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Abstract 20 

Satellite image fusion methods that improve spatial and temporal resolution have significant 21 

potential to advance understanding of ecosystem dynamics in space and time. However, systematic 22 

evaluations of image fusion methods against in situ spectral data are lacking. Here, we used a suite of 23 

in situ spectral data collected at 60 elementary sampling units (10 × 10 m) covering 15 Landsat pixel 24 

(30 × 30 m) plots and one Moderate Resolution Imaging Spectroradiometer (MODIS) pixel (250 × 25 

250 m) throughout the entire growing season in a heterogeneous rice paddy landscape to evaluate four 26 

state-of-the-art image fusion NDVI products. They include the Enhanced Spatial and Temporal 27 

Adaptive Reflectance Fusion Model (ESTARFM), Flexible Spatiotemporal DAta Fusion (FSDAF), 28 

SaTellite dAta IntegRation (STAIR), and the CubeSat Enabled Spatio-Temporal Enhancement 29 

Method (CESTEM); the former three blended Landsat and MODIS data, whereas the latter combined 30 

CubeSats, Landsat, and MODIS observations. All fusion products showed strong linear relationships 31 

against in situ data when combining all spatial and temporal observations (R2: 0.73 to 0.93) although 32 

there were partly negative biases (–1% to –9%). These biases resulted from forcing data to image 33 

fusion algorithms, such as Landsat (–4%) and MODIS (–7%). Performance difference between fusion 34 

methods were considerably larger for spatial than for temporal variation. Furthermore, Landsat NDVI 35 

explained only 17–22% of spatial variation against in situ spectral data, which can be translated into 36 

weak performance of image fusion products to predict spatial variability in NDVI. Image fusion 37 

products that relied on spatial interpolation showed large biases (–15% to –30%) for a vegetation plot 38 

surrounded by mixed land cover plots. Our results highlight key sources of uncertainty and will be 39 

instrumental in improving satellite image fusion methods to monitor land surface phenology in space 40 

and time.  41 
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1. Introduction 42 

  High-spatiotemporal-resolution remote sensing images have enhanced our ability to monitor 43 

ecosystem dynamics across different scales. However, a fundamental tradeoff between spatial 44 

resolution and temporal revisit frequency limits satellites’ ability to observe the Earth’s surface at 45 

high spatiotemporal resolution (Gao et al. 2006). To overcome this, previous studies developed 46 

satellite image fusion methods that enhanced spatiotemporal resolution by combining temporally 47 

sparse fine-spatial-resolution images with frequent but coarse-spatial-resolution images (Gao et al. 48 

2006; Hilker et al. 2009a; Luo et al. 2018; Zhu et al. 2010; Zhu et al. 2016). Satellite image fusion 49 

products have been widely used to extract spatial and temporal information on changes in land use 50 

and land cover (Chen et al. 2015b; Schmidt et al. 2015; Senf et al. 2015), classification of 51 

vegetation types (Liu et al. 2015), vegetation phenology (Hilker et al. 2009b; Walker et al. 2014; 52 

Zheng et al. 2016), and crop growth situations at field scale (Gao et al. 2017a; Kimm et al. 2020). 53 

However, the question as to how much we can trust the quality of fusion products over heterogeneous 54 

landscapes remains. 55 

  The uncertainties associated with fusion products stem from the inconsistency of the input images 56 

and the temporal or spatial interpolation processes (Walker et al. 2012). Uncertainties in fusion 57 

products due to input images may be caused by the different spectral response functions of satellite 58 

sensors and sun-target-view geometries (Gao et al. 2014; Roy et al. 2016; Wang et al. 2014). 59 

Moreover, uncertainties surrounding spatial interpolation in fusion products may arise from 60 

assumptions that nearby pixels within the same land cover have similar spectral reflectance patterns 61 

(Zhu et al. 2018). Fusion products may average out drastic changes between individual pixels, leading 62 

to blurred images. Furthermore, uncertainties caused by the temporal interpolation process may 63 

emerge due to the time lag between the dates of the input pair and the dates of the predicted fusion 64 

products (hereafter, “time-lag effects”; Fu et al. 2015; Olexa and Lawrence 2014). This affects the 65 

performance of temporal interpolation over different land cover types (Emelyanova et al. 2013; Olexa 66 

and Lawrence 2014). 67 

  In situ spectral data over space and time allow us to directly quantify the uncertainties of fusion 68 

products as well as assess the uncertainty contribution of input imagery and characterize the time-lag 69 

effects. The quality of satellite image fusion products is typically assessed for a given date by 70 

comparing original fine spatial resolution satellite images with the fusion product developed using 71 

independent data (Emelyanova et al. 2013). However, systematically measured in situ data—which is 72 

obtained temporally close to the overpass time with accurate and precise geolocation—is essential for 73 

the comprehensive evaluation of image fusion products. To the best of our knowledge, few efforts to 74 

date have tried in this regard (Gao et al. 2017a). 75 

Ground-based evaluation of fusion products is particularly important in heterogeneous landscapes. 76 
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In homogeneous landscapes, the development and evaluation of fusion products are relatively 77 

straightforward, as canopy structure and function change only gradually within a subpixel of coarse 78 

spatial resolution imagery. In heterogeneous landscapes, however, abrupt changes in the subpixel over 79 

space and time are a considerable challenge for image fusion methods (Fu et al. 2015). For example, 80 

in crop landscapes, various fields may be managed differently for transplanting and harvest dates, 81 

fertilization, or irrigation, which can lead to differences in canopy structure, physiology, and 82 

phenology (Ding et al. 2014). Only few studies have evaluated image fusion products over 83 

heterogeneous landscapes such as dryland (Walker et al. 2012) and cropland ecosystems (Gao et al. 84 

2017b; Zheng et al. 2016) by comparing them to independent satellite images or ground-based visual 85 

phenology assessments. To the best of our knowledge, no study has evaluated image fusion products 86 

with in situ spectral observations based on a systematic spatio-temporal sampling design over 87 

heterogeneous landscapes. 88 

Most fusion products rely on weight function–based methods that combine all input data by 89 

considering spectral differences in input data, time-lag effects, and the distance between the central 90 

pixel in the predicting area and neighboring pixels (Zhu et al. 2018). The spatial and temporal 91 

adaptive reflectance fusion model (STARFM) was the original weight function–based method (Gao et 92 

al. 2006). When each pixel of input data includes only one land cover, STARFM considers changes in 93 

reflectance to be consistent over time. After this initial study, weight function-based methods were 94 

subsequently improved in heterogeneous areas (Zhu et al. 2010), in capturing abrupt changes in land 95 

cover (Zhu et al. 2016). Moreover, (Luo et al. 2018) proposed cloud-free/gap-free daily step data. 96 

Recently, Houborg and McCabe (2018a) introduced a promising spatiotemporal fusion product by 97 

harmonizing the satellite images from CubeSat constellation, albeit with non–weight function–based 98 

methods.  99 

 The objective of this study was to evaluate the performance of three satellite-based spatiotemporal 100 

fusion products and a novel CubeSat constellation-based fusion product with in situ measurements 101 

over a heterogeneous rice paddy landscape. We evaluated the following four image fusion products: 102 

enhanced STARFM (ESTARFM; Zhu et al. 2010), Flexible Spatiotemporal DAta Fusion (FSDAF; 103 

