the upper 281 

threshold of Rm was set to 0.9 to ensure the accuracy of the selected winter wheat pixels. 282 

The upper Rm threshold implies a highly similar temporal pattern between the target 283 

pixels and the reference profile. In other words, the 2nd hierarchical refinement can not 284 

only exclude nonwinter-wheat cropland pixels but also remove pixels of mixed crops, 285 

which guarantees the rationality of the following analysis when using this strict 286 

procedure. Figure 6 shows the winter wheat mapping results for the three cities. 287 

 288 



289 

 290 

 291 

Figure 5. (a) Reference winter wheat NDPI profile and target NDPI profiles to be judged 292 

by CCSM similarity; (b) correlation coefficient (Rm) of the three target NDPI profiles at 293 

different matching positions 294 

 295 



 296 

Figure 6. Winter wheat maps and buffer zones of Shijiazhuang, Baoding and Linqing 297 

 298 

2.3.3. Winter Wheat Spring Regreening Phenology Extraction 299 

The NDPI profile of winter wheat clearly shows two main phases of development during 300 

its life cycle (Figure 7). Numerous studies have focused on the second phase of 301 

development (i.e., a period covering winter wheat regreening, heading and harvesting 302 

dates and the development of reproductive organs) owing to its significance (CHU et al., 303 

2016; Liu et al., 2016; Lu et al., 2014). Specifically, the RGUD begins when winter wheat 304 

is regrowing after being dormant in the winter. It is also a key period for promoting the 305 

growth of late-emerging, weak seedlings, controlling the length of the seedling stage, 306 

regulating the size of the population and determining the rate of ear formation. In the 307 

NDPI profile, the spring RGUD was defined as the date of year (DOY) since January 1, 308 

2018, when the NDPI value reached 20% of the magnitude of the 2nd growth stage (CHU 309 

et al., 2016; Yao et al., 2017), as shown in Figure 7. 310 

 311 



 312 
Figure 7. Extraction of the winter wheat RGUD from the NDPI profile according to the 313 

relative threshold method 314 

 315 

2.3.4. Urban Extent and Buffer Zone Extraction 316 

First, an annual NPP-VIIRS nighttime light image was calculated by averaging the 317 

monthly light images within the winter wheat growth cycle, and then the urbanized area 318 

of the three cities was extracted from the annual nighttime light image based an optimal 319 

threshold: Shijiazhuang & Baoding, NPP-VIIRS DN=10 nanowatts/(cm2·sr); Linqing, 320 

NPP-VIIRS DN=5 nanowatts/(cm2·sr) (Shi et al., 2014a). In addition, to capture the 321 

smooth boundaries of the main urban areas, isolated bright areas far from the urban 322 

center are manually excluded and corrected by manual inspection according to the urban 323 

built-up area scope in Google Maps. After defining the urban extent of each city, 35, 25, 324 

and 15 buffer zones with a 1 km interval from the urban boundaries were created for 325 

Shijiazhuang, Baoding, and Linqing, respectively, to represent subregions with different 326 



distances to the urban areas (Figure 6) because areas affected by UHIs increase with urban 327 

size (Imhoff et al., 2010). 328 

 329 

2.3.5. Analysis of RGUD Spatial Distribution and Driving Factors 330 

The RGUD was visualized in the buffers of the three cities to show the spatial distribution 331 

patterns. To explore the driving factors of the RGUD spatial distribution, the 1 km MODIS 332 

nighttime LST product was used to calculate the cumulative temperature in the test 333 

period from the average NDPI minimum date to the average winter wheat RGUD. Then, 334 

the winter wheat pixels (20 m) were aggregated into 1 km pixels to match the resolution 335 

of the preregreening cumulative temperature data (1 km). The relationship between the 336 

RGUD and cumulative temperature was quantified by linear regression. Next, the urban 337 

effect on winter wheat RGUD was analyzed at the buffer scale for each city. First, the 338 

mean and standard deviation of the winter wheat RGUD in each 1 km width buffer zone 339 

was calculated. Subsequently, the mean phenological features of the buffers were plotted 340 

against the distance to the urban boundary to visualize the relationship between 341 

phenology and urban areas. Furthermore, a linear regression was conducted to quantify 342 

how urban areas affect winter wheat RGUD at different distances. 343 

 344 

3. Results 345 

3.1 Spatial Distribution of Winter Wheat RGUD 346 

Figure 8 shows the spatial distributions and histograms of the frequency of the winter 347 

wheat spring RGUD in the three cities. The outliers that are outside of 3-sigma standard 348 

deviations have been excluded. In general, the winter wheat RGUD in the surroundings 349 

of the urban areas of each city show normal distributions, and the RGUD occurs earlier 350 

close to the urbanized areas of each city. In addition, the average regreening dates are 351 



