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Abstract

In conventional railway planning processes, stop-skipping decisions are often made at the line planning

stage, which is executed prior to train timetabling and platform assignment. However, stop-skipping can

shorten passenger journey time and also save on train operating costs. Hence, integrating train timetabling,

stop-skipping, and platform choice decisions can help generate train timetables with improved passenger

convenience and higher train operating efficiency. Integrating these decisions is a challenging task, as these

decisions affect passenger train transfer behavior, which in turn affects the entire passenger flow. This study

is a first attempt at integrating these decisions while simultaneously taking into account the passenger flow.

We consider a train timetabling problem on a single, one-way track with stop-skipping, platform choice, and

passenger flow considerations, and we formulate it as a constrained minimum-cost multi-commodity network

flow problem on a time-space network. We analyze the problem’s complexity and develop a Lagrangian re-

laxation heuristic to solve the problem. We conduct a computational study with randomly generated data

that captures the characteristics of the Beijing-Shanghai high-speed railway line. The computational results

report the effectiveness of our Lagrangian relaxation heuristic and how the railway’s service capacity and

passenger traffic intensity affect the solution.

Keywords: Train timetabling; dynamic passenger demand; stop-skipping; platform assignment; Lagrangian

relaxation
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1 Introduction

Due to the complexity of railway systems, the railway planning process is often divided into sequential planning

phases. A typical sequence comprises the strategic phase, tactical phase, and operational phase (Lusby et

al. 2011). The strategic phase includes network planning and line planning. The tactical phase includes train

timetabling, rolling stock scheduling, and crew scheduling. The operational phase involves real-time railway

management, such as disruption management. One obvious drawback of such a sequential planning process is

that the decisions generally result in suboptimal overall solutions. To overcome this drawback, one approach is

to integrate two or more decisions that traditionally belong to different phases.

In conventional railway planning processes, stop-skipping decisions are often made at the line planning stage,

which is executed prior to train timetabling (see, e.g., Goossens et al. 2006). Stop-skipping enables one train

to overtake another train. This can shorten passenger journey time and also save on train operating costs.

However, this not only complicates the train timetable, but also increases the number of passenger transfers

at stations. For example, in order to minimize the journey time, a passenger may get off a regular train at

a particular station, transfer to an express train which skips stops, and then get off the express train and

transfer back to another regular train to get to his/her destination. Hence, integrating train timetabling and

stop-skipping decisions while simultaneously taking into consideration the passenger flow can potentially reduce

both passenger inconvenience and train operating costs.

In this paper, we consider a train-timetabling model with dynamic (i.e., time-dependent) passenger demand

and stop-skipping decisions on a single, one-way rail track. Since stop-skipping has a direct impact on passenger

journey time, we consider the passenger flow among all the origin-destination (OD) pairs of the rail line. In

addition, since stop-skipping will result in additional passenger transfers, our model considers the assignment of

platform tracks (i.e., sidings) to trains at transfer stations, as well as the time and effort required by passengers

to walk between platforms when changing trains. Our model aims to simultaneously minimize train operating

costs and maximize passenger satisfaction, where passenger satisfaction is measured by how many passenger

demands are satisfied, how long the passengers’ journey times are, and how much walking the passengers need

to do to transfer trains.

Given the railway infrastructure and passenger demand data, the line planning problem aims to determine

a line plan, which specifies the paths operated between origin and destination stations, the hourly frequency of

the lines, and the stop-skipping patterns (see, e.g., Goossens et al. 2004, 2006). Given a set of lines and their

frequencies of use, the train timetabling problem determines the train arrival and departure times at each station

along the operated path such that certain safety requirements, such as headway constraints and overtaking

constraints, are satisfied. A great deal of research on different variants of the train timetabling problem is

available in the literature. Various solution approaches, such as meta-heuristics, simulation-based heuristics,

and mathematical programming-based methods, have been proposed. See Caprara et al. (2007), Lusby et

al. (2011), Cacchiani et al. (2014), and Kroon et al. (2014) for comprehensive reviews on train timetabling
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research.

Some research has considered integrated optimization of line planning and train timetabling; see, for example,

Kaspi and Raviv (2013) and Burggraeve et al. (2017). In particular, some studies have incorporated stop-

skipping decisions into train timetabling so as to improve passenger service and reduce operating cost. These

include studies on various train timetabling problems that consider the saving in acceleration and deceleration

time when a train bypasses a station; see Zhou and Zhong (2005), Ren et al. (2009), and Shafia et al. (2012).

Jiang et al. (2017) consider a train timetabling problem with stop-skipping decisions for a highly congested

double-track railway line. Their model aims to add as many new trains as possible to the existing schedule,

while taking into account the changes needed to the existing schedule. Wang et al. (2015a) study a train

scheduling problem with stop-skipping decisions on urban rail lines and consider the passenger flow on such

rail lines. No overtaking of trains at stations are allowed in their model. Yang et al. (2016) analyze a train

timetabling problem with stop-skipping decisions for high-speed trains. Their model considers passenger demand

at each station without tracking the detailed number of passengers getting on/off each train at each station.

Altazin et al. (2017) study a train rescheduling problem with flexible stopping, where the number of passengers

boarding and alighting at each station is considered, and passenger waiting is part of the objective. Zhu and

Goverde (2019) study a train rescheduling problem with flexible stopping and short-turning, where the objective

is to minimize the impacts of train delay, train cancellation, and stop-skipping on passengers.

Some studies have incorporated stop-skipping decisions into train timetabling, where the passenger demand

of each OD pair is given explicitly as input. Wang et al. (2014) study a train timetabling problem for urban

rail lines with stop-skipping decisions, where the passenger arrival rate at the origin station of each OD pair is

given, and passengers do not change trains. Yue et al. (2016) study a timetabling problem for high-speed trains

with a given minimum number of trains required for serving passengers of each OD pair. Their model includes

stop-skipping decisions and considers multiple sidetracks at each station. However, unlike our problem, their

model does not consider the start and end time of passenger journeys, how passengers change trains, or the

cost of passengers’ journeys. Gao et al. (2016) consider a rescheduling problem of a double-track metro line in

an overcrowded situation after disruptions. Their model includes stop-skipping decisions in the recovery period

and explicitly considers the number of passengers with different current and destination stations. However, their

model does not consider stations with multiple tracks, overtaking of trains at stations, and passenger choice over

changing trains. Shang et al. (2018) analyze a timetabling problem in an over-saturated urban rail transit net-

work. Their model includes stop-skipping decisions and aims to maximize the systemwide equity performance,

where an equity index is used for measuring the number of missed trains that a passenger encounters. Qi et

al. (2018a, 2018b) and Cacchiani et al. (2020) study different train timetabling problems with stop-skipping

decisions. Unlike our model, their models consider time-independent passenger demands and assume that each

passenger takes only one train from his/her origin to destination without changing trains. Yan and Goverde

(2019) study a combined line planning and train timetabling problem, where the line planning problem aims to

obtain a line plan with different train types, stop patterns, and frequencies that satisfies the given day-based
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passenger demand, and the train timetabling problem aims to obtain a periodic train timetable. They present

an iterative framework that solves the two problems iteratively. Dong et al. (2020) study a train timetabling

problem with stop-skipping decisions and time-dependent passenger demands for a congested commuter railway

line. Their model assumes that the number of trains in operation is a decision variable and that there are no

predefined skip-stop candidate sets. These studies do not consider platform assignments or passenger transfers

between platforms at transfer stations.

Our research is related to train platforming, as our problem includes the decision of assigning platforms to

trains at each station. Train platforming problems, which are typically solved after train timetabling is done,

aim to determine an assignment of trains to platforms at a railway station, while taking into account the train

arrival and departure times at the station and the routing of the trains within the station (Caprara et al. 2011).

Some works consider train timetabling problems with platform assignment decisions at those stations that have

multiple parallel platforms; see, for example, Carey (1994), Ghoseiri et al. (2004), and Petering et al. (2016).

Some works consider integrated train timetabling and platforming problems that involve stations with more

complicated track layouts; see, for example, Carey and Crawford (2007) and Lee and Chen (2009).

Some studies have integrated the decisions of timetabling and passenger route choice. In contrast to tra-

ditional vehicle timetabling problems in which passenger routes are considered as input, timetabling with pas-

senger routing aims to determining a vehicle timetable and a passenger routing simultaneously (see Schmidt

2014). Various models with different objectives and various solution approaches using event-activity networks

for periodic vehicle timetabling with passenger routing have been developed by Siebert and Goerigk (2013),

Schmidt and Schöbel (2015), Gattermann et al. (2016), and Borndörfer et al. (2017), and Schiewe and Schöbel

(2020). These models’ objectives focus on optimizing passengers’ waiting time or travel time and ignore the

trains’ operating costs. Except for Gattermann et al. (2016) who consider distributing the passengers tempo-

rally using “time-slices,” these models assume that passenger demands are time-independent. Martin-Iradi and

Ropke (2019) also study a periodic train timetabling problem with passenger routing decisions. Their solution

method bears some similarities as ours in that their solution procedure iteratively modifies the solution by tak-

ing passenger routing into account. Their model allows passenger transfers, where a minimum transfer time is

imposed, and the transfer time is independent of the station platforms. Unlike our model, their model considers

time-independent passenger demand OD pairs and assumes that all passengers belonging to the same OD pair

traverse the same path from the origin to the destination, and its objective is to minimize total passenger travel

time.

Our research falls into the category of demand-responsive train timetabling, where the train timetable

is optimized according to the passenger demand pattern. Many of the abovementioned articles also involve

demand-responsive train timetabling. Some representative works on demand-responsiveness of train timetabling

include Niu and Zhou (2013), Barrena et al. (2014a; 2014b), Sun et al. (2014), Niu et al. (2015), Zhu et

al. (2017), and Shi et al. (2018) who present various solution methods for different train timetabling models,

so as to minimize passengers’ time and cost. Demand-responsive train timetabling problems that consider
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Table 1: Comparison of demand-responsive train timetabling research.

