
For Peer Review Only
Quantile correlation-based variable selection

Journal: Journal of Business & Economic Statistics

Manuscript ID Draft

Manuscript Type: Paper

Keywords: Quantile correlation, Variable selection, High dimensionality, False 
discovery rate

Journal of Business & Economic Statistics
This is the Pre-Published Version.

This is an Accepted Manuscript of an article published by Taylor & Francis in Journal of Business & Economic Statistics on 21 Apr 2021 
(Published online), available online: http://www.tandfonline.com/10.1080/07350015.2021.1899932.



For Peer Review Only
Quantile correlation-based variable selection

Abstract: This paper is concerned with identifying important features in high dimensional

data analysis, especially when there are complex relationships among predictors. Without

any specification of an actual model, we first introduce a multiple testing procedure based on

the quantile correlation to select important predictors in high dimensionality. The quantile-

correlation statistic is able to capture a wide range of dependence. A stepwise procedure is

studied for further identifying important variables. Moreover, a sure independent screening

based on the quantile correlation is developed in handling ultrahigh dimensional data. It

is computationally efficient and easy to implement. We establish the theoretical properties

under mild conditions. Numerical studies including simulation studies and real data analysis

contain supporting evidence that the proposal performs reasonably well in practical settings.

Keywords: Quantile correlation; Variable selection; High dimensionality; False discovery

rate.
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1 Introduction

Many contemporary data arise in various scientific fields, such as finance, genomics,

neuroimaging and social network, are of high dimensionality. In such type of data, the

number of predictors can be much larger than the sample size, which poses unprecedent

challenges for statistical analysis and numerical computation (Fan et al., 2009). State-of-

the-art statistical methodologies have been proposed for simultaneously selecting important

variables and estimating the unknown parameters for various high dimensional regression

models, including Lasso (Tibshirani, 1996), SCAD (Fan and Li, 2001), group Lasso (Yuan

and Lin, 2006), adaptive Lasso (Zou, 2006), MCP (Zhang, 2010) and their variants. The

optimization problems associated with the penalization methods can be solved effectively

with moderate dimensionality. When the number of the predictors grows exponentially fast

with the sample size, penalized methods encounter computational complication. Variable

screening methods are particularly designed and examined to be effective to reduce the

high dimensionality to a moderate scale, so that classical statistical inference methods can

be applied to the reduced models. In particular, Fan and Lv (2008) proposed the sure

independence screening (SIS) for linear regression based on marginal Pearson’s correlation

coefficient. Fan and Song (2010), Fan et al. (2011) and Ma et al. (2017) extended feature

screening methods to generalized linear model, the additive model and the quantile linear

model with heavy-tailed data. These approaches are model-based methods.

It is known that the relationship between predictors and the response is hard to specify

for ultra-high dimensional data in many scientific applications. This poses a great deal

of challenges to identify important effects, especially the important effects appear in some

complex form. There has been a growing literature on model-free screening methods recently.

Zhu et al. (2011) studied a sure independence ranking and screening procedure to detect

important predictors. Li et al. (2012) proposed to use the Kendall’s rank correlation as a

robust ranking utility. A novel sure screening procedure based on the distance correlation

was introduced by Li et al. (2012). He et al. (2013) developed a quantile-adaptive model-

free variable screening for high dimensional heterogeneous data. The Kolmogorov-Smirnov

distance was introduced by Mai and Zou (2013) to handle binary classification problems and

was extended to deal with continuous response in Mai and Zou (2015). Cui et al. (2015)
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advocated a marginal feature screening procedure for ultra-high dimensional discriminant

analysis with a possibly diverging number of classes. Zhou et al. (2019) proposed a forward

screening procedure based on a new metric named cumulative divergence.

Overall, there are three kinds of variable selection results reported in the literature, de-

pending on the signal-to-noise level (Hao and Zhang, 2017). When the signal is strong

enough, one can achieve model selection consistency under certain conditions on the design

matrix (Zhao and Yu, 2006; Zhang, 2010; Fan and Lv, 2011; among many others). When the

signal is somewhat strong but there are a huge number of noise variables, the sure screening

property or screening consistency, a weaker result of the model selection consistency, can be

established (Fan and Lv, 2008; Huang, Li and Wang, 2014; Chu et al., 2016; etc). Never-

theless, for datasets arised in many modern scientific studies, some signals could be weak

or appear only in the interaction terms. It would be generally difficult to distinguish them

from noise variables. For such a case, one may consider to allow some false discoveries. In

this regard, a practical approach is to conduct multiple testing so that the false discovery

rate (FDR) can be controlled.

For illustration, let Y be the response and X = (X1, . . . , Xp)
> be a p-dimensional vector

of covariates. One may consider to simultaneously test

H0,k : Xk ⊥⊥ Y versus H1,k : Xk ⊥6⊥ Y

for 1 ≤ k ≤ p, where ⊥⊥ represents independence. Thus, Xk is regarded as an influential

predictor if and only if H0,k is rejected. For multiple testing, the false discovery rate (FDR)

is defined to be the expected proportion of false positives among all rejections. When the

test statistics are independent, the multiple-testing procedure by Benjamini and Hochberg

(1995) reported elegant results. Other novel advancements can be found in, for example,

Storey (2002), Efron (2004), Sun and Cai (2007), among many others. The multiple testing

problems are increasingly complicated when the test statistics are not independent; see

Benjamini and Yekutieli (2001), Storey et al. (2004), Efron (2007), Sun and Cai (2009) and

Cai and Liu (2016), Xie and Li (2019).

In this paper, without any parametric assumption or specification of a regression model,

we propose a robust multiple testing procedure with false discovery rate control to detect

influential predictors. A stepwise procedure is developed to further control the empirical
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false discovery rate. In contrast to existing variable screening methods, the proposed method

has several distinctive features: the proposed procedure is based on a quantile correlation-

based test statistic, which is shown to be asymptotically chi-square distribution under the

null hypothesis; with the availability of the asymptotic distribution, we prove rigorously

that the FDR control for high dimensionality is valid in theory; the stepwise procedure is

computationally efficient in identifying important variables, as no optimization or resampling

is involved; it is able to detect relevant variables with linear or nonlinear effects; last but not

least, the proposed procedure is model-free in the sense that its validity does not rely on any

specific assumption on the functional relationship between the predictors and the responses.

The rest part of this paper is organized as follows. Section 2 contains a detailed descrip-

tion of the proposed procedure to detect influential predictors. In section 3, we investigate

its theoretical properties of the proposed procedure under some regularity conditions. In

section 4, we evaluate the performance of the proposed procedure via extensive simulation

studies. Section 5 reports a real data example. Technical proofs are given in the Appendix.

2 Methodologies and main results

2.1 A quantile correlation-based test statistic

Let (Y,X>) be a pair of scalar response and p-dimensional vector of covariates. In

this paper, we consider continuous response variable Y . Write X = (X1, . . . , Xp)
>. The

observations {(Yi,X>i ), i = 1, . . . , n} are independent and identical copies of (Y,X>). two

sets of indices are defined, i.e, S = {k : Xk ⊥6⊥ Y, 1 ≤ k ≤ p} consists of predictors that

are relevant to Y and Sc contains all redundant predictors or noise predictors. Clearly,

S ∪ Sc = {1, 2, . . . , p}. Those predictors in S are also called active or important predictors.

Without specific assumption on the functional relationship between the predictors and the

response, we consider the problem of detecting important predictors in high dimensional

setting. To achieve this, we consider to simultaneously test the marginal independence

between each Xk and Y for 1 ≤ k ≤ p:

H0,k : Xk ⊥⊥ Y versus H1,k : Xk ⊥6⊥ Y. (2.1)

3
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Recall that the classical Pearson’s Chi-square test is for testing the independence of

two categorical variables. Motivated by the Pearson’s Chi-square test, we introduce a test

statistic based on quantile correlation for testing (2.1) with high dimensionality without

assuming any actual regression model between Y and X. Let 0 = γ0 < γ1 < γ2 < . . . <

γD1 = 1 and 0 = ρ0 < ρ1 < ρ2 < . . . < ρD2 = 1 be two sequences of quantile grid points,

where D1 and D2 are pre-specified positive integers. Denote the γs-th (1 ≤ s ≤ D1) quantile

of Xk as Qk,s and the ρt-th (1 ≤ t ≤ D2) quantile of Y as Q∗t . It is known that theoretical

quantiles can be estimated consistently by the respective sample quantiles. Following the

definition of sample quantile in Rob and Fan (1996), Q̂k,s = (1 − γs)Xk,j + γsXk,j+1 is the

γs-th (1 ≤ s ≤ D1 − 1) sample quantile of Xk, where j = bnγsc and bxc is the integer part

of x. Similarly, Q̂∗t = (1− ρt)Yj + ρtYj+1 is the ρt-th (1 ≤ t ≤ D2− 1) sample quantile of Y

with j = bnρtc. For convenience, let Q̂k,0 = Q̂∗0 = −∞ and Q̂k,D1 = Q̂∗D2
= +∞.

For each k = 1, . . . , p, in order to capture the relationship of Y and Xk, we first consider

to construct a contingency table with D1 rows and D2 columns, in which the (s, t)-th cell is

Tk,st =
n∑
i=1

I{Q̂k,s−1 < Xk,i ≤ Q̂k,s}I{Q̂∗t−1 < Yi ≤ Q̂∗t}. (2.2)

Obviously, under H0,k,

E(Tk,st) = Est = nνsνt,

where νs = γs − γs−1 and νt = ρt − ρt−1 are the difference between two consecutive quantile

levels. Thus, for each k = 1, . . . , p, we propose the following quantile correlation-based (QC)

statistic for testing (2.1):

τk =

D1∑
s=1

D2∑
t=1

(Tk,st − Est)2

Est
. (2.3)

Since the indicator function in Tk,st is bounded, the proposed statistic τk is robust to outliers

of either Y or Xk. It can be shown later that under H0,k, τk converges to χ2{(D1−1)(D2−1)}
distribution asymptotically under mild conditions. With the availability of the asymptotic

distribution, we can carry out a multiple testing procedure to test H0,k for k = 1, . . . , p

simultaneously. For brevity, the proposed statistic is referred as QC.