76.41 in Linqing (36° 50' 27"N), 81.04 in Shijiazhuang (38° 02' 34"N) and 84.16 in Baoding 352 

(38° 51' 21"N), suggesting that re-greening dates of winter wheat in lower latitudinal 353 

regions (i.e., warmer areas) generally occur earlier. This implies that temperature may be 354 

the key driver factor to control winter wheat spring phenology at large scales, which are 355 

consistent with studies on other vegetation (He et al., 2015; Piao et al., 2011). The difference 356 

in average RGUD values of these three cities also suggests that the method and data used by 357 

this study to detect winter wheat RGUD is reasonable and reliable. 358 

 359 

 360 

Figure 8. Spatial distribution of the winter wheat RGUD in the buffer zone of three 361 

cities. The histograms on the upper left of maps show the number of pixels with 362 

different winter wheat RGUD values in each city; the red lines in histograms indicate 363 

the average winter wheat RGUDs in each city. 364 

 365 

3.2 Relationship between Winter Wheat RGUD and Nighttime LST 366 

We can see from the histogram distributions of nighttime LST (Figure 9) and statistics of 367 

nighttime LST (Table 1) across the cities that the nighttime LST can be a good metric to 368 

describe urban sizes; the larger the city, the larger the difference in nighttime LST and the 369 

higher the standard derivation. In addition, as shown in Figure 9, the scatter plots present 370 

a negative correlation between winter wheat RGUD and nighttime LST in each city, 371 

which indicates that high nighttime LST might drive earlier winter wheat spring RGUDs. 372 



Interestingly, large- and middle-scale cites have higher correlation coefficients (r), i.e., -373 

0.64 in Shijiazhuang (p <0.01) and -0.51 in Baoding (p <0.01), than that in the small city 374 

Linqing (r: -0.08, p <0.01). 375 

 376 

Figure 9. Relationship between the nighttime LST and winter wheat RGUDs. The blue 377 

point presents the RGUD value of one pixel and its corresponding nighttime LST value. 378 

Lower-right figure in each scatter plot is the histogram of the nighttime LST in each city. 379 

 380 

Table 1. Statistics of the nighttime LST across the cities; the outliers (based on 3-sigma 381 

standard deviations) have been screened 382 

Study Site Range (k) Nighttime LST Difference  Average STD 

Shijiazhuang 273.12 - 277.16 4.04 274.91 1.28 

Baoding 273.55 - 276.52 2.97 274.89 0.89 

Linqing 272.90 - 275.27 2.37 274.03 0.74 

 383 

3.3 Winter Wheat RGUD Change along the Urban-rural Gradient 384 

To summarize both the LST and RGUD in the 1 km buffers, we resampled the MODIS 385 

nighttime LST (1 km) into 20 m pixels using the bilinear method. The orange dots and 386 

lines in Figure 10 show the average nighttime LST in each 1 km buffer zone. Obviously, 387 

the UHI effect decreases from the urban centers to the surrounding areas in all the study 388 

cities. The UHI in the large city, Shijiazhuang, has the most significant warming effect on 389 



the surrounding area, while the small city, Linqing, experiences the weakest effect. As 390 

expected, in general, all three cities show earlier winter wheat RGUDs when closer to the 391 

urbanized area, but the specific patterns are different among the cities (Figure 10). For the 392 

large city, Shijiazhuang, we found three stages of winter wheat RGUD change with 393 

distance to the urbanized area: (1) The winter wheat RGUDs in the 11 buffer zones closest 394 

to the urbanized area show stable advancement, as shown in Figure 10. The winter wheat 395 

in these areas has similarly early RGUDs (approximately 79 DOY). (2) After the first 11 396 

buffer zones, there is a significant increasing trend in the RGUD (0.26 day/km, as shown 397 

in Table 2), indicating that winter wheat enters spring phenology later when farther from 398 

the urbanized area. This increasing trend stops at 27 km. (3) When farther than 27 km 399 

from the urban areas, the winter wheat RGUD becomes stable again, but with a late date 400 

of approximately 84 DOY. There also exists a stable advancement of the winter wheat 401 