Reference Infrastructure∗ Train line Platform Objective(s) Passenger Passenger transfers
selection or stop- assign- demand at stations
skipping decision ments

Barrena et al. Unidirectional No No Average passenger Time- No transfers
(2014a) waiting time dependent

Barrena et al. Unidirectional No No Average passenger Time- No transfers
(2014b) waiting time dependent

Borndörfer et al. General No No Total and maximum Time- Transfers allowed
(2017) network weighted passenger independent

travel time

Burggraeve et al. Bidirectional Yes No Weighted sum of Time- Transfers allowed
(2017) operating cost and independent

passenger travel time

Cacchiani et al. Unidirectional Yes No Total unsatisfied Uncertain No transfers
(2020) passenger demand and time-

independent

Dong et al. (2020) Unidirectional Yes No Weighted sum of Time- No transfers
waiting/delay time of dependent
passengers and run-
ning time of trains

Gao et al. (2016) Bidirectional Yes No Total travel time of Time- Transfers take
services; number of dependent place after service
passenger waiting at disruption
stations

Gattermann et al. General No No Total passenger travel Time- Transfers allowed
(2016) network time plus penalty on dependent

change of journey
start time

Kaspi and Raviv A given set Yes No Weighted sum of Time- Transfers allowed
(2013) of possible operating cost and dependent

routes passenger travel time

Martin-Iradi and General Yes No Total passenger travel Time- Transfers allowed
Ropke (2019) network time independent

Niu and Zhou (2013) Bidirectional No No Total passenger Time- No transfers
waiting time dependent

Niu et al. (2015) Unidirectional No No Total passenger Time- No transfers
waiting time dependent

Qi et al. (2018a) Unidirectional Yes No Total unsatisfied Uncertain No transfers
passenger demand and time-

independent

Qi et al. (2018b) Unidirectional Yes No Total train travel Time- No transfers
time; total passenger independent
travel time

Schiewe and Schöbel General No No Total passenger travel Time- Transfers allowed
(2020) network time independent

Schmidt (2014) General No No Total passenger travel Time- Transfers allowed
network time independent

Schmidt and Schöbel General No No Total passenger travel Time- Transfers allowed
(2015) network time independent

Shang et al. (2018) General Yes No Systemwide equity Time- No transfers
network performance dependent

Shi et al. (2018) Bidirectional No No Total passenger Time- No transfers
waiting time dependent

Siebert and Goerigk General No No Total passenger travel Time- Transfers allowed
(2013) network time independent

Sun et al. (2014) Unidirectional No No Total passenger Time- No transfers
waiting time dependent

Wang et al. (2014) Unidirectional Yes No Weighted sum of Time- No transfers
with single total passenger travel independent
terminus time and energy

consumption of trains
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Table 1: (cont’d).

Reference Infrastructure∗ Train line Platform Objective(s) Passenger Passenger transfers
selection or stop- assign- demand at stations
skipping decision ments

Wang et al. (2015b) General No No Weighted sum of Time- Transfers with
network total passenger travel independent platform-dependent

time and energy transfer time
consumption of trains

Yan and Goverde Unidirectional Yes No Multiple objectives Time- No transfers
(2019) independent

Yang et al. (2020) Bidirectional No No Total passenger travel Time- No transfers
time; energy dependent
consumption

Yin et al. (2016) Bidirectional No No Expected passenger Uncertain No transfers
delay & travel time; and time-
energy consumption dependent

Yin et al. (2017) Bidirectional No No Total passenger Time- No transfers
waiting time; energy dependent
consumption

Yue et al. (2016) Unidirectional Yes No Total train profit Time- No transfers
independent

Zhu et al. (2017) Bidirectional No No Total cost of Time- No transfers
passengers’ traveling independent
and waiting

This study Unidirectional Yes Yes Total train and Time- Transfers with
passenger cost dependent platform-dependent

transfer time
∗“Bidirectional” infrastructure includes railway systems that contain two parallel tracks, with each track used exclusively in one direction.

energy consumption of trains have also been studied; see, for example, Yin et al. (2016, 2017), and Yang et

al. (2020). Wang et al. (2015b) study a train timetabling problem that take into consideration passengers’

walking time between platforms when changing trains. However, unlike our problem, their model does not

assign platforms to trains and does not consider overtaking of trains. Table 1 summarizes the above-mentioned

demand-responsive train timetabling research. As can be seen in Table 1, demand-responsive train timetabling

models with a unidirectional rail line generally ignore passenger transfers. Our work, however, considers the

fact that even within a unidirectional line, passengers may take advantage of stop-skipping via transferring

trains. Our model specifically takes in account passengers’ time saving obtained from stop-skipping as well as

the inconvenience caused by transfers, and we model this characteristic by imposing a unit cost of traveling and

a unit cost of walking between platforms. Hence, our model has a unique feature that the train timetabling

decision, stop-skipping decision, platform assignment decision, and passengers’ reactions are integrated.

Our main contributions are twofold. First, this study is a first attempt at integrating train timetabling,

stop-skipping, and platform assignment decisions. Integrating these decisions is a challenging task, as these

decisions affect passenger train transfer behavior, which affects the entire passenger flow. The passenger flow

in turn affects the optimal train timetabling, stop-skipping, and platform assignment decisions. We develop

a mathematical model for making integrated decisions while simultaneously taking into account the passenger

flow. Our model considers passenger demand for different OD pairs within different time intervals. It takes

into account the time and effort that passengers need to spend on train transfers when the trains skip stops.

Second, we develop a time-space network formulation and a Lagrangian relaxation heuristic for our model. Our
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time-space network uses multiple vertices to represent different states of a train at each combination of time

and station, so that our train timetabling problem can be represented by a constrained minimum-cost multi-

commodity network flow (MCMCNF) problem on the time-space network. This constrained MCMCNF problem

possesses a nice property, in that after some constraints are relaxed, the problem is decomposed into a number

of independent shortest path subproblems. This design enables us to determine a lower bound efficiently.

The rest of this paper is organized as follows. Section 2 provides a detailed mathematical description of our

problem. Section 3 presents the time-space network, as well as a mixed integer linear programming formulation of

the corresponding constrained MCMCNF problem in the network. Section 4 describes the Lagrangian relaxation

heuristic. Section 5 reports the results of a computational study that tests the performance of the proposed

heuristic. Some concluding remarks are made in Section 6.

2 Problem Description

The problem that we study aims to develop a train timetable for a single-track railway line with the objective of

minimizing both the total train operating cost and the total passenger cost. One important characteristic of our

problem is that we consider stop skipping at stations, as well as the acceleration and deceleration time incurred

when a train stops at a station. Another important characteristic is that we consider the forecast demand of

passengers on each possible OD pair and attempt to satisfy this demand, while taking into account the journey

durations of the passengers and the operating costs of the trains. To determine the passengers’ journeys, we

treat the flows of passengers along each track segment as decision variables. A third characteristic is that we

consider the utilization of multiple platforms at train stations, allow passengers to transfer trains at stations,

and take into consideration the time required for passengers to walk from one platform to another.

2.1 Basic assumptions

The following assumptions are made throughout the paper.

• Assumption 1: This study focuses on trains and passengers traveling along a single-track, unidirectional

railway line. However, since trains have different speed and may skip stops, passengers may transfer from

one train to another to obtain a shorter travel time.

• Assumption 2: The time for a train to travel between the main track and the platform is ignored.

• Assumption 3: The operating cost of a train includes a cost per unit time that the train spends on running,

plus a cost per unit time that the train spends of dwelling. Different trains may have different unit operating

costs. Trains services cannot be canceled. The unit cost of a passenger includes a cost per unit time that the

passenger spends on waiting and train-riding, plus a cost per unit time that the passenger spends on walking

between station platforms. All passengers have the same unit cost of waiting and train-riding, and have the

same unit cost of walking.

• Assumption 4: Passenger demand is known with certainty. Passengers are divided into passenger groups.
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Each passenger group is characterized by the number of passengers in the group, the origin station, the

destination station, and the start time of the passengers’ journey. Passengers belonging to the same group

do not need to travel together. There is a penalty if a passenger’s demand is not satisfied.

• Assumption 5: Passengers with the same OD pair may travel separately. The passenger distribution on

different trains is part of the decision of the model.

Assumption 1 captures the key features of our model, which specifically considers passengers’ time saving

obtained from stop-skipping as well as the inconvenience caused by transfers when passengers are traveling along

a single line. Assumptions 2 and 3 are made for the sake of simplicity. Our model and solution method can be

generalized to handle more general passenger travel and waiting costs, platform-dependent train travel times,

and train cancellations. Assumption 4 holds when passenger demands can be forecast based on historical data.

Assumption 5 implies that in the optimal solution of our model, the passengers are optimally distributed among

all train services. In other words, for any given train timetable, the passenger flow that we are considering

reflects the best-case scenario of passenger distribution.

2.2 Input data

We first describe the input parameters of our model. Table 2 summarizes these parameters, where all time-

related parameters are integer-valued, and the planning horizon is given as [0, T ].

2.2.1 Railway network data

The considered railway network is a single-track, unidirectional railway line s1 → s2 → · · · → sn with stations

s1, s2, . . . , sn and mono-directional track segments s1 → s2, s2 → s3, . . ., sn−1 → sn. Stations s1 and sn

are terminal stations, while stations s2, s3, . . . , sn−1 are intermediate stations. Each station has one or more

parallel platform tracks, and has either zero or one passing track. Platform tracks enable trains to dwell at the

station for passenger boarding and alighting. Each platform track can accommodate one train at a time. A

passing track only allows a train to pass through the station without stopping. On a typical railway line, each

terminal station has multiple platform tracks and no passing tracks, while each intermediate station has one

passing track, which is part of the main line of the railway (see Figure 1). For i = 1, 2, . . . , n, we let mi and

m′
i denote the number of platform tracks and passing tracks, respectively, at station si, where mi ∈ {1, 2, . . .}

and m′
i ∈ {0, 1}. Thus, at most mi trains may stop at station si at the same time. For example, in the railway

network corresponding to the system depicted in Figure 1, we have n = 5, (m1, m2, m3, m4, m5) = (3, 2, 3, 2, 3),

and (m′
1 , m

′
2, m

′
3, m

′
4, m

′
5) = (0, 1, 1, 1, 0). Each platform track has a corresponding platform. When a train

arrives at a platform track of a station, passengers may stay on the train, get off the train and wait at the

current platform for another train, or get off the train and walk to another platform for changing trains.

