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Abstract 24 

Dozens of spatiotemporal fusion methods have been developed to reconstruct veg-25 

etation index time-series data with both high spatial resolution and frequent coverage 26 

for monitoring land surface dynamics. Although several comparison studies among dif-27 

ferent fusion methods have been conducted, selecting suitable fusion methods is still 28 

challenging as inevitable influential factors tend to be neglected. To address this prob-29 

lem, this study compared six typical spatiotemporal fusion methods, including the Un-30 

mixing-Based Data Fusion (UBDF), Linear Mixing Growth Model (LMGM), Spatial 31 

and Temporal Adaptive Reflectance Fusion Model (STARFM), Fit-FC (regression 32 

model Fitting, spatial Filtering and residual Compensation), One Pair Dictionary-33 

Learning method (OPDL), and Flexible Spatiotemporal DAta Fusion (FSDAF), based 34 

on simulation experiments and theoretical analysis with the consideration of three in-35 

fluential factors between sensors, including geometric misregistration, radiometric in-36 

consistency, and spatial resolution ratio. The results indicated that Fit-FC achieved the 37 

best performance with the strongest tolerance to geometric misregistration when radio-38 

metric inconsistency was negligible; thus, it is the first recommended algorithm for 39 

blending normalized difference vegetation index (NDVI) imagery. FSDAF could gen-40 

erate satisfactory results with resistance to radiometric inconsistency as well. These 41 

findings could help users to determine which method is appropriate for different remote 42 

mailto:chenxuehong@bnu.edu.cn


 
3 

 

sensing datasets and provide guidelines for developers in the future development of 43 

novel methods. 44 

Keywords: Spatiotemporal fusion; Normalized difference vegetation index (NDVI); 45 

Geometric misregistration; Radiometric inconsistency; Spatial resolution ratio 46 
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1. Introduction 48 

Time series of vegetation indices (e.g., Normalized Difference Vegetation Index, 49 

NDVI) produced by satellite sensors play a unique role in various environmental appli-50 

cations as important data sources, such as cropland mapping (Chang et al., 2007; Ward-51 

low et al., 2007), vegetation phenology monitoring (Bradley et al., 2007; Cao et al., 52 

2015; Zhang et al., 2003), and disturbance detection (Verbesselt et al., 2012). However，53 

most of the sensors onboard the launched satellites cannot acquire data with both high 54 

spatial and temporal resolutions simultaneously, due to hardware technology or budget 55 

limitations. For example, the data from sensors with dense temporal coverage usually 56 

hold coarse spatial resolution (e.g. MODIS, hereafter referred to as coarse images), im-57 

posing restrictions on capturing enough spatial details in heterogeneous areas. On the 58 

other hand, the data from sensors with fine spatial resolution (e.g., Landsat TM or 59 

ETM+, hereafter referred to as fine images) have their drawback due to a long revisit 60 

cycle (e.g., 16 days), limiting their potential in time-series analyses. Consequently, var-61 

ious spatiotemporal fusion methods that combine the merits of two such kinds of data 62 

have been developed and were used to produce NDVI data with high spatial and tem-63 

poral resolutions (Chen et al., 2018; Liao et al., 2017; Liu et al., 2019; Maselli et al., 64 

2019; Rao et al., 2015). Furthermore, they have been successfully applied in various 65 

fields, such as crop growth progress monitoring (Gao et al., 2017), land cover classifi-66 

cation (Chen et al., 2017; Jia et al., 2014), biomass estimation (Zhang et al., 2016), and 67 

disturbance detection (Hilker et al., 2009). 68 

 Zhu et al. (2018) grouped the published spatiotemporal fusion methods into the 69 
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following five categories according to technique principles: unmixing-based, weight 70 

function-based, learning-based, Bayesian-based, and hybrid methods. Unmixing-based 71 

methods downscale coarse pixel to fine resolution based on the linear spectral mixing 72 

theory (Rao et al., 2015; Zhukov et al., 1999; Zurita-Milla et al., 2008). Weight func-73 

tion-based methods estimate target pixel through combining neighborhood pixels with 74 

empirically designed weight functions of spectral similarity, spatial distance or other 75 

related measurements (Gao et al., 2006; Wang et al., 2018; Zhu et al., 2010). Learning-76 

based methods are relatively new, which use machine learning methods to model the 77 

relationship between coarse and fine images (Huang and Song, 2012; Liu et al., 2016; 78 

Song and Huang, 2013; Song et al., 2018). Bayesian-based methods described spatio-79 

temporal fusions as a Maximum A Posterior (MAP) problem based on Bayesian frame-80 

work (Huang et al., 2013; Liao et al., 2016; Shen et al., 2016). Hybrid methods attempt 81 

to integrate two or more methods mentioned above to improve the performance of spa-82 

tiotemporal fusion (Li et al., 2020; Liu et al., 2019; Quan et al., 2018; Zhu et al., 2016).  83 

Although the technique principles are diverse, each developed method was 84 

claimed by its original study to have unique advantages in terms of prediction accuracy, 85 

computation efficiency, or input data requirements. However, as these studies used dif-86 

ferent datasets in their method comparison, it was difficult to reach a consensus on 87 

which method outperforms all the others. Thus, it is necessary to assess the applicability 88 

of these methods to different application scenarios. Accordingly, several cross-compar-89 

ison studies had been conducted to explore the advantages and weaknesses of different 90 

methods based on time-series data (Chen et al. 2015; Emelyanova et al., 2013; Liu et 91 
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al., 2019). As a general conclusion, the performances of different fusion methods 92 

mainly depend on the sensitivity to spatial heterogeneity and temporal variations of the 93 

used data.  94 

However, these comparison studies have neglected the influence of inevitable 95 

noise in real applications, including geometric misregistration and radiometric incon-96 

sistency. In spite of large efforts devoted on the inter-calibration and geometric regis-97 

tration among different sensors, adequate elimination on such inherent noises is still 98 

challenging (Chander et al. 2013a, 2013b; Claverie et al., 2018; Yan et al., 2016).Thus, 99 

numerous studies have focused on quantifying the impact of geometric misregistration 100 

error and radiometric uncertainty on land cover change detection (Dai and Khorram, 101 

1998; Chen et al., 2014; Roy et al., 2000) and vegetation dynamic monitoring (Fan and 102 

Liu, 2018; Skakun et al., 2018; Sulla-Menashe et al., 2016). Considering the potential 103 

impacts of these noises on spatiotemporal fusion methods (Belgiu and Stein, 2019; Zhu 104 

et al., 2018) and the lack of corresponding comparative research, it is still difficult for 105 

users to choose appropriate methods for their applications. A recent study has shown an 106 

encouraging desire to address these issues by quantifying the influence of geometric 107 

errors on the fusion methods (Tang et al., 2020). However, only two algorithms were 108 

explored in this study, which is not enough for most users.  109 

Recently, open source data from sensors with fine spatial resolution have made a 110 

progress in enhancing temporal frequency, such as Sentinel-2, but they are still not suf-111 

ficient in many applications due to cloud contamination (Wang et al., 2018). Thus, Sen-112 
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tinel-3 at 300 m resolution is also launched to supply daily observations, which is cru-113 

cial for monitoring land surface dynamics. Moreover, long-term data analysis is also 114 

very important for many applications and spatiotemporal fusion plays important role 115 

for the study period without rich data. Therefore, spatiotemporal fusion methods are not 116 

only used for MODIS and Landsat images, but also images from other satellite sensors 117 

with different spatial resolutions (e.g., AMSR, ASTER, Sentinel-2/3, GF-1, Worldview, 118 

and Planet) in recent studies (Kong et al., 2016; Kwan et al., 2018; Mizuochi et al., 119 

2017; Li et al., 2017; Wang and Atkinson, 2018). And it has been aware that the input 120 

images with different resolution ratios could lead to significant variations of different 121 

method performances (Yokoya et al., 2017). Unfortunately, to our knowledge, there are 122 

no comparative studies for evaluating the performances of spatiotemporal fusion meth-123 

ods based on data with different spatial resolution ratios of sensors. 124 

To fill the gap in the previous comparison studies, we conducted comparison ex-125 

periments and theoretical analyses on the spatiotemporal fusion of NDVI time-series 126 

data with considering various influential factors, including geometric misregistration, 127 

radiometric inconsistency, and spatial resolution ratio. Six typical spatiotemporal fusion 128 

methods requiring only one fine image and two coarse images as input, including the 129 

UBDF (Unmixing-Based Data Fusion), LMGM (Linear Mixing Growth Model), 130 

STARFM (Spatial and Temporal Adaptive Reflectance Fusion Model), Fit-FC (regres-131 

sion model Fitting, spatial Filtering and residual Compensation), OPDL (One Pair Dic-132 

tionary-Learning method), and FSDAF (Flexible Spatiotemporal DAta Fusion), were 133 

selected for comparison. The six methods were selected in this study considering their 134 
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unique contributions in their own categories and the availability of source codes. More-135 

over, the performances were evaluated on time-series data instead of individual images 136 

to better satisfy the application requirement. In general, the goal of this study is to ex-137 

plore the sensitivity of the six fusion methods to three influential factors and, thus, pro-138 

vide useful guidelines for method selection and future method design to users and de-139 

velopers.  140 

2. Methods and datasets 141 

2.1 Experiment design 142 

To explore the sensitivity of spatiotemporal fusion methods to various influencing 143 

factors for NDVI time series reconstruction, experiments were specifically designed in 144 

terms of geometric misregistration, radiometric inconsistency, and different spatial res-145 

olution ratios. Like in previous studies (Gevaert and García-Haro, 2015; Liu et al., 2019; 146 