Remark 1. Similar to that of Huang et al. (2014), the proposed test statistic τk in (2.3)

is a Chi-square type statistic. Nevertheless, there is essential difference in the sense that,
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the Pearson Chi-square ranking statistic in Huang et al. (2014) deals with high dimensional

categorical data and hence the cell boundaries of the contingency table is fixed. In contrast,

we deal with continuous response in this paper, and the cell boundaries of our proposed τk

are data-driven and may vary across samples.

Remark 2. The definition of Tk,st in (2.2) is for continuous or ordinal Xk. We can extend

this definition to accommodate categorical Xk. For instance, when some Xk is categorical,

one may consider a modified version of Tk,st:

T̃k,mt =
n∑
i=1

I{Xk,i = m}I{Q̂∗t−1 < Yi ≤ Q̂∗t},

where m ∈M andM is the collection of the class labels of Xk. Thus, the proposed statistic

τk for categorical Xk is

τk =
∑
m∈M

D2∑
t=1

(T̃k,mt − πmvt)2

πmvt

where πm =
∑

j∈M I(Xj = m)/|M| and |M| is the cardinality of the set M.

Remark 3. Different from the Pearson Chi-square test statistic, we allow the number of

quantile grid points D1 and D2 to diverge with the sample size n and the dimensionality p

in theory. Heuristically, with certain proper choice of D1 and D2, the proposed test statistic

τk is able to capture some delicate association of Xk and Y that only exists in some small

cells.

2.2 Detecting active predictors with false discovery rate control

Without assuming an actual regression model, to effectively detect active predictors, we

next introduce a false discovery rate (FDR) control procedure for simultaneously test H0,k

for k = 1, . . . , p. First, we define the null index set H0 = {k : 1 ≤ k ≤ p, H0,k is true} and

the full set H = {k : 1 ≤ k ≤ p}. In fact, the null set H0 is the Sc defined in section 2.1.

With the proposed QC test statistic in section 2.1, the false discovery proportion is

FDPt =

∑
k∈H0

I(τk ≥ t)

max{
∑

k∈H I(τk ≥ t), 1}
,

and the false discovery rate is FDRt = E(FDPt) for any given t. By Theorem 1 in section 3,

under H0,k, each τk converges to χ2{(D1 − 1)(D2 − 1)} in distribution asymptotically under

5
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certain regularity conditions. Let q be the cardinality of H0. Intuitively, for any given t,

under assumption that q/p→ 1 as p→∞, one can estimate the FDRt by∑
k∈H0

I(τk ≥ t)/q

max{
∑

k∈H I(τk ≥ t), 1}/p
.

Nevertheless, the null set H0 and q are unknown in practical situations. To circumvent the

problem, we propose to estimate the FDRt by replacing
∑

k∈H0
I(τk ≥ t)/q by SD1×D2(t),

where SD1×D2(t) is the survival function of the Chi-square distribution with (D1−1)(D2−1)

degrees of freedom. Hence, for any given t, we define the estimated FDRt as

F̂DRt =
pSD1×D2(t)

max{
∑

k∈H I(τk ≥ t), 1}
.

Consequently, following the procedure of Benjamini and Hochberg (1995) to control the

false discovery rate at a pre-specified level α ∈ (0, 1), we propose to determine the threshold

t by

t̂ = inf
{

0 ≤ t ≤ t0 : F̂DRt ≤ α
}

(2.4)

for some constant t0 that is allowed to depend on n and p, whose order is given in Theorem

2. In real implementation, we compute F̂DRt for t taking each value of τ1, . . . , τp. As a

result, the selected set is defined as

Ŝα ≡ {k : F̂DRτk ≤ α, 1 ≤ k ≤ p}.

Define τl ≡ argmaxk∈ŜαF̂DRτk . In other words, τl is the t such that F̂DRt is maximized

subject to F̂DRt ≤ α. As a result, the respective estimated FDR is F̂DRτl . The rundown of

the proposed false discovery control procedure can be summarized as follows:

Step 1. Given D1 and D2, calculate τ1, · · · , τp;
Step 2. Compute each F̂DRt for t taking each value of τ1, . . . , τp;

Step 3. Given α, search for the set Ŝα ≡ {k : F̂DRτk ≤ α, 1 ≤ k ≤ p};
Step 4. Find τl ≡ argmaxk∈ŜαF̂DRτk and let t̂ = τl.

Based on the above procedure, the computational cost is at the order of O(p). We

refer the proposed FDR control procedure as QCS-FDR. The QCS-FDR is computationally

6
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efficient and its validity to detect important predictors is guaranteed by the main theorems

in section 3.

2.3 A stepwise procedure based on the quantile correlation

In practice, when some inactive predictors are highly correlated with certain active pre-

dictors, the empirical FDR will be inflated. We next introduce a stepwise procedure to

circumvent the problem. Let C be an arbitrary index set of predictors. And XC = (Xj :

j ∈ C) ∈ Rn×|C| is the design matrix indexed by C. Here |C| is the cardinality of C. For any

k /∈ C, we define

τk|C ≡
D1∑
s=1

D2∑
t=1

(T̃k,st − Est)2

Est
,

where T̃k,st =
∑n

i=1 I{Q̂k,s−1 < X̃k,i ≤ Q̂k,s}I{Q̂∗t−1 < Yi ≤ Q̂∗t} and X̃k is the linear

projection of Xk onto the orthogonal complement space spanned by XC. For a special case

that C is a null set, τk|C reduced to τk in (2.3).

More notations are needed for presenting the stepwise procedure. Recall that Ŝα is the

selected set by the multiple testing procedure in section 2.2. LetA be the current selected set,

which could change in different deletion or addition step. Define Ac ≡ Ŝα/A, A−j ≡ A−{j}
and A+j ≡ A+{j}. Initiate A = Ŝα. We select relevant predictors by iterating the following

deletion and addition steps until no new deletion or addition occurs.

Deletion step: Search for j1 ≡ arg minj∈A τj|A−j . If minj∈A τj|A−j < γ1, delete j1 from A,

i.e., let A = A−j1 ;
Addition step: Find j2 ≡ arg maxj∈Ac τj|A. If maxj∈Ac τj|A > γ2, add j2 to A, i.e., let

A = A+j2 .

The two constants γ1 and γ2 are two pre-specified thresholds that will be discussed later in

Theorem 3. The final selected set is A when the iterated procedure ceases. We refer the

proposed stepwise procedure as QCS-S.

2.4 Sure independence screening via quantile correlation

In practical applications, when the dimensionality p is extremely high, the performance

of the proposed procedure in section 2.2 might be compromised. By this consideration, as a

7
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preliminary step prior to the QCS-FDR procedure, we introduce an independence screening

method to reduce ultrahigh dimensionality to a moderate scale at the first stage. To capture

the dependence between Y and each Xk, k = 1, . . . , p, in the (s, t)-th cell in the contingency

table, we define ηk,st = E
[
{I(Qk,s−1 < Xik ≤ Qk,s)− vs}{I(Q∗t−1 < Yi ≤ Q∗t )− vt}

]
/(vsvt)

1/2.

Intuitively, ηk,st = 0 when Xk and Y are independent; otherwise, when Xk and Y are depen-

dent, there exists some (s, t)-th cell such that ηk,st 6= 0. This motivates us to propose the

following screening utility to measure the dependence between Y and each Xk, k = 1, . . . , p,

which is defined as

η̂k =

D1∑
s=1

D2∑
t=1

[
1

n

n∑
i=1

{I(Q̂∗t−1 < Yi ≤ Q̂∗t )− vt}{I(Q̂k,s−1 < Xk,i ≤ Q̂k,s)− vs}
(vsvt)1/2

]2

. (2.5)

As a result, we estimate the true model S by

M̂ = {1 ≤ k ≤ p : η̂k ≥ C ′0n
−%},

where C ′0 and % are pre-determined thresholds that will be discussed in Condition (C4*) in

the next section. In practice, we select a reduced model

M̂∗ = {1 ≤ j ≤ p : τ̂k is among the top d largest of all},

where d is a pre-determined size. One can set d = abn/ log(n)c, where a is some constant

and bn/ log(n)c is the integer part of n/ log(n). We refer this sure independence screening

method based on the QC statistic as QCS.

Remark 4. The numbers of quantile levels D1 and D2 play similar role as the number of

slices in Li (1991) and Zhu and Ng (1995). Similar to Mai and Zou (2015), our numerical

experience showed that the performance of the proposed variable screening is not sensitive to

the choices of D1 and D2 when the sample size is relatively large. More theoretical discussions

on the choices of D1 and D2 can be found in the next section. Alternatively, in finite-sample

experiments, one may also consider a refined version of τk that might be more stable to

the choice of D1 and D2. Suppose that there are B different partitions of the interval (0, 1),

denoted by D1j×D2j for j = 1, . . . , B. For the j-th partition, with a slight abuse of notation,

we still write 0 = γ0 < γ1 < γ2 < · · · < γD1j
= 1 and 0 = ρ0 < ρ1 < ρ2 < · · · < ρD2j

= 1.

8
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Inspired by Cook and Zhang (2014), one may consider a fused version of τk:

η̂Bk =
B∑
j=1

D1j∑
s=1

D2j∑
t=1

[
1

n

n∑
i=1

{I(Q̂∗tj−1 < Yi ≤ Q̂∗tj)− vtj}{I(Q̂k,sj−1 < Xk,i ≤ Q̂k,sj)− vsj}
(vtjvsj)

1/2

]2

(2.6)

to measure the dependence of Xk and Y for each k = 1, . . . , p, where vtj = ρtj − ρtj−1 and

vsj = γsj − γsj−1.

3 Theoretical properties

Without loss of generality, let D = max(D1, D2) and the following conditions are needed

to establish the asymptotic properties:

(C1) There exists a constant C such that max1≤k≤p f(Y |Xk) < C < ∞ where f(Y |Xk) is

the conditional probability density function of Y given Xk, k = 1, . . . , p.

(C2) The dimensionality p = O(nr) for some r > 0 and D = O(log n).

(C2*) The dimensionality p satisfies log(p) = O(nζ) for some ζ > 0.

(C3) There exist positive constants vmin and vmax such that 0 < vmin ≤ min1≤s≤D1 vs ≤
max1≤s≤D1 vs ≤ vmax < 1. Likewise, there exist positive constants umin and umax such

that 0 < umin ≤ min1≤t≤D2 vt ≤ max1≤t≤D2 vt ≤ umax < 1.

(C4) There exist some positive constant C ′0, 0 < % < 1/2 and (s, t)-th cell such that

mink∈S |ηk,st| ≥
√

2C ′0n
−%.