To ensure safety, there is a minimum time interval gi (i.e., arrival headway) required between two consecutive

arrivals at station si (for i = 2, 3, . . . , n), and there is a minimum time interval hi (i.e., departure headway)
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Table 2: Summary of input data.

Type of data Notation Description

Railway network data S set of all stations (S = {s1, s2, . . . , sn})

gi minimum headway between arrivals at station si

hi minimum headway between departures from station si

mi number of platform tracks at station si (mi ≥ 1)

m′
i number of passing tracks at station si (m′

i = 0 or 1)

τill′ time for a passenger to walk from the lth platform to the l′th platform of station si

Train data K set of all trains

ok station index of train k’s origin station

dk station index of train k’s destination station

Sk set of stations that train k may skip (Sk ⊆ S)

S̄k set of stations that train k must skip (S̄k ⊆ Sk)

pk earliest possible start time of operation of train k at station sok

qk latest allowed completion time of operation of train k at station sdk

αki time for train k to traverse si → si+1 if train k does not stop at stations si and si+1

α′
k additional amount of time for train k to traverse a track segment due to acceleration

α′′
k additional amount of time for train k to traverse a track segment due to deceleration

βki minimum required dwell time of train k at station si if train k stops at si

Γk capacity of train k

ck operating cost per unit time for train k to run on a track

c′k operating cost per unit time for train k to dwell at a station

Passenger flow data R set of all passenger groups

zr number of passengers in group r

ôr station index of passenger group r’s origin station

d̂r station index of passenger group r’s destination station

p̂r arrival time of passenger group r at station sôr

ĉ unit cost of a passenger’s time spent on riding the trains and waiting for the trains

ĉ′ unit cost of a passenger’s time spent on walking between station platforms (ĉ′ ≥ ĉ)

πr penalty for each unsatisfied passenger in group r

required between two consecutive departures at station si (for i = 1, 2, . . . , n− 1). The passengers are allowed

to change trains at any intermediate station, provided that the trains stop at that station. We let τill′ denote

the amount of time that a passenger needs to walk from the lth platform to the l′th platform of station si, for

i ∈ {2, 3, . . . , n− 1} and l, l′ ∈ {1, 2, . . . , mi}. We let τill′ = 0 if l = l′.

2.2.2 Train data

Let K be the set of trains considered. For each k ∈ K, the input data of train k include: (i) the origin station

sok
, where ok ∈ {1, 2, . . . , n−1}; (ii) the destination station sdk

, where dk ∈ {2, 3, . . . , n}; (iii) a set Sk of stations
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Figure 1: A railway line.

at which train k is allowed to skip, where Sk ⊆ {sok+1, sok+2, . . . , sdk−1}; (iv) a set S̄k of stations at which train

k is required to skip, where S̄k ⊆ Sk; (v) the earliest time pk that train k can start its operation at station sok
,

and the latest time qk that train k can complete its operation at station sdk
, where 0 ≤ pk ≤ qk ≤ T ; (vi) the

amount of time αki that train k takes to traverse track segment si → si+1 when the train skips stopping at both

stations si and si+1; (vii) the additional amount of time α′
k that train k takes to traverse any track segment

si → si+1 incurred by the train’s acceleration if the train stops at station si; (viii) the additional amount of

time α′′
k that train k takes to traverse any track segment si → si+1 incurred by the train’s deceleration if the

train stops at station si+1; (ix) the minimum dwell time βki that train k needs to spend at station si if train

k stops at that station; (x) the maximum number of passengers Γk that train k can carry at any time point;

(xi) the operating cost ck incurred per time unit when the train is traversing a track; and (xii) the operating

cost c′k incurred per time unit when the train is dwelling at a station while the train is in operation.

2.2.3 Passenger flow data

Let R be the set of all passenger groups. Each passenger group r ∈ R is characterized by: (i) the number of

passengers zr in the group; (ii) an origin station sôr
, where ôr ∈ {1, 2, . . . , n− 1}; (iii) a destination station sd̂r

,

where d̂r ∈ {2, 3, . . . , n}; (iv) the start time p̂r of the passengers’ journey.

We assume that passengers belonging to the same passenger group do not need to travel together, and

that not every passenger’s demand needs to be satisfied. If the demand of a passenger is satisfied, then a cost

of ĉ is imposed on each time unit that the passenger spends on riding the trains and waiting for the trains,

and a cost of ĉ′ is imposed on each time unit that the passenger spends on walking between station platforms

for transferring trains. Due to limited capacity of the railway system, some passengers’ demand may not be

satisfied, and the unsatisfied passengers need to seek other means of transportation. We model this by allowing

unsatisfied passenger demand and imposing a penalty of πr on each unsatisfied passenger in group r.

Remark 1 In many train timetabling models with time-dependent passenger demand, a parameter is used to

denote the number of passengers arriving at their origin station during a certain time interval and traveling to

a particular destination; for example, a parameter Dt
ij is used to denote the number of passengers who arrive
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at station si during time interval (t− 1, t] and have a destination station sj . If the input demand data is given

as Dt
ij, then in our model, a passenger group r represents the triple (i, j, t), and we have R = {(i, j, t) | i <

j; i, j = 1, 2, . . . , n; t = 0, 1, . . . , T}, z(i,j,t) = Dt
ij , ô(i,j,t) = i, d̂(i,j,t) = j, and p̂(i,j,t) = t. Note that in our

model a time unit can be one minute, one hour, or any duration, and we do not consider the conversion between

hour-dependent demand data and minute-dependent demand data; see Niu et al. (2015) for a discussion of

formulations for high- and low-resolution demand input data.

2.3 Objective and constraints

The objective is to determine a timetable for the trains, assign platform tracks to trains, and assign passengers

to the train services, so that the total cost is minimized. The train timetabling decisions include determining

each train’s start time of operation, stop-skipping stations, and dwell time at every station. The passenger

assignment decisions include determining the subset of passengers whose demands are to be satisfied. For those

passengers to be served, the decisions also include determining the passengers’ journey start time, the trains

that they will take, and their transfer stations. The total cost includes the following cost components: (i) total

operating cost of all trains; (ii) total penalty of unsatisfied passengers; and (iii) total cost of passengers’ journey

time, including the time spent by passengers on the trains or waiting at platforms, and the time spent on

walking from one platform to another.

Note that in our model we measure passenger satisfaction by penalizing unsatisfied passenger demand and

passenger journey time. Other commonly used passenger satisfaction measurements in train timetabling include

penalties imposed on the shift and stretch of the timetable compared to an “ideal timetable” (see, e.g., Caprara

et al. 2002), as well as penalties imposed on stop-skipping (see, e.g., Jiang et al. 2017). It is not difficult to

include shift, stretch, and stop-skipping penalties into our time-space network formulation. However, for ease of

presentation, we do not consider these passenger satisfaction measurements in this study. In some applications,

it is reasonable to assume that passengers who cannot be served by the most desirable train service can always

be served by another train at a later time. When our model is applied to such applications, the unsatisfied

passenger penalty πr should be set equal to infinity, and the length of the planning horizon may need to be

increased in order to ensure that all the passengers can be served.

The following constraints need to be satisfied:

• Train operation constraints: Each train k is initially located at station sok
and is available for operation

at time pk. It needs to complete its operation at station sdk
no later than time qk. In addition, the travel

time of train k on each track segment si → si+1 must be equal to αki plus the additional time incurred by

acceleration and deceleration, and the dwell time of train k at each station si must be no less than βki if

train k stops at that station.

• Train capacity constraints: For each k ∈ K, at most Γk passengers can be carried by train k at any time

point.

10



• Passenger journey time constraints: For each passenger belonging to passenger group r, if we choose to satisfy

this passenger’s demand, then the passenger must board a train at station sôr
no earlier than p̂k. In addition,

a passenger’s transfer time between the lth platform and the l′th platform of a transfer station si must be

no less than τill′ .

• Headway constraints at stations: For each i = 2, 3, . . . , n, the arrivals of any two trains to station si, regardless

of which two platform/passing tracks of si these trains occupy, must be at least gi time units apart. Similarly,

the departures of any two trains from station si, regardless of which two platform/passing tracks of si these

trains occupy, must be at least hi time units apart.

• Overtaking constraints: For each i = 1, 2, . . . , n− 1, a train is forbidden to overtake another train on track

segment si → si+1; that is, overtaking can only take place at stations.

• Platform track constraints: Each platform track of a station can be occupied by at most one train at any

time point.

Since the integrality of the number of passengers riding a train is not crucial in practice, in our model we

do not require the number of passengers assigned to each part of the train service to be integer-valued.

3 The Time-Space Network Formulation

In this section we formulate our problem as a constrained MCMCNF problem. The underlying network is an

acyclic directed time-space network G = (V, A) which includes a dummy origin ō ∈ V and a dummy destination

d̄ ∈ V . There are |K| + |R| commodities representing the flows of |K| trains and the flows of |R| passenger

groups. For each k ∈ K, there is 1 unit of inflow (respectively outflow) of train k at origin ō (respectively

destination d̄). For each r ∈ R, there are zr units of inflow (respectively outflow) of passenger group r at origin

ō (respectively destination d̄).

3.1 Network construction

The “time” dimension of network G covers the time instants 0, 1, . . . , T . Corresponding to each station si and

each time instant t are 2mi +m′
i +1 vertices. They include: (i) vertices ρt

il and ρ̄t
il for l = 1, 2, . . . , mi, (ii) vertex

ϕt
i if m′

i = 1, and (iii) vertex σt
i . Vertex ρt

il represents the arrival of a train at the lth platform track of station

si at time t. Vertex ρ̄t
il represents the departure of a train from the lth platform track of station si at time t.

Vertex ϕt
i represents the passing track of station si at time t. Vertex σt

i represents the departure of a train from

station si at time t after the train has dwelled at one of the platform tracks of si. Hence, the “space” dimension

covers
∑n

i=1(2mi + m′
i + 1) possible states at different stations, and

V = {ō, d̄} ∪
{

ρt
il, ρ̄

t
il

∣

∣ i = 1, 2, . . . , n; l = 1, 2, . . . , mi; t = 0, 1, . . . , T
}

∪
{

ϕt
i

∣

∣ i = 1, 2, . . . , n s.t. m′
i = 1; t = 0, 1, . . . , T

}

∪
{

σt
i

∣

∣ i = 1, 2, . . . , n; t = 0, 1, . . . , T
}
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Figure 2: Vertices in time-space network G.