Zhu et al., 2016), the time series of cloud-free Landsat imagery and simulated coarse 147 

resolution imagery aggregated from Landsat data were used for a spatiotemporal fusion 148 

experiment and validation. The standard experiment is based on ideal simulated data 149 

without any errors; it is used as the reference for the later simulation experiments. To 150 

explore the effect of various influencing factors, three additional fusion experiments 151 

were designed based on the simulated data with geometric misregistration, radiometric 152 

inconsistency, and different spatial resolution ratios. In addition, fusion experiments 153 

based on actual Landsat and MODIS data were also conducted.  154 

NDVI fusion is the main object of this study considering the widely application of 155 
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NDVI time series. As the time series of surface reflectance also receive attentions (Her-156 

mosilla et al., 2015; Xiao et al., 2016), similar fusion experiments were also conducted 157 

on reflectance data (green, red, near infrared bands) for a comparison.  158 

2.1.1 Standard fusion experiment based on ideal simulated data 159 

This experiment followed the experimental settings of previous studies (Gevaert 160 

and García-Haro, 2015; Zhu et al., 2016). Coarse images were simulated by the aggre-161 

gation of Landsat images to avoid misregistration and radiometric inconsistency be-162 

tween fine and coarse images. In the standard experiment, we aggregate 8×8 pixels for 163 

NDVI and 16×16 pixels for reflectance to simulate the MODIS NDVI at 250m resolu-164 

tion and MODIS reflectance data at 500m resolution. The first fine image in the time 165 

series and corresponding simulated coarse image were used as the base-paired image 166 

input for the fusion experiment. The other simulated coarse images were then 167 

downscaled to a fine spatial resolution by different fusion methods (Fig. 1. Schematic 168 

diagram of the standard experiment.).  169 

 170 

Fig. 1. Schematic diagram of the standard experiment. 171 

2.1.2 Fusion experiment based on simulated data with geometric misregistration 172 

The settings of this experiment are similar to the standard one, except that misreg-173 

istration error was simulated when aggregating the Landsat images to the coarse images. 174 
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Specifically, pixel shifting is one of the most serious consequences caused by geometric 175 

distortions. Therefore, similar to the previous study (Tang et al., 2020), the fine images 176 

were shifted 2, 4, 6, or 8 pixels before aggregation, thus different degrees of misregis-177 

tration error were generated for the simulated coarse images (Fig. 2). This experiment 178 

compares the robustness of different methods to the geometric error. For experiments 179 

of reflectance, the fine images were shifted 4, 8, 12, or 16 pixels before aggregation 180 

considering the resolution of coarse reflectance images was doubled as that of NDVI 181 

image. 182 

 183 

Fig. 2. Schematic diagram of the experiment with geometric misregistration. 184 

2.1.3 Fusion experiment based on simulated data with radiometric inconsistency 185 

The special experiment setting of this experiment, which is the only difference 186 

from the standard one, is that a linear stretch was conducted on the aggregated coarse 187 

image to simulate the radiometric inconsistency between fine and coarse sensors (Fig. 188 

3): 189 

'C C   , (1) 

where C and  are the ideal and the stretched NDVI of simulated coarse pixels, re-190 

spectively; α and β are the linear stretch parameters. The parameters were referenced 191 

from an intercalibration study of vegetation indices derived from different sensors (Ste-192 

ven et al., 2003), in which the linear relationships of TM and MODIS, TM and AVHRR, 193 

'C
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ETM+ and MODIS, POLDER and ASTR2, as well as QuickBird and ASTR2 were in-194 

vestigated (Table 1). And Table 2 presents the linear relationships used in the reflec-195 

tance experiments. With such a simulation, the sensitivity of different methods to the 196 

radiometric inconsistency could be explored. 197 

 198 

Fig. 3. Schematic diagram of the experiment with radiometric inconsistency 199 

Table 1 200 

Coefficients of linear stretches for simulated radiometric inconsistency in the NDVI 201 

experiments between sensors (Steven et al., 2003). 202 

Satellite Sensors Slope (α) Intercept (β) 

TM-MODIS 1.002 -0.012 

TM-AVHRR 1.106 -0.007 

ETM+-MODIS 1.023 -0.013 

POLDER-ASTR2 1.008 -0.110 

QuickBird-ASTR2 0.928 -0.105 

Table 2 203 

Coefficients of linear stretches for simulated radiometric inconsistency in the reflec-204 

tance experiments between sensors. 205 

Simulations Slope (α) Intercept (β) 

Simu1 0.9 0.0 

Simu2 1.1 0.0 

Simu3 1.0 -0.05 

Simu4 1.0 0.05 

2.1.4 Fusion experiment based on simulated data with different spatial resolution 206 

ratios 207 

To explore the applicability of six fusion algorithms to various satellite products 208 
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with different spatial resolutions, this experiment compares the sensitivity of these 209 

methods to different spatial resolution ratios of coarse and fine images. Coarse images 210 

are simulated at 4 levels of spatial resolution ratios (4, 8, 16, and 32; Fig. 4). Other 211 

experiment settings are similar to those in the standard one (i.e., without any geometric 212 

error or radiometric inconsistency). 213 

 214 

Fig. 4. Schematic diagram of the experiment with different spatial resolution ratios. 215 

2.1.5 Fusion experiment based on actual MODIS images 216 

The actual MODIS images were used for this fusion experiment. In addition, sim-217 

ulated MODIS images with certain geometric error and radiometric inconsistency were 218 

also used for comparison. Although the geolocation accuracy of MODIS achieved 50 219 

m at nadir (Wolfe et al., 2002), the large scan angle and procedures of reprojection and 220 

resampling could further enlarge the geolocation error. Thus, it should be reasonable to 221 

assume an averaged misregistration error of approximately a half-pixel size (120 m), 222 

corresponding to four pixel shifting of fine images. The parameters of linear stretches 223 

for TM-MODIS (Table 1) were used for simulating the radiometric inconsistency. This 224 

experiment was conducted to illustrate how much of the fusion error of the results using 225 

the actual MODIS data could be accounted for by the results based on the simulated 226 

MODIS data with simulated geometric and radiometric errors. 227 

2.1.6 Accuracy indices for evaluation 228 

Two accuracy indices, root mean square error (RMSE) and, correlation coefficient 229 
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(r) were used to evaluate the performance of different fusion methods. The RMSE was 230 

calculated using all pairs of the predicted and true images throughout the time series. 231 

The correlation coefficient (r) was calculated between the predicted and the true NDVI 232 

time-series for each fine pixel. Then, an averaged r of the whole image was used to 233 

represent the overall accuracy of the predicted time-series data. Different aspects of 234 

fusion results were assessed. The image-based RMSE evaluates the average pixel-wise 235 

prediction errors, which has drawn the attention of quantitative remote sensing studies. 236 

The coefficient r is the similarity between the predicted temporal profile and true tem-237 

poral profile, which will benefit dynamic monitoring research. With the above two in-238 

dices, the overall performances on the time-series instead of the individual images were 239 

evaluated for different fusion methods under different experimental scenarios.  240 

In addtion, to further explore the relationship between the fusion accuracy and the 241 

temporal variation of the input data, an absolute relative difference index (ADRI), was 242 

calculated to represent temporal change between base and predicted time.  243 

ARDI = |F2 – F1|/F1,       (2) 244 

where F1 and F2 denote the NDVI or reflectance of fine images at based and pre-245 

dicted time. 246 

 247 

2.2 Experimental Datasets 248 

For a unified comparison, the typical datasets in previous spatiotemporal fusion 249 

studies (Emelyanova et al., 2013; Jun et al., 2020), Coleambally irrigated area (CIA) in 250 
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southern New South Wales (145.10°E, 34.05°S), Gwydir Catchment (GWY) in north-251 

ern New South Wales (149.63°E, 29.77°S) and Tianjin in northern China (117.20°E, 252 

39.30°N) were used in this study. The CIA site was dominated by woodlands, cropland, 253 

and dryland land cover types. A total of 16 cloud-free pairs of Landsat-7 ETM+ 254 

(800×800 pixels at 30 m spatial resolution) data were collected in this area from Octo-255 

ber 2001 to May 2002. As shown in Fig. 5(a) and (b), there are fragmented cropland 256 

and woodlands parcels in this area, resulting in a heterogeneous landscape. In addition, 257 

woodlands, croplands, and drylands show distinctive NDVI profiles during this period 258 

(Fig. 5(c)). The main purpose using this dataset with the high heterogeneity and com-259 

plex NDVI seasonality is to compare the performance of fusion methods for the moni-260 

toring phenology changes in fragmented cropland landscape. The GWY site was dom-261 

inated by winter crops and natural vegetation. A total of 14 cloud-free pairs of Landsat-262 

5 TM (800×800 pixels at 30 m spatial resolution) data were collected in this area from 263 

April 2004 to April 2005. This site was relatively homogeneous, displaying relatively 264 

large parcels of crop fields and natural vegetation (Fig. 6(a) and (b)). However, a flood 265 

occurred in December 2004, leading to a sudden drop in the NDVI of the inundated 266 

areas (Fig. 6(c)). Thus, this dataset is employed to test the performance of fusion meth-267 

ods for capturing abrupt land cover change. As for the third site, Tianjin, the main land 268 

cover were impervious surface, cropland and waterbody. Many small impervious sur-269 

faces (e.g., buildings, and roads) were distributed in this site, resulting in a heterogenous 270 

landscape. There were 11 cloud-free pairs of Landsat-8 OLI (800×800 pixels at 30 m 271 

spatial resolution) collected for Tianjin Site. As shown in Fig. Fig. 7, each land cover 272 
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had the unique NDVI temporal profile. The main purpose using this dataset is to test 273 

the accuracy of fusion methods for the detecting phenology changes in urban land-274 

scapes. For all three sites, true MODIS surface reflectance (MODIS Terra MOD09GQ 275 

collection 6, resampled to 240 m spatial resolution) acquired in the corresponding pe-276 

riods were also downloaded for comparison.  277 

 278 

Fig. 5. Test data in CIA site. 240 m simulated coarse images and corresponding 30 m 279 

fine images acquired on (a) and (d) November 9, 2001, (b) and (e) February 13, 2002, 280 
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and (c) and (f) May 4, 2002; (g) NDVI time-series of three typical land covers. All 281 

images use NIR-red-green as RGB. 282 

 283 

Fig. 6. Test data in GWY site. 240 m simulated coarse images and corresponding 30 m 284 

fine images acquired on (a) and (d) May 2, 2004, (b) and (e) December 12, 2004, and 285 