RGUD (approximately 81 DOY) in the middle of Baoding, but with a much shorter range, 402 

i.e., within 3 km of the urbanized areas, as shown in Figure 10. In contrast, the winter 403 

wheat RGUD of the small city, Linqing, does not have a stable advancement stage, such 404 

those in as Shijiazhuang and Baoding, but it shows an increasing trend starting from the 405 

first buffer zone, as shown in Figure 10. The change rates of the middle and small cities 406 

are 0.21 day/km and 0.11 day/km (Table 2), respectively, which are smaller than those of 407 

Shijiazhuang, suggesting that the urban warming effect may decline towards the 408 

outskirts more slowly in small cities than it does in large cities. In addition, the increasing 409 

trend of the winter wheat RGUD in Baoding and Linqing stops in the buffer zone (14 km 410 

and 7 km), which is closer to the urban areas than that of Shijiazhuang (27 km), suggesting 411 

that the effect of small cities on winter wheat RGUD has a shorter range than that of large 412 

cities. 413 

 414 



 415 

 416 

 417 



Figure 10. Relationship between the distance to the urbanized area and winter wheat 418 

RGUD in each city; the red lines indicate the fitted lines 419 

 420 

Table 2. Summary of the linear regression between the RGUD and distance to the 421 

urbanized area 422 

Study site Affected range (km) Regression range (km) Slope r p-value 

Shijiazhuang 01 - 27 11 - 27 0.26 0.98 <0.01 

Baoding 01 - 14 03 - 14 0.21 0.88 <0.01 

Linqing 01 - 07 01 - 07 0.11 0.96 <0.01 

 423 

4. Discussion 424 

4.1 Impact of Urban Size on Winter Wheat RGUD 425 

There are minimum temperature requirements for vegetation (e.g., root and leaves) 426 

development (Basler et al., 2016; Schenker et al., 2014). Both satellite-based remote 427 

sensing data and ground observations suggest that vegetation spring phenology occurs 428 

earlier along the urban-rural gradient, and it occurs much earlier when close to the urban 429 

center because of the UHI effect, which causes higher temperatures (Dallimer et al., 2016; 430 

Li et al., 2016; Yao et al., 2017; Zhao et al., 2014). This study not only validated this 431 

phenomenon, but also found that no matter what the size of a city is, i.e., Shijiazhuang, 432 

Baoding or Linqing, winter wheat spring RGUD occurs earlier when close to an urban 433 

center. In addition, we provided further insights into how winter wheat RGUD responds 434 

to the temperature gradient in urban-rural areas among cities of different sizes. 435 

Specifically, in addition to considering the winter wheat phenological differences 436 

between nearby urban areas and outskirts, we hope to recognize the interaction between 437 



the RGUD and urban areas in each buffer through the design of buffer zones for different-438 

scale cities (Figure 6). In this regard, we controlled several factors that might affect 439 

vegetation spring phenology, such as external factors (e.g., photoperiod, precipitation 440 

and temperature caused by latitudinal climate zones) and internal factors (e.g., vegetation 441 

species), by selecting a single species (i.e., winter wheat) and cities of different sizes 442 

located in the same climate zone. This improvement is based on previous studies in which 443 

uncertainties were included. For example, previous studies have concentrated on major 444 

cities with similar scales to evaluate urban effects on mixed vegetation phenology by 445 

moderate-coarse satellite images (Ren et al., 2018; Zhou et al., 2016). Thus, in this study, 446 

we assumed that differences in the winter wheat RGUD are mainly due to the urban-447 

induced microclimates of cities with different sizes. 448 

 449 

Figure 11 shows the difference in the advancement of the winter wheat RGUDs between 450 

each buffer and the furthest affected buffer zone (i.e., the 27th zone for Shijiazhuang, the 451 

14th for Baoding and the 7th for Linqing) in the three cities. This indicates that the urban 452 

effects on the winter wheat RGUD are different for different-scale cities: the larger the 453 

city, the greater the range of the effect, thereby causing a larger advancement of the 454 

winter wheat regreening phenology. This phenomenon could be explained by the Fick’s 455 

first law of diffusion that describes relationship between diffusive flux and concentration, 456 

that is, the flux moves from high to low concentration regions, and its magnitude is 457 

proportional to the concentration gradient. Large city has higher urban-rural heat flux 458 

(i.e., nighttime LST) difference than middle- and small-scale cities (Table 2), which causes 459 

greater RGUD advancement in larger city. Moreover, following Fick’s first law of 460 

diffusion, larger cities with higher heat gradients exchange at a faster rate than that of 461 

smaller cities, which causes change rate of the RGUD along the urban-rural gradient is 462 

significantly higher in the large city (Shijiazhuang: 0.26 day/km) than it is in the middle- 463 

and small-scale cities (Baoding: 0.21 day/km and Linqing: 0.11 day/km) (Figure 10 and 464 