(see Figure 2). Arc set A of network G contains several types of arcs, with a vector of cost coefficients
(

ξk1(u, v), . . . , ξk|K|(u, v); ζr1 (u, v), . . . , ζr|R|(u, v)
)

associated with each arc u → v ∈ A. The cost coefficient

ξk(u, v) represents the cost for train k to traverse arc u→ v, and the cost coefficient ζr(u, v) represents the cost

for each passenger of group r to traverse arc u→ v. Each arc u→ v ∈ A has an infinite capacity for each train

(respectively passenger) when the cost coefficient for that train (respectively passenger) is finite. Descriptions

of different types of arcs are given as follows.
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3.1.1 Starting, ending, and unsatisfied-demand arcs

There are starting and ending arcs to ensure that the train operation constraints are satisfied. There are also

starting and ending arcs to ensure that the passenger journey time constraints are satisfied. These arcs are

given as follows.

For each i ∈ {1, 2, . . . , n− 1}, l ∈ {1, 2, . . . , mi}, and t ∈ {0, 1, . . . , T}, there is a starting arc ō → ρt
il. For

each k ∈ K, if i = ok and t ≥ pk, then ξk(ō, ρt
il) = 0; otherwise, ξk(ō, ρt

il) = +∞. This arc allows train k to

start its operation at its origin station sok
at time t ≥ pk, and train k starts incurring its operating cost at time

t. Passengers are not allowed to traverse this arc. Hence, ζr(ō, ρt
il) = +∞ for all r ∈ R.

For each i ∈ {1, 2, . . . , n− 1}, l ∈ {1, 2, . . . , mi}, and t ∈ {0, 1, . . . , T}, there is also a starting arc ō → ρ̄t
il.

For each r ∈ R, if i = ôr and t = p̂r, then ζr(ō, ρ̄t
il) = 0; otherwise, ζr(ō, ρ̄t

il) = +∞. This arc allows passengers

of group r to start their trips from their origin station sôr
at time t = p̂r. Note that p̂r is the arrival time of

passenger group r at station sôr
, and thus each passenger of group r starts incurring his/her unit cost ĉ at time

p̂r. Trains are not allowed to traverse this arc. Hence, ξk(ō, ρ̄t
il) = +∞ for all k ∈ K.

For each i ∈ {2, 3, . . . , n} and t ∈ {0, 1, . . . , T}, there is an ending arc σt
i → d̄. For each k ∈ K, if i = dk and

t ≤ qk, then ξk(σt
i , d̄) = 0; otherwise, ξk(σt

i , d̄) = +∞. This arc allows train k to complete its operation at its

destination station sdk
at time t ≤ qk. Passengers are not allowed to traverse this arc. Hence, ζr(σt

i , d̄) = +∞

for all r ∈ R.

For each i ∈ {2, 3, . . . , n}, l ∈ {1, 2, . . . , mi}, and t ∈ {0, 1, . . . , T}, there is also an ending arc ρt
il → d̄. For

each r ∈ R, if i = d̂r, then ζr(ρt
il, d̄) = 0; otherwise, ζr(ρt

il, d̄) = +∞. This arc allows passengers of group r

to complete their trips at their destination station s
d̂r

at time t. Trains are not allowed to traverse this arc.

Hence, ξk(ρt
il, d̄) = +∞ for all k ∈ K.

There is an unsatisfied-demand arc ō→ d̄. A passenger traversing this arc represents the situation that this

passenger’s demand is not satisfied. The unit cost for passenger group r to traverse this arc is ζr(ō, d̄) = πr, for

any r ∈ R. Trains are not allowed to traverse this arc. Hence, ξk(ō, d̄) = +∞ for all k ∈ K.

3.1.2 Dwelling, waiting, and transfer arcs

For each i ∈ {1, 2, . . . , n}, l ∈ {1, 2, . . . , mi}, and t, t′ ∈ {0, 1, . . . , T}, there is a dwelling arc ρt
il → ρ̄t′

il . For each

k ∈ K, if ok ≤ i ≤ dk, si ∈ S \ S̄k, t ≥ pk, and t′ = t + βki ≤ qk, then ξk(ρt
il, ρ̄

t′

il) = c′k(t′ − t); otherwise,

ξk(ρt
il , ρ̄

t′

il) = +∞. This arc allows train k to stop at the lth platform track of station si during the time interval

[t, t′] to satisfy its minimum dwell time requirement. During this time interval, passengers can alight and board

the train. A passenger traversing arc ρt
il → ρ̄t′

il represents the situation where the passenger is staying in the

train when the train is dwelling at the lth platform track of station si during time interval [t, t′]. For each r ∈ R,

the cost for a passenger of group r to traverse this arc is ζr(ρt
il, ρ̄

t′

il) = ĉ(t′ − t).

For each i ∈ {1, 2, . . . , n}, l ∈ {1, 2, . . . , mi}, and t ∈ {0, 1, . . . , T −1}, there is a waiting arc ρ̄t
il → ρ̄t+1

il . This

arc allows a train to continue to dwell at the lth platform track of station si during the time interval [t, t + 1]

13
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Figure 3: Dwelling, waiting, transfer, departure, and travel arcs in time-space network G.

after that train has satisfied its minimum dwell time requirement at si. It also allows passengers to wait at the

lth platform of station si during the time interval [t, t + 1] if they arrive at the platform too early. For each

k ∈ K, if ok ≤ i ≤ dk, si ∈ S \ S̄k , and pk ≤ t ≤ qk − 1, then ξk(ρ̄t
il, ρ̄

t+1
il ) = c′k; otherwise, ξk(ρ̄t

il, ρ̄
t+1
il ) = +∞.

For each r ∈ R, if ôr ≤ i < d̂r and t ≥ p̂r, then ζr(ρ̄t
il, ρ̄

t+1
il ) = ĉ; otherwise, ζr(ρ̄t

il, ρ̄
t+1
il ) = +∞.

For each i ∈ {2, 3, . . . , n− 1}, l, l′ ∈ {1, 2, . . . , mi}, and t, t′ ∈ {0, 1, . . . , T}, there is a transfer arc ρt
il → ρ̄t′

il′ .

For each passenger group r ∈ R, if ôr ≤ i ≤ d̂r, t ≥ p̂r , then ζr(ρt
il, ρ̄

t′

il′ ) = ĉ′(t′−t), otherwise, ζr(ρt
il, ρ̄

t′

il′ ) = +∞.

This arc allows passengers to walk from the lth platform to the l′th platform of station si during the time interval

[t, t′] for changing trains. If l = l′, then this arc represents the situation where the passengers simply get off the

train so that they can wait for another train at the same platform. Trains are not allowed to traverse this arc.

Hence, ξk(ρt
il, ρ̄

t′

il′ ) = +∞ for all k ∈ K. Figure 3 depicts the dwelling, waiting, and transfer arcs for station si.
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3.1.3 Departure and travel arcs

For each i ∈ {1, 2, . . . , n}, l ∈ {1, 2, . . . , mi}, and t ∈ {0, 1, . . . , T}, there is a departure arc ρ̄t
il → σt

i (see

Figure 3). This arc represents the situation where a train has finished dwelling at the lth platform track of

station si at time t and is about to leave the station. For each train k ∈ K, if ok ≤ i ≤ dk, si ∈ S \ S̄k, and

t ≤ qk, then ξk(ρ̄t
il, σ

t
i) = 0; otherwise, ξk(ρ̄t

il , σ
t
i) = +∞. For each passenger group r ∈ R, if ôr ≤ i ≤ d̂r − 1,

then ζr(ρ̄t
il, σ

t
i) = 0; otherwise, ζr(ρ̄t

il, σ
t
i) = +∞.

There are travel arcs in network G to allow trains to travel from one station si to the next station si+1.

There are four types of travel arcs that cover four different scenarios, depending on whether or not the train

stops at station si, and whether or not the train stops at station si+1 (see Figure 3).

The first type of travel arcs is for the scenario where the train stops at both stations si and si+1. For each

i ∈ {1, 2, . . . , n− 1}, l ∈ {1, 2, . . . , mi+1}, and t, t′ ∈ {0, 1, . . . , T}, there is a travel arc σt
i → ρt′

i+1,l of this type.

A train traversing this arc represents the situation where (i) the train has finished stopping at station si, (ii) it

is traveling from station si to station si+1, (iii) it will stop at the lth platform track of station si+1 , and (iv) the

traveling takes place during the time interval [t, t′]. Note that if train k traverses this arc, then train k stops

at both si and si+1. This implies that train k’s travel time on track segment si → si+1 is αki + α′
k + α′′

k, and

thus t′ = t + αki + α′
k + α′′

k. For each k ∈ K, if ok ≤ i ≤ dk − 1, si ∈ S \ S̄k, si+1 ∈ S \ S̄k, t ≥ pk, and

t′ = t + αki + α′
k + α′′

k ≤ qk, then ξk(σt
i, ρ

t′

i+1,l) = ck(t′ − t); otherwise, ξk(σt
i , ρ

t′

i+1,l) = +∞.

The second type of travel arcs is for the scenario where the train stops at stations si but skips station si+1.

For each i ∈ {1, 2, . . . , n− 1} and t, t′ ∈ {0, 1, . . . , T} such that m′
i+1 = 1, there is a travel arc σt

i → ϕt′

i+1 of this

type. A train traversing this arc represents the situation where (i) the train has finished stopping at station

si, (ii) it is traveling from station si to station si+1 , (iii) it will skip stopping at station si+1 , and (iv) the

traveling takes place during the time interval [t, t′]. Note that if train k traverses this arc, then train k stops

at si but not at si+1. This implies that train k’s travel time on track segment si → si+1 is αki + α′
k, and thus

t′ = t + αki + α′
k. For each k ∈ K, if ok ≤ i ≤ dk − 1, si ∈ S \ S̄k, si+1 ∈ Sk, t ≥ pk, and t′ = t + αki + α′

k ≤ qk,

then ξk(σt
i , ϕ

t′

i+1) = ck(t′ − t); otherwise, ξk(σt
i , ϕ

t′

i+1) = +∞.