(c) and (f) April 4, 2005; (g) NDVI time-series of three typical land covers. All images 286 

use NIR-red-green as RGB.  287 
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 288 

Fig. 7. Test data in Tianjin site. 240 m simulated coarse images and corresponding 30 289 

m fine images acquired on (a) and (d) April 29, 2014, (b) and (e) December 25, 2014, 290 

and (c) and (f) August 2, 2015; (g) NDVI time-series of three typical land covers. All 291 

images use NIR-red-green as RGB. 292 

2.3 Spatiotemporal fusion methods 293 

We selected 1~2 typical methods for each category mentioned by Zhu et al. (2018) 294 

for the comparison experiments except for the Bayesian-based methods due to the lack 295 
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of open-source code. For quantifying the error propagation of fusion results caused by 296 

misregistration and radiometric consistency between sensors, key concepts and equa-297 

tions of each method were introduced here for the convenience of the later theoretical 298 

analysis in the discussion part.  299 

For simplification, the algorithms were reintroduced here based on a consistent 300 

denotation (Table 3). 301 

Table 3 Common variables used in different spatiotemporal fusion methods.  302 

Symbol Meaning 

(x, y) geolocation of specific pixel 

t1 base time; 

t2 predicted time; 

C1 the input coarse image at t1; 

C2 the input coarse image at t2; 

F1 the input fine image at t1; 

�̂�2 the output image at t2 

 the moving window of pixel (x, y). 

 303 

2.3.1 UBDF 304 

As an unmixing-based method, UBDF employ a constrained least square with a 305 

moving to unmix coarse images for appropriate results (Zurita-Milla et al., 2008). Based 306 

on the linear spectral mixing model, NDVI at a coarse pixel is regarded as a linear 307 

combination of the NDVIs of its endmembers. Assuming that the fine pixels are pure 308 

enough to be endmembers, the NDVI at the coarse pixels (x, y) and a predicted time is:  309 

 , (2) 

where F2
i(x,y) is the NDVI of the ith land cover type in the coarse pixel (x,y); fi(x,y) is 310 

the fraction of the ith endmember in the coarse pixel; c is the number of endmembers; 311 

and  is the residual error. fi(x,y) is calculated based on the classification result of 312 

 2 2

1

, = ( , ) ( , ) ( , )
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fine images at t1, as land cover is assumed to be unchanged in UBDF. With another 313 

assumption that endmembers are consistent in a moving window of coarse pixels (), 314 

F2
i(x,y) can be solved by the following equations with constrained corresponding to the 315 

mixing models in a moving window (m×m coarse pixels): 316 

. 
(3) 

Also, Eq. (3) could be written in a matrix form for convenience 317 

. (4) 

Thus, F2
i could be estimated by the least-square method: 318 

. (5) 

Finally, the fine image at  can be generated by assigning the estimated F2
i to the 319 

corresponding fine pixels based on the classification result of .  320 

2.3.2 LMGM 321 

To further enhance spatial details in the unmixing-based fusion results, LMGM 322 

makes use of F1 (Rao et al., 2015). It assumes that the growth rate of the same land 323 

cover is constant in a short period. Therefore, LMGM estimates the growth rates of 324 

endmembers (ΔF=F2-F1) by unmixing the growth rate of coarse pixels (ΔC=C2-C1), as 325 

shown in Eq. (6):  326 
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. (6) 

Then, LMGM calculates  by adding the estimated growth rate of class i ( ) to 327 

F1 328 

. (7) 

2.3.3 STARFM 329 

STARFM is the most typical and popular fusion method based on a weight func-330 

tion (Gao et al., 2006). It assumes that the systematic bias between two sensors does 331 

not change over time. STARFM firstly resamples the coarse images to the same spatial 332 

resolution as the fine image. Thus, (x,y) can be estimated as: 333 

. (8) 

Considering the issues of mixed pixel and land cover change, the information of similar 334 

neighboring pixels is introduced for the final estimation of F2: 335 

, (9) 

where  is the number of similar pixels in the moving window and Wi is the weight 336 

of the ith similar pixel. The definition of spectral neighbor similar pixels is that they 337 

belong to the same class. And the calculation of the weight Wi combines the spatial 338 

distance (Di) and spectral difference between coarse and fine images (Si) (Gao et al., 339 

2006; Gao et al., 2015):  340 
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2 2

/2 /2i w i w iD x x y y    , (10) 

   1 1, ,i i i i iS F x y C x y  , (11) 

where (xw/2, yw/2) and (xi, yi) are the central pixel of the moving window and candidate 341 

similar neighboring pixel, respectively. The spatial closer similar pixel with smaller 342 

spectral difference possesses the higher weight.  343 

2.3.4 Fit-FC 344 

For capturing the temporal changes of fine pixels accurately, Fit-FC introduces a 345 

linear regression model established based on coarse images (Wang and Atkinson, 2018). 346 

A local linear regression model is firstly established between   and   within a 347 

moving window : 348 

, (12) 

where R() are the coarse residuals in the moving window and a and b are the regres-349 

sion coefficients. Then, the regression coefficients are applied to the fine pixels within 350 

a moving window corresponding to the coarse moving window () for the RM (i.e., 351 

Regression Model) prediction. Finally, unlike STARFM with the spectral difference 352 

between coarse and fine images, an another searching similar neighboring pixels ap-353 

proach only with spatial distance using threshold is adopted to address the problem of 354 

blocky artifacts while considering the residuals of the regression model: 355 

      2 1

1

ˆ , , ,
sn

i i i i i

i

F x y W a F x y b r x y


    , 
(13) 

where r(xi,yi) is the residual at the fine pixel (xi,yi), which is resampled from R() by 356 

bicubic interpolation.  357 

2C 1C

     2 1a b   C C RM M M
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2.3.5 OPDL 358 

Dictionary-learning based methods reconstruct images with an overcomplete dic-359 

tionary and the corresponding coefficients of sparse representation (Huang and Song, 360 

2012). Song and Huang (2013) proposed the dictionary-based learning method OPDL, 361 

which requires only one image pair. The key idea of OPDL is that coarse image and 362 

fine image acquired at the same location share the same sparse representation coeffi-363 

cients, and the overcomplete dictionary trained from images acquired at base time 364 

should be time-invariant. Therefore, C1 and F1 provide the dictionary and C2 provides 365 

the corresponding coefficients to generate transition image T2. And with the same pro-366 

cess, T1 can be also produced. Finally, the high-pass modulation is introduced to transfer 367 

the temporal change from transition images to F1 for prediction: 368 

 
 

 
 2

2 1

1

,ˆ , ,
,
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Due to the large spatial resolution difference between the fine image and coarse 369 

image, OPDL is implemented in a two-layer framework (Song and Huang, 2013). The 370 

first layer produces an image with the intermediate resolution between the coarse and 371 

fine image. Subsequently, the second layer generates the final results using the image 372 

synthesized by the first layer. 373 

2.3.6 FSDAF 374 

FSDAF (Zhu et al., 2016) is a hybrid method that combines unmixing, spatial in-375 

terpolation, and similar neighboring pixel smoothing for robust fusion results. Firstly, 376 

similar to LMGM, FSDAF estimates the temporal change of a fine pixel (ΔFtp) by an 377 
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unmixing-based method to produce the temporal prediction (F2
tp), except that the un-378 

mixing procedure is conducted in the whole image instead of a moving window. Then, 379 

with the TPS interpolation (Dubrule, 1984), the spatial prediction ( ) of  can be 380 

generated. The residuals between the sum of  and  are considered in FSDAF: 381 

, (15) 

where  is the residual in the coarse pixel at location  ,x y  and n is the num-382 

ber of fine pixels inside a coarse pixel and the fine pixel at location (xi, yi) is inside the 383 

coarse pixel at location (x, y). In a homogenous area, the spatial prediction performs 384 

well, which is applied to calculate a new residual: 385 

     2 2, , ,sp tp
hoR x y F x y F x y  . (16) 

Thus, a weighted function (wh) integrates two residuals (i.e., Rho and R) using a 386 

homogeneity index for residual compensation. The final prediction of FSDAF can be 387 

expressed as:  388 
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where Wi is the weight of similar pixel as same as Fit-FC.  389 

2.4 Parameter settings of six spatiotemporal fusion methods 390 

Referring to previous studies (Gao et al., 2006; Song and Huang, 2013; Rao et al., 391 

2015; Wang et al., 2018; Zhu et al, 2016; Zurita-Milla et al., 2008), parameters of six 392 

spatiotemporal fusion methods were carefully tuned for different experimental sites and 393 

different resolution ratios. Table 4 shows the key parameters of UBDF, LMGM, 394 

STARFM, Fit-FC, and FSDAF. It is noted that we set the same values for the parameters 395 
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with similar functions in different methods to achieve a fair comparison (i.e., similar 396 

neighboring pixel smoothing in STARFM, Fit-FC and FSDAF). The key parameters of 397 