Zhu et al. 2016), SaTellite dAta Integration (STAIR; Luo et al. 2018), and the CubeSat Enabled 104 

Spatio-Temporal Enhancement Method (CESTEM; Houborg and McCabe 2018a). Of these methods, 105 

only CESTEM does not include a spatial gap-filling module. We attempted to answer the following 106 

questions: (i) How do the input data and the fusion algorithm affect the accuracy of fusion products? 107 

(ii) Under which conditions does the spatial or temporal interpolation process affect the performance 108 

of fusion products? (iii) How does heterogeneity affect the performance of fusion products? We report 109 

the results of direct comparisons of each product with in situ measurements. 110 

 111 
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2. Methods 112 

2.1 Study site 113 

  The study site was a rice paddy landscape in Cheorwon, Republic of Korea (CRK; 38.2013°N, 114 

127.2507°E), which is part of the Korea Flux Network (KoFlux; Huang et al. 2018; Dechant et al. 115 

2019; Dechant et al. 2019; Hwang et al. 2020; Figure 1a). As the site is flat and rice canopies have 116 

relatively low heights, it is suitable for in situ spectral measurements at locations determined by 117 

satellite pixel locations. The rice growing season lasts from approximately May to September, and 118 

the predominant species in the study area is Oryza sativa L. ssp. Japonica. The site has a temperate 119 

monsoon climate with frequent cloud cover and high precipitation from June to August. The size of 120 

the paddy fields ranges from around 2,500 to 4,300 m2. Cultivation management includes 121 

irrigation, fertilization, drainage, and harvesting and varies between rice paddies (Figure 1b). 122 

 123 
Figure 1 Study site. (a) Map of the Korean Peninsula (image source: Google Earth) with the 124 
study site, Cheorwon, marked with a red arrow. (b) This image of the study site was acquired 125 
on September 5, 2017, and shows rice paddy fields with different harvest dates bordered by 126 
soybean plants. 127 

  128 

2.2 In-situ measurements 129 

  To conduct a systematic sampling that represented the study landscape, we relied on the elementary 130 

sampling unit (ESU), which has been used to evaluate moderate spatial resolution satellite images 131 

(Morisette et al. 2006). To minimize Global Positioning System (GPS) positioning error, we designed 132 

a 10 × 10 m pixel as an ESU to represent a pixel of an independent satellite image (i.e., Sentinel-2; 133 

Appendix 1). To evaluate the fusion products and their input satellite products (i.e., Landsat 8; 134 

Moderate Resolution Imaging Spectroradiometer [MODIS]), we designed the resolution of the ESUs 135 

to represent a pixel of each satellite imagery type: a 30 × 30 m Landsat 8 pixel by 4 ESUs and a 250 × 136 

250 m MODIS pixel by 60 ESUs (Figure 2; Appendix 1).  137 
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 138 

Figure 2 Schematic overview of the sampling design. The elementary sampling units (ESUs; 10 139 
× 10 m) are represented by light green squares for vegetation land class and red circles for 140 
mixed land class. Correspondingly colored squares around each ESU indicate each plot 141 
(Background image source: Google). 142 

We collected in situ measurements using a hyperspectral spectroradiometer (Jaz, Ocean Optics, 143 

Dunedin, FL, USA) equipped with fiber optics and a cosine corrector (CC-3-UV-T, Ocean Optics) to 144 

measure bi-hemispheric reflectance. We located the cosine corrector at 3.5 m above ground using a 145 

bar to cover 90% of the upwelling hemispherical irradiance in an ESU (Liu et al. 2017). To minimize 146 

the uncertainties of in situ measurements from changing sky conditions, we collected 6 to 10 spectra 147 

from the same position of each ESU, removed outliers that showed unstable values, and took the 148 

average of the remaining spectra. Considering the satellite overpass times of around 10 a.m. to 12:30 149 

p.m. (Sentinel-2, Landsat 8, and MODIS in this study), we conducted all ground measurements 150 

between 9 a.m. and 1 p.m. local time (Coordinated Universal Time; UTC +9). To ensure the accurate 151 

and precise location of the samples, we recorded the GPS coordinates of each point using a 152 

commercial device that included a 0.5 m resolution base map (MONTANA 650TK, Garmin, 153 

Switzerland). Moreover, we cross-checked the spectral quality of the in situ Jaz spectrometer data 154 

with an ASD spectrometer (FieldSpec 4 Wide-ResField Spectroradiometer, ASD, Boulder, CO, USA) 155 

and found good agreement (Appendix 2). The dates on which we performed the in situ measurements 156 

are detailed in Figure 3. 157 
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 158 

Figure 3 Images of the paddy in which the flux tower is located. Each image was labeled with 159 

day-of-year (DOY) in situ measurements and the phenological stage of the rice. 160 

  At the peak of the growing season, we classified the study landscape within a MODIS pixel into 161 

two land cover types: vegetation and non-vegetation (e.g., road, building, ditch) with 76% and 24% 162 

coverage, respectively. We did this by applying K-means classification to high-spatial-resolution 163 

CubeSat images (i.e., PlanetScope Ortho Tile product, 3 m spatial resolution). Of the 15 plots, Plots 3, 164 

4, and 6 were located on mixed land cover that included vegetation, roads, buildings, and ditches 165 

(hereafter, “mixed” land class; Figure 2). Other plots were located on vegetation cover (hereafter, 166 

“vegetation” land class; Figure 2). In the vegetation land class, Plot 5 was harvested 2 weeks earlier 167 

than the other plots. 168 

 169 

2.3 Image fusion products 170 

  We chose four state-of-the-art image fusion products that have been widely used or recently 171 

developed (Table 1; Figure 4; Supplementary 1). We defined spatial interpolation in this study as 172 

enhancing the spatial resolution of a coarse-resolution image (e.g., MODIS) on the predicted date 173 

using each algorithm with paired input data (Luo et al. 2018; Zhu et al. 2010; Zhu et al. 2016). 174 

 ESTARFM (Zhu et al. 2010) is a weight function–based method that requires two or more pairs of 175 
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images. Each pair of images consists of fine-spatial-resolution images (e.g., Landsat) and coarse-176 

spatial-resolution images (e.g., MODIS) acquired on the same date. Based on the pairs, ESTARFM 177 

predicts the fusion product using coarse-resolution images on the desired dates. It first searches for 178 

spectrally similar pixels from fine-resolution images and then weights them according to geographic 179 

distance from the central pixel in a moving window and the purity of their corresponding MODIS 180 

pixels. It then computes the coefficients of linear regression between the two pairs to convert coarse-181 

resolution images to fine-resolution images. In a heterogeneous landscape, the reflectance changes in 182 

a coarse-resolution pixel across time do not equal the changes in the fine-resolution pixels within it. 183 

Thus, by introducing a conversion coefficient for each pixel, ESTARFM has advantages in 184 

heterogeneous areas (Zhu et al. 2010). 185 

 FSDAF (Zhu et al. 2016) is a hybrid method that requires minimum input data of one pair of fine- 186 

and coarse-spatial-resolution images (i.e., base images) on the same day and coarse-spatial-resolution 187 

images acquired on the prediction date. FSDAF uses unsupervised classification for the fine-188 

resolution images and estimates the temporal change in each class at fine resolution from the coarse-189 

resolution images. From the estimated temporal changes from the coarse images, FSDAF predicts the 190 

fine-resolution pixel by adding the temporal changes to the base fine-resolution pixel, i.e., temporal 191 

prediction. Then, FSDAF uses thin-plate spline interpolation to distribute residuals of temporal 192 

prediction for capturing abrupt land cover changes. An advantage of FSDAF is that it can capture both 193 

gradual and abrupt changes in land cover (Zhu et al. 2016).  194 

 STAIR (Luo et al. 2018) is a weight function–based method that uses all available Landsat and 195 