The third type of travel arcs is for the scenario where the train skips stations si but stops at station si+1.

For each i ∈ {1, 2, . . . , n − 1}, l ∈ {1, 2, . . . , mi+1}, and t, t′ ∈ {0, 1, . . . , T} such that m′
i = 1, there is a travel

arc ϕt
i → ρt′

i+1,l of this type. A train traversing this arc represents the situation where (i) the train has skipped

stopping at station si, (ii) it is traveling from station si to station si+1, (iii) it will stop at the lth platform track

of station si+1, and (iv) the traveling takes place during the time interval [t, t′]. Note that if train k traverses

this arc, then train k stops at si+1 but not at si. This implies that train k’s travel time on track segment

si → si+1 is αki + α′′
k, and thus t′ = t + αki + α′′

k. For each k ∈ K, if ok ≤ i ≤ dk − 1, si ∈ Sk, si+1 ∈ S \ S̄k,

t ≥ pk, and t′ = t + αki + α′′
k ≤ qk, then ξk(ϕt

i, ρ
t′

i+1,l) = ck(t′ − t); otherwise, ξk(ϕt
i, ρ

t′

i+1,l) = +∞.

The fourth type of travel arcs is for the scenario where the train skips both stations si and si+1. For each

i ∈ {1, 2, . . . , n− 1} and t, t′ ∈ {0, 1, . . . , T} such that m′
i = m′

i+1 = 1, there is a travel arc ϕt
i → ϕt′

i+1 of this
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type. A train traversing this arc represents the situation where (i) the train has skipped stopping at station si,

(ii) it is traveling from station si to station si+1, (iii) it will skip stopping at station si+1, and (iv) the traveling

takes place during the time interval [t, t′]. For each k ∈ K, if ok ≤ i ≤ dk − 1, si ∈ Sk, si+1 ∈ Sk, t ≥ pk, and

t′ = t + αki ≤ qk, then ξk(ϕt
i, ϕ

t′

i+1) = ck(t′ − t); otherwise, ξk(ϕt
i, ϕ

t′

i+1) = +∞.

Passengers are allowed to traverse travel arcs σt
i → ρt′

i+1,l, σt
i → ϕt′

i+1, ϕt
i → ρt′

i+1,l, and ϕt
i → ϕt′

i+1.

A passenger traversing one of these arcs represents the situation where the passenger is riding a train from

station si to station si+1 during the time interval [t, t′]. For each r ∈ R, if ôr ≤ i ≤ d̂ − 1 and t ≥ p̂r, then

ζr(σt
i , ρ

t′

i+1,l) = ζr(σt
i , ϕ

t′

i+1) = ζr(ϕt
i, ρ

t′

i+1,l) = ζr(ϕt
i, ϕ

t′

i+1) = ĉ(t′− t); otherwise, ζr(σt
i , ρ

t′

i+1,l) = ζr(σt
i , ϕ

t′

i+1) =

ζr(ϕt
i, ρ

t′

i+1,l) = ζr(ϕt
i, ϕ

t′

i+1) = +∞.

Remark 2 The size of network G = (V, A) can be reduced substantially by not including some of the arcs that

cannot traversed by any train or passenger. This can be done by not creating the following arcs during the

construction of the network: (i) any arc u → v where ξk(u, v) = +∞ for all k ∈ K and ζr(u, v) = +∞ for all

r ∈ R; and (ii) any dwelling, departure, or travel arc u → v where ξk(u, v) = +∞ for all k ∈ K. In addition,

for any v ∈ V \ {ō}, if v does not have any incoming arc, then none of the trains and passengers can reach

vertex v, and thus vertex v and all of its outgoing arcs do not need to be included in the network.

3.2 Constraints on the multi-commodity flow

We assume that all αki and βki values are strictly positive. Note that each arc u → v ∈ A is of one of the

following forms: (i) ō → v for some v ∈ V \ {ō}; (ii) u → d̄ for some u ∈ V \ {d̄}; (iii) ρt
il → ρ̄t

il for some i, l,

and t; (iv) ρ̄t
il → σt

i for some i, l, and t; or (v) u→ v where the time index of v is larger than the time index of

u. Hence, network G is acyclic.

A path connecting ō and d̄ in this acyclic network can potentially be a train’s schedule (i.e., a sequence of

changes in location of a train over time) or a passenger’s schedule (i.e., a sequence of changes in location of a

passenger over time). For any k ∈ K, if there exists a path P connecting ō and d̄ in which the cost coefficient

ξk(u, v) is finite for all u→ v ∈ P , then path P corresponds to a feasible schedule for train k. For any r ∈ R, if

there exists a path P connecting ō and d̄ in which the cost coefficient ζr(u, v) is finite for all u→ v ∈ P , then

either path P is the unsatisfied-demand arc ō→ d̄, or path P corresponds to a feasible schedule for a passenger

that belongs to passenger group r. However, a solution of this MCMCNF problem yields a feasible solution to

our train timetabling problem only when the multi-commodity flow satisfies the following constraints:

• Integer flow constraints: The train flow along each u→ v ∈ A is required to be binary-valued.

• Train capacity constraints: The total flow of passengers along a departure (respectively travel) arc must be

zero if no train traverses this arc, and the total flow of passengers along a departure (respectively travel) arc

must be no greater than Γk if train k also traverses this arc.

• Arrival headway constraints: For each i = 2, 3, . . . , n, the arrivals of any two trains to station si must be

least gi time units apart (see Section 2.3). Thus, for each i = 2, 3, . . . , n and each t1 = 0, 1, . . . , T − gi + 1,
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we allow no more than one train to finish traversing the track segment si−1 → si during the time interval

[t1, t1 + gi − 1]. Hence, for i = 2, 3, . . . , n and t1 = 0, 1, . . . , T − gi + 1, we impose a constraint that the total

train flow along the travel arcs in the arc subset

C1
it1

= A∩
[

{σt
i−1 → ρt′

il | l = 1, 2, . . . , mi; t, t′ = 0, 1, . . . , T ; t1 ≤ t′ ≤ t1 + gi − 1}

∪ {ϕt
i−1 → ρt′

il | m
′
i−1 = 1; l = 1, 2, . . . , mi; t, t′ = 0, 1, . . . , T ; t1 ≤ t′ ≤ t1 + gi − 1}

∪ {σt
i−1 → ϕt′

i | m
′
i = 1; t, t′ = 0, 1, . . . , T ; t1 ≤ t′ ≤ t1 + gi − 1}

∪ {ϕt
i−1 → ϕt′

i | m
′
i−1 = m′

i = 1; t, t′ = 0, 1, . . . , T ; t1 ≤ t′ ≤ t1 + gi − 1}
]

is at most one. Note that a train that finishes traversing the track segment si−1 → si during the time interval

[t1, t1 + gi − 1] must traverse one of the travel arcs σt
i−1 → ρt′

il , ϕt
i−1 → ρt′

il , σt
i−1 → ϕt′

i , and ϕt
i−1 → ϕt′

i for

some l, t, and t′ such that t′ ∈ [t1, t1 + gi − 1]. Thus, the arc subset C1
it1

collects all such travel arcs.

• Departure headway constraints: For each i = 1, 2, . . . , n− 1, the departures of any two trains from station

si must be at least hi time units apart (see Section 2.3). Thus, for each i = 1, 2, . . . , n − 1 and each

t1 = 0, 1, . . . , T − hi + 1, we allow no more than one train to start traversing the track segment si → si+1

during the time interval [t1, t1 +hi−1]. Hence, for i = 1, 2, . . . , n−1 and t1 = 0, 1, . . . , T −hi +1, we impose

a constraint that the total train flow along the travel arcs in the arc subset

C2
it1

= A∩
[

{σt
i → ρt′

i+1,l | l = 1, 2, . . . , mi+1; t, t′ = 0, 1, . . . , T ; t1 ≤ t ≤ t1 + hi − 1}

∪ {σt
i → ϕt′

i+1 | m
′
i+1 = 1; t, t′ = 0, 1, . . . , T ; t1 ≤ t ≤ t1 + hi − 1}

∪ {ϕt
i → ρt′

i+1,l | m
′
i = 1; l = 1, 2, . . . , mi+1; t, t′ = 0, 1, . . . , T ; t1 ≤ t ≤ t1 + hi − 1}

∪ {ϕt
i → ϕt′

i+1 | m
′
i = m′

i+1 = 1; t, t′ = 0, 1, . . . , T ; t1 ≤ t ≤ t1 + hi − 1}
]

is at most one. Note that a train that starts traversing the track segment si → si+1 during the time interval

[t1, t1 + hi − 1] must traverse one of the travel arcs σt
i → ρt′

i+1,l, σt
i → ϕt′

i+1, ϕt
i → ρt′

i+1,l, and ϕt
i → ϕt′

i+1 for

some l, t, and t′ such that t ∈ [t1, t1 + hi − 1]. Thus, the arc subset C2
it1

collects all such travel arcs.

• Overtaking constraints: For each i = 1, 2, . . . , n − 1, a train is not allowed to overtake another train when

traveling on the track segment si → si+1. Thus, for each i = 1, 2, . . . , n − 1 and each pair of distinct time

points t1 and t2 such that t1 < t2, whenever there are a train k arriving at station si+1 at time t2 and another

train k′ departing from station si at time t1, either train k departs from si earlier than t1, or train k′ arrives

at si+1 earlier than t2. In other words, we disallow the situation where train k departs from si later than t1

and train k′ arrives at si+1 later than t2. Denote

Bit1t2 = A∩
[

{σt
i → ρt2

i+1,l | l = 1, 2, . . . , mi+1; t1 < t < t2}

∪ {σt
i → ϕt2

i+1 | m
′
i+1 = 1; t1 < t < t2}

∪ {ϕt
i → ρt2

i+1,l | m
′
i = 1; l = 1, 2, . . . , mi+1; t1 < t < t2}

∪ {ϕt
i → ϕt2

i+1 | m
′
i = m′

i+1 = 1; t1 < t < t2}
]
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and

B′
it1t2

= A∩
[

{σt1
i → ρt′

i+1,l | l = 1, 2, . . . , mi+1; t2 < t′ ≤ T}

∪ {σt1
i → ϕt′

i+1 | m
′
i+1 = 1; t2 < t′ ≤ T}

∪ {ϕt1
i → ρt′

i+1,l | m
′
i = 1; l = 1, 2, . . . , mi+1; t2 < t′ ≤ T}

∪ {ϕt1
i → ϕt′

i+1 | m
′
i = m′

i+1 = 1; t2 < t′ ≤ T}
]

.