OPDL are separately shown in  398 

Table 5 as they are very different from those of other five fusion methods. The 399 

patch size of dictionary representation in two layers was consistently set as 3 and 4 for 400 

all of the experimental sites and resolution ratios.  401 

 402 

Table 4 Key parameters of five fusion methods (c: class number, m: moving window 403 

size, ns: number of similar neighboring pixels, ms: moving window size for searching 404 

similar neighboring pixels, R: Spatial resolution ratio of coarse and fine images).  405 

 
c  

m 
 

ns 
 

ms 
CIA GWY Tianjin    

UBDF 6 5 7  5×5  N/A  N/A 

LMGM 6 5 7  5×5  N/A  N/A 

STARFM 6 5 7  N/A  N/A  1.5×R+1 

Fit-FC N/A N/A N/A  3×3  1.5×R  1.5×R+1 

FSDAF 6 5 7  N/A  1.5×R  1.5×R+1 

 406 

Table 5 Key parameters of OPDL method (resolution ratio is equal to the product of 407 

scale factors of two layers) 408 

Dictionary size 

(Layer 1, Layer 2) 

Resolution ratio (scale factors of two layers)  

4 (2×2)  8 (2×4)  16 (4×4)  32 (4×8) 

Experi-

mental site  

CIA (1500,1500)  (700,1500)  (700,1500)  (50,1500) 

GWY (900,1500)  (200,1500)  (200,1500)  (100,1500) 

Tianjin (600,1500)  (200,1500)  (200,1500)  (50,1200) 

 409 
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3. Results 410 

3.1 Standard comparison 411 

The performances of the six methods at the two sites were evaluated with the ideal 412 

simulation data. Table 6 shows the averaged RMSE and r for each method. In general, 413 

Fit-FC performed best, followed by FSDAF. Among the other four methods, STARFM 414 

performed better than UBDF, LMGM, and OPDL. As shown in Fig. 8, all the methods 415 

performed worse when ADRI increased, while Fit-FC and FSDAF always generated 416 

better results for all the images in the time series than the other four methods.  417 

Table 6 Standard comparison evaluated by averaged RMSE, AD and r at the three sites. 418 

  UBDF LMGM STARFM Fit-FC OPDL FSDAF 

CIA 
RMSE 0.1533 0.1816 0.1292 0.0816 0.131 0.1006 

r 0.7606 0.7717 0.8883 0.8979 0.8555 0.8758 

GWY 
RMSE 0.1125 0.1133 0.0754 0.0643 0.0718 0.0669 

r 0.8681 0.8726 0.9196 0.9226 0.9072 0.9175 

Tianjin 
RMSE 0.1346 0.1296 0.0926 0.0788 0.0843 0.0797 

r 0.8769 0.8748 0.9376 0.9409 0.9329 0.9385 

 419 

 420 
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Fig. 8. The relationship between the prediction accuracy and the temporal variation at 421 

the two sites: (a) CIA; (b) GWY; (c) Tianjin. Image number is the number of the pre-422 

dicted image in the image time series. 423 

3.2 Geometric misregistration 424 

The performances of the six methods with the simulated misregistration errors be-425 

tween coarse and fine images are showed in this section. The extent of misregistration 426 

was quantitatively measured as the shifting pixel distance. From visual comparison of 427 

NDVI fusion results (Fig. 9), there are little distortions of the results fused by Fit-FC 428 

under eight pixel shifting. However, the results fused by other five fusion methods are 429 

obviously different from the reference results. When evaluated by quantitative indices 430 

(Fig. 10), it is apparent that the accuracy of each method generally decreases as the 431 

shifting distance increases. Fit-FC is the most robust method for misregistration fol-432 

lowed by UBDF, as their evaluation index values vary the most slowly. The other four 433 

methods, LMGM, STARFM, OPDL, and FSDAF, are more sensitive to the geometric 434 

error, as shown in Fig. 10 (a) and (b) where they all have sheer accuracy drops along in 435 

addition to the shifting distance increases. The results of reflectance (Fig. A1, Fig. A4, 436 

and Fig. A7) are similar to those of NDVI.[ZJ1] 437 

 438 
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 439 

Fig. 9. Using fusion results of the CIA site on February 13, 2002, visual comparison of 440 

NDVI results without geometric errors (e.g., reference) and with misregistration (eight 441 

pixel shifting) by six methods: (a) UBDF; (b) LMGM; (c) STARFM; (d) Fit-FC; (e) 442 

OPDL; (f) FSDAF. 443 

 444 

Fig. 10. Quantitative comparison of NDVI fusion results under different levels of geo-445 

metric errors from 0 to 8 (misregistration pixel). (a) RMSE in CIA; (b) RMSE in GWY; 446 

(c) RMSE in Tianjin; (d) r in CIA; (e) r in GWY; (f) r in Tianjin. 447 
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3.3 Radiometric inconsistency 448 

Fig. 11 shows the robustness of different methods to the radiometric inconsistency 449 

between sensors (i.e., linear stretches of QuickBird-ASTR2). There are significant dis-450 

tortions in the results fused by UBDF, STARFM, and Fit-FC. And the results evaluated 451 

by quantitative indices are in good agreement with that of visual comparison. When the 452 

fusion methods were applied to the datasets with small radiometric inconsistency (Table 453 

1), such as TM-MODIS, TM-AVHRR, and ETM+-MODIS, they all produced accurate 454 

results. However, when there were larger radiometric inconsistencies, like POLDER-455 

ASTR2, and QuickBird-ASTR2, UBDF, STARFM, and Fit-FC showed larger errors 456 

than the other methods. In contrast, LMGM, OPDL and FSDAF are more robust to the 457 

radiometric inconsistency between two sensors. As for the results of reflectance (Fig. 458 

A2, Fig. A5, and Fig. A8), the sensitivity of fusion methods to radiometric errors is 459 

consistent with that of NDVI.  460 

 461 

Fig. 11. Using fusion results of the GWY site on December 12, 2004, visual comparison 462 
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of NDVI results without any errors (e.g., reference) and with radiometric inconsistency 463 

by six methods: (a) UBDF; (b) LMGM; (c) STARFM; (d) Fit-FC; (e) OPDL; (f) FSDAF. 464 

 465 

Fig. 12. Quantitative comparison of NDVI fusion results under different levels of radi-466 

ometric inconsistencies. (a) RMSE in CIA; (b) RMSE in GWY; (c) RMSE in Tianjin; 467 

(d) r in CIA; (e) r in GWY; (f) r in Tianjin. Reference means that there is no radiometric 468 

inconsistency. 469 

3.4 Spatial resolution ratio 470 

Fig. 13 presents the accuracies of the six fusion methods in the scenarios of differ-471 

ent spatial resolution ratios between coarse and fine images. In general, all the methods 472 

perform worse when the spatial resolution ratio increases. Among these methods, 473 

OPDL is the most sensitive to the spatial resolution ratio. The accuracy of the OPDL 474 

fusion results decreases the fastest as the spatial resolution ratio increases (Fig. 14). 475 

STARFM is also highly sensitive to the spatial resolution ratio, especially in heteroge-476 

neous sites like CIA. In contrast, UBDF, LMGM, FSDAF, and Fit-FC are somehow 477 

less sensitive to the spatial resolution ratio. And the results of reflectance is similar to 478 

those of NDVI (Fig. A3, Fig. A6, and Fig. A9).  479 
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 480 

Fig. 13. Using NDVI fusion results of the Tianjin site on December 25, 2014, visual 481 

comparison under different levels of spatial resolution ratio from 4 to 32. by six meth-482 

ods: (a) UBDF; (b) LMGM; (c) STARFM; (d) Fit-FC; (e) OPDL; (f) FSDAF. 483 

 484 

Fig. 14. Quantitative comparison of NDVI fusion results under different levels of spa-485 

tial resolution ratio from 4 to 32. (a) RMSE in CIA; (b) RMSE in GWY; (c) RMSE in 486 

Tianjin; (d) r in CIA; (e) r in GWY; (f) r in Tianjin. 487 
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3.5 Actual MODIS data 488 

The performances of the six fusion methods based on the actual MODIS images 489 

were compared with those based on the simulated MODIS images (Fig. 15). Generally, 490 

the former results were worse than those based on the simulated images with only par-491 

tial errors, and further worse than those based on ideal images without any errors. This 492 

indicates that the simulated geometric and radiometric errors, to some extent, account 493 

for the performance differences between the experiments based on the ideal simulated 494 

MODIS data and those based on the actual MODIS data. [ZJ2]For the experiment based 495 

on actual MODIS data, Fit-FC performed best in CIA and GWY sites whereas OPDL 496 

performed best in Tianjin site. FSDAF ranked second in GWY and Tianjin sites, 497 

whereas UBDF ranked second in CIA site. These results imply the complexity of the 498 

fusion experiments based on actual data. However, in overall, Fit-FC and FSDAF still 499 

worth recommendation considering their relative stability.   500 

 501 

Fig. 15. Quantitative comparison of NDVI fusion results based on actual MODIS im-502 

ages. (a) RMSE in CIA; (b) RMSE in GWY; (c) RMSE in Tianjin; (d) r in CIA; (e) r in 503 

GWY; (f) r in Tianjin. Ideal, Simu, and Actual imply that the input coarse images are 504 
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simulated ideally without any errors, simulated with geometric and radiometric errors, 505 

and are the actual MODIS images, respectively. 506 

4. Discussions 507 

To further explore the sensitivity of the six fusion methods to various factors, the-508 

oretical derivations were conducted to analyze the geometric and radiometric error 509 

propagation from the input data to the results. As for the spatial resolution ratio, its 510 

influence was similar to the influence of the spatial heterogeneity of input data.  511 

For the convenience of comparison, the different fusion methods (except OPDL) 512 

were grouped into three types, origin weighting (Eq. (18)), increment weighting (Eq. 513 

(19)), and regression weighting methods here (Eq. (20)): 514 

 , (18) 

, (19) 