(C5) The cardinality of S satisfies |S| = O(nξ) for 0 < ξ < 1/2.

(C6) E(Xk|XS) is linear in XS , for any k ∈ Sc.

Condition (C1) requires that the conditional density function of Y given each Xk is

bounded, which is satisfied by many commonly-used distributions. Condition (C2) requires

the dimensionality p to be at a polynomial order of n, but p could grow faster than n.

Condition (C2) is only needed to establish the moderate deviation result in Theorem 1. In

9
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addition, D is allowed to diverge with n at the order of O(log n); see the Appendix. In prac-

tice, one may set D = a log(n) for some pre-specified constant a. An alternative condition

(C2*) is imposed to establish the sure screening properties in Theorem 3 for the preliminary

screening. We allow p to be at an exponential rate of n under condition (C2*). This is crucial

to capture those delicate quantile correlation in some small or local regions when the sample

size n is large. Condition (C3) requires the quantile grid points are bounded away from 0

and 1, which is imposed to avoid technicality arises at the tail area. Condition (C4) assumes

that the minimum true signal vanishes to zero in order of n−%/2 as the sample size goes to

infinity. Such a condition is typical in the feature screening literature, such as Fan and Lv

(2008), He et al. (2013) and Cui et al. (2015). Condition (C5) requires the number of true

important variables is at the order of o(n1/2), indicating that the true model may not be

very sparse. Condition (C6) assumes that the projection of Xk onto the orthogonal comple-

ment space spanned by XS is linear, which is satisfied when X follows some commonly-used

distributions, e.g., the multivariate normal distribution. Similar condition can be found in

Zhong et al. (2012) and Jiang and Liu (2014).

We next present an important property of the proposed test statistic in Theorem 1.

THEOREM 1. Suppose Conditions (C1),(C2), (C3) and (C5) hold and n−1/2 < ∆n ≤
(log nβ/n)1/2 for any β > 0. Then, for any positive integers D1 > 1, D2 > 1 and any

constant C1 > 0,

sup
0≤t≤C1n∆2

n

sup
k∈H0

Pr(τk ≥ t)

SD1×D2(t)
→ 1

as n → ∞, where SD1×D2(t) is the survival function of Chi-square distribution with (D1 −
1)(D2 − 1) degrees of freedom.

Theorem 1 is a moderate deviation result, that is stronger than the convergence in distri-

bution. It concludes that τk converges to a chi-square random variable with (D1−1)(D2−1)

degrees of freedom in distribution. This theorem indicates that the convergence rate of τk

is faster than the decaying rate of the survival function itself at the tail area. The proof of

Theorem 1 is deferred to the Appendix.

THEOREM 2. Suppose Conditions (C1), (C2) and (C3)-(C5) hold and n−1/2 < ∆n ≤

10
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(log nβ/n)1/2 for any β > 0. Then, for any C2 > 0,

lim
n→∞

Pr
{

inf
k∈H1

τk > C2n∆2
n

}
= 1.

Moreover, when ∆n = (log n/n)1/2,

lim
n→∞

Pr
{

inf
k∈H1

τk > C2 log n
}

= 1.

Under regularity conditions, for those k in the true active set, Theorem 2 ensures that

τk has a lower bound with high probability. And the null and the alternative distribution of

the test statistic can be well separated, which further implies

lim
n→∞

Pr{τk > C0n∆2
n|k ∈ H0} = 0,

lim
n→∞

Pr{τk > C0n∆2
n|k ∈ H1} = 1.

Based on Theorem 1 and Theorem 2, the next corollary justifies that the false discovery

rate can be controlled by the proposed QCS-FDR procedure in theory.

COROLLARY 1. Suppose Conditions (C1), (C2) and (C3)-(C5) hold. For a pre-specified

level α, the FDR of the proposed multiple testing procedure satisfies

lim
n→∞

F̂DRt̂

α
= 1.

Corollary 1 ensures that the FDR of our procedure can be controlled by a pre-specified

level α theoretically.

Remark 5. A common result on controlling falsely discoveries for screening methods is to

control the size of the selected model such that the number of variables retained is negligible

compared with p, hence the percentage of falsely discoveries is also negligible. Contrary

to existing FDR results in the screening literature such as Zhu et. al (2011), our proposed

procedure can control the FDR at the quantitative level α with rigorous statistical guarantee.

THEOREM 3. Suppose Conditions (C1), (C2) and (C3)-(C6) hold and n−1/2 < ∆n ≤
(log nβ/n)1/2 for any β > 0. Let C be an arbitrary given index set of predictors. Then, for

any positive integers D1 > 1, D2 > 1, C3 > 0 and any k /∈ C, we have

sup
0≤t≤C3n∆2

n

sup
k∈H0

Pr(τk|C ≥ t)

SD1×D2(t)
→ 1

11
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as n → ∞, where SD1×D2(t) is the survival function of Chi-square distribution with (D1 −
1)(D2 − 1) degrees of freedom.

Based on Theorem 3, the thresholds γ1 and γ2 in the stepwise algorithm can be chosen

as quantiles of the Chi-square distribution with (D1 − 1)(D2 − 1) degrees of freedom.

When p grows at an exponential rate of n and only relatively small number of variables

are relevant, a preliminary feature screening prior to the multiple testing procedure will be

performed. The following theorem presents the sure screening property of the proposed QCS

screening procedure.

THEOREM 4. If D1 = O(nκ) and D2 = O(nξ), where κ ≥ 0, ξ ≥ 0 and κ + ξ + % < 1/2,

under Conditions (C1), (C2*), (C3)-(C5), we have

Pr
(
S ⊂ M̂

)
≥ 1−O

(
p exp{−bn1−2%−2κ−2ξ + (κ+ ξ) log(n)}

)
,

where b is a positive constant. Thus, if log(p) = O(nζ) and ζ < 1−2%−2κ−2ξ, QCS enjoys

the sure screening property.

According to Theorem 4, one can apply the QCS screening method together with the

proposed QC-FDR procedure to select important variables when the dimensionality is ultra

high. It also indicates that, when n is sufficiently large, D1 and D2 could be at the order of

O(nκ) and O(nξ) with κ, ξ ≥ 0 satisfying ζ < 1 − 2% − 2κ − 2ξ, so that the sure screening

property still holds.

4 Simulation studies

In this section, we demonstrate the performance of the proposed procedure via sev-

eral simulated examples. In practice, to avoid mathematical challenges caused by the

reuse of the sample, the sample splitting idea (Hartigan, 1969; Cox, 1975) is adopted.

Let {(Y (1)
i ,X

(1)>
i ), i = 1, . . . , n1}, {(Y (2)

i ,X
(2)>
i ), i = 1, . . . , n2} and {(Y (3)

i ,X
(3)>
i ), i =

1, . . . , n3} be a random disjoint partition of {(Yi,X>i ), i = 1, . . . , n}. Our proposed pro-

cedure consists of three steps: QCS, to screen active predictors; QCS-FDR, to control the

FDR; QCS-S, to identify true active predictors. The three steps are implemented in the

following way:

12
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(1) QCS: The p predictors are ranked in a descending order according to (2.5) based on

{(Y (1)
i ,X

(1)>
i ), i = 1, . . . , n1} and the top d = o(n) predictors are selected, denoted by M̂∗.

(2) QCS-FDR: Given a FDR level α, the threshold t̂ are determined according to (2.4)

based on {(Y (2)
i ,X

(2)>
i ), i = 1, . . . , n2} and the selected set is Ŝα ≡ {k : τk ≥ t̂, k ∈ M̂∗}.

(3) QCS-S: Iterate the deletion and addition steps on Ŝα in Step 2 based on {(Y (3)
i ,X

(3)>
i ),

i = 1, . . . , n3} until no deletion and addition occurs.

4.1 Performance of QCS

In this subsection, we first compare the variable screening performance of our proposed

QCS with the sure independence screening (SIS) (Fan and Lv, 2008), the distance correla-

tion based screening (DC-SIS) (Li et al., 2012) and the sliced inverse regression via inverse

modeling (SIRI) (Jiang and Liu, 2014). Notice that SIRI is an iterative procedure and others

are non-iterative ones. For a fair comparison, we adopt the initial screening step described

in Section 2.3 of Jiang and Liu (2014) to implement SIRI in a non-iterative fashion. We

evaluate the performance of each method via 5%, 25%, 50%, 75% and 95% quantiles of the

minimum model size that all relevant predictors are included based on 100 replications, with

closer to the true model size indicating better performance in variable screening.

In the simulation, the predictors X = (X1, . . . , Xp)
> are generated from a p-variate

normal distribution with mean 0 and covariance matrix Σ = (σij)p×p, where σij = ρ|i−j|. We

set ρ = 0, 0.5 and 0.9. The number of quantile grid points D1 = D2 = 8, 9 or 10. To simulate

ultra-high dimensional scenario, we set n = 500 and p = 1000, 5000 for each scenario. The

response variable is generated from the following models:

Scenario 1.1: Y = X1 +X2 +X100 + ε;

Scenario 1.2: Y = 3X1 + 4X2
2 + 2 tan(πX100/2) + ε;

Scenario 1.3: Y = 3 exp(3X1) + 4 sin(πX2/2) + 5X100I(X100 > 0) + ε;

Scenario 1.4: Y = 1− 2(X1 +X2)−3 exp{1 + 3 sin(πX100/2)}+ ε,

where ε ∼ N (0, 1) independent of X.

The quantiles of the minimum model size that includes all three active predictors are

reported in Tables 1-2. Under Scenario 1.1 with linear model, all four competitors perform

well. Under Scenario 1.2 with additive model, SIRI and SIS screening procedures fail to

13
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detect the active predictors. Under Scenarios 1.3-1.4 with nonlinear relationship between

the response and predictors, SIS and DC-SIS screening procedures behave poor. In contrast,

the proposed QCS procedure works reasonably well in all scenarios and outperforms the

other three competitors. The performance of the four methods are only sightly discounted

when p increases from 1000 to 5000.

4.2 Performance of QCS-FDR

In this subsection, some scenarios are simulated to examine the FDR control as well as the

sure screening property of the proposed procedure. Consider the following three regression

models with the covariates X generated from N (0,Σ) where Σ = (ρ|i−j|)p×p,

Scenario 2.1: Y = Xβ + ε, ρ = 0.5, β = (1.5>s0 ,0
>
p−s0)

> with s0 = 10;

Scenario 2.2: Y = exp(Xβ) + ε, ρ = 0.5, β = (1.5>s0 ,0
>
p−s0)

> with s0 = 10;

Scenario 2.3: Y =
∑10
j=1Xj

0.5+(1.5+
∑4
j=2Xj)

2 + 0.1ε, ρ = 0.0,

where ε ∼ N (0, 1) independent of X.