Then, for i = 1, 2, . . . , n − 1 and 0 ≤ t1 < t2 < T such that Bit1t2 , B
′
it1t2

6= ∅, we impose a constraint that

the total train flow along the travel arcs in the arc subset

C3
it1t2

= Bit1t2 ∪B′
it1t2

is at most one.

• Platform track constraints: For each i = 1, 2, . . . , n and each l = 1, 2, . . . , mi, the lth platform track of

station si can be occupied by at most one train at each time instant. Thus, for each i = 1, 2, . . . , n, each

l = 1, 2, . . . , mi, and each t1 = 0, 1, . . . , T , we impose a constraint that the total train flow along the dwelling

and waiting arcs in the arc subset

C4
ilt1

= A ∩
[

{ρt
il → ρ̄t′

il | t ≤ t1 ≤ t′} ∪ {ρ̄t1−1
il → ρ̄t1

il }
]

is at most one.

The arrival headway constraints, departure headway constraints, overtaking constraints, and platform track

constraints share a common feature that they can be expressed as a collection of incompatible arcs. Denote

C = {C1
it | i = 2, 3, . . . , n; t = 0, 1, . . . , T − gi + 1} ∪ {C2

it | i = 1, 2, . . . , n− 1; t = 0, 1, . . . , T − hi + 1}

∪ {C3
it1t2
| i = 1, . . . , n− 1; 0 ≤ t1 < t2 < T s.t.Bit1t2 , B

′
it1t2
6= ∅}

∪ {C4
ilt | i = 1, . . . , n; l = 1, 2, . . . , mi; t = 0, 1, . . . , T}.

Then, for any C ∈ C, the total flow along the arcs in C cannot exceed one.

Note that there are other ways to represent the overtaking constraints in a time-space network (see, e.g.,

Caprara et al. 2002; Xu et al. 2018). Because these constraints will be relaxed in our Lagrangian relaxation

algorithm (see Section 4.1), a large number of overtaking constraints will result in a large number of Lagrangian

multipliers, which will affect the convergence of the algorithm. Thus, a smaller number of overtaking constraints

is more desirable. Here, we have defined C3
it1t2

in such a way that there are only O(nT 2) overtaking constraints

in total.

3.3 Mixed integer programming formulation and computational complexity

For any k ∈ K, define xk
uv = 1 if train k traverses arc u → v in the time-space network G, and xk

uv = 0

otherwise. For any r ∈ R, define yr
uv as the number of passengers in group r that traverse arc u→ v. Let Adep

18



and Atrv denote the set of all departure arcs and the set of all travel arcs, respectively, in network G. The

above constrained MCMCNF problem can be formulated as the following mixed integer linear program:

P : Minimize
∑

k∈K

∑

u→v∈A ξk(u, v)xk
uv +

∑

r∈R

∑

u→v∈A ζr(u, v)yr
uv (1)

subject to
∑

{v:ō→v∈A} xk
ōv = 1, for all k ∈ K (2)

∑

{u:u→d̄∈A} xk
ud̄

= 1, for all k ∈ K (3)

∑

{u:u→v∈A} xk
uv =

∑

{w:v→w∈A} xk
vw, for all k ∈ K; v ∈ V \ {ō, d̄} (4)

∑

{v:ō→v∈A} yr
ōv = zr , for all r ∈ R (5)

∑

{u:u→d̄∈A} yr
ud̄

= zr, for all r ∈ R (6)

∑

{u:u→v∈A} yr
uv =

∑

{w:v→w∈A} yr
vw, for all r ∈ R; v ∈ V \ {ō, d̄} (7)

∑

k∈K

∑

u→v∈C xk
uv ≤ 1, for all C ∈ C (8)

∑

r∈R yr
uv ≤

∑

k∈K Γkxk
uv, for all u→ v ∈ Adep ∪Atrv (9)

xk
uv ∈ {0, 1}, for all k ∈ K; u→ v ∈ A (10)

yr
uv ≥ 0, for all r ∈ R; u→ v ∈ A (11)

In objective function (1), the first part is the total operating cost of all trains, while the second part includes the

total penalty of unsatisfied passengers and the total cost of time spent by passengers on traveling, waiting, and

walking. Constraints (2) require the inflow of each train at vertex ō to be 1, while constraints (3) require the

outflow of each train at vertex d̄ to be 1. Constraints (4) are the flow balance constraints for trains. Constraints

(5) require the inflow of each passenger group r at ō to be zr , while constraints (6) require the outflow of each

passenger group r at d̄ to be zr . Constraints (7) are the flow balance constraints for passengers. Constraints (8)

cover all the arrival headway constraints, departure headway constraints, overtaking constraints, and platform

track constraints described in Section 3.2. Constraints (9) are the train capacity constraints. Under these

constraints, passengers can traverse a departure (respectively travel) arc only when a train is also traversing

that arc, and the number of passengers traversing a departure (respectively travel) arc cannot exceed the

capacity of the train traversing that arc. Constraints (10) specify the integer flow requirements for trains, while

constraints (11) specify the nonnegativity requirements for passenger flows.

Similar to that of many other train timetabling models, the computational complexity of problem P is very

high, as stated in the following theorem.

Theorem 1 Problem P is strongly NP-hard.

Proof. See Appendix A.

4 Lagrangian Relaxation Heuristic

In this section, we present a Lagrangian relaxation heuristic for solving the proposed model.
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4.1 The Lagrangian relaxation

We use Lagrangian relaxation to relax constraints (8) and (9) of problem P. Let λC ≥ 0 and µuv ≥ 0 be the

Lagrangian multipliers associated with constraints (8) and (9), respectively. Let λ and µ denote the vector of

λC values and vector of µuv values, respectively. The relaxed problem is:

P̃(λ, µ) : Minimize
∑

k∈K

∑

u→v∈A ξk(u, v)xk
uv +

∑

r∈R

∑

u→v∈A ζr(u, v)yr
uv

+
∑

C∈C λC

(
∑

k∈K

∑

u→v∈C xk
uv − 1

)

+
∑

u→v∈Adep∪Atrv
µuv

(
∑

r∈R yr
uv −

∑

k∈K Γkxk
uv

)

subject to
∑

{v:ō→v∈A} xk
ōv = 1, for all k ∈ K

∑

{u:u→d̄∈A} xk
ud̄

= 1, for all k ∈ K

∑

{u:u→v∈A} xk
uv =

∑

{w:v→w∈A} xk
vw, for all k ∈ K; v ∈ V \ {ō, d̄}

∑

{v:ō→v∈A} yr
ōv = zr , for all r ∈ R

∑

{u:u→d̄∈A} yr
ud̄

= zr, for all r ∈ R

∑

{u:u→v∈A} yr
uv =

∑

{w:v→w∈A} yr
vw, for all r ∈ R; v ∈ V \ {ō, d̄}

xk
uv ∈ {0, 1}, for all k ∈ K; u→ v ∈ A

yr
uv ≥ 0, for all r ∈ R; u→ v ∈ A

After removing the constant −
∑

C∈C λC from the objective function, this relaxed problem can be decomposed

into |K|+ |R| independent subproblems.

The subproblem corresponding to each k ∈ K is:

P̃′
k(λ, µ) : Minimize

∑

u→v∈A ξk(u, v)xk
uv +

∑

C∈C λC

∑

u→v∈C xk
uv −

∑

u→v∈Adep∪Atrv
µuvΓkxk

uv

subject to
∑

{v:ō→v∈A} xk
ōv = 1,

∑

{u:u→d̄∈A} xk
ud̄

= 1,

∑

{u:u→v∈A} xk
uv =

∑

{w:v→w∈A} xk
vw, for all v ∈ V \ {ō, d̄}

xk
uv ∈ {0, 1}, for all u→ v ∈ A

Note that Adep ∩ C = ∅ for all C ∈ C. Thus,
∑

{C∈C:u→v∈C} λC = 0 when u→ v ∈ Adep. Let

δk
uv =



















ξk(u, v) − µuvΓk, if u→ v ∈ Adep;

ξk(u, v) +
∑

{C∈C:u→v∈C} λC − µuvΓk, if u→ v ∈ Atrv;

ξk(u, v) +
∑

{C∈C:u→v∈C} λC , otherwise.

Then, each subproblem P̃′
k(λ, µ) is a shortest path problem with arc lengths δk

uv.
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The subproblem corresponding to each r ∈ R is:

Minimize
∑

u→v∈A ζr(u, v)yr
uv +

∑

u→v∈Adep∪Atrv
µuvy

r
uv

subject to
∑

{v:ō→v∈A} yr
ōv = zr ,

∑

{u:u→d̄∈A} yr
ud̄

= zr ,

∑

{u:u→v∈A} yr
uv =

∑

{w:v→w∈A} yr
vw, for all v ∈ V \ {ō, d̄}

yr
uv ≥ 0, for all u→ v ∈ A

Letting ȳr
uv = yr

uv/zr, this subproblem can be rewritten as:

P̃′′
r (µ) : Minimize

∑

u→v∈A ζr(u, v)zr ȳ
r
uv +

∑

u→v∈Adep∪Atrv
µuvzrȳ

r
uv

subject to
∑

{v:ō→v∈A} ȳr
ōv = 1,

∑

{u:u→d̄∈A} ȳr
ud̄

= 1,

∑

{u:u→v∈A} ȳr
uv =

∑

{w:v→w∈A} ȳr
vw, for all v ∈ V \ {ō, d̄}

ȳr
uv ≥ 0, for all u→ v ∈ A

Let

γr
uv =







ζr(u, v)zr + µuvzr, if u→ v ∈ Adep ∪Atrv;

ζr(u, v)zr , otherwise.