, (20) 

where  ,  ,  , and   are denoted as  ,  , 515 

 , and   for simplification, respectively. UBDF is a typical origin weighting 516 

method. As shown in Eq. (18), the fused result is calculated by weighting different 517 

coarse pixels acquired at t2; the wi is calculated by  for UBDF. 518 

LMGM, STARFM, and FSDAF belong to increment weighting methods. As shown in 519 

Eq. (19), the fused result is calculated by weighting the temporal increments from t1 to 520 

t2 of different coarse pixels; the wi is calculated in different ways for different algo-521 

rithms. Fit-FC is a novel developed regression weighting method. As shown in Eq. (20), 522 
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the fused result is calculated by weighing the linear transformation of fine pixels ac-523 

quired at t1; wi is calculated based on a similar pixel smoothing strategy. For convenient 524 

theoretical analysis, Eq. (28) was further simplified by replacing  with   525 

 . (21) 

4.1 Propagation of geometric errors to fusion results  526 

 As the fine images were considered as the reference, the NDVI error induced by 527 

geometric errors could be expressed only in coarse images. Although the geometric 528 

error is a kind of systematic error, the induced NDVI error is random. Thus, the NDVI 529 

error on coarse pixel induced at t1 and t2 are assumed as random variables of δC1 and 530 

δC2. Subsequently, although wi is calculated in different ways by the five fusion meth-531 

ods, it is mainly determined by the information of the fine pixels that are not affected 532 

by geometric errors. Thus, wi could be considered as a constant in the error propagation 533 

procedure. The fusion errors ( ) induced by geometric misregistration could be es-534 

timated based on the error propagation equation. For UBDF, the fusion uncertainty of 535 

UBDF induced by geometric errors could be derived as

 , (22) 

where std and var are the standard deviation and variance, respectively. Similarly, the 537 

standard deviation of fusion errors of LMGM, STARFM, and FSDAF could be derived 538 

as: 539 
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, (23) 

where cov is the covariance. If   and   are independent (i.e., the temporal 540 

change between t1 and t2 is significant), the term  approaches zero. Thus, 541 

  is larger than  because of error accumulation, which is 542 

also confirmed in the simulated data in most cases (Fig. 16). Therefore, LMGM, 543 

STARFM and FSDAF are more sensitive to geometric errors than UBDF in general. 544 

The standard deviation of fusion error of Fit-FC could be also derived as: 545 
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(24) 

As a is the regression coefficient between C1 and C2,   1var iaC is strongly corre-546 

lated with . Thus,   2 1var i iC aC   is smaller than  because of er-547 

ror compensation, which could also be shown in Fig. 16. Therefore, Fit-FC is the most 548 

robust method for geometric error. 549 

Analysis of the error propagation of OPDL is difficult due to the nonlinear opti-550 

mization in the dictionary learning procedure. The sensitivity to geometric error could 551 

depend on different learned features, thus varied case by case.  552 
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 553 

Fig. 16. Comparison of variances of three weighting terms in the two sites: (a) CIA; (b) 554 

GWY; (c) Tianjin, image number is the number of the predicted image in the image 555 

time series. Fine images were shifted 8 pixels before aggregation. 556 

4.2 Propagation of radiometric error to fused result  557 

As radiometric inconsistency is usually a systematic error, linear stretch was used 558 

to express radiometric inconsistency. Thus, the fusion error of UBDF induced by radi-559 

ometric inconsistency could be derived as: 560 

 , (25) 

where α and β are the coefficients for simulating radiometric inconsistency (i.e., slope 561 

and intercept in Table 1). The fusion error of UBDF induced by radiometric incon-562 

sistency depends linearly on two stretching parameters.  563 

For STARFM, LMGM, and FSDAF, the fusion error induced by radiometric in-564 

consistency can be derived as: 565 
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. (26) 

Therefore, the intercept term (β) is removed in the term of . Theoretically, these 566 

three methods are less sensitive to radiometric inconsistency compared to UBDF. How-567 

ever, STARFM shows high sensitivity to radiometric inconsistence in the experiments 568 

(Fig. 11 and Fig. 12), which is somehow inconsistent with above theoretical analysis. 569 

It is because the weight (wi) calculation of the similar pixel smoothing in STARFM 570 

includes a term of absolute NDVI difference between coarse and fine pixels (Eq. (11)), 571 

which is sensitive to radiometric inconsistence. If the weight calculation in original 572 

STARFM is modifed as that in Fig-FC, the modified STARFM will be also robust to 573 

radiometric inconsistency as the theoretical analysis (Fig. 17).   574 

 575 

Fig. 17. Quantitative comparison of NDVI fusion results of STARFM_Mod_Site (i.e., 576 

results of modified STARFM in the different site) under different levels of radiometric 577 

inconsistencies. (a) RMSE; (b) r. Reference means that there is no radiometric incon-578 

sistency. 579 

Similarly, for Fit-FC, the fusion error induced by radiometric inconsistency can be 580 

expressed as: 581 
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. (27) 

Compared with the second group (LMGM, STARFM, and FSDAF), Fit-FC is more 582 

sensitive to radiometric inconsistency because α and β both influence the fusion result. 583 

Subsequently, OPDL is robust to radiometric inconsistency because it employs a linear 584 

regression model for intercalibration of coarse and fine images.  585 

4.3 Influence of spatial resolution ratio on spatiotemporal fusion 586 

The spatial resolution ratio of sensors determines the information gap between 587 

coarse and fine images acquired at the same time. In other words, with the spatial res-588 

olution ratio increasing, coarse pixels contain more fine pixels and, thus, become more 589 

mixed; this is a similar effect as the increase of spatial heterogeneity. Thus, those meth-590 

ods that perform relatively better in heterogonous images should also be less sensitive 591 

to the spatial resolution ratio. As the unmixing module employed in fusion methods can 592 

better capture the spatial heterogeneity, UBDF, LMGM, and FSDAF, which employ the 593 

unmixing module, are less sensitive to the spatial resolution ratio than STARFM and 594 

OPDL. Fit-FC is also relatively less sensitive to the spatial resolution ratio although the 595 

unmixing module is not employed in this method. It is because only two land cover 596 

types (i.e., vegetation and non-vegetation) need to be considered in NDVI fusion; there-597 

fore, the linear regression model in Fit-FC with two degrees of freedom (i.e., two coef-598 

ficients a and b) plays a similar unmixing role, which is adequate in capturing the tem-599 

poral changes of the two land cover types. Furthermore, it implies that Fit-FC is partic-600 

ularly more suitable for the spatiotemporal fusion of NDVI data than reflectance data. 601 
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4.4 Method selection and guidance for future method design 602 

The above comparison and analyses can guide the selection of suitable spatiotem-603 

poral fusion methods in applications. Other than the influential factors of geometric 604 

misregistration, radiometric inconsistency, and spatial resolution ratio, the perfor-605 

mances of the fusion methods mainly depend on the spatiotemporal variations of input 606 

datasets. The selection of a suitable method should, therefore, consider the influence 607 

extent of all the factors and balance the pros and cons of each method according to the 608 

characteristics of their data and applications. Similar to a recent comparative study (Liu 609 

et al., 2019), Fit-FC and FSDAF were shown to have better performances than the other 610 

three methods (i.e., UBDF, STARFM, and OPDL) for the actual MODIS data, indicat-611 

ing that Fit-FC and FSDAF are robust to different spatiotemporal variations. For a com-612 

prehensive comparison, the advantages and disadvantages of the six fusion methods are 613 

summed up in Table 7. The most recommended algorithm is Fit-FC, which can produce 614 

accurate results with high efficiency for NDVI fusion. However, it should be noted that 615 

Fit-FC needs to be implemented with radiometric normalization (Gao et al, 2010; 616 

Gevaert and García-Haro, 2015) considering its sensitivity to systematic radiometric 617 

error. FSDAF is another favorable method with high accuracy if geometric misregistra-618 

tion can be well corrected.  619 

Table 7 The pros and cons of six typical fusion methods under comparison of different 620 

influential factors (worst: 1, good: 2~4, best: 5). Due to the dominant of spatiotemporal 621 

variations in the fusion method performances, a triple weight has been used in the cal-622 

culations of the total scores. (Variations = Spatiotemporal variations, Ratio = Spatial 623 
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Resolution ratio) 624 

Method Variations Geometric Radiometric Ratio Total 

UBDF 2 3 2 3 14 

LMGM 1 2 5 3 13 

STARFM 3 2 3 1 15 

Fit-FC 5 5 1 5 26 

OPDL 3 3 5 1 18 

FSDAF 4 2 5 3 22 

This study can also give guidance for the future development of spatiotemporal 625 

fusion methods. Previous developments of spatiotemporal fusion methods were gener-626 

ally designed without the consideration of inevitable geometric and radiometric errors. 627 

For example, increment weighting (Eq. (19)) is commonly used in a large group of 628 

fusion methods (e.g., STARFM, LMGM, and FSDAF) as it can keep good spatial de-629 

tails and reduce the radiometric inconsistency of sensors to some extent. However, the 630 

above analysis indicates that it would be highly sensitive to geometric error. In contrast, 631 

the regression model employed in Fit-FC is resistant to geometric errors, whereas, it is 632 

sensitive to radiometric inconsistency. Therefore, combining the strength of Fit-FC and 633 

increment weighting might be a promising strategy in the future development of novel 634 

methods; other techniques that can mitigate these errors should also be taken into con-635 

sideration. 636 

It should be noted that this study has not completely considered all the influential 637 

factors. The geometric and radiometric errors were simply simulated by pixel shifting 638 

and linear transformation in this study. However, there are more complicated errors 639 
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between sensors, including complex geometric errors from imagery scaling, rotation, 640 

and skewing (Dai and Khorram, 1998; Toutin, 2004) and radiometric inconsistency 641 

caused by nonlinear distortion, such as analogous bands between sensors with different 642 

spectral response functions (SRFs), radiometric resolution difference and the angle ef-643 

fect that solar-sensor geometry bidirectional reflectance distribution function (BRDF) 644 

changes over time (Chander et al., 2013b; Gao et al., 2006; Roy et al., 2008). These 645 

errors could cause large uncertainties in the fusion results. This is shown in the actual 646 