MODIS images. STAIR applies segmentation to homogeneous pixels to identify missing-value pixels, 196 

such as cloud pixels or data gaps caused by failures in the Landsat 7 Scan Line Corrector. The 197 

imputation of missing-value pixels in each segment is based on an adaptive-average correction, which 198 

assumes that changes in pixel values are approximately identical between neighborhood pixels within 199 

a short time frame (e.g., <2–3 weeks). Finally, STAIR fuses a daily MODIS time series with imputed 200 

Landsat-MODIS pairs to produce a daily time series of predicted surface reflectance images. A time-201 

series based new cloud masking algorithm was applied for both MODIS and Landsat data to achieve 202 

higher performance in identifying cloud masked compared with the existing MODIS/Landsat cloud 203 

mask products. STAIR’s strength is its ability to generate daily time series of fine-spatial-resolution 204 

products by systematically integrating Landsat-MODIS image pairs for missing-pixel imputation and 205 

automatically determining the input pair of fine and coarse images for the target date (Jiang et al. 206 

2020; Kimm et al. 2020). 207 

 CESTEM (Houborg and McCabe 2018a) is a machine-learning method that leverages rigorously 208 

calibrated ‘gold standard’ satellites (e.g., MODIS, Landsat) in concert with lower quality but superior 209 

resolution CubeSats (e.g., PlanetScope products; Planet Labs, San Francisco, CA, USA) to produce a 210 
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radiometrically harmonized and temporally consistent surface reflectance product. To ascertain 211 

associations between training data of input explanatory variables (CubeSat spectral data) and the 212 

target variable (Landsat 8 surface reflectance data), CESTEM uses a cubist rule-based regression 213 

technique that is a nonparametric machine-learning approach belonging to the family of regression 214 

tree methods. CESTEM harmonizes multi-sensor CubeSat images against Landsat and MODIS 215 

images for consistent radiometric correction. Its key strength is its ability to ingest data from multiple 216 

sensors with differing radiometric and spectral responses and generate images that are spectrally 217 

consistent with Landsat 8 surface reflectance data while inheriting the high spatial resolution of 218 

PlanetScope data (3 m). In this study, we used CESTEM version 1.0, which does not include a spatial 219 

and temporal gap-filling process. 220 

Table 1 The image fusion products used in this study. ‘√’ and ‘N/A’ indicate whether the 221 

specific process was included or not, respectively. 222 

Fusion 

product 
Type 

Target 

resolution 

Spatial 

interpolation 

Temporal 

gap 

filling 

Radiometric 

correction 

Input data (revisit 

frequency) 

ESTARFM 

Weight 

function–based 

method 

30 m √ N/A N/A 

MODIS 

(MOD09GQ; 

daily), Landsat 

(Landsat 8 OLI C1 

Level 2; 16 days) 

FSDAF 

Hybrid method 

(weight 

function-based 

and unmixing 

method) 

30 m √ N/A N/A 

MODIS 

(MOD09GQ; 

daily), Landsat 

(Landsat 8 OLI C1 

Level 2; 16 days) 

STAIR 

Weight 

function–based 

method 

30 m √ √ N/A 

MODIS 

(MCD43A4; 

daily), Landsat 

(Landsat 7 and 8 

Level 2; 16 days) 

CESTEM 
Machine-

learning method 
3 m N/A N/A √ 

MODIS 

(MCD43A4; 

daily), Landsat 

(Landsat 8 OLI 

products Level 1T-

6SV; 16 days), 

Planet 

(Planet Scope 

Ortho Tile; daily) 
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For comparisons across products, all fusion products were resampled to 30 m spatial resolution with 223 

the map projection WGS 84, UTM zone 52N. To reduce the potential errors from resampling, we 224 

tested three resampling methods (i.e. nearest-neighbor, bilinear, bicubic) with and without antialiasing 225 

for CESTEM. Among the methods, we chose the nearest-neighbor interpolation method without 226 

antialiasing as it showed the best performance to in-situ measurements (Supplementary 2). 227 

 228 

Figure 4 NDVI maps (870 × 870 m) of fusion products on in situ measurement dates, including 229 

when all fusion products were available on the same date. The study site is located within the 230 

black polygon that indicates a MODIS 250 m pixel. The dark navy color on CESTEM DOY 246 231 

indicates masking due to clouds. All image fusion products were 30 m resolution except for 232 
CESTEM (3 m), which was aggregated to 30 m resolution for consistency. 233 

 234 
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2.4 Input data for image fusion products 235 

  Satellite data with different spatial and temporal resolutions were used to generate image fusion 236 

products (Table 1). The ESTARFM and FSDAF products used MODIS surface reflectance daily 237 

products (C6 MOD09GQ) and Landsat 8 Operational Land Imager (OLI; Landsat 8 OLI/TIRS C1 238 

Level 2). The STAIR product used Landsat reflectance products from all platforms (Landsat 7 239 

Enhanced Thematic Mapper and Landsat 8 OLI) and MODIS (C6 MCD43A4 product). The CESTEM 240 

product used the Planet Scope Ortho Tile product (Planet Team 2018), Landsat 8 OLI products Level 241 

1T corrected to surface reflectance by 6SV, and nadir bidirectional reflectance distribution function 242 

(BRDF)-adjusted MODIS daily surface reflectance.   243 

2.5 Evaluation 244 

  To evaluate fusion products with in situ measurements, we used NDVI (Rouse 1974; Tucker 1979), 245 

which is widely used as a measure of vegetation greenness as plants appear relatively dark in red but 246 

bright in the near-infrared (NIR). NDVI is a band ratio formulation (Eq. (1)) that is less sensitive to 247 

sensor-target-sun geometry than the surface reflectance of individual red and near-infrared channels 248 

(Feng et al. 2002; Ryu et al. 2010). Moreover, the spectral discrepancies between MODIS and 249 

Landsat did not cause significant differences in NDVI products (Zhou et al. 2021). Our in situ 250 

observation setting measured bi-hemispheric reflectance (i.e., blue-sky albedo), whereas satellite data 251 

provided the bidirectional reflectance factor (BRF). We confirmed that the discrepancy in view 252 

geometry between in situ and satellite images led to negligible differences in surface reflectance and 253 

NDVI (Appendix 3), which were within ranges reported by Czapla-Myers et al. (2015). 254 

𝑵𝑫𝑽𝑰 =
𝝆𝑵𝑰𝑹 −  𝝆𝑹𝒆𝒅

𝝆𝑵𝑰𝑹 +  𝝆𝑹𝒆𝒅
 

Eq. (1) 

 where ρ indicates reflectance. Hence, ρNIR is reflectance measurements in near-

infrared region, and ρRed is reflectance measurements red region. 