Then, each subproblem P̃′′
r (µ) is a minimum cost network flow problem with unit flow from vertex ō to vertex d̄.

By the integrality property of minimum cost network flows (Ahuja et al. 1993, p. 318), subproblem P̃′′
r (µ) has

an integer minimum cost flow. Hence, each subproblem P̃′′
r (µ) is a shortest path problem with arc lengths γr

uv.

Since G is acyclic, problems P̃′
k(λ, µ) and P̃′′

r (µ) can be solved efficiently via a standard dynamic programming

algorithm.

Let Z∗ denote the optimal objective value of problem P. Let L(λ, µ) denote the optimal objective value of

P̃(λ, µ). For any nonnegative vectors λ and µ, L(λ, µ) is a lower bound on Z∗.

4.2 Upper bound heuristic

Solving the lower bound problem yields a relaxed solution of problem P. We now propose an upper bound

heuristic for generating a feasible solution of P based on this relaxed solution. This heuristic first determines a

train timetable and then determines the passenger schedule.

Recall that problem P̃(λ, µ) is decomposable into |K|+|R| independent shortest path subproblems in network

G. Among these shortest path subproblems, |K| of them correspond to the |K| trains. To determine a train

timetable, we apply a basic constructive heuristic (Caprara et al. 2002), which first ranks k by increasing optimal

objective values of the |K| shortest path subproblems and then schedules the trains one by one according to the

ranked order. For each train k, we consider the paths in network G that do not contain any arc incompatible
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with those arcs traversed by the scheduled trains, and select one that has the minimum objective function

value of the shortest path subproblem. To do so, we solve a shortest path problem in network G by excluding

those arcs that violate arrival headway constraints, departure headway constraints, overtaking constraints, or

platform track constraints caused by the scheduled trains.

The output of the above basic constructive heuristic is a set of xk
uv values for all k ∈ K and u → v ∈ A.

To determine the passenger schedule, we treat the xk
uv values of the train timetable as input data and solve

problem P optimally with only yr
uv variables. After treating the xk

uv values as input data, the problem becomes

a standard MCMCNF problem with |R| commodities. Note that the passenger schedule can be determined

more efficiently by creating a smaller size version of network G before solving this MCMCNF problem. This

smaller size version of G can be created as follows. First, any dwelling arc, departure arc, or travel arc u → v

can be removed from G if the arc is not traversed by any train (i.e., xk
uv = 0 for all k ∈ K). Second, starting

arcs of the form ō→ ρt
il and ending arcs of the form σt

i → d̄ can be removed from network G. Third, if no trains

arrive at platform l of station si at time t, then all transfer arcs emanating from vertex ρt
il can be removed

from G. Hence, a large proportion of dwelling arcs, departure arcs, travel arcs, starting arcs, ending arcs, and

transfer arcs can be removed from G. Finally, we merge the consecutive waiting arcs along the train paths.

Specifically, if a train traverses waiting arcs ρ̄t
il → ρ̄t+1

il , ρ̄t+1
il → ρ̄t+2

il , . . . , ρ̄t′−1
il → ρ̄t′

il , then we replace these

waiting arcs by a new waiting arc ρ̄t
il → ρ̄t′

il , where the unit cost for each passenger group to traverse the new

waiting arc is equal to the sum of the corresponding unit costs of the original waiting arcs. For those starting

and transfer arcs that terminate at vertices ρ̄t+1
il , ρ̄t+2

il , . . . , ρ̄t′−1
il , we change the ends of the arcs to vertex ρ̄t′

il

and adjust the unit costs of the arcs accordingly. For example, if there is a starting or transfer arc u→ ρ̄j
il with

t + 1 ≤ j ≤ t′− 1, then we replace this arc by u→ ρ̄t′

il , where the unit cost for each passenger group to traverse

this new arc is equal to the sum of the corresponding unit costs of arcs u → ρ̄j
il, ρ̄

j
il → ρ̄j+1

il , . . . , ρ̄t′−1
il → ρ̄t′

il ,

and the capacity of this new arc is infinity.

Remark 3 A simpler version of this upper bound heuristic is as follows: After constructing the train schedule,

we construct the passenger schedules of the passenger groups one by one via solving a series of single-commodity

minimum cost network flow problems. However, determining the passenger schedules of the passenger groups

one by one requires almost the same amount of computational time required by solving an MCMCNF, while

solving a standard MCMCNF is guaranteed no worse (and often better) than the passenger flow obtained by

constructing the passenger schedules one by one. See Appendix B for a computational comparison of these two

approaches.

4.3 The overall solution procedure

For any λ and µ, L(λ, µ) is a lower bound on the optimal solution value of problem P. We need to obtain near-

optimal values of vectors λ and µ. We search for near-optimal λ and µ values via a subgradient optimization

procedure.
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Note that the lower bound L(λ, µ) equals the optimal objective value of P̃(λ, µ). Thus, given an optimal

solution (x, y) of P̃(λ, µ), the value “
∑

k∈K

∑

u→v∈C xk
uv − 1” for each C ∈ C and the value “

∑

r∈R yr
uv −

∑

k∈K Γkxk
uv” for each u → v ∈ Adep ∪ Atrv form a subgradient vector η of the solution. Let ηm denote the

mth component of η, for m = 1, 2, . . . , |C|+ |Adep ∪ Atrv|. Let λm denote the mth component of the λ vector,

for m = 1, 2, . . . , |C|. Let µm denote the mth component of the µ vector, for m = 1, 2, . . . , |Adep ∪ Atrv|. The

values of λ and µ are updated as follows:

λm ← max
{

λm + θ ·
UB − L(λ, µ)

‖η‖2
· ηm, 0

}

(m = 1, 2, . . . , |C|)

and

µm ← max
{

µm + θ ·
UB − L(λ, µ)

‖η‖2
· ηm+|C| , 0

}

(m = 1, 2, . . . , |Adep ∪Atrv|),

where θ > 0 is a prespecified step size parameter, and UB is the best feasible solution of problem P identified

so far.

To improve the convergence of the subgradient optimization procedure, we further apply the modified sub-

gradient technique proposed in Camerini et al. (1975). Let η(i) denote the η vector in the ith iteration of the

procedure. We use a modified subgradient vector η̃ instead of η to update the Lagrangian multipliers. In the

ith iteration, the modified subgradient vector η̃(i) is updated by

η̃(i) ← η(i) + bη̃(i−1),

where b is a scalar defined as

b =







−a · η̃(i−1)·η(i)

‖η̃(i−1)‖2 , if η̃(i−1) · η(i) < 0;

0, otherwise;

and a is a prespecified value such that 0 ≤ a ≤ 2 (note: in the first iteration, η̃(0) is the vector with all components

equal to 0). Moreover, because the number of relaxed constraints is very large, during implementation we use a

dynamic constraint-generation scheme similar to that in Caprara et al. (2002) and Xu et al. (2018) to handle the

relaxed constraints and determine the corresponding multipliers. Under this scheme, we dynamically identify

constraints that the relaxed solution violates and store them in a constraint pool, and we update the multipliers

corresponding to these violated constraints in the pool using the method described above.

Each iteration of the subgradient optimization procedure includes the following steps: (i) obtain a lower

bound on problem P; (ii) obtain a feasible solution of problem P using the upper bound heuristic presented in

Section 4.2; (iii) identify constraints that the current lower bound solution has violated; (iv) update the modified

subgradient vector; and (v) update the Lagrangian multipliers. Step (ii) involves an MCMCNF problem and is

time-consuming to execute. We may skip this step in some iterations (see Section 5.1 for more details). This

procedure is terminated when the computational time hits a prespecified limit.
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5 Computational Study

We conduct a computational study to evaluate the performance of our Lagrangian relaxation heuristic. The

heuristic is implemented in C# using a personal computer with a 3.70 GHz 10-core processor (Intel Core i9-

10900 Processor) and 32 GB RAM. The MCMCNF problems in the upper bound procedure are solved by the

commercial solver IBM CPLEX 12.6.0 (64-bit edition). The test data generation process is described in Section

5.1, and the computational results are reported in Section 5.2.

5.1 Generation of test instances

In our computational study, the test instances are generated randomly with the parameter settings selected based

on the characteristics of the Beijing-Shanghai high-speed railway line (or JingHu line for short). Specifically,

we use one direction of the JingHu line, including its major and minor stations, number of platform tracks

at the stations, and distances between stations, as our railway network. We estimate the other train-related

parameters such as train capacities, minimum arrival and departure headways, and unit operating costs by

considering the characteristics of the trains operated by the Beijing-Shanghai High Speed Railway Co., Ltd.

We estimate the passenger-related parameters in such a way that the resulting passenger traffic intensity and

percentage of unsatisfied passenger closely match the reality.

The JingHu line has 23 stations, including 7 major stations and 16 minor stations. Major stations can be

used as origin and destination stations for trains and also be visited by trains, while minor stations can only

be visited by trains. Table 3 lists the detailed information of each station si from Beijing South to Shanghai

Hongqiao along the JingHu line, including station name, station index i, number of platform tracks mi, and

number of passing tracks m′
i. The “Major/Minor” rows indicate whether station si is a major station or minor

station. The “Distance” rows provide the distance between station si and the Beijing South station. The

minimum headway between arrivals at each station is set equal to 4 minutes, while the minimum headway

between departures at each station is set equal to 2 minutes.

To generate the train data, we consider those trains that are operated by the Beijing-Shanghai High Speed

Railway Co., Ltd., and generate random data that capture their characteristics. According to the data in

2015, there are about 70 trains traveling in the direction “Beijing South to Shanghai Hongqiao” per day, where

different OD pairs have different service frequencies. To capture these characteristics, we randomly select each

train k’s OD pair (ok, dk) from

{(0, 5), (0, 10), (0, 15), (0, 22), (2, 22), (5, 22), (10, 15), (10, 22), (12, 22), (15, 22)}.

To test the performance of our heuristic for different problem sizes, we divide the computational study into

two parts. In the first part, we set |K| = 30, 50, 70, where OD pair (0, 22) is selected with probability 40/70,

each of OD pairs (0, 5) and (10, 22) is selected with probability 6/70, each of OD pairs (0, 15), (2, 22), (12, 22),

and (15, 22) is selected with probability 3/70, and each of OD pairs (0, 10), (5, 22), and (10, 15) is selected with
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Table 3: Input data of JingHu line.