MODIS experiments and should be considered carefully in the future. The selection of 647 

typical fusion methods might be another issue. It is impossible in this study to compare 648 

all of the spatiotemporal fusion methods due to limitations of the source code availa-649 

bility and heavy works. Notwithstanding the representative methods as much as possi-650 

ble that we selected, the better methods are probably missed. An organization of pro-651 

gramming contest with a standard dataset and assessment protocol could be a solution 652 

to engaging more algorithm developers and a fair comparison of different spatiotem-653 

poral fusion methods in near future. 654 

5. Conclusions 655 

Besides the spatiotemporal variations of input datasets, this study presents the ne-656 

cessity of considering the sensitivity of fusion methods to three influential factors (i.e., 657 

geometric misregistration, radiometric inconsistency, and spatial resolution ratio) when 658 

they are employed in real applications. These influencing factors could affect different 659 

fusion methods to different degrees. The simulation experiment and the theoretical anal-660 

ysis showed that Fit-FC achieved the best performances for both sites with the best 661 
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resistance to geometric errors among the six typical spatiotemporal fusion methods 662 

when the radiometric inconsistency between sensors was negligible, suggesting it is the 663 

first recommended algorithm for NDVI time-series reconstruction. However, Fit-FC is 664 

sensitive to systematic radiometric error and, thus, performs poorly if there is a signif-665 

icant radiometric inconsistency between the two sensors. FSDAF could also generate 666 

satisfactory results through its ability to reduce radiometric inconsistency; however, it 667 

is sensitive to geometric errors. Therefore, precise geometric registration is required 668 

when using FSDAF. These findings could not only help users to select suitable methods 669 

according to the characteristics of their data and applications but could also provide 670 

guidance for developers in designing novel algorithms more robust to different influ-671 

ential factors in the future.  672 
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 677 

Fig. A1. Quantitative comparison of green band fusion results under different levels of 678 
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geometric errors from 0 to 16 (misregistration pixel). (a) RMSE in CIA; (b) RMSE in 679 

GWY; (c) r in CIA; (d) r in GWY.  680 

 681 

Fig. A2. Quantitative comparison of green band fusion results under different levels of 682 

radiometric inconsistencies. (a) RMSE in CIA; (b) RMSE in GWY; (c) r in CIA; (d) r 683 

in GWY. Reference means that there is no radiometric inconsistency. 684 

 685 

Fig. A3. Quantitative comparison of green band fusion results under different levels of 686 

spatial resolution ratio from 4 to 32. (a) RMSE in CIA; (b) RMSE in GWY; (c) r in 687 

CIA; (d) r in GWY.  688 
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 689 

Fig. A4. Quantitative comparison of red band fusion results under different levels of 690 

geometric errors from 0 to 16 (misregistration pixel). (a) RMSE in CIA; (b) RMSE in 691 

GWY; (c) r in CIA; (d) r in GWY.  692 

 693 

Fig. A5. Quantitative comparison of red band fusion results under different levels of 694 

radiometric inconsistencies. (a) RMSE in CIA; (b) RMSE in GWY; (c) r in CIA; (d) r 695 

in GWY. Reference means that there is no radiometric inconsistency. 696 
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 697 

Fig. A6. Quantitative comparison of red band fusion results under different levels of 698 

spatial resolution ratio from 4 to 32. (a) RMSE in CIA; (b) RMSE in GWY; (c) r in 699 

CIA; (d) r in GWY.  700 

 701 

Fig. A7. Quantitative comparison of NIR band fusion results under different levels of 702 

geometric errors from 0 to 16 (misregistration pixel). (a) RMSE in CIA; (b) RMSE in 703 

GWY; (c) r in CIA; (d) r in GWY.  704 
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 705 

Fig. A8. Quantitative comparison of NIR band fusion results under different levels of 706 

radiometric inconsistencies. (a) RMSE in CIA; (b) RMSE in GWY; (c) r in CIA; (d) r 707 

in GWY. Reference means that there is no radiometric inconsistency. 708 

 709 

Fig. A9. Quantitative comparison of NIR band fusion results under different levels of 710 

spatial resolution ratio from 4 to 32. (a) RMSE in CIA; (b) RMSE in GWY; (c) r in 711 

CIA; (d) r in GWY.  712 

Reference 713 

Aharon, M., Elad, M., Bruckstein, A., 2006. K-SVD: An algorithm for designing over-714 

complete dictionaries for sparse representation. IEEE Trans. Signal Process. 54, 715 

4311-4322. https://doi.org/10.1109/TSP.2006.881199 716 

https://doi.org/10.1109/TSP.2006.881199


 
46 

 

Bradley, B. A., Jacob, R. W., Hermance, J. F., Mustard, J. F., 2007. A curve fitting pro-717 

cedure to derive inter-annual phenologies from time series of noisy satellite NDVI 718 

data. Remote Sens. Environ. 106, 137-145. 719 

https://doi.org/10.1016/j.rse.2006.08.002 720 

Belgiu, M., Stein, A., 2019. Spatiotemporal image fusion in remote sensing. Remote 721 

sensing. 11, 818. 722 

Cao, R., Chen, J., Shen, M., Tang, Y., 2015. An improved logistic method for detecting 723 

spring vegetation phenology in grasslands from MODIS EVI time-series data. Agr. 724 

Forest Meteorol. 200, 9-20. https://doi.org/10.1016/j.agrformet.2014.09.009 725 

Chander, G., Helder, D. L., Aaron, D., Mishra, N., Shrestha, A. K., 2013a. Assessment 726 

of spectral, misregistration, and spatial uncertainties inherent in the cross-calibra-727 

tion study. IEEE Trans. Geosci. Remote Sens. 51, 1282-1296. 728 

Chander, G., Hewison, T. J., Fox, N., Wu, X., Xiong, X., Blackwell, W. J., 2013b. Over-729 

view of intercalibration of satellite instruments. IEEE Trans. Geosci. Remote 730 

Sens. 51, 1056-1080. 731 

Chang, J., Hansen, M. C., Pittman, K., Carroll, M., DiMiceli, C., 2007. Corn and soy-732 

bean mapping in the United States using MODIS time-series data sets. Agron. 733 

J. 99, 1654-1664.  734 

Chen, B., Huang, B., Xu, B., 2015. Comparison of spatiotemporal fusion models: A 735 

review. Remote Sens. 7, 1798-1835. https://doi.org/10.3390/rs70201798 736 

Chen, B., Huang, B., Xu, B., 2017. Multi-source remotely sensed data fusion for im-737 

proving land cover classification. ISPRS J. Photogramm. Remote Sens. 124, 27-738 

https://doi.org/10.1016/j.rse.2006.08.002
https://doi.org/10.1016/j.agrformet.2014.09.009
https://doi.org/10.3390/rs70201798


 
47 

 

39. https://doi.org/10.1016/j.isprsjprs.2016.12.008 739 

Chen, G., Zhao, K., Powers, R., 2014. Assessment of the image misregistration effects 740 

on object-based change detection. ISPRS J. Photogramm. Remote Sens. 87, 19-27. 741 

Chen, X., Liu, M., Zhu, X., Chen, J.*, Zhong, Y., Cao, X., 2018. " Blend-then-Index" 742 

or" Index-then-Blend": A Theoretical Analysis for Generating High-resolution 743 

NDVI Time Series by STARFM. Photocrammetric Eng. Remote Sens. 84, 65-73. 744 

https://doi.org/10.14358/PERS.84.2.65 745 

Claverie, M., Ju, J., Masek, J. G., Dungan, J. L., Vermote, E. F., Roger, J. C., Skakun S. 746 

V., Justice, C., 2018. The Harmonized Landsat and Sentinel-2 surface reflectance 747 

data set. Remote Sens. Environ. 219, 145-161. 748 

Dai, X., Khorram, S., 1998. The effects of image misregistration on the accuracy of 749 

remotely sensed change detection. IEEE Trans. Geosci. Remote Sens. 36, 1566-750 

1577.  751 

Davis, G., Mallat, S., Avellaneda, M., 1997. Adaptive greedy approximations. Con-752 

structive Approx. 13, 57-98. https://doi.org/10.1007/BF02678430 753 

Dubrule, O., 1984. Comparing splines and kriging. Comput. Geosci. 10, 327-338. 754 

https://doi.org/10.1016/0098-3004(84)90030-X 755 

Emelyanova, I. V., McVicar, T. R., Van Niel, T. G., Li, L. T., van Dijk, A. I., 2013. 756 

Assessing the accuracy of blending Landsat–MODIS surface reflectances in two 757 

landscapes with contrasting spatial and temporal dynamics: A framework for al-758 

gorithm selection. Remote Sens. Environ. 133, 193-209. 759 

https://doi.org/10.1016/j.rse.2013.02.007 760 

https://doi.org/10.1016/j.isprsjprs.2016.12.008
https://doi.org/10.14358/PERS.84.2.65
https://doi.org/10.1007/BF02678430
https://doi.org/10.1016/0098-3004(84)90030-X
https://doi.org/10.1016/j.rse.2013.02.007


 
48 

 

Fan, X., Liu, Y., 2018. Multisensor Normalized Difference Vegetation Index Intercali-761 

bration: A comprehensive overview of the causes of and solutions for multisensor 762 

differences. IEEE Geosci. Remote Sens. Mag. 6, 23-45. 763 

Gao, F., Masek, J., Schwaller, M., Hall, F., 2006. On the blending of the Landsat and 764 

MODIS surface reflectance: Predicting daily Landsat surface reflectance. IEEE 765 