 

  To ensure spectral consistency between in situ measurements and fusion NDVI products that 255 

emulated Landsat-like images, we converted the in-situ measurements to Landsat 8 OLI band-like 256 

data (red band: 636–673 nm, NIR band: 851–879 nm) using the spectral response function of OLI 257 

(Barsi et al. 2014) and then computed NDVI values. 258 

 The coefficient of determination (R2) of linear regression models, relative bias (rbias; Eq. (2)), and 259 

the relative root mean square error ((rRMSE; Eq. (3)) were used to evaluate the image fusion 260 

products, as in previous studies (e.g. Chen et al. 2015a; Zhu et al. 2018). To evaluate the linear 261 

correlation between in situ measurement and fusion products, R2 was used, which equals squared 262 

Pearson correlation for linear regression models. From rbias, we can determine whether fusion 263 
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products overestimate or underestimate compared to in situ measurements. rRMSE is widely used in 264 

quantitative assessments of image quality (Zhou and Bovik 2002). 265 

 266 

𝒓𝒃𝒊𝒂𝒔 =
𝑬(‖𝑨 − 𝑩‖)

𝑬(𝑩)
 

Eq. (2)  

𝒓𝑹𝑴𝑺𝑬(𝑨) =
√𝑬((𝑩 − 𝑨)𝟐)

𝑬(𝑩)
 

Eq. (3)  

where A is fusion NDVI or original satellite NDVI products, B is in situ NDVI, and E is the 

mean operator. 

 

  To evaluate the overall performance of fusion NDVI products, we compared in situ NDVI (NDVIin 267 

situ) data to the fusion NDVI products (NDVIfusion; NDVIESTARFM, NDVIFSDAF, NDVISTAIR, 268 

NDVICESTEM) and original satellite NDVI products (NDVIMODIS, NDVILandsat). Regarding spatial 269 

variation, NDVIfusion were evaluated on each date when NDVIin situ were measured and also evaluated 270 

separately for the two land cover classes (i.e., vegetation and mixed land cover). To characterize 271 

changes in NDVI within a MODIS pixel, we compared the NDVIMODIS value on each date to the 272 

average of the NDVIin situ over each land cover class. Regarding temporal variation, NDVIfusion on each 273 

plot were evaluated against corresponding NDVIin situ throughout the entire growing season. 274 

Moreover, to evaluate the time-lag effects on NDVIfusion,especially in peak growing season, we used 275 

the relative values that are the differences between mean NDVIin situ and mean NDVIfusion over the two 276 

land cover classes. We evaluated the time-lag effect on NDVIfusion from DOY 206 (available date for 277 

both MODIS and Landsat 8) to DOY 246 as NDVIfusion after DOY246 can be influenced by DOY 286 278 

Landsat 8 data, which is near the harvest. For the purpose of comparison, we set all relative values to 279 

start from zero on DOY 206. Due to data-gap by the cloud contamination or no data, NDVIMODIS, 280 

NDVILandsat, and NDVIfusion were not available on several in situ data dates. In this case, we used 281 

satellite data within ±3 days centered on in situ date (Table 2). The data dates used for the evaluation 282 

are listed in Supplementary 3. 283 

 284 

Table 2 Days-of-year used to compare satellite data and fusion products against in situ NDVI. 285 
Underline: date within 3 days of in-situ date due to clouds or no-data, *: no data or cloud 286 
contamination within 3 days, **: only a fraction of data was available for the current date.  287 
) 288 

Data Day-of-year 
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In-situ 155 187 194 206 215 223 239 248 291 

MODIS 

(MOD09GQ) 
155 187 195 206 213 223 243 246 290 

Landsat 

(Landsat8 OLI) 

* * * 206 * * * * 286 

ESTARFM 155 187 195 * 213 223 243 246 290 

FSDAF 155 187 195 206 213 223 243 246 290 

STAIR 155 187 194 206 215 223 239 248 291 

CESTEM 155 187 * ** * 223 238 247 290 

 289 

3. Results 290 

 291 

3.1 Spatio-temporal evaluation of satellite and image fusion NDVI products against in situ 292 
NDVI 293 

  Regression analyses of satellite NDVI products against all available in situ measurements showed 294 

strong linear relationships and negative bias (R2 > 0.93, rbias up to –7%). NDVILandsat against NDVIin 295 

situ was strongly correlated over the growing season (R2 = 0.93, rbias = –4%). NDVIMODIS also showed 296 

a strong correlation with the average NDVIfusion values that covered the 250 m MODIS pixel (R2 = 297 

0.95, rbias = –7%; Figure 5). 298 

 NDVIfusion products and all available NDVIin situ showed strong linear relationships (R2 = 0.73–0.93) 299 

and negative biases (rbias up to –9%). Linear relationships were strong with small biases in CESTEM, 300 

STAIR, FSDAF, and ESTARFM, with R2 (rbias) of 0.93 (–1%), 0.84 (–2%), 0.75 (–4%), and 0.73 (–301 

9%), respectively (Figure 5). 302 
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 303 

Figure 5 Evaluation of Landsat and MODIS NDVI products (a-b) and image fusion NDVI 304 
products (d–f) against in situ NDVI data sets across available dates. (a) Landsat 8, (b) MODIS, 305 

(c) ESTARFM, (d) FSDAF, (e) STAIR, (f) CESTEM. R2, rRMSE, rbias, and n are the coefficient 306 

of determination, relative root mean square error, relative bias, and number of samples, 307 

respectively. Colored circles indicate NDVI values for each day. Dashed and thick lines indicate 308 

one-to-one lines (y = x) and trend lines, respectively. 309 

 310 
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  The difference between NDVIMODIS values and NDVIin situ values showed different trends for plots 311 

of vegetation and mixed land classes. In the vegetation land class, NDVIMODIS values were negatively 312 

biased against 86% of NDVIin situ (Figure 6). In the mixed land class, however, NDVIMODIS were 313 

positively biased against 76% of NDVIin situ (Figure 6). 314 

 The bias distributions in NDVIfusion against NDVIin situ were similar to the biases in NDVIMODIS. 315 

Histograms of the difference between NDVIfusion and NDVIin situ mainly showed negative bias for the 316 

vegetation land class (ESTARFM, 85%; FSDAF, 83%; STAIR, 74%; CESTEM, 69%; Figure 6) and 317 

positive bias for the mixed land class (ESTARFM, 71%; FSDAF, 78%; STAIR, 74%; CESTEM, 318 

72%; Figure 6). 319 

 320 

Figure 6 Histogram of difference between MODIS or fusion NDVI and in situ NDVI for 321 

vegetation (a–e) and mixed (f–j) land classes. Results shown here are based on data from all 322 

dates. 323 
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 324 

3.2 Spatial evaluation of fusion NDVI products against in situ NDVI on each date 325 

  Regression analyses of NDVILandsat and NDVIfusion against NDVIin situ on each date showed wide 326 

ranges in R2 and rbias (Figure 7; Appendix 4). Spatial relationships between NDVILandsat and NDVIin 327 

situ on individual dates (Figure 7; R2 = 0.17 and 0.22, rbias = –12.4% and – 1.0%, Appendix 4) were 328 

lower than the overall performance that included spatial and temporal variations (Figure 5a). Spatial 329 

relationships between NDVIfusion and NDVIin situ for each date were also considerably scattered (Figure 330 

7; R2 = 0–0.94, rbias –20.9% to 11.5%, Appendix 4). 331 

 332 

Figure 7 Evaluation of spatial performance of fusion methods and Landsat 8 against in situ 333 