In this example, we set n = 1000 and p = 1000, 5000. The number of quantile grid

points D1 = D2 = 3, 4 or 5. In each scenario, the full sample are randomly divided into two

non-overlapping sub-samples. The sample size for QCS n1 = 250 and d = bn/ log(n)c. The

sample size for QCS-FDR n2 = 750. The nominal false discovery rate α = 0.05. Based on

100 replications, we evaluate the performance based on the following criteria:

• Xj: the probability that the active predictors Xj is selected;

• |Ŝα|: the average number of selected predictors;

• F̂DR: the average of empirical false discovery proportion.

The results of QCS-FDR procedure are summarized in Table 3. One can see that the

proposed QCS-FDR procedure controls the empirical FDR under the pre-specified level

α for most scenarios. The proposed procedure also possesses the sure screening property

reasonably well in all scenarios based on FDR control. Table 3 also reports that the empirical

FDR are not sensitive to different D1 and D2, indicating that the QCS-FDR procedure is

robust to the choice of D1 and D2. The proposed QCS-FDR procedure works reasonably

well as p increases from 1000 to 5000. In summary, the proposed procedure performs well in

various practical settings.
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4.3 Performance of QCS-S

In this subsection, we further compare the performance of the proposed stepwise proce-

dure with the sliced inverse regression via inverse modeling (SIRI) (Jiang and Liu, 2014).

Several models with linear, nonlinear or higher-order interaction effects are considered. The

predictors X = (X1, . . . , Xp)
> are generated from a multivariate normal distribution with

mean 0 and covariances Cov(Xi, Xj) = ρ|i−j| for 1 ≤ i, j ≤ p. The response variable is

simulated from the following models:

Scenario 3.1: Y = X2 − 0.5X1 + 0.5X100 + 0.2ε, ρ = 0.9;

Scenario 3.2: The same model in Scenario 1.2 with ρ = 0.5;

Scenario 3.3: The same model in Scenario 1.3 with ρ = 0.5;

Scenario 3.4: The same as in Scenario 2.1 except for ρ = 0 and β = (1.5>5 ,0
>
p−5)>;

Scenario 3.5: Y = 2X1 + 2X2 + 3X2X9 + ε, ρ = 0;

Scenario 3.6: Y = 2X1 + 4 tan(πX3X8/2) + ε, ρ = 0;

Scenario 3.7: Y = 6X1/(1 + 2X1X3 + 2X1X5) + ε, ρ = 0;

Scenario 3.8: Y = 4X5X10X50 + ε, ρ = 0,

where ε ∼ N (0, 1) independent of X.

In this example, we set n = 1500 and p = 1000, 5000. The number of quantile grid

points D1 = D2 = 8, 9 or 10. In each scenario, we randomly divide the sample into three

non-overlapping sub-samples. Set n1 = 500, d = bn/ log(n)c, n2 = 500 and n3 = 500. The

nominal false discovery rate α = 0.05. The thresholds in the deletion and addition steps

are set to be γ1 = χ2(1− α − 0.2, (D1 − 1)(D2 − 1)) and γ2 = χ2(1− α, (D1 − 1)(D2 − 1)),

where χ2(γ,m) is the 100γ-th quantile of the Chi-square distribution with m degrees of

freedom. Based on 100 replications, two quantities are used to measure the variable selection

performance of each method:

• FN: average number of true active predictors falsely excluded as irrelevant predictors;

• FP: average number of irrelevant predictors falsely selected as true active predictors.

The results are reported in Table 4. Our proposed QCS-S is able to detect most of

the relevant predictors with a comparable number of false positives under all scenarios,

while SIRI is able to detect all relevant predictors (FN=0.00) with a large number of false

positives under Scenarios 3.1-3.8 except Scenarios 3.2 and 3.6. Under Scenarios 3.2 and 3.4
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with additive models, SIRI missed one of relevant predictor (FN≈ 1.00) that appeared in the

additive term most of the time. Overall, the proposed QCS-S procedure works reasonably

well in all scenarios and outperforms the SIRI under these settings.

5 Applications

In this section, we will illustrate the performance of the proposed procedures with a rat eye

microarray expression dataset collected by Scheetz et al. (2006), which is available at Gene

Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo) with GEO accession number

GSE5680. This experiment was designed to investigate gene regulation in the mammalian

eye and identify genetic variation relevant to human eye disease. In this dataset, 120 12-

week old male offspring of rats, containing 31, 042 different probe sets, were selected for

tissue harvesting from the eyes and for microarray analysis. Following Huang et al. (2008),

we selected 18, 976 gene probes that exhibited significant signal for reliable analysis in the

mammalian eye. According to Chiang et al. (2006) and Huang et al. (2008), the probe

from TRIM32 whose probe number is 1389163 at, was recently found to causes Bardet-Biedl

syndrome. The main interest of this study is to find the genes that are correlated with the

gene TRIM32. Therefore, the probe of TRIM32 is regarded as response Y . In this case, the

sample size n = 120 and the number of probe is p = 18, 975. For our analysis, all 18, 976

probes were analyzed on a logarithmic scale and scaled to have zero mean and unit variance.

To evaluate the performance of different methods, we randomly split the 120 samples

into training and testing data with ntra = 80 and ntes = 40. We first set D = 4 and

apply our proposed screening procedure (QCS) to the training data set and retain the top

bntra/ log(ntra)c = 18 probes. We then apply the QCS-FDR and get the selected probe set Ŝ.

Considering that some important probes might appear in the pairwise interaction effects, we

consider a set of all possible pairwise interaction terms, denoted by Î = {(i, j) : i ∈ Ŝ, j ∈ Ŝ}.
We next fit a regularized linear model with all variables in Ŝ and all pairwise interaction

effects in Î to the training data using lasso penalty. To implement this, the R package

program RAMP (Hao et al. 2018) was used. Lastly, we evaluate the predictive performance

of the resulting model by calculating the mean square prediction errors (MSPE) with the
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testing data set:

MSPE =
1

ntes

∑
i∈T

(Ŷi − Yi)2,

where T = {i: the ith sample belongs to testing data} and Ŷi is the fitted value of Yi.

We repeat the above randomly partition of training data and testing data for 50 times.

For comparison, we also apply the sliced inverse regression via inverse modeling (SIRI) (Jiang

and Liu, 2014), the interaction pursuit (IP) (Fan et al. 2016) and the interaction pursuit

via distance correlation (IPDC) (Kong et al. 2017) to this data set under the same settings.

The result is shown in Table 4. It can be seen that the proposed method exhibits superior

predictive performance, namely, the mean of MSPE of QCS-FDR is the smallest among that

of all methods and the variance is relatively small.

6 Concluding remarks

In this paper, we advocate a multiple testing procedure with FDR control to detect

important variables. The multiple testing procedure can be applied together with the QCS

screening method when the dimensionality is ultra-high. The proposed procedure is built on

the quantile-correlation (QC) statistic, which depends on the partition of the sample space.

Generally speaking, if D grows faster than n and p, the QC statistic can capture more subtle

associations. But large D will slow down the convergence of the asymptotic null distribution.

In the simulation studies, we set different values of D1 and D2 to examine the performance

of our procedure. Nevertheless, it would be of interest to study a data-driven way to select

D1 and D2. We leave space here for future research.
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Appendix

Define Îk,i,s = I(Q̂k,s−1 < Xik ≤ Q̂k,s), Ik,i,s = I(Qk,s−1 < Xik ≤ Qk,s), Î
∗
i,t = I(Q̂∗t−1 <

Yi ≤ Q̂∗t ) and I∗i,t = I(Q∗t−1 < Yi ≤ Q∗t ). Write τk,st = E[{I(Qk,s−1 < Xik ≤ Qk,s) −
vs}{I(Q∗t−1 < Yi ≤ Q∗t )− vt}/(vsvt)1/2].

LEMMA 1. Suppose

δk,st =
1

n1/2

n∑
i=1

Îk,i,sÎ
∗
i,t − vsvt

(vsvt)1/2
− 1

n1/2

n∑
i=1

(Ik,i,s − vs)(I∗i,t − vt)
(vsvt)1/2

.

Then, under Conditions (C1), (C2) and (C3), for all constant Ci > 0, (i = 1, 2, 3, 4)

Pr
(

sup
k∈H1

sup
1≤s≤D1,1≤t≤D2

|δk,st| > C1

√
n∆n

)
≤ C0D1D2p exp(−C2n∆2

n),

sup
k∈H0

sup
1≤s≤D1,1≤t≤D2

E(δk,st) ≤ C3D1D2

√
n∆2

n,

sup
k∈H0

sup
1≤s≤D1,1≤t≤D2

E(|δk,st|m) ≤ C4D1D2(
√
n∆n)m,

where n−1/2 < ∆n ≤ (log nβ/n)1/2 with β > 0 and C1, C2, C3, C4 are different constants

irrelevant to n.

Proof. Note that

δk,st =
1√
n

n∑
i=1

(Ik,i,s − vs)(Î∗i,t − I∗i,t)
(vsvt)1/2

+
1√
n

n∑
i=1

(I∗i,t − vt)(Îk,i,s − Ik,i,s)
(vsvt)1/2

+
1√
n

n∑
i=1

(Îk,i,s − Ik,i,s)(Î∗i,t − I∗i,t)
(vsvt)1/2

+
1√
n

n∑
i=1

Îk,i,svt + Î∗i,tvs − 2vsvt

(vsvt)1/2

=δ1,k,st + δ2,k,st + δ3,k,st + δ4,k,st.

First, we consider δ1,k,st. For simplicity, we set D1 = D2 = D. Under Condition (C1), we

have

sup
1≤s,t≤D

|δ1,k,st| = sup
1≤s,t≤D

∣∣∣ 1√
n

n∑
i=1

(Ik,i,s − vs)(Î∗i,t − I∗i,t)
(vsvt)1/2

∣∣∣ ≤ 1− vmin
vmin

1√
n

sup
1≤t≤D

n∑
i=1

|Î∗i,t − I∗i,t|.