Trans. Geosci. Remote Sens. 44, 2207-2218. 766 

https://doi.org/10.1109/TGRS.2006.872081 767 

Gao, F., Masek, J. G., Wolfe, R. E., Huang, C., 2010. Building a consistent medium 768 

resolution satellite data set using moderate resolution imaging spectroradiometer 769 

products as reference. J. Appl. Remote Sens. 4, 043526. 770 

https://doi.org/10.1117/1.3430002 771 

Gao, F., Hilker, T., Zhu, X., Anderson, M., Masek, J., Wang, P., Yang, Y., 2015. Fusing 772 

Landsat and MODIS data for vegetation monitoring. IEEE Geosci. Remote Sens. 773 

Mag. 3, 47-60. 774 

Gao, F., Anderson, M. C., Zhang, X., Yang, Z., Alfieri, J. G., Kustas, W. P., Mueller, R., 775 

Johnson, D. M., Prueger, J. H., 2017. Toward mapping crop progress at field scales 776 

through fusion of Landsat and MODIS imagery. Remote Sens. Environ. 188, 9-25. 777 

https://doi.org/10.1016/j.rse.2016.11.004 778 

Gevaert, C. M., García-Haro, F. J., 2015. A comparison of STARFM and an unmixing-779 

based algorithm for Landsat and MODIS data fusion. Remote Sens. Environ. 156, 780 

34-44. https://doi.org/10.1016/j.rse.2014.09.012 781 

https://doi.org/10.1109/TGRS.2006.872081
https://doi.org/10.1117/1.3430002
https://doi.org/10.1016/j.rse.2016.11.004
https://doi.org/10.1016/j.rse.2014.09.012


 
49 

 

Hermosilla, T., Wulder, M. A., White, J. C., Coops, N. C., Hobart, G. W., 2015. Re-782 

gional detection, characterization, and attribution of annual forest change from 783 

1984 to 2012 using Landsat-derived time-series metrics. Remote Sens. Envi-784 

ron. 170, 121-132. 785 

Hilker, T., Wulder, M. A., Coops, N. C., Linke, J., McDermid, G., Masek, J. G., Gao, 786 

F., White, J. C., 2009. A new data fusion model for high spatial-and temporal-787 

resolution mapping of forest disturbance based on Landsat and MODIS. Remote 788 

Sens. Environ. 113, 1613-1627. https://doi.org/10.1016/j.rse.2009.03.007 789 

Huang, B., Song, H., 2012. Spatiotemporal reflectance fusion via sparse representa-790 

tion. IEEE Trans. Geosci. Remote Sens. 50, 3707-3716. 791 

https://doi.org/10.1109/TGRS.2012.2186638 792 

Huang, B., Zhang, H., Song, H., Wang, J., Song, C., 2013. Unified fusion of remote-793 

sensing imagery: Generating simultaneously high-resolution synthetic spatial–794 

temporal–spectral earth observations. Remote Sens Lett. 4, 561-569. 795 

Jia, K., Liang, S., Wei, X., Yao, Y., Su, Y., Jiang, B., Wang, X., 2014. Land cover clas-796 

sification of Landsat data with phenological features extracted from time series 797 

MODIS NDVI data. Remote Sens. 6, 11518-11532. 798 

https://doi.org/10.3390/rs61111518 799 

Jun, L., Yunfei, L., Lin, H., Jin, C., Antonio, P., 2020. Spatio-Temporal Fusion for Re-800 

mote Sensing Data: An overview and New Benchmark. Sci. China Inf. Sci.  801 

Kong, F., Li, X., Wang, H., Xie, D., Li, X., Bai, Y., 2016. Land cover classification 802 

based on fused data from GF-1 and MODIS NDVI time series. Remote Sens. 8, 803 

https://doi.org/10.1016/j.rse.2009.03.007
https://doi.org/10.1109/TGRS.2012.2186638
https://doi.org/10.3390/rs61111518


 
50 

 

741. https://doi.org/10.3390/rs8090741 804 

Kwan, C., Zhu, X., Gao, F., Chou, B., Perez, D., Li, J., Shen, Y., Koperski, K., Marchisio, 805 

G., 2018. Assessment of spatiotemporal fusion algorithms for planet and 806 

worldview images. Sensors. 18, 1051. https://doi.org/10.3390/s18041051 807 

Li, X., Foody, G. M., Boyd, D. S., Ge, Y., Zhang, Y., Du, Y., Ling, F., 2020. SFSDAF: 808 

An enhanced FSDAF that incorporates sub-pixel class fraction change information 809 

for spatio-temporal image fusion. Remote Sens. Environ. 237, 111537. 810 

Li, Y., Huang, C., Hou, J., Gu, J., Zhu, G., Li, X., 2017. Mapping daily evapotranspira-811 

tion based on spatiotemporal fusion of ASTER and MODIS images over irrigated 812 

agricultural areas in the Heihe River Basin, Northwest China. Agr. Forest Mete-813 

orol. 244, 82-97. https://doi.org/10.1016/j.agrformet.2017.05.023 814 

Liao, C., Wang, J., Pritchard, I., Liu, J., Shang, J., 2017. A spatio-temporal data fusion 815 

model for generating NDVI time series in heterogeneous regions. Remote Sens. 9, 816 

1125. https://doi.org/10.3390/rs9111125 817 

Liao, L., Song, J., Wang, J., Xiao, Z., Wang, J., 2016. Bayesian method for building 818 

frequent Landsat-like NDVI datasets by integrating MODIS and Landsat 819 

NDVI. Remote Sens. 8, 452. https://doi.org/10.3390/rs8060452 820 

Liu, M., Yang, W., Zhu, X., Chen, J., Chen, X., Yang, L., Helmer, E. H., 2019. An Im-821 

proved Flexible Spatiotemporal DAta Fusion (IFSDAF) method for producing 822 

high spatiotemporal resolution normalized difference vegetation index time se-823 

ries. Remote Sens. Environ. 227, 74-89. https://doi.org/10.1016/j.rse.2019.03.012 824 

Liu, M., Ke, Y., Yin, Q., Chen, X., Im, J., 2019. Comparison of Five Spatio-Temporal 825 

https://doi.org/10.3390/rs8090741
https://doi.org/10.3390/s18041051
https://doi.org/10.1016/j.agrformet.2017.05.023
https://doi.org/10.3390/rs9111125
https://doi.org/10.3390/rs8060452
https://doi.org/10.1016/j.rse.2019.03.012


 
51 

 

Satellite Image Fusion Models over Landscapes with Various Spatial Heterogene-826 

ity and Temporal Variation. Remote Sens. 11, 2612. 827 

https://doi.org/10.3390/rs11222612 828 

Liu, X., Deng, C., Wang, S., Huang, G. B., Zhao, B., Lauren, P., 2016. Fast and accurate 829 

spatiotemporal fusion based upon extreme learning machine. IEEE Trans. Geosci. 830 

Remote Sens Lett. 13, 2039-2043. 831 

Maselli, F., Chiesi, M., Pieri, M., 2019. A new method to enhance the spatial features 832 

of multitemporal NDVI image series. IEEE Trans. Geosci. Remote Sens. 57, 833 

4967-4979. https://doi.org/10.1109/TGRS.2019.2894850 834 

Mizuochi, H., Hiyama, T., Ohta, T., Fujioka, Y., Kambatuku, J. R., Iijima, M., Nasahara, 835 

K. N., 2017. Development and evaluation of a lookup-table-based approach to data 836 

fusion for seasonal wetlands monitoring: An integrated use of AMSR series, 837 

MODIS, and Landsat. Remote Sens. Environ. 199, 370-388. 838 

https://doi.org/10.1016/j.rse.2017.07.026 839 

Quan, J., Zhan, W., Ma, T., Du, Y., Guo, Z., Qin, B., 2018. An integrated model for 840 

generating hourly Landsat-like land surface temperatures over heterogeneous 841 

landscapes. Remote Sens. Environ. 206, 403-423. 842 

Rao, Y., Zhu, X., Chen, J., Wang, J., 2015. An improved method for producing high 843 

spatial-resolution NDVI time series datasets with multi-temporal MODIS NDVI 844 

data and Landsat TM/ETM+ images. Remote Sens. 7, 7865-7891. 845 

https://doi.org/10.3390/rs70607865 846 

Roy, D. P., 2000. The impact of misregistration upon composited wide field of view 847 

https://doi.org/10.3390/rs11222612
https://doi.org/10.1109/TGRS.2019.2894850
https://doi.org/10.1016/j.rse.2017.07.026
https://doi.org/10.3390/rs70607865


 
52 

 

satellite data and implications for change detection. IEEE Trans. Geosci. Remote 848 

Sens. 38, 2017-2032. 849 

Roy, D. P., Ju, J., Lewis, P., Schaaf, C., Gao, F., Hansen, M., Lindquist, E., 2008. Multi-850 

temporal MODIS–Landsat data fusion for relative radiometric normalization, gap 851 

filling, and prediction of Landsat data. Remote Sens. Environ. 112, 3112-3130. 852 

https://doi.org/10.1016/j.rse.2008.03.009 853 

Skakun, S., Justice, C. O., Vermote, E., Roger, J. C., 2018. Transitioning from MODIS 854 

to VIIRS: an analysis of inter-consistency of NDVI data sets for agricultural mon-855 

itoring. Int. J. Remote Sens. 39, 971-992. 856 

Shen, H., Meng, X., Zhang, L., 2016. An integrated framework for the spatio–temporal–857 

spectral fusion of remote sensing images. IEEE Trans. Geosci. Remote Sens. 54, 858 

7135-7148. 859 

Song, H., Huang, B., 2013. Spatiotemporal satellite image fusion through one-pair im-860 

age learning. IEEE Trans. Geosci. Remote Sens. 51, 1883-1896. 861 

https://doi.org/10.1109/TGRS.2012.2213095 862 

Song, H., Liu, Q., Wang, G., Hang, R., Huang, B., 2018. Spatiotemporal satellite image 863 

fusion using deep convolutional neural networks. IEEE J. Sel. Top. Appl. Earth 864 