NDVI on each date. Boxplots (the 25th to 75th percentiles) of R2 and relative bias(rbias) are 334 

shown. On each box, the red line indicates the median, and the whiskers extend to both 335 

minimum and maximum values that do not consider outliers (+). A table with the corresponding 336 
detailed numbers is shown in Appendix 4 337 

 338 

3.3 Temporal evaluation of fusion NDVI products against on each plot 339 

  Time series NDVI data sets across the 15 plots provided not only the seasonal change in NDVI but 340 

also the amplitude of the change in NDVI. Early in the growing season, NDVIESTARFM and NDVIFSDAF 341 

were lower than NDVIin situ, whereas NDVISTAIR and NDVICESTEM did not show such discrepancies 342 

(Figure 8). All fusion products had similar values at the end of the growing season. At the peak of the 343 

growing season, NDVIESTARFM and NDVIFSDAF showed inconsistent NDVI values. In particular, the 344 

NDVI of these two methods showed a clear drop near DOY 200 (Figure 8). 345 

 The NDVIfusion on each plot showed linear relationships to NDVIin situ, but biases varied from 346 

negative to positive (Figure 8; Figure 9; Appendix 5).In the vegetation land class, NDVIfusion generally 347 

showed a negative bias against NDVIin situ (Appendix 5), in particular at the peak of the growing 348 

season (Figure 8). In the mixed land class, NDVIfusion generally showed a positive bias against NDVIin 349 

situ on plots (Figure 8; Appendix 5), in particular at the peak of the growing season (Figure 8). 350 
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 Among the vegetation land class plots, NDVIfusion on Plot 5 and Plot 11 showed different patterns 351 

against NDVIin situ. NDVIESTARFM, NDVIFSDAF, and NDVISTAIR did not catch a sharp decline in NDVIin 352 

situ on Plot 5 (Figure 8), which led to a positive bias against NDVIin situ (Appendix 5). At the peak of 353 

the growing season, the differences between NDVIin situ and NDVIESTARFM, NDVIFSDAF, and NDVISTAIR 354 

products were greater for Plot 11 than for the other vegetation plots (Figure 8), which resulted in a 355 

negative bias against NDVIin situ up to –28.2% (Appendix 5). 356 

 357 

Figure 8 Seasonal variation in NDVI from image fusion products and in situ measurements. 358 

Background colors of plot numbers indicate vegetation (green) and mixed (red) land classes. 359 
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 360 

 361 

Figure 9 Evaluation of temporal performance of fusion methods against in situ NDVI across all 362 

15 plots. Boxplots (the 25th to 75th percentiles) of R2 and relative bias (rbias) are shown. On each 363 

box, the red line indicates the median, and the whiskers extend to minimum and maximum 364 

values that do not consider outliers (+). A table with the corresponding detailed numbers is 365 
shown in Appendix 5.  366 

 367 

3.4 Evaluation of time-lag effects across land classes 368 

Differences between NDVIfusion and NDVIin situ differed from differences between NDVILandsat and 369 

NDVIin situ (blue line in Figure 10) over time. In the vegetation land class, NDVIESTARFM and 370 

NDVIFSDAF showed clear time-lag effects as the relative NDVI difference became larger with time. 371 

NDVISTAIR and NDVICESTEM differed from NDVILandsat but became closer to NDVIin situ around DOY 372 

240. In the mixed land class, NDVIESTARFM and NDVISTAIR showed clear time-lag effects. NDVIFSDAF 373 

and NDVICESTEM did not show clear time-lag effects. 374 

 375 

Figure 10 Evaluation of time-lag effects. Time-lag effects denote uncertainties caused by the 376 

temporal interpolation process due to the time lag between the dates of the input pair and the 377 
dates of predicted fusion products. Relative NDVI differences are the differences between mean 378 
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in situ NDVI and mean fusion NDVI over the two land cover classes. Relative NDVI differences 379 

were set to start from zero on DOY 206, which was the date of input pair (Landsat and MODIS) 380 
for the fusion products. Blue horizontal lines indicate the difference between Landsat 8 NDVI 381 

and in situ NDVI on DOY 206, which is the target quality for fusion NDVI. MODIS was 382 

available on DOY206 and 256  383 

 384 

4. Discussion 385 

4.1 Strengths of image fusion products 386 

All four fusion products showed tendencies in performances that are consistent with the design 387 

features of their algorithms. This is discussed in more detail in the following for all four methods.  388 

  Our results support the ability of ESTARFM and FSDAF to capture spatial and temporal variation, 389 

respectively, in land surface properties. As NDVIESTARFM and NDVIFSDAF products shared identical 390 

input data, the difference in output can be entirely attributed to the difference in algorithms. 391 

ESTARFM computes the coefficient of linear regression between two pairs (e.g., two Landsat-392 

MODIS pairs) over each pixel because reflectance changes in coarse-spatial-resolution pixels across 393 

time do not equal those in fine-resolution pixels (Zhu et al. 2010). From the results, ESTARFM was 394 

consistent with design of the algorithm on heterogeneous landscape, as it was generally better than 395 

FSDAF at capturing spatial variation in NDVI on each date (Figure 7; Appendix 4). FSDAF was 396 

developed to capture both gradual and abrupt changes in land cover more effectively than ESTARFM 397 

by distributing residuals of temporal change using thin-plate spline interpolation (Zhu et al. 2016). 398 

This design of FSDAF was consistent with the results as NDVIFSDAF outperformed NDVIESTARFM in 399 

explaining temporal variation for each plot (Figure 9; Appendix 5). FSDAF was also less sensitive 400 

than ESTARFM to time-lag effects (Figure 10). 401 

 STAIR confirmed the strengths of cloud-/gap-free products. The number of retrieved dates (n = 214) 402 

was highest for STAIR compared to the other products (n = 65, 66, and 60 for ESTARFM, FSDAF, 403 

CESTEM, respectively; Supplementary 3). The spatiotemporal variation in STAIR NDVI agreed 404 

better with NDVIin situ values than that in NDVIESTARFM and NDVIFSDAF (Figure 5; Figure 7; Figure 9). 405 

As time-lag effects were smaller in NDVISTAIR than in NDVIESTARFM and NDVIFSDAF products (Figure 406 

10). Moreover, the additional input pairs (e.g., Landsat 7) of NDVISTAIR were better than 407 

NDVIESTARFM at capturing spatial variation in NDVIin situ at the peak of the growing season (Appendix 408 

4). In fact, STAIR even captured spatial NDVI patterns better than the original Landsat images 409 

(Figure 7; Appendix 4). The strong performance of STAIR is likely due to the use a temporal gap-410 

filling method involving all available Landsat images (e.g., Landsat 7 and Landsat 8) to produce daily 411 

cloud-free products without missing pixels. 412 

  CESTEM fully utilized the merits of CubeSat constellation data (daily, 3 m resolution) in its 413 
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harmonization process with Landsat and MODIS. The CESTEM product has already been proven a 414 

promising data set for land surface monitoring, but detailed evaluation of the product quality with 415 

pixel-scale in situ measurements has not been attempted before (Aragon et al. 2018; Houborg and 416 

McCabe 2018b). Regarding both spatial and temporal resolution, NDVICESTEM showed the strongest 417 

linear relationship with the smallest bias to NDVIin situ values of all of the products (Figure 5; Figure 7; 418 