(A.1)

By the Bahadur representation of sample quantiles (Hesse et al., 1990),

Q̂∗t −Q∗t =
F (Q∗t )− Fn(Q∗t )

f(Q∗t )
+Rn,
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where Fn(x) is the empirical distribution function and Rn = O{n−3/4(log n)1/2(log log n)1/4}.
Let n−1/2 < ∆n ≤ (log nβ/n)1/2 with β > 0. Since Rn = O{n−3/4(log n)1/2(log log n)1/4} =

o(∆n), by the Hoeffding’s inequality, for any t and certain constant C > 0,

Pr(Q̂∗t −Q∗t > ∆n)

=Pr
{F (Q∗t )− Fn(Q∗t )

f(Q∗t )
+Rn > ∆n

}
=Pr{F (Q∗t )− Fn(Q∗t ) > ∆nf(Q∗t )}

≤ exp(−2nC∆2
n).

Then,

Pr
{

D
sup
t=1

(Q̂∗t −Q∗t ) > ∆n

}
≤ D exp(−2Cn∆2

n).

Similarly, for Xk, k = 1, . . . , p,

Pr
{

D
sup
t=1

(Q̂k,s −Qk,s) > ∆n

}
≤ D exp(−2Cn∆2

n).

Define X =
{

(Xik, Yi)
n
i=1 :

D
sup
t=1

(Q̂∗t − Q∗t ) > ∆n,
D

sup
s=1

(Q̂k,s − Qk,s) > ∆n

}
. On the space X ,

for sufficiently large n, we have

sup
1≤t≤D

|Î∗i,t − I∗i,t| ≤ sup
1≤t≤D

I(Yi is between Q∗t ±∆n). (A.2)

Then, in view of (A.1),

sup
1≤s,t≤D

|δ1,k,st| ≤
1− vmin

vmin

1√
n

n∑
i=1

sup
1≤t≤D

I(Yi is between Q∗t ±∆n). (A.3)

Note that Π = (1− vmin)/vmin
1√
n

n∑
i=1

sup
1≤t≤D

I(Yi is between Q∗i,t ±∆n). Then,

E(Π) ≤ 1− vmin

vmin

√
n sup

1≤t≤D
Pr(Yi is between Q∗i,t ±∆n) ≤ 2

√
n

1− vmin
vmin

C1∆n,

where C1 is some positive constant. By the Azuma’s inequality,

Pr

{
|Π− E(Π)| > 4

√
n

1− vmin
vmin

C1∆n

}
≤ 2 exp(−C2n∆2

n),
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where C2 is some positive constant. There exists Cn = O(
√
n∆n) for n sufficiently large such

that

Pr
(

sup
k∈H1

sup
1≤t≤D

|δ1,k,st| > Cn

)
≤Pr{ sup

k∈H1

|Π− E(Π)| > Cn − E(Π)}

=Pr{ sup
k∈H1

|(Π)− E(Π)| > Cn − 2
√
n

1− u0

u0

C1∆n}

≤2C3D exp(−C4n∆2
n)

for some positive constant C3 and C4.

Next, for δ2,k,st, it can be easily checked that

Pr
(

sup
k∈H1

sup
1≤t≤D

|δ2,k,st| > Cn

)
≤ 2C5Dp exp(−C6n∆2

n).

For δ3,k,st, we have

sup
1≤s,t≤D

|δ3,k,st| = sup
1≤s,t≤D

∣∣∣ 1√
n

n∑
i=1

(Îk,i,s − Ik,i,s)(Î∗i,t − I∗i,t)
(vsvt)1/2

∣∣∣ ≤ 2

u0

1√
n

sup
1≤t≤D

n∑
i=1

|Î∗i,t − I∗i,t|.

It can be shown in a similar fashion that

Pr
(

sup
k∈H1

sup
1≤t≤D

|δ2,k,st| > Cn

)
≤ 2C5Dp exp(−C6n∆2

n), (A.4)

and

Pr
(

sup
k∈H1

sup
1≤s,t≤D

|δ3,k,st| > Cn

)
≤ 2C7D exp(−C8n∆2

n). (A.5)

Furthermore,

Îk,i,s =I(Q̂k,s−1 < Xik ≤ Q̂k,s)

=I(Q̂k,s−1 < Xk,i < Qk,s−1)− I(Q̂k,s < Xk,i ≤ Qk,s) + I(Qk,s−1 < Xk,i ≤ Qk,s).

Thus, for rn = o(n−1/2), there exists a postive constant C9 such that,

sup
1≤s,t≤D

∣∣ 1
n

n∑
i=1

Îk,i,s − vs
∣∣ = sup

1≤s,t≤D
E|Îk,i,s − Ik,i,s|+ rn
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= sup
1≤s,t≤D

E|I(Q̂k,i,s−1 < Xk,i < Qk,i,s−1)− I(Q̂k,i,s < Xk,i < Qk,i,s)|+ rn

≤ sup
1≤s,t≤D

Pr{Xk,i is between Qk,s ±∆n}

≤ C9∆n.

Therefore, for εn = O(n∆n),

vsn− εn ≤
n∑
i=1

Îk,i,s ≤ vsn+ εn, vsn− εn ≤
n∑
i=1

Î∗k,i,s ≤ vsn+ εn. (A.6)

Combining (A.3) and (A.6), we have

δ4,k,st =
1√
n

n∑
i=1

vt(Îk,i,s − vs) + vs(Î
∗
i,t − vt)

(vsvt)1/2
= O(

√
n∆n).

Then, for some postive constant C0, C and Cn = O(
√
n∆n),

Pr
(

sup
k∈H1

sup
1≤s,t≤D

|δk,st| > Cn

)
≤ C0Dp exp(−Cn∆2

n). (A.7)

Under H0,k, by (A.6), for some constant C10,

E(δk,st) ≤E

{
1√
n

n∑
i=1

(Îk,i,sÎ
∗
i,t − vsvt)

(vsvt)1/2

}
≤C10

√
n(EÎk,i,sÎk,t)

≤C10

√
n∆2

n.

When m is a positive even number, as E|δmk,st| ≤ C
∑3

l=1 E|δml,k,st|,

Eδm1,k,st =
∑

∑L
l=1ml=m

Cmn
−m/2E

{ L∏
l=1

(Ikl,i,s − vs)ml
}
E{

L∏
l=1

(Î∗kl,t − I
∗
kl,t

)ml}.

Then, there exists ml = 1 such that E{
∏L

l=1(Ikl,i,s − vs)} = 0. And by (A.3),

sup
1≤t≤D

|E

{
L∏
l=1

(Î∗kl,t − I
∗
kl,t

)ml

}
| ≤ C(

√
n∆n)L. (A.8)

As a result,

sup
1≤k≤p

sup
1≤s,t≤D

E|δ1,k,st|m ≤ CD2(
√
n∆n)m.
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Similarly, we can show sup1≤t≤D |δ2,k,st|m ≤ C(
√
n∆n)m. Finally,

Eδm3,k,st =
∑

∑L
l=1ml=m

n−m/2E{
L∏
l=1

(Îkl,i,t − Ikl,i,t)ml}E{
L∏
l=1

(Î∗kl,t − I
∗
kl,t

)ml}.

It follows directly that

sup
1≤k≤p

sup
1≤s,t≤D

E{|δ3,k,st|m} ≤ C4D
2(
√
n∆n)m

for some positive constant C4. The proof of Lemma 1 is complete.

LEMMA 2. Suppose X is a χ2(D) random variable with D degrees of freedom. Then,

lim
t→+∞

P (X > t)

{Γ(D/2)}−1(t/2)D/2−1e−t/2
= 1.

LEMMA 3. Let τ̃i =
∑D

s=1

∑D
t=1{n−1/2

∑n
k=1(Ik,i,s − vs)(Ik,t − vt)/(vsv∗t )1/2}2 . Then,

sup
k∈H0

∣∣∣∣P (τ̃k ≥ t)

SD1×D2(t)
− 1

∣∣∣∣ ≤ CD6(1 + t)3/2n−1/2,

for t = o(n1/3D−4) and some postive constant C.

The proofs of Lemma 2 and Lemma 3 can be referred to Xie and Li (2018). It is omitted

here.

LEMMA 4 (Hoeffding’s inequality). Let X1, . . . , Xn be independent random variables.

Assume that Pr(Xi ∈ [ai, bi]) = 1 for i = 1, . . . , n where ai and bi are constants. Let

X̄ = n−1
∑n

i=1Xi. Then the following inequality holds,

Pr{|X̄ − E(X̄)| ≥ t} ≤ 2 exp

{
− 2nt2∑n

i=1(bi − ai)2

}
,

where t is a positive constant and E(X̄) is the expected value of X̄.

The proof of Lemma 4 can be found in Hoeffding et al. (1963). We omit it here.

Proof of Theorem 1. For convenience, we set D1 = D2 = D. Note that

Lk,st = n−1/2

n∑
i=1

(Ik,i,s − vs)(I∗i,t − v∗t )
(vsv∗t )

1/2
,
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δk,st =
1

n1/2

n∑
i=1

Îk,i,sÎ
∗
i,t − vsv∗t

(vsv∗t )
1/2

− 1

n1/2

n∑
i=1

(Ik,i,s − vs)(I∗i,t − v∗t )
(vsv∗t )

1/2
.

Let τ̃k =
∑D

s=1

∑D
t=1 L

2
k,st and

Rk = 2
D∑
s=1

D∑
t=1

Lk,stδk,st +
D∑
s=1

D∑
t=1

δ2
k,st.

Then,

τ̃k +Rk =
D∑
s=1

D∑
t=1

(Lk,st + δk,st)
2 =

D∑
s=1

D∑
t=1

{
1

n1/2

n∑
i=1

Îk,i,sÎi,t − vsv∗t
(vsv∗t )

1/2

}2

= τk. (A.9)

Suppose there exists a constant ε > 0 such that

P (τk > t)

SD1×D2(t)
=
P (τ̃k +Rk > t− ε+ ε)

SD1×D2(t)

≤ P (τ̃k > t− ε) + P (Rk > ε)

SD1×D2(t)

=
S(t− ε)
SD1×D2(t)

P (τ̃k > t− ε)
SD1×D2(t− ε)

+
P (Rk > ε)

GD(t)
.