Table 2). Thus, combined with Figure 10 and Figure 11, our results confirm the 465 

abovementioned hypothesis; that is, variability in the increasing temperature along 466 

urban-rural gradients could affect winter wheat spring regreening phenology in the 467 

surrounding urban areas, and the strength of this effect is tightly correlated with urban 468 

sizes. Although higher temperatures generally result in earlier spring phenology, 469 

vegetation spring phenology does not necessarily occur earlier with increasing 470 

temperature because green-up may respond to temperature nonlinearly and be saturated 471 

at high temperature (Caffarra et al., 2011). Here, we found stable advancement stages of 472 

the winter wheat RGUD in larger cities, i.e., Shijiazhuang (1-11 km) and Baoding (1-3 km), 473 

while the small city, Linqing, does not have a stable advancement stage (Figure 11). The 474 

stable advancement stage of winter wheat RGUD indicates that the accumulated 475 

temperature required for winter wheat spring regreening reaches saturated conditions 476 

and a further increase in temperature will not trigger earlier spring regreening phenology 477 

in areas close to large cities. In these areas, other factors may constrain the regreening of 478 

winter wheat, e.g., shorter photoperiods limit leaf development (Chmielewski and Götz, 479 

2016; Garonna et al., 2018). 480 

 481 



 482 

Figure 11. Comparison of the advanced winter wheat RGUD across the cities 483 

 484 

4.2 Possible Mechanism of the Urban Effect on the Winter Wheat RGUD 485 

Nighttime LST is a good indicator of UHIs (Lac et al., 2013; Land et al., 2016; Li et al., 486 

2018), and it can be regarded as one of the key drivers of vegetation spring phenology, 487 

i.e., there is a negative correlation between vegetation spring phenology and nighttime 488 

LST (X. Wang et al., 2017; Zhou et al., 2016). We found that the relationship between 489 

winter wheat spring regreening and nighttime LST, indeed, shows a negative correlation 490 

in each city, but it differs by urban size, i.e., the smaller the city is, the weaker the 491 

correlation is. In general, the UHI effect intensity depends on urban size and building 492 

density, with larger cities having stronger UHI effect intensities. Therefore, due to the 493 

larger UHI effect intensity, Shijiazhuang and Baoding show a higher correlation between 494 

nighttime LST and vegetation spring phenology than that of Linqing. Specifically, the 495 

UHI effect is generally defined as thermal or microclimatic differences between urban 496 

areas and their surrounding rural areas (Brazel, 2006; Parece and Campbell, 2018). These 497 

differences mainly result from the replacement of natural landscapes with impermeable 498 



surfaces and built up areas (Jochner and Menzel, 2015; Samuel C Zipper and Jason Schatz 499 

et al., 2016). More specifically, impervious surfaces increase the local temperature due to 500 

the occurrence of less evapotranspiration from a low abundance of vegetation (Jochner 501 

and Menzel, 2015). Thus, we extracted the proportions of impervious surfaces in winter 502 

wheat pixels in 3x3 windows, and the results are shown in Figure 12. 503 

 504 

 505 

 506 



 507 

Figure 12. Impervious surfaces proportions surrounding winter wheat 508 

 509 

Table 3. Correlation coefficients between the winter wheat regreening date, nighttime 510 

LST and proportion of impervious surfaces (**p < 0.01)  511 

Study site Correlation coefficient 

between nighttime LST and 

regreening date 

Correlation coefficient between 

the proportion of impervious 

surfaces and regreening date 

Shijiazhuang -0.64** 0.05 

Baoding -0.51** -0.84** 

Linqing -0.08** -0.66** 

 512 

According to Figure 12, a higher proportion of impervious surfaces surrounding winter 513 

wheat generally make its spring phenology earlier. Additionally, the percentage of 514 

impervious surfaces and nighttime LST are more highly correlated in the middle- and 515 

small-scale cities (Baoding and Linqing) than they are in the large city (Shijiazhuang). 516 

This indicates that the local microclimate in the middle- and small-scale cities is mainly 517 

produced by impervious surfaces, which causes the advancement of the winter wheat 518 



regreening phenology. By comparison, there is a weak relationship between the 519 

proportion of impervious surfaces and winter wheat regreening in Shijiazhuang, yet 520 

there is a strong relationship between the nighttime LST and winter wheat regreening 521 