Figure 8). Also, spatial and temporal variation in NDVICESTEM were in better agreement with NDVIin 419 

situ than that of NDVILandsat against NDVIin situ despite aggregating the CESTEM product to the coarser 420 

spatial resolution of Landsat (Figure 5, Figure 7; Figure 9). We partly attribute this strong 421 

performance of CESTEM to lower uncertainties in input data and noise reduction via data aggregation 422 

(see section 4.2 below). 423 

 424 

 425 

4.2 Impacts of input data and fusion algorithms on uncertainties in fusion NDVI 426 

  NDVILandsat is the main driver that controls spatial variation in NDVIfusion products, so uncertainties 427 

in NDVILandsat must be quantified systematically. Several studies have evaluated NDVILandsat time 428 

series against ground-based spectral sensors in fixed positions (Ke et al. 2015; Kim et al. 2019; Ryu et 429 

al. 2014); however, a comprehensive evaluation of NDVILandsat against in situ spectral sensors in terms 430 

of spatial variation is lacking. We found that NDVILandsat explained only 17–22% of spatial variation 431 

over the landscape for each date (DOY 206, the peak of the growing season; DOY 286 after harvest; 432 

Figure 7; Appendix 4). Because we aligned the spectral response, acquisition time, and footprint 433 

between Landsat and in situ data, we assume that uncertainties in geolocation in Landsat 8 might have 434 

contributed to the scattered relationships. Earlier studies have reported that the absolute geolocation 435 

accuracy of a Landsat 8 Tier 2 product (i.e., surface reflectance) is greater than 12 m (Dwyer et al. 436 

2018; Storey et al. 2014). Of the four image fusion products, ESTARFM and FSDAF are particularly 437 

dependent on Landsat 8 for generating sub-MODIS pixel spatial variability. Indeed, scattered 438 

relationships were also shown in the NDVIfusion on each date (Figure5; Figure 7; Appendix 4). 439 

Noteworthy is the fact that NDVICESTEM had a higher R2 than NDVILandsat on DOY291 (Figure 7; 440 

Appendix 4). During CESTEM pre-processing, Landsat data is geometrically aligned to the CubeSat 441 

data to ensure a near-perfect alignment (Houborg and McCabe 2018a). Unlike the other products, 442 

CESTEM relies on CubeSats, which have a relatively high positional accuracy (<10 m) and therefore 443 

likely to be better correlated with the observed spatial NDVI variability (Planet Team 2018). In 444 

addition, we aggregated 3 m CESTEM pixels to match the Landsat pixel resolution (30 m), which will 445 

reduce random noise. This difference between Landsat and CESTEM might explain the performance 446 

of NDVICESTEM in capturing spatial variation in NDVIin situ on each date (Figure 7; Appendix 4) which 447 

was superior to that of the other fusion NDVI products.  448 
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  NDVIMODIS was negatively biased toward NDVIin situ (Figure 5). NDVIMODIS played a role in 449 

temporal patterns of NDVIfusion. Ideally, NDVIin situ that covers 3 × 3 MODIS pixels would be 450 

measured to account for uncertainties in the MODIS geolocation product (Wolfe et al. 2002). 451 

However, this is extremely labor intensive and was beyond the scope of our experiment. We 452 

assumed that the negative bias in NDVIMODIS would result in the underestimation of NDVIfusion in 453 

the vegetation land class at the peak of the growing season (Figure 8). As the vegetation land class 454 

accounted for 76% of the MODIS 250 m pixel (section 2.2), the NDVIMODIS values mainly 455 

represented the dynamics of the vegetation land class. However, the NDVIMODIS values were higher 456 

than NDVIin situ in the mixed land class within a MODIS subpixel (Figure 6). The positive bias of 457 

NDVIMODIS against NDVIin situ on mixed land class might explain the overestimation of NDVIfusion 458 

values than NDVIin situ values in the mixed land class, in particular at the peak of the growing 459 

season (Figure 8). These findings suggest that biases in NDVIMODIS can lead to different signs in 460 

biases for dominant and minor land cover classes within the MODIS pixel.  461 

  The coarse spatial resolution of MODIS caused biases in the spatial interpolation process. In the 462 

vegetation land class, Plot 5 was harvested 2 weeks earlier than the other plots (section 2.2), so it had 463 

a lower NDVIin situ value than the other vegetation class plots around DOY 230 (Figure 8). The area 464 

harvested on DOY 230 was only 3.7% of the total study area over MODIS 250 m pixels. Therefore, 465 

the harvest event on Plot 5 was not reflected in the NDVIMODIS value, which explains the positively 466 

biased NDVIfusion values in this plot (Figure 8). NDVICESTEM successfully detected the early harvest in 467 

Plot 5 (Figure 8) and showed a stronger linear relationship against NDVIin situ for Plot 5 compared to 468 

the other NDVIfusion (Appendix 5). This performance of NDVICESTEM is due to the use of the CubeSat 469 

constellation that has near-daily temporal coverage at fine spatial resolution. (Houborg and McCabe 470 

2018a).  471 

 Weight function–based fusion NDVI, which includes ESTARFM, FSDAF, and STAIR, revealed 472 

uncertainties across land cover transition zones. Such methods give greater weight to neighboring 473 

pixels for spatial interpolation (Zhu et al. 2018). Plot 11 was close to a road and ditch to the east and 474 

south (Figure 2); thus, five out of eight neighboring pixels were classified as belonging to the mixed 475 

class, which had lower NDVI than the vegetation class during the peak of the growing season. Indeed, 476 

compared to the other vegetation plots, NDVIfusion values for Plot 11 were underestimated during the 477 

peak growing season (Figure 8). Presumably, the mixed land class surrounding Plot 11 caused the 478 

negative bias through the weight function. Thus, the correlation between NDVIfusion values and 479 

NDVIin situ values on Plot 11 was relatively weak (Appendix 5). By contrast, NDVICESTEM values use 480 

each CubeSat pixel without spatial interpolation. Therefore, NDVICESTEM values on Plot 11 captured 481 

the dynamics of NDVIin situ (Figure 8). 482 

  Time-lag effects did not always degrade the performance of NDVIfusion when input data were biased 483 
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against in situ data. Previous studies have reported that time-lag effects degrade the performance of 484 

fusion products against input data (Fu et al. 2015; Gao et al. 2006; Olexa and Lawrence 2014; Walker 485 

et al. 2012; Xie et al. 2018; Zhu et al. 2010). As in earlier studies, the relative difference in NDVI 486 

between fusion products and in situ data tended to increase over time from the paired dates, in 487 

particular for NDVIESTARFM and NDVIFSDAF in the vegetation land class and NDVIESTARFM and 488 

NDVISTAIR in the mixed land class (Figure 10). However, time-lag effects in NDVISTAIR and 489 

NDVICESTEM in the vegetation land class were not apparent (Figure 10). In the mixed land class, 490 

NDVIFSDAF and NDVICESTEM, which did not show clear time-lag effects, did not perform better than 491 

NDVIESTARFM and NDVISTAIR, which showed clear time-lag effects, in predicting in situ NDVI (Figure 492 

10). Thus, when the input pair data include biases against in situ data, time-lag effects do not 493 

necessarily correspond to a decrease in performance against in situ data. 494 

 495 

4.3 Future works and perspectives 496 

  Rapid and substantial advancements in image fusion methods have emerged in recent years. 497 