Obs. Remote Sens. 11, 821-829. 865 

Steven, M. D., Malthus, T. J., Baret, F., Xu, H., Chopping, M. J., 2003. Intercalibration 866 

of vegetation indices from different sensor systems. Remote Sens. Environ. 88, 867 

412-422. https://doi.org/10.1016/j.rse.2003.08.010 868 

https://doi.org/10.1016/j.rse.2008.03.009
https://doi.org/10.1109/TGRS.2012.2213095
https://doi.org/10.1016/j.rse.2003.08.010


 
53 

 

Sulla-Menashe, D., Friedl, M. A., Woodcock, C. E., 2016. Sources of bias and variabil-869 

ity in long-term Landsat time series over Canadian boreal forests. Remote Sens. 870 

Environ. 177, 206-219. 871 

Tang, Y., Wang, Q., Zhang, K., Atkinson, P., 2020. Quantifying the Effect of Registra-872 

tion Error on Spatio-temporal Fusion. IEEE J. Sel. Top. Appl. Earth Obs. Remote 873 

Sens. https://doi.org/10.1109/JSTARS.2020.2965190 874 

Toutin, T., 2004. Geometric processing of remote sensing images: models, algorithms 875 

and methods. Int. J. Remote Sens. 25, 1893-1924. 876 

https://doi.org/10.1080/0143116031000101611 877 

Townshend, J. R., Justice, C. O., Gurney, C., McManus, J., 1992. The impact of mis-878 

registration on change detection. IEEE Trans. Geosci. Remote Sens. 30, 1054-879 

1060. 880 

Verbesselt, J., Zeileis, A., Herold, M., 2012. Near real-time disturbance detection using 881 

satellite image time series. Remote Sens. Environ. 123, 98-108. 882 

https://doi.org/10.1016/j.rse.2012.02.022 883 

Walker, J. J., De Beurs, K. M., Wynne, R. H., Gao, F., 2012. Evaluation of Landsat and 884 

MODIS data fusion products for analysis of dryland forest phenology. Remote 885 

Sens. Environ. 117, 381-393. https://doi.org/10.1016/j.rse.2011.10.014 886 

Wang, Q., Atkinson, P. M., 2018. Spatio-temporal fusion for daily Sentinel-2 im-887 

ages. Remote Sens. Environ. 204, 31-42. 888 

https://doi.org/10.1016/j.rse.2017.10.046 889 

Wardlow, B. D., Egbert, S. L., Kastens, J. H., 2007. Analysis of time-series MODIS 250 890 

https://doi.org/10.1109/JSTARS.2020.2965190
https://doi.org/10.1080/0143116031000101611
https://doi.org/10.1016/j.rse.2012.02.022
https://doi.org/10.1016/j.rse.2011.10.014
https://doi.org/10.1016/j.rse.2017.10.046


 
54 

 

m vegetation index data for crop classification in the US Central Great Plains. Re-891 

mote Sens. Environ. 108, 290-310. https://doi.org/10.1016/j.rse.2006.11.021 892 

Wolfe, R. E., Nishihama, M., Fleig, A. J., Kuyper, J. A., Roy, D. P., Storey, J. C., Patt, 893 

F. S., 2002. Achieving sub-pixel geolocation accuracy in support of MODIS land 894 

science. Remote Sens. Environ. 83, 31-49. https://doi.org/10.1016/S0034-895 

4257(02)00085-8 896 

Xiao, Z., Liang, S., Wang, J., Xiang, Y., Zhao, X., Song, J., 2016. Long-time-series 897 

global land surface satellite leaf area index product derived from MODIS and 898 

AVHRR surface reflectance. IEEE Trans. Geosci. Remote Sens. 54, 5301-5318. 899 

Yan, L., Roy, D. P., Zhang, H., Li, J., Huang, H., 2016. An automated approach for sub-900 

pixel registration of Landsat-8 Operational Land Imager (OLI) and Sentinel-2 901 

Multi Spectral Instrument (MSI) imagery. Remote Sensing. 8, 520. 902 

Yang, J., Wright, J., Huang, T. S., Ma, Y., 2010. Image super-resolution via sparse rep-903 

resentation. IEEE Trans. Image Process. 19, 2861-2873. 904 

https://doi.org/10.1109/TIP.2010.2050625 905 

Yokoya, N., Grohnfeldt, C., Chanussot, J., 2017. Hyperspectral and multispectral data 906 

fusion: A comparative review of the recent literature. IEEE Geosci. Remote Sens. 907 

Mag. 5, 29-56. 908 

Zhang, B., Zhang, L., Xie, D., Yin, X., Liu, C., Liu, G., 2016. Application of synthetic 909 

NDVI time series blended from Landsat and MODIS data for grassland biomass 910 

estimation. Remote Sens. 8, 10. https://doi.org/10.3390/rs8010010 911 

Zhang, X., Friedl, M. A., Schaaf, C. B., Strahler, A. H., Hodges, J. C., Gao, F., Reed, B. 912 

https://doi.org/10.1016/j.rse.2006.11.021
https://doi.org/10.1016/S0034-4257(02)00085-8
https://doi.org/10.1016/S0034-4257(02)00085-8
https://doi.org/10.1109/TIP.2010.2050625
https://doi.org/10.3390/rs8010010


 
55 

 

C., Huete, A. (2003). Monitoring vegetation phenology using MODIS. Remote 913 

Sens. Environ. 84, 471-475. https://doi.org/10.1016/S0034-4257(02)00135-9 914 

Zhu, X., Chen, J., Gao, F., Chen, X., Masek, J. G., 2010. An enhanced spatial and tem-915 

poral adaptive reflectance fusion model for complex heterogeneous regions. Re-916 

mote Sens. Environ. 114, 2610-2623. https://doi.org/10.1016/j.rse.2010.05.032 917 

Zhu, X., Helmer, E. H., Gao, F., Liu, D., Chen, J., Lefsky, M. A., 2016. A flexible spa-918 

tiotemporal method for fusing satellite images with different resolutions. Remote 919 

Sens. Environ. 172, 165-177. https://doi.org/10.1016/j.rse.2015.11.016 920 

Zhu, X., Cai, F., Tian, J., Williams, T., 2018. Spatiotemporal fusion of multisource re-921 

mote sensing data: literature survey, taxonomy, principles, applications, and future 922 

directions. Remote Sens. 10, 527. https://doi.org/10.3390/rs10040527 923 

Zhukov, B., Oertel, D., Lanzl, F., Reinhackel, G., 1999. Unmixing-based multisensor 924 

multiresolution image fusion. IEEE Trans. Geosci. Remote Sens. 37, 1212-1226. 925 

Zurita-Milla, R., Clevers, J. G., Schaepman, M. E., 2008. Unmixing-based Landsat TM 926 

and MERIS FR data fusion. IEEE Geosci. Remote Sens. Lett. 5, 453-457. 927 

https://doi.org/10.1109/LGRS.2008.919685 928 

 929 

Chander, G., Hewison, T. J., Fox, N., Wu, X., Xiong, X., Blackwell, W. J., 2013b. Over-930 

view of intercalibration of satellite instruments. IEEE Trans. Geosci. Remote Sens. 51, 931 

1056-1080. 932 

Chen, G., Zhao, K., Powers, R., 2014. Assessment of the image misregistration effects 933 

on object-based change detection. ISPRS J. Photogramm. Remote Sens. 87, 19-27. 934 

Claverie, M., Ju, J., Masek, J. G., Dungan, J. L., Vermote, E. F., Roger, J. C., Skakun S. 935 

V., Justice, C., 2018. The Harmonized Landsat and Sentinel-2 surface reflectance data 936 

set. Remote Sens. Environ. 219, 145-161. 937 

Dai, X., Khorram, S., 1998. The effects of image misregistration on the accuracy of 938 

remotely sensed change detection. IEEE Trans. Geosci. Remote Sens. 36, 1566-1577.  939 

https://doi.org/10.1016/S0034-4257(02)00135-9
https://doi.org/10.1016/j.rse.2010.05.032
https://doi.org/10.1016/j.rse.2015.11.016
https://doi.org/10.3390/rs10040527
https://doi.org/10.1109/LGRS.2008.919685


 
56 

 

Fan, X., Liu, Y., 2018. Multisensor Normalized Difference Vegetation Index Intercali-940 

bration: A comprehensive overview of the causes of and solutions for multisensor dif-941 

ferences. IEEE Geosci. Remote Sens. Mag. 6, 23-45. 942 

Roy, D. P., 2000. The impact of misregistration upon composited wide field of view 943 

satellite data and implications for change detection. IEEE Trans. Geosci. Remote 944 

Sens. 38, 2017-2032. 945 

Skakun, S., Justice, C. O., Vermote, E., Roger, J. C., 2018. Transitioning from MODIS 946 

to VIIRS: an analysis of inter-consistency of NDVI data sets for agricultural monitor-947 

ing. Int. J. Remote Sens. 39, 971-992. 948 

Sulla-Menashe, D., Friedl, M. A., Woodcock, C. E., 2016. Sources of bias and variabil-949 

ity in long-term Landsat time series over Canadian boreal forests. Remote Sens. Envi-950 

ron. 177, 206-219. 951 

Yan, L., Roy, D. P., Zhang, H., Li, J., Huang, H., 2016. An automated approach for sub-952 

pixel registration of Landsat-8 Operational Land Imager (OLI) and Sentinel-2 Multi 953 

Spectral Instrument (MSI) imagery. Remote Sensing. 8, 520. 954 

Yokoya, N., Grohnfeldt, C., Chanussot, J., 2017. Hyperspectral and multispectral data 955 

fusion: A comparative review of the recent literature. IEEE Geosci. Remote Sens. 956 

Mag. 5, 29-56. 957 

 958 