(Table 3). One possible reason is the unsynchronized relationship that occurs between the 522 

proportion of impervious surfaces and temperature differences (also referred to as UHI 523 

intensity) in some cities, but especially in large cities. This is mainly because satellite-524 

based remotely sensed images can capture only the proportions of buildings and 525 

construction canopies rather than the actual building heights and density. The 526 

impervious layers extracted by satellite images cannot fully reflect the UHI intensity. 527 

Similarly, a recent study suggested that vegetation phenology is controlled by both local 528 

land cover and micrometeorological conditions and that impervious cover can only 529 

partially explain variability in phenology (Samuel C Zipper and Jason Schatz et al., 2016). 530 

Other possible reasons for the observed relationship are the much stronger heat 531 

convection and flow of higher concentration of pollutants (e.g., CO2) from the urban-rural 532 

areas in large-scale cities. As a recent finding demonstrated, the efficiency of heat 533 

convection to the lower atmosphere from urban and rural areas is also significantly 534 

responsible for the UHI effect (Zhao et al., 2014). The other study suggested the rise of 535 

CO2 concentration, particularly in urban areas, may change sensitivity of vegetation 536 

seasonality resulting in earlier start of season (Wang et al., 2019). Thus, the influential 537 

factors for winter wheat regreening might be different in cities with different sizes, i.e., 538 

impervious surface cover influences phenology more significantly in middle- and small-539 

size cities, whereas the influential factors are more complicated and mixed in large cities 540 

where impervious surfaces, UHI heat convection, and concentration of pollutants all 541 

might play important roles.  542 

 543 

5. Conclusion 544 



Accurate monitoring of key phenology characteristics, such as spring regreening 545 

phenology, is critical for yield forecasts and crop management (He et al., 2015; Liu et al., 546 

2018). As previously documented, 40% ~ 60% of irrigated agriculture and rainfed 547 

croplands are planted within 20 km of urban areas, so the urban effects on changes in 548 

crop phenology could result in a significant influence on food security (Samuel C Zipper 549 

and Jason Schatz et al., 2016; Thebo et al., 2014). Based on this, we hypothesized that 550 

urban-induced microclimate variability can affect the winter wheat spring phenology 551 

and that this effect might vary with urban size. We developed a novel methodology to 552 

test this hypothesis. The proposed methodology includes (1) a hierarchical classification 553 

method to identify winter wheat cultivation areas, which could exclude misclassification 554 

and refine winter wheat planting areas; (2) a workflow to process high-resolution 555 

Sentinel-2 time series (20 m), which can reduce scaling and mixed-pixel effects; and (3) a 556 

novel 3-band vegetation index (NDPI), which is insensitive to background land cover 557 

types and was employed to reflect the annual winter wheat growth trajectory. The 558 

abovementioned methodology can accurately classify winter wheat pixels, detect winter 559 

wheat RGUDs and reduce uncertainty. 560 

 561 

Based on this newly developed methodology, our results showed that the spatial patterns 562 

of the winter wheat RGUDs are similar in each city, i.e., there is an earlier winter wheat 563 

spring regreening close to the urbanized areas. However, the affected ranges, stable 564 

advancement stages and slopes of the winter wheat spring regreening phenology in 565 

response to distance from urban areas are different for the cities of different sizes. These 566 

differences are probably due to the UHI intensity of the different cities. Larger cities have 567 

a larger UHI effect intensity, causing much stronger impacts on winter wheat regreening 568 

phenology. Additionally, the urban-induced microclimatic effects on the winter wheat 569 

spring regreening phenology depend on urban size, and the response of winter wheat 570 

regreening to nighttime LST is more significant in the large city (Shijiazhuang), while the 571 



proportion of impervious surfaces contributes more the in middle- and small-scale cities 572 

(Baoding and Lining, respectively). 573 

 574 

These results, together with previous agronomy studies highlighting the importance of 575 

spring regreening phenology in determining winter wheat growth, suggest that the UHI 576 

effect should be considered in studies on phenology monitoring, yield forecasting, and 577 

intelligent agricultural management of urban vegetation. Findings from this study can 578 

help improve winter wheat yield predictions as well as winter wheat farming practices 579 

locally. Moreover, rapid urbanization (the long-term process of transforming a small city 580 

into a large city) is occurring globally. In this regard, we selected three cities of differing 581 

sizes that are located in the same climate zone to investigate the urban-induced 582 

microclimate effects on winter wheat spring regreening phenology. Due to the limited 583 

number of cloud-free satellite images, this study only investigated one growing season 584 

of winter wheat in three representative cities. The methodology developed by this study 585 

can be adopted by future studies to investigate more seasons and cities to test the findings 586 

of this study. 587 
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