Therefore, for any positive constant ε,

sup
0≤t≤C0n∆2

n

sup
k∈H0

P (τk > t)

SD1×D2(t)
≤ sup

0≤t≤C0n∆2
n

sup
(k)∈H0

{
SD1×D2(t− ε)
SD1×D2(t)

P (τ̃k > t− ε)
S(t− ε)

+
P (Rk > ε)

SD1×D2(t)

}
.

To establish the asymptotic distribution of τ̃k for k = 1, . . . , p, we write Lk=(Lk,11, Lk,12, ...,

Lk,DD). Under H0,

E(Lk,st) = n−1/2

n∑
i=1

{E(Ik,i,s)− vs}{E(Ii,t)
∗ − v∗t }

(vsv∗t )
1/2

= 0.

By the central limit theorem, Lk converges to the multivariate normal distribution N(µ,Σ)

in distribution, where µ = E(Lk) = 0, and Σ = V ar(Lk) = Σ1

⊗
Σ1, Σ1 = ID −

√
v
√
v
>

and v = (v1, ..., vD).
⊗

is the note for outer product. Let Σ1 = (σij)D∗D. Clearly, Σ1

is idempotent and symmetric as
√
v
>√
v=
∑D

i=1 vi = 1. Thus, Σ is also symmetric and

idempotent. This is because Σ2 = (δijΣ1) × (σijΣ1) = (
∑D

k=1 σikσkjΣ
2
1)D2×D2 = Σ and∑D

k=1 σikσkj = σij. Therefore, τ̃i = L′iLi converges to χ2
(D−1)2 in distribution.
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For t = O(n∆2
n) and ε sufficiently small, since SD1×D2(t) is survival function of χ2

(D−1)2

distribution, there exists εn > 0 such that∣∣∣∣SD1×D2(t− ε)
SD1×D2(t)

− 1

∣∣∣∣ ≤ εn. (A.10)

By lemma 2 and under the condition that t = o(n1/3D−4), for certain postive constant C,∣∣∣∣P (τ̃k > t− ε)
SD1×D2(t− ε)

− 1

∣∣∣∣ ≤ C(ε)3/2n−1/2 = o(1). (A.11)

Given t ∈ [0, C0n∆2
n], we have ∆n = o(n−1/3). Under H0, E(Lk,st) = 0 and

sup
1≤s,t≤D

E(Lmk,st) =
∑

1≤L≤m,
∑L
l=1ml=m

Cn−m/2E{
L∏
l=1

(Ik,il,s − vs)ml}E{
L∏
l=1

(Iil,t − vt)ml}.

To prove sup1≤s,t≤D E(Lmk,st) ≤ C, applying (A.8) in Lemma 1, we have

sup
1≤s,t≤D

E(Lmk,st) ≤ m!

and

sup
1≤s,t≤D

E(δ2
k,st) ≤ C(

√
n∆n)2.

Next, by the binomial expansion,

E|Ri|2 = CE
(
2

D∑
s=1

D∑
t=1

Lk,stδk,st +
D∑
s=1

D∑
t=1

δ2
k,st

)2

≤ 2CD4(EL2
k,st)(Eδ

2
k,st) + E(δ4

k,st) + 4(ELk,st)(Eδ
3
k,st)

≤ CD4∆4
nn

2.

By Markov inequality, for any ε0 > 0,

P (|Rk| > ε0) ≤ E|Rk|2

ε2
0

≤ CD4∆4
nn

2ε−2
0 . (A.12)

For some large M such that SD1×D2(t) ≥ ∆n for 0 < t < M ,

P (|Rk| > ε0)/SD1×D2(t) ≤ CD4∆4
nn

2ε−2
0 .

When CD is a constant related to D,

P (Rk > ε0)

SD1×D2(t)
≤ CD∆4

nn
2ε−2

0 .
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Under condition (C3) that ∆n = o(n−1/3), CD(∆n)4n2ε−2 = o(1).

On the other hand, for M < t < Cn∆2
n, we have SD1×D2(t) < C∆n. Then by Lemma 2

and Condition (C2), D ≤ C log n,

P (Rk > ε)

SD1×D2(t)
≤ CD∆4

nn
2ε−2

Γ{(D − 1)2/2}−1M (D−1)2/2−1 exp(−n∆2
n/2)

≤ CD∆4
nn

2ε−2 exp(n∆2
n/2).

As a result, for n−
1
2 < ∆n ≤ (log nβ/n)1/2 and β > 0, there exists ε = o(1) such that

sup
0≤t≤Cn∆2

n

sup
k∈H0

P (τk > t)

SD1×D2(t)
≤ 1 + ε. (A.13)

Similarly, for any t > 0, there exists a positive constant c such that

sup
0≤t≤Cn∆2

n

sup
k∈H0

P (τk > t)

SD1×D2(t)
≥ sup

i∈H0

P (τ̃k ≤ t+ c)− P (Ri > c)

SD1×D2(t)
.

By Lemma 2, P (τ̃k ≤ t+ c)/GD(t) ≤ 1− ε. By (A.13), P (Rk > c)GD(t) ≤ ε. Therefore, for

any ε > 0,

sup
0≤t≤Cn∆2

n

sup
k∈H0

P (τk > t)

SD1×D2(t)
≥ 1− 2ε.

Proof of Theorem 2. Write Zk,st = (Ik,i,s − vs)(I
∗
i,t − vt)/(vsvt)

1/2 − E[(Ik,i,s − vs)(I
∗
i,t −

vt)/(vsvt)
1/2]. Since

|Zk,st| ≤
∣∣∣∣(Ik,i,s − vs)(I∗i,t − vt)(vsvt)1/2

− ηk,st
∣∣∣∣ ≤ 1− vmin

vmin

is bounded under Condition (C3), by Hoeffding’s inequality, there exists postive constants

C and C1 such that

Pr

{
sup

1≤s,t≤D

∣∣∣∣∣n−1/2

n∑
i=1

Zk,st − n−1/2

n∑
i=1

E(Zk,st)

∣∣∣∣∣ > M2

√
n∆n

}

=Pr

(
sup

1≤s,t≤D

∣∣Lk,st − n1/2ηk,st
∣∣ > M2

√
n∆n

)
≤2CD2 exp(−C1n∆2

n).
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Then,

Pr

(
sup

1≤k≤p
sup

1≤s,t≤D
|Lk,st −

√
nηk,st| > M2

√
n∆n

)
≤ 2CD2p exp(−C1n∆2

n).

Note that

τk =
D∑
s=1

D∑
t=1

(
√
nτk,st + Lk,st −

√
nτk,st + δk,st)

2.

Under Condition (C4), since mink∈S |ηk,st| ≥
√

2C ′0n
−%, k ∈ H1, subsequently ηk,st ≥ C∆n.

Under Conditions (C1)-(C2), it follows from Lemma 1 that

Pr
(

inf
k∈H1

τk > C1n∆2
n

)
≥1− Pr

(
sup
k∈H1

sup
1≤s,t≤D

|δk,st| > M1

√
n∆n

)
− Pr

(
sup
k∈H1

sup
1≤s,t≤D

|Lk,st − n1/2τk,st| ≥M2

√
n∆n

)
.

≥1− (p− q) exp(−C1n∆2
n),

where M1, M2, C1 and C2 are some postive constants.

Consequently, under Condition (C2), Pr
(

inf
k∈H1

τk > C1n∆2
n

)
→ 1 as n → ∞. The proof

of Theorem 1 is complete.

Proof of Theorem 3. Define Jk,i = (Jk,i,11, . . . , Jk,i,st, . . . , Jk,ij,(D1−1)(D2−1))
>, where Jk,i,st =

{I(Q̃k,s−1 < X̃i,k < Q̃k,s)− vs}{I(Q̂∗t−1 < Yi < Q̂∗t )− vt}/(vsvt)1/2 and Q̃k,s is the s-th em-

pirical quantile for X̃i,k. Denote I(Q̃k,s−1 < X̃i,k < Q̃k,s) as Ĩi,k,s. Let Jk = n−1/2
∑n

i=1 Jk,i

and Vk = cov(Jk,i). Obviously, Vk is a positive definite matrix. Therefore we have

τk|C =

D1∑
s=1

D2∑
t=1

[
1√
n

n∑
i=1

(Î∗it − vt)(Ĩi,k,s − vs)
(vsvt)1/2

]2

= (HkUkV
−1/2
k n−1/2

n∑
i=1

Jk,i)
>(HkUkV

−1/2
k n−1/2

n∑
i=1

Jk,i)

= (n−1/2

n∑
i=1

Jk,i)
>V −1

k (n−1/2

n∑
i=1

Jk,i),

where Uk is an orthogonal matrix and Hk is an tranformation matrix that satisfies Ĩi,k,s −
vs = Hk(Îi,k,s). Following the definition of order statistics, I(Q̃k,s−1 < X̃i,k < Q̃k,s) =

I(s− 1 < r(X̃i,k) < s), where r(X̃i,k) is the order for X̃i,k among n observations of X̃k. The
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order for Ĩi,k,s doesn’t change when permutation is conducted twice. Then H2
k = I. Also

P (τk|C ≤ t) = P (Jk ∈ εk,t), where εk,t is an (D1 − 1)(D2 − 1) dimensional ellipsoid.

When Jk,i follows a non-lattice distribution, by Theorem 19.2 in Bhattacharya and Rao

(2010), a bounded continous density of n−1/2
∑n

i=1 Jk,i exists and approximate to multivari-

ate Gaussian density function φv with mean 0 and covariance V . By Cramer-Edgeworth

decomposition, it is easy to see that

|pn(u)− φv(u)| ≤ Cn−1/2P1,J(u)φv(u),

where pn is a bounded continuous density of n−1/2
∑n

i=1 Jk,i and P1,J(u) is first Cramer-

Edgeworth polynomial. Since the relationship between Gaussian and Chi-square distribu-

tion,
∫
εck,t

φv(u)du = G(D1−1)×(D2−1)(t). Therefore, the result of Lemma 3 holds, that is∣∣∣∣∣
∫
εck,t

P1,J(u)φv(u)du

∣∣∣∣∣ ≤ C(1 + t3/2)(D2 − 1)3(D1 − 1)3G(D1−1)×(D2−1)(t).

Then Theorem 1 holds and under H0, τk|C follows chi-square distribution. The proof of

Theorem 3 is complete.