Even during the preparation of this report, we found that each image fusion method used in this study 498 

had been improved. For example, highly scalable STARFM was recently implemented on Google 499 

Earth Engine (Gorelick et al. 2017) to produce daily gap-free reflectance products (Moreno-Martínez 500 

et al. 2020). FSDAF was improved by the incorporation of constrained least squares theory and the 501 

subpixel class fraction change, called IFSDAF (Liu et al. 2019) and SFSDAF (Li et al. 2020), 502 

respectively. In the present study, STAIR 1.0 integrated all available Landsat and MODIS data sets. 503 

Recently, STAIR also assimilated Sentinel-2 data (STAIR 2.0) (Luo et al. 2020), CubeSats, and the 504 

latter work allows the production of 3 m daily leaf area index (LAI) maps across the U.S. Corn Belt 505 

(Kimm et al. 2020). STAIR also develops the real-time production capability that enables the same-506 

day 10m and 30m daily surface reflectance products for anywhere in the earth, through Aspiring 507 

Universe Corporation for the commercialization applications. CESTEM version 1.0, used in the 508 

present study, did not include a gap-filling algorithm, which led to substantial data gaps in parts of the 509 

images (e.g., DOY246 in Figure 4) or even entire scenes during the growing season (e.g., DOY 225 to 510 

DOY 237). Recently, a significantly updated implementation of CESTEM has become an integral 511 

component towards Planet’s vision of producing a next generation, analysis ready, and harmonized 512 

product, which delivers clean (i.e., free from clouds and shadows), gap-filled (i.e., daily, 3 m), 513 

temporally consistent, and radiometrically robust surface reflectance integrating the best features from 514 

both public (e.g., Landsat, Sentinel, MODIS) and private missions (Houborg and Zuleta 2019). 515 

Evaluating these recently updated image fusion methods is beyond the scope of this work, but we 516 

anticipate that our systematic, in situ spectral data will be helpful in evaluating those methods.  517 

Current study has limitations and suggests further improvements. We focused on a flat, rice paddy 518 
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landscape to evaluate image fusion products. The data collection and evaluation scheme in this study 519 

might be applied to other ecosystems in short vegetation. For tall woody ecosystems, our manual data 520 

collection scheme will not work. In this case, drone could be used to generate reference maps in space 521 

and time (Candiago et al. 2015; Hashimoto et al. 2019; Zhang et al. 2020). Our results suggest each 522 

image fusion algorithm has pros and cons. Furthermore, each algorithm has been under rapid 523 

improvements as discussed above. Though one convergent lesson is clear. In heterogeneous 524 

landscapes not limited to rice paddy, image fusion algorithm based on spatial or temporal 525 

interpolation methods will involve inherent random errors and biases. Therefore, preparing more fine 526 

resolution images that allow more input pair dates and minimize interval of prediction dates is the key 527 

to reduce uncertainties in image fusion methods.  528 

Our results highlight the importance of fine-spatial-resolution images with high revisit frequency. 529 

In the past, MODIS played a major role in capturing temporal variation, as satellite images that 530 

capture fine spatial scales, such as those captured by Landsat, have low revisit frequencies. With the 531 

emergence of new satellites and CubeSat constellations, it is possible to produce images that have 532 

both fine spatial and temporal resolution, such as Harmonized Landsat/Sentinel-2 products (Claverie 533 

et al. 2018) and PlanetScope products (Planet Team 2018). These harmonized data sets require 534 

careful, precise cross-calibration across satellites. Recent advancements in inexpensive spectral 535 

sensors (Kim et al. 2019; Ryu et al. 2010) offer new opportunities to continuously monitor land 536 

surface reflectance in situ, which could be deployed as a network across landscape. Incorporating 537 

geostationary satellites into the image fusion framework will help manage sustained data gaps due to 538 

clouds and decrease uncertainties in fusion products caused by temporal interpolation. We envision 539 

that the integration of ground-based spectral sensing networks and harmonized satellite images will 540 

lead to fundamental advancements in high-quality image fusion products. 541 

 542 

5. Summary and Conclusions 543 

  In this study, we comprehensively evaluated four state-of-the-art image fusion products against in 544 

situ spectral measurements over a heterogeneous rice paddy landscape during the 2017 growing 545 

season. All four fusion products showed strong linear correlations to in-situ data when focusing on 546 

temporal observations or pooling spatial and temporal observations. However, we found large 547 

differences in performance when evaluating performance for spatial variations. Overall, CESTEM 548 

outperformed the other three products that relied on the spatial interpolation and STAIR showed 549 

better performance than ESTARFM and FSDAF. The detailed evaluation of fusion products against in 550 

situ measurements revealed the following insights on the causes underlying the limited performance 551 

of fusion methods. First, biases in forcing data (i.e., Landsat 8 and MODIS) propagated rather directly 552 

to image fusion products. Second, Landsat 8 NDVI only explained 17–22% of spatial variability 553 
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against in situ data, which explains the poor performance of the Landsat-based fusion products to 554 

predict NDVI spatial patterns. Third, the coarse spatial resolution of MODIS led to NDVI biases in 555 

vegetation and mixed land cover classes. Fourth, image fusion products based on spatial interpolation 556 

showed large biases in vegetation plots surrounded by mixed land cover plots. Finally, time-lag 557 

effects did not always degrade the performance of fusion NDVI when input pair data were biased. Our 558 

results identify key sources of uncertainty, which will be important for improving image fusion 559 

products. Also, constellation-based products such as CESTEM are expected to be more widely used 560 

due to their robust performance and high spatio-temporal resolution without the need for spatial 561 

interpolation.  562 
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Appendix 754 

 755 

Appendix 1 The location of ESUs over (a) Sentinel-2 images (DOY 173 since 2017) and (b) 756 

Landsat 8 images (DOY 174 since 2017; RGB rendering: red, NIR, none).  757 

  758 
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Appendix 2 Quality check of Jaz spectrometer data 759 

To check the Jaz spectrometer data, we used an ASD spectrometer (FieldSpec 4 Wide-ResField 760 

Spectroradiometer, ASD, Boulder, CO, USA) on June 4 (DOY 155). Near the flux tower, we 761 

compared in situ Jaz spectral measurements with cosine-corrected fiber to 20 ASD measurements 762 

with bare fiber within the Jaz spectrometer footprint. The differences in band between ASD and Jaz in 763 

Landsat 8 band-like data were less than 0.05 (ASD red: 0.065 ± 0.007, NIR: 0.127 ± 0.006, NDVI = 764 

0.327 ± 0.053 [95% confidence interval]; Jaz red: 0.054 ± 0.0001, NIR: 0.118 ± 0.004 NDVI = 0.376 765 

± 0.012 [95% confidence interval]).  766 
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 767 

Appendix 3 Evaluation of view geometry effects on in situ spectral measurements. Using 768 
MCD43A1 BRDF parameters, we converted in situ bi-hemispheric reflectance measured by Jaz 769 

spectrometer (Yang et al. 2018) into blue sky albedo and Nadir BRDF-adjusted reflectance 770 

(NBAR) at 10:30 a.m. (local time, UTC +9). In situ data between DOY 100 and DOY 300 (since 771 