Proof of Corollary 1. It suffices to show that

F̂DRt̂ =
pSD1×D2(t̂)

max

{∑
k∈H

I(τk > t̂), 1

} = α. (A.14)

Since
∑

1≤k≤p
I(τk > t) is monotone in t and SD1×D2(t) is continuous, there exists a constant

0 < t̂ ≤ Cn∆2
n such that (A.14) holds. By the definition of t̂ in (4), t̂ is chosen for controlling

the false discovery rate at α. Under the assumption that q/p→ 1 as p→∞,

FDRt =

∑
k∈H0

I(τk > t)

max{
∑

1≤k≤p I(τk > t), 1}

=

∑
k∈H0

I(τk > t)/q

max{
∑

k∈H I(τk > t), 1}/p
.

Thus, in order to prove F̂DRt̂ → α, it suffices to show∑
k∈H0

I(τk > t̂)/pSD1×D2(t)→ 1
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in probability. For any positive constant ε, by Markov inequality,

Pr

{∣∣∣∣
∑

k∈H0
I(τk > t)

pSD1×D2(t)
− 1

∣∣∣∣ > ε

}
≤ ε−2E

{∑
k∈H0

I(τk > t)

pSD1×D2(t)
− 1

}2

.

By Theorem 1, Pr(τk > t)/SD1×D2 → 1. Then,

Pr

{∣∣∣∣
∑

k∈H0
I(τk > t)

pSD1×D2(t)
− 1

∣∣∣∣ > ε

}
≤ε−2

V ar[
∑

k∈H0
I(τk > t)]

p2S2
D1×D2

(t)

≤{εpSD1×D2(t)}−2(t)

[
E
∑
k∈H0

∑
j∈H0

I(τk > t)I(τj > t)− E

{∑
k∈H0

I(τk > 0)

}
E

{∑
j∈H0

I(τj > t)

}]

≤ε−2p−2S−2
D1×D2

(t)

[∑
k∈H0

∑
j∈H0

Pr{min(τk, τj) > t} −
∑
k∈H0

Pr(τk > t)
∑
j∈H0

Pr(τj > t)

]
≤ε−2p−1S−2

D1×D2
(t)
∑
k∈H0

Pr(τk > t).

As a result, for 0 < t < Cn∆2
n, SD1×D2(t) > cp, where cp is a positive constant related to p.

Therefore, ∑
k∈H0

I(τk > t̂)/pSD1×D2(t)→ 1.

The proof of Corollary 1 is complete.

Proof of Theorem 4. Define

η̃k =

D1∑
s=1

D2∑
t=1

{
1

n

n∑
i=1

(I∗it − vt)(Ik,i,s − vs)
(vsvt)1/2

}2

.

Recall the definition of η̂k, we have

|η̂k − η̃k| =

∣∣∣∣∣∣
D1∑
s=1

D2∑
t=1

{
1

n

n∑
i=1

(Î∗it − vt)(Îk,i,s − vs)
(vsvt)1/2

}2

−
D1∑
s=1

D2∑
t=1

{
1

n

n∑
i=1

(I∗it − vt)(Ik,i,s − vs)
(vsvt)1/2

}2
∣∣∣∣∣∣

≤
D1∑
s=1

D2∑
t=1

1

n2vsvt

∣∣∣∣∣∣
{

n∑
i=1

(Î∗it − vt)(Îk,i,s − vs)

}2

−

{
n∑
i=1

(I∗it − vt)(Ik,i,s − vs)

}2
∣∣∣∣∣∣

≤
D1∑
s=1

D2∑
t=1

8

nvsvt

∣∣∣∣∣
n∑
i=1

{Î∗i,tÎk,i,s − I∗i,tIk,i,s − vs(Î∗i,t − I∗i,t)− vt(Îk,i,s − Ik,i,s)}

∣∣∣∣∣
≤

D1∑
s=1

D2∑
t=1

16

nvminumin

n∑
i=1

|Î∗i,t − I∗i,t|+
D1∑
s=1

D2∑
t=1

16

nvminumin

n∑
i=1

|Îk,i,s − Ik,i,s| = J1 + J2,
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where the second inequality holds because |Î∗i,tÎk,i,s|, |I∗i,tIk,i,s|, |Î∗i,tvs|, |Îk,i,svt|, |I∗i,tvs|, |Ik,i,svt|
and |vsvt| all have upper bounds, the last inequality holds due to the Condition (C3).

Then, by Condition (C4*), we have

Pr
(
S ⊂ M̂

)
≥Pr

(∣∣∣∣∣η̂k −
D1∑
s=1

D2∑
t=1

η2
k,st

∣∣∣∣∣ ≤ C ′0n
−%,∀k ∈ S

)

≥Pr

(
max
1≤k≤p

∣∣∣∣∣η̂k −
D1∑
s=1

D2∑
t=1

η2
k,st

∣∣∣∣∣ ≤ C ′0n
−%

)

≥1− pPr

(∣∣∣∣∣η̂k −
D1∑
s=1

D2∑
t=1

η2
k,st

∣∣∣∣∣ ≥ C ′0n
−%

)

≥1− pPr
(
|η̂k − η̃k| ≥ C ′0n

−%/2
)
− pPr

(∣∣∣∣∣η̃k −
D1∑
s=1

D2∑
t=1

η2
k,st

∣∣∣∣∣ ≥ C ′0n
−%/2

)

≥1− Pr
(
J1 + J2 ≥ C ′0n

−%/2
)
− pPr

(∣∣∣∣∣η̃k −
D1∑
s=1

D2∑
t=1

η2
k,st

∣∣∣∣∣ ≥ C ′0n
−%/2

)

≥1− pPr

(
max
s,t

1

n

n∑
i=1

∣∣∣Î∗i,t − I∗i,t∣∣∣ ≥ C ′0n
−%vminumin

64D1D2

)

− pPr

(
max
s,t

1

n

n∑
i=1

∣∣∣Îk,i,s − Ik,i,s∣∣∣ ≥ C ′0n
−%vminumin

64D1D2

)

− pPr

max
s,t

∣∣∣∣∣∣
{

1

n

n∑
i=1

(I∗it − vt)(Ik,i,s − vs)
(vsvt)1/2

}2

− η2
k,st

∣∣∣∣∣∣ ≥ C ′0n
−%

2D1D2


≥1− pD1D2Pr

(
1

n

n∑
i=1

∣∣∣Î∗i,t − I∗i,t∣∣∣ ≥ C ′0n
−%vminumin

64D1D2

)

− pD1D2Pr

(
1

n

n∑
i=1

∣∣∣Îk,i,s − Ik,i,s∣∣∣ ≥ C ′0n
−%vminumin

64D1D2

)

− pD1D2Pr

{∣∣∣∣∣ 1n
n∑
i=1

(I∗it − vt)(Ik,i,s − vs)−
√
vsvtηk,st

∣∣∣∣∣ ≥ C ′0n
−%vminumin

16D1D2

}
.

Combining the proof of Lemma 1 and Hoeffding’s inequality, there exist some positive con-

stants C ′1 and C ′2 such that

pD1D2Pr

(
1

n

n∑
i=1

∣∣∣Î∗i,t − I∗i,t∣∣∣ ≥ C ′0n
−%vminumin

64D1D2

)
≤ pD1D2 exp{−C ′1n1−2%/(D2

1D
2
2)},
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pD1D2Pr

(
1

n

n∑
i=1

∣∣∣Îk,i,s − Ik,i,s∣∣∣ ≥ C ′0n
−%vminumin

64D1D2

)
≤ pD1D2 exp{−C ′2n1−2%/(D2

1D
2
2)}

Since |(I∗it − vt)(Ik,i,s − vs)| ≤ 1, we use the Hoeffding’s inequality to obtain

pD1D2Pr

{∣∣∣∣∣ 1n
n∑
i=1

(I∗it − vt)(Ik,i,s − vs)−
√
vsvtηk,st

∣∣∣∣∣ ≥ C ′0n
−%vminumin

16D1D2

}

≤2pD1D2 exp

(
C
′2
0 n

1−2%v2
minu

2
min

128D2
1D

2
2

)
.

Therefore, there exists a positive constant C ′ such that

Pr
(
S ⊂ M̂

)
≥1−O(pD1D2) exp{−C ′n1−2%/(D2

1D
2
2)}

≥1−O(pnκ+ξ) exp(−bn1−2%−2κ−2ξ)

≥1−O(p exp{−bn1−2%−2κ−2ξ + (κ+ ξ) log(n)}),

where b is a positive constant. We have completed the proof of Theorem 4.
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Table 1

The quantiles of minimum model size for p = 1000 under Scenarios 1.1-1.4 in Section 4.1.

ρ = 0 ρ = 0.5 ρ = 0.9

Method 5% 25% 50% 75% 95% 5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

Scenario 1.1

QCS(8) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 6.0 8.0 9.0 10.0 12.0

QCS(9) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 7.0 8.0 9.0 10.0 12.0

QCS(10) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 7.0 8.0 9.0 10.0 13.0

FQCS 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 7.0 8.0 8.0 10.0 12.0

SIRI 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 7.0 8.0 8.0 9.0 11.0

DC-SIS 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 7.0 8.0 8.0 9.0 10.0

SIS 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 7.0 8.0 8.0 9.0 11.0

Scenario 1.2

QCS(8) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0

QCS(9) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0

QCS(10) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0

FQCS 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0

SIRI 40.9 182.3 438.0 735.8 945.2 43.2 262.5 454.5 718.5 913.5 70.1 218.8 484.5 816.3 958.4

DC-SIS 3.0 3.0 3.0 4.0 6.0 3.0 3.0 3.0 3.0 5.1 5.0 7.0 8.0 9.0 12.1

SIS 190.6 450.5 729.0 852.5 972.3 291.7 466.5 692.5 830.0 971.2 123.6 363.8 615.0 762.0 968.2

Scenario 1.3

QCS(8) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0 7.0 8.8 9.0 10.0 11.0

QCS(9) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0 7.0 8.0 9.0 10.0 12.0

QCS(10) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0 7.0 8.0 9.0 10.0 12.1

FQCS 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 8.0 8.0 9.0 10.0 11.0

SIRI 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 8.0 9.0 10.0 10.0 12.0

DC-SIS 116.0 248.3 362.0 530.3 713.1 16.0 109.0 256.0 419.0 617.3 42.0 87.0 193.0 307.0 491.8

SIS 276.0 504.0 689.0 852.0 962.1 64.3 240.5 517.5 742.3 942.4 123.1 327.0 548.0 750.3 951.8

Scenario 1.4

QCS(8) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0 4.0 5.0 5.0 6.0

QCS(9) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0 4.0 5.0 5.0 6.0

QCS(10) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0 4.0 5.0 5.0 6.0

FQCS 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0 4.0 5.0 5.0 6.0

SIRI 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0 5.0 6.0 7.0 8.0 11.1

DC-SIS 201.8 391.3 565.0 703.8 904.2 96.2 278.5 384.0 674.8 866.6 34.8 121.5 254.0 490.0 885.5

SIS 374.6 560.0 719.0 883.3 970.2 536.4 734.8 828.0 913.3 982.3 746.9 880.0 930.0 971.3 992.0

Note: QCS(8), QCS(9) and QCS(10), our proposed method defined in (5) with different quantile grid

points (D1 = D2 = 8, 9, 10); Fused, our proposed method defined in (7); SIS, the sure independence

screening (Fan and Lv 2008); DC-SIS, the distance correlation based screening, (Li et al. 2012); SIRI, the

sliced inverse regression via inverse modeling method (Jiang and Liu 2014).
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Table 2

The quantiles of minimum model size for p = 5000 under Scenarios 1.1-1.4 in Section 4.1.

ρ = 0 ρ = 0.5 ρ = 0.9

Method 5% 25% 50% 75% 95% 5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

Scenario 1.1

QCS(8) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0 7.0 8.0 9.0 10.0 14.0

QCS(9) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0 7.0 8.0 9.0 10.0 13.0

QCS(10) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0 7.0 8.0 9.0 10.0 13.1

FQCS 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0 7.0 8.0 9.0 10.0 12.1

SIRI 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 7.0 8.0 9.0 10.0 12.0

DC-SIS 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 7.0 8.0 8.0 10.0 12.0

SIS 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.1 7.0 8.0 8.5 10.0 12.0

Scenario 1.2

QCS(8) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0

QCS(9) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0

QCS(10) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0

FQCS 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0

SIRI 140.6 1058.5 2551.5 3760.8 4813.9 315.9 1019.8 2014.5 3470.3 4692.5 103.4 746.8 1936.5 3402.8 4709.4

DC-SIS 3.0 3.0 3.0 5.0 14.1 3.0 3.0 3.0 4.0 10.1 5.0 6.0 7.0 9.0 13.2

SIS 1464.2 2763.3 3613.5 4456.3 4874.5 1098.1 1872.3 3225.5 4471.3 4939.7 521.6 1667.0 2756.5 3730.8 4800.2

Scenario 1.3

QCS(8) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0 7.0 8.0 10.0 11.0 13.0

QCS(9) 3.0 3.0 3.0 3.0 3.1 3.0 3.0 3.0 3.0 4.0 7.0 8.0 9.0 10.0 13.0

QCS(10) 3.0 3.0 3.0 3.0 4.0 3.0 3.0 3.0 3.0 7.1 7.0 8.0 9.0 10.0 12.1

FQCS 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.1 8.0 8.0 9.0 10.0 12.0

SIRI 3.0 3.0 3.0 3.0 3.1 3.0 3.0 3.0 3.0 4.0 8.0 9.0 10.0 11.0 12.0

DC-SIS 322.8 863.0 1644.5 2642.8 3811.0 103.7 413.8 1024.5 2077.8 3770.0 166.2 538.0 1165.0 2570.3 3506.6

SIS 1112.0 2315.3 3530.0 4277.5 4697.1 251.8 1147.3 2460.0 4001.3 4685.2 566.2 1798.8 2969.0 3928.3 4803.8

Scenario 1.4

QCS(8) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0 4.0 5.0 5.0 6.0

QCS(9) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0 4.0 5.0 5.0 6.0

QCS(10) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0 4.0 5.0 5.0 6.0

FQCS 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0 4.0 5.0 5.0 6.0

SIRI 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 5.0 6.0 7.0 8.0 12.0

DC-SIS 414.0 1551.8 2230.5 3353.0 4377.7 493.0 1215.3 1979.0 2724.8 4053.0 84.7 646.5 1660.0 2915.3 4505.3

SIS 1480.7 2649.5 3739.5 4374.3 4926.2 1897.6 3124.3 3966.5 4488.5 4930.8 3390.2 4156.3 4584.5 4858.3 4980.1

Note: All notations are the same as those of Table 1.
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Table 3

The simulation results of the proposed FDR control procedure under Scenarios 2.1-2.3 in Section 4.2.

p D1 = D2 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 |Ŝα| F̂DR

Scenario 2.1

1000 3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 10.17 0.03

4 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 10.14 0.01

5 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 10.12 0.01

Scenario 2.2

3 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 10.23 0.03

4 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 10.10 0.02

5 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 10.05 0.02

Scenario 2.3

3 0.95 0.95 0.94 0.97 0.94 0.95 0.96 0.96 0.95 0.96 8.76 0.06

4 0.96 0.99 0.99 0.99 0.99 0.97 0.95 0.95 0.97 0.98 9.64 0.06

5 0.98 0.99 1.00 0.99 0.93 0.92 0.95 0.96 0.97 0.95 9.50 0.06

Scenario 2.1

5000 3 0.97 0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.92 9.98 0.01

4 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 10.11 0.01

5 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 9.99 0.01

Scenario 2.2

3 0.98 0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.95 9.98 0.02

4 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 10.02 0.01

5 0.98 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.93 9.93 0.01

Scenario 2.3

3 0.83 0.84 0.79 0.75 0.72 0.82 0.82 0.84 0.79 0.82 7.35 0.02

4 0.87 0.98 0.97 0.96 0.74 0.83 0.82 0.87 0.86 0.83 8.63 0.01

5 0.81 0.97 0.96 0.98 0.74 0.84 0.83 0.84 0.77 0.74 8.35 0.02

Note: Xj : probability that the active predictors Xj is selected; |Ŝα|: average number of selected predictors;

F̂DR: average of empirical false discovery proportion.
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Table 4

The simulation results of the proposed stepwise procedure under Scenarios 3.1-3.8 in Section 4.3.

Scenario 3.1 Scenario 3.2 Scenario 3.3 Scenario 3.4

p Method FN FP FN FP FN FP FN FP

1000 QCS-S(8) 0.12(0.33) 0.09(0.29) 0.00(0.00) 0.00(0.00) 0.08(0.27) 0.01(0.10) 0.06(0.24) 0.00(0.00)

QCS-S(9) 0.20(0.40) 0.12(0.36) 0.00(0.00) 0.00(0.00) 0.11(0.31) 0.00(0.00) 0.21(0.41) 0.00(0.00)

QCS-S(10) 0.33(0.47) 0.08(0.27) 0.04(0.20) 0.00(0.00) 0.24(0.43) 0.00(0.00) 0.46(0.63) 0.00(0.00)

SIRI 0.00(0.00) 3.35(1.71) 0.99(0.10) 7.34(1.97) 0.00(0.00) 6.60(2,01) 0.00(0.00) 5.35(1.86)

Scenario 3.5 Scenario 3.6 Scenario 3.7 Scenario 3.8

FN FP FN FP FN FP FN FP

1000 QCS-S(8) 0.25(0.44) 0.00(0.00) 0.25(0.46) 0.00(0.00) 0.30(0.56) 0.00(0.00) 0.32(0.53) 0.00(0.00)

QCS-S(9) 0.25(0.44) 0.00(0.00) 0.49(0.59) 0.00(0.00) 0.54(0.61) 0.00(0.00) 0.41(0.62) 0.00(0.00)

QCS-S(10) 0.29(0.46) 0.00(0.00) 0.65(0.66) 0.00(0.00) 0.76(0.74) 0.00(0.00) 0.50(0.64) 0.00(0.00)

SIRI 0.00(0.00) 6.75(1.94) 0.79(0.78) 7.32(2.14) 0.00(0.00) 6.99(1.89) 0.24(0.43) 7.18(2.11)

Scenario 3.1 Scenario 3.2 Scenario 3.3 Scenario 3.4

p Method FN FP FN FP FN FP FN FP

5000 QCS-S(8) 0.13(0.34) 0.06(0.24) 0.00(0.00) 0.00(0.00) 0.09(0.29) 0.00(0.00) 0.09(0.29) 0.00(0.00)

QCS-S(9) 0.26(0.44) 0.10(0.33) 0.00(0.00) 0.00(0.00) 0.13(0.34) 0.00(0.00) 0.30(0.58) 0.00(0.00)

QCS-S(10) 0.34(0.52) 0.07(0.26) 0.03(0.17) 0.00(0.00) 0.25(0.44) 0.00(0.00) 0.49(0.72) 0.00(0.00)

SIRI 0.00(0.00) 6.25(1.75) 1.00(0.00) 10.33(1.86) 0.00(0.00) 9.26(1.75) 0.00 (0.00) 7.53(1.81)

Scenario 3.5 Scenario 3.6 Scenario 3.7 Scenario 3.8

FN FP FN FP FN FP FN FP

5000 QCS-S(8) 0.24(0.43) 0.00(0.00) 0.34(0.55) 0.00(0.00) 0.28(0.51) 0.00(0.00) 0.34(0.59) 0.00(0.00)

QCS-S(9) 0.22(0.42) 0.00(0.00) 0.44(0.62) 0.00(0.00) 0.41(0.59) 0.00(0.00) 0.32(0.53) 0.00(0.00)

QCS-S(10) 0.26(0.44) 0.00(0.00) 0.61(0.75) 0.00(0.00) 0.72(0.68) 0.00(0.00) 0.47(0.66) 0.00(0.00)

SIRI 0.00(0.00) 9.55(1.94) 1.08(0.72) 10.68(2.14) 0.01(0.1) 9.45(1.86) 0.45(0.58) 10.36(1.87)

Note: QCS-S(8), QCS-S(9) and QCS-S(10), our proposed procedure defined in Section 4.3 with different

quantile grid points (D1 = D2 = 8, 9, 10); SIRI, the sliced inverse regression via inverse modeling method

(Jiang and Liu 2014).FN: average number of true active predictors falsely excluded as irrelevant predictors;

FP: average number of irrelevant predictors falsely selected as true active predictors; The number in

brackets are the standard deviation of distribution for FN and FP, respectively.
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Table 5

Mean square prediction errors (MSPE) for the rat eye data with different methods.

IP IPDC SIRI QCS-FDR

Mean 1.41 1.46 1.55 1.40

Sd 0.55 0.73 0.97 0.66

Note: Mean, the mean of MSPE; Sd, the standard deviation of MSPE.
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