2017) were used, excluding cloud-contaminated data.  772 
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Appendix 4 Evaluation of Landsat 8 and fusion NDVI products against in situ NDVI on specific 773 

dates. CESTEM on DOY 206 was excluded because of cloud contamination (Table 2). *: no data 774 
or cloud contamination within ±3 days. 775 

DOY 155 187 194 206 215 223 239 248 291 

L
an

d
sa

t 

R2 * * * 0.22 * * * * 0.17 

rRMSE * * * 11.6 % * * * * 18.4 % 

rbias * * * -1.0 % * * * * -12.4 % 

E
S

T
A

R
F

M
 R2 0.65 0.27 0.36 * 0.59 0.08 0 0.01 0.10 

rRMSE 43.8 % 16.4 % 14.3 % * 6.8 % 16.5 % 26.1 % 25.7 % 15.8 % 

rbias -14.1 % -10.3 % -6.2 % * -1.2 % -13.7 % -15.7 % -5.5 % -7.0 % 

F
S

D
A

F
 R2 0.01 0.26 0.04 0.24 0.25 0.07 0.01 0.11 0.18 

rRMSE 34.7 % 13.5 % 17.6 % 12.3 % 10.1 % 11.1 % 20.5 % 21.2 % 14.6 % 

rbias -15 % -3.8 % -7.9 % 3.9 % 2.8 % -5.6 % -10.1 % -7.6 % -5.9 % 

S
T

A
IR

 R2 0.38 0.39 0.52 0.49 0.87 0.61 0.31 0.25 0.20 

rRMSE 25.7 % 14.4 % 12.4 % 9.6 % 5.8 % 7.7 % 15.2 % 18.1 % 24.7 % 

rbias -7.2 % -8.3 % -3.0 % 0.7 % 3.6 % 4.5 % -4.6 % -1.0 % -20.9 % 

C
E

S
T

E
M

 R2 0.57 0.82 * * * 0.87 0.89 0.94 0.47 

rRMSE 20.6 % 7.6 % * * * 4.2 % 7.6 % 16.6 % 21.9 % 

rbias -3.8 % - 0.9 % * * * 1.7 % 0.7 % 11.5 % -19.1 % 
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Appendix 5 Statistical analyses of each plot during the entire growing season. *, mixed land 777 

cover plot 778 

 ESTARFM FSDAF STAIR CESTEM 

Plot R2 rRMSE rbias R2 rRMSE rbias R2 rRMSE rbias R2 rRMSE rbias 

1 0.92 15.5% -10.3% 0.94 11.6% -8.2% 0.97 9.4% -7.5% 0.98 7.5% -4.1 % 

2 0.95 12.8% -7.9% 0.95 10.9% -7.2% 0.96 7.5% -2.8% 0.97 8.1% -3.4 % 

* 3 0.66 24.7% 16.8% 0.75 36.3% 29.4% 0.63 23.9% 11.1% 0.94 17.5% 10.9 % 

* 4 0.87 17.0% 12.8% 0.93 21.0% 18.5% 0.92 11.7% 7.3% 0.73 20.4% 7.6 % 

5 0.55 31.6% 6.4% 0.73 23.3% 5.3% 0.61 29.3% 10.5% 0.86 20.2% 7.3 % 

* 6 0.68 21.9% -12.3% 0.83 13.7% 3.6% 0.93 9.6% 4.8% 0.97 12.4% 4.3 % 

7 0.96 13.0% -11.4% 0.96 11.8% -10.1% 0.97 8.4% -7.0% 0.98 6.4% -3.9 % 

8 0.90 18.4% -15.5% 0.30 17.4% -14.9% 0.92 12.6% -9.4% 0.98 10.2% -8.7 % 

9 0.94 10.3% -6.9% 0.85 12.7% -4.0% 0.92 10.9% -0.1% 0.99 6.9% -3.2 % 

10 0.95 11.8% -9.2% 0.96 11.9% -10.0% 0.96 8.6% -4.2% 0.99 6.5% -4.9 % 

11 0.75 32.2% -28.2% 0.77 23.0% -18.4% 0.83 19.5% -15.3% 0.98 7.0% -4.7 % 

12 0.62 26.9% -23.3% 0.63 16.9% -10.2% 0.81 12.8% -5.9% 0.99 4.5% -2.4 % 

13 0.88 15.1% -13.0% 0.93 10.2% -7.1% 0.98 8.0% -2.0% 0.95 8.5% -1.9 % 

14 0.94 9.7% -6.7% 0.93 10.2% -6.5% 0.97 5.2% -1.6% 0.95 8.0% 0.3 % 

15 0.99 10.5% -10.2% 0.95 9.0% -7.2% 0.96 7.6% -3.7% 0.96 6.3% -3.1 % 
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Supplementary 780 

 781 

Supplementary 1 NDVI maps (3. 84 × 3.84 km) of fusion products on in situ 782 

measurement dates. The study site is located in the center of each map. For ESTARFM 783 

and CESTEM, cloud masks are applied (dark navy). 784 
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Supplementary 2 Evaluation of resampling methods for aggregating CESTEM 3m products to 786 

CESTEM 30 m product. 787 

Interpolation Method R2 bias RMSE 

Nearest-neighbor 0.929 0.063 -0.005 

Bilinear 0.928 0.063 -0.004 

Bicubic 0.928 0.063 -0.003 

Nearest-neighbor 

with antialiasing 
0.914 0.069 -0.010 

Bilinear with 

antialiasing 
0.907 0.073 -0.010 

Bicubic with 

antialiasing 
0.917 0.070 -0.011 
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Supplementary 3 Day-of-year (DOY) data for the NDVI time series. 789 

Data 

(Number of Data) 

Day of Year since 2017 

In situ (9) 155 187 194 206 215 223 239 248 291 

Landsat-8 OLI (6) 94 134 174 206 286 302 

MODIS (73) 

(MOD09GQ) 

 

92 93 97 100 102 103 106 109 111 113 116 117 120 121 

122 123 126 127 131 134 139 140 141 146 147 152 153 154 

155 156 159 161 162 163 166 168 169 173 186 187 195 200 

206 213 223 243 244 245 246 256 257 259 263 264 268 269 

271 272 275 278 280 286 287 290 293 294 296 297 298 300 

301 303 304 

ESTARFM (65) 92 97 100 102 103 106 109 111 113 116 117 120 121 

122 123 127 131 134 139 140 141 146 152 153 154 155 156 

159 161 162 163 166 168 169 186 187 195 200 213 223 243 

244 245 246 256 257 259 263 264 268 269 271 272 275 278 

280 290 293 294 296 297 298 300 303 304 

FSDAF (66) 92 97 100 102 103 106 109 111 113 116 117 120 121 

122 123 127 131 134 139 140 141 146 152 153 154 155 156 

159 161 162 163 166 168 169 186 187 195 200 213 223 243 

244 245 246 256 257 259 263 264 268 269 271 272 275 278 

280 286 290 293 294 296 297 298 300 303 304 

STAIR (214) 91 to 304 (Daily data, No data gap in STAIR) 

CESTEM (60) 92 98 101 102 110 111 112 113 114 119 120 122 126 

138 139 141 142 144 147 154 155 161 163 167 168 169 171 

174 178 185 187 195 206 215 223 224 238 244 247 258 259 

261 263 265 268 269 271 275 277 278 287 290 293 294 296 

300 301 303 304 
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