Station name Beijing South Langfang Tianjin South Cangzhou West Dezhou East Jinan West
Station index i 0 1 2 3 4 5

mi 6 1 2 1 2 7
m′

i 0 1 1 1 1 1
Major/Minor Major Minor Major Minor Minor Major
Distance (km) 0 59 131 219 327 419

Station name Tai’an Qufu West Tengzhou East Zaozhuang Xuzhou East Suzhou East
Station index i 6 7 8 9 10 11

mi 1 1 1 1 6 1
m′

i 1 1 1 1 1 1
Major/Minor Minor Minor Minor Minor Major Minor
Distance (km) 462 533 589 625 688 767

Station name Bengbu South Dingyuan Chuzhou Nanjing South Zhenjiang South Danyang North
Station index i 12 13 14 15 16 17

mi 4 1 1 5 1 1
m′

i 1 1 1 1 1 1
Major/Minor Major Minor Minor Major Minor Minor
Distance (km) 844 897 959 1018 1087 1112

Station name Changzhou North Wuxi East Suzhou North Kunshan South Shanghai Hongqiao
Station index i 18 19 20 21 22

mi 1 1 1 1 10
m′

i 1 1 1 1 0
Major/Minor Minor Minor Minor Minor Major
Distance (km) 1144 1201 1227 1259 1302

probability 2/70; see Table 4. In the second part, we test the performance of our heuristic with a larger number

of trains but shorter travel distances. In this part, we set |K| = 70, 110, 150, where each of OD pairs (0, 5),

(0, 10), (0, 22), (10, 15), (12, 22), and (15, 22) is selected with probability 1/6.

For each k ∈ K, the station sets Sk and S̄k are generated as follows. We let S′
k denote the set of stations

that train k may choose to skip or stop at (i.e., S′
k = Sk \ S̄k). Each station si along train k’s route such that

si /∈ {sok
, sdk
} is selected and inserted into set S′

k with probability 1/10. Each station si along train k’s route

such that si /∈ {sok
, sdk
}∪ S′

k is selected and inserted into set S̄k with probability 1/10 (respectively 3/10) if si

is a major (respectively minor) station. Then, we set Sk = S′
k ∪ S̄k.

We consider two types of trains, including “G trains” with average speed of 300 km per hour (km/h) and

“D trains” with average speed of 250 km per hour (see, e.g., Jiang et al. 2017). Based on the data in 2015,

Table 4: Parameter setting of computational study.

Train OD pair (0, 5) (0, 10) (0, 15) (0, 22) (2, 22) (5, 22) (10, 15) (10, 22) (12, 22) (15, 22)

Select probability (part 1) 6/70 2/70 3/70 40/70 3/70 2/70 2/70 6/70 3/70 3/70

Select probability (part 2) 1/6 1/6 0 1/6 0 0 1/6 0 1/6 1/6

Train speed type G D

Train capacity 1200 600 1200 600

ck (1.00)c (0.50)c (0.80)c (0.40)c

c′k (0.90)c (0.45)c (0.72)c (0.36)c

(origin station, destination station) (major, major) (major, minor) (minor, major) (minor, minor)

ϑ’s range [0.8, 1.0] [0.5, 0.7] [0.5, 0.7] [0.2, 0.4]
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about one-seventh of the trains on the JingHu line were type D trains. Thus, in our computational study, for

each k ∈ K, we randomly select train k’s type from {G, D}, where type D is selected with probability 1/7, and

type G is selected with probability 6/7. After determining train k’s type, the time for train k to traverse each

track segment along its route can be determined and is rounded to the nearest integer. For example, if train k

is of type D, then its average speed is 250 km/h, and the amount of time for this train to traverse track segment

s0 → s1 with a length of 59 km is (59/250) · 60 ≈ 14 minutes. If train k is of type D, then both α′
k and α′′

k are

set to be 2 minutes. If train k is of type G, then α′
k and α′′

k are set to be 2 minutes and 3 minutes, respectively.

The minimum required dwell time βki of train k at a minor station si, si /∈ S̄k, is randomly selected from

{3, 4, 5}, where the probability of each value being selected is 1/3. The minimum required dwell time βki of

train k at a major station si, si /∈ S̄k, is randomly selected from {6, 8, 10}, where the probability of each value

being selected is 1/3.

We set T = 1080 (minutes), which represents an 18-hour daily operation. Train k’s latest allowed operation

completion time qk is set equal to T . Train k’s earliest possible operation start time pk is randomly generated

from a discrete uniform distribution between 0 and (0.8)T − Tk, where Tk is the required minimum time for

train k to finish its trip. The constant factor “0.8” is used to ensure that train k starts early enough so that

it can finish its operation no later than T . Train k’s capacity Γk is randomly selected from {600, 1200}, where

600 is selected with probability 1/4, and 1200 is selected with probability 3/4. Using the train capacities and

travel distances, we can compute the total available seat-kilometers (TASK) defined as

TASK =
∑

k∈K

Γk · (distance between train k’s origin and destination stations),

which is the maximum total distance that passengers can travel by taking the trains. Let c denote the operating

cost for a type G train with a 1200-passenger capacity to run on a track; that is, ck = c if train k is of type G

and Γk = 1200. We set ck = (0.5)c if train k is of type G and Γk = 600; ck = (0.8)c if train k is of type D and

Γk = 1200; and ck = (0.4)c if train k is of type D and Γk = 600. We set c′k = (0.9)ck for all train k; see Table 4.

For simplicity, the monetary unit is scaled in such a way that c = 1.

In order to simplify our computational analysis, we focus on the passenger OD pairs with significant passenger

volume and ignore those passenger OD pairs that have small volume. Thus, we only consider passenger groups

traveling among 11 large-passenger-volume stations, including the seven major stations and minor stations s4,

s7, s19, and s20. Hence, there are 55 passenger OD pairs in total. For each passenger OD pair, there are 18

passenger groups whose arrival times at their origin stations are 0, 60, 120, . . . , 1020. This implies that there are

55 × 18 = 990 potential passenger groups. However, in some of these passenger groups, the passenger arrival

times at their origin stations are quite late and the travel distances are long, so that it is impossible for the

passengers to reach their destination stations by time T if they take a type D train. Let

tr =
distance between passenger group r’s origin and destination stations

speed of type D train
.

Then, we exclude those passenger groups with p̂r + tr > T . As a result, we consider only 896 passenger groups.
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We generate the number of passengers zr in passenger group r by setting it equal to ϑr · ẑ, where ẑ is a

parameter that represents the maximum possible number of passengers in a passenger group, and ϑr is a random

value such that ϑr ≤ 1. This allows different passenger groups to have different sizes, while the maximum size is

capped by ẑ. The value of ϑr is generated from a uniform distribution on [ϑ̄r − 0.1, ϑ̄r + 0.1], where parameter

ϑ̄r is the mean of ϑr and is dependent on the passenger group’s origin and destination stations. Specifically,

ϑ̄r = 0.9 if the passenger group’s origin and destination are both major stations, ϑ̄r = 0.6 if the passenger

group’s origin is a major station and destination is a minor station, ϑ̄r = 0.6 if the passenger group’s origin is a

minor station and destination is a major station, and ϑ̄r = 0.3 if the passenger group’s origin and destination

are both minor stations; see Table 4.

The value of parameter ẑ is determined as follows. Given ẑ and ϑ̄r, the expected value of zr is equal to

ϑ̄r · ẑ. We define the total expected passenger-kilometers (TEPK) as

TEPK =
∑

r∈R

ϑ̄r · ẑ · (distance between passenger group r’s origin and destination stations),

which is the expected total distance that all the passengers wish to travel. We then introduce a parameter κ

defined as

κ =
TEPK

TASK
,

which represents the passenger traffic intensity of the railway system. We consider test instances with different

values of κ, representing different passenger traffic conditions. Given κ, ϑ̄r, Γk, and the distance parameters,

we have

ẑ =
κ

∑

k∈K Γk · (distance between train k’s origin and destination stations)
∑

r∈R ϑ̄r · (distance between passenger group r’s origin and destination stations)
.

The time τill′ for a passenger to walk from the lth platform to the l′th platform of station si is set equal to

τ · |l − l′|, where parameter τ is set to be 2 minutes. The unit cost of a passenger’s time spent on riding the

trains and waiting for the trains, ĉ, is set equal to (0.0010)c, while the unit cost of a passenger’s time spent on

walking between station platforms, ĉ′, is set equal to (0.0012)c. The penalty πr of each unsatisfied passenger

in group r is set equal to (0.2)c + ĉtr, where the term (0.2)c represents a fixed cost incurred by having an

unsatisfied passenger, and the term ĉtr is an additional penalty that is proportional to the travel distance tr of

the passenger’s journey.

In the first part of the computational study, we test the performance of our Lagrangian relaxation heuristic

by setting |K| = 30, 50, 70 and setting the OD pairs of the trains as shown in Table 4. For each value of |K|, we

first set κ = 0.8 and generate 5 random test instances. Thus, there are 15 such test instances in total. Next, we

investigate how traffic intensity affects the solution. To do so, we generate a train schedule with |K| = 30, and

then generate random test instances with different passenger requirements. We set κ = 0.2, 0.4, 0.6, 0.8, 1.0. For

each value of κ, we generate 3 random test instances. Thus, there are 15 such test instances. In the second part

of the computational study, we set |K| = 70, 110, 150 and set the OD pairs of the trains as shown in Table 4.
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For each value of |K|, we set κ = 0.8 and generate 5 random test instances. Hence, there are 15 test instances

in this part of the study.

In our implementation of the subgradient optimization procedure, parameter a is set to 0.1. The initial

value of the step size θ is set to 2.0. During the solution process, θ is reduced by 20% if the best lower bound

identified has no improvement for 20 consecutive iterations. The computation is terminated if the running time

limit has been reached. For each parameter setting, we set the running time limit to 5 hours per test instance.

For the first 10 iterations of the subgradient optimization procedure, we execute the upper bound heuristic and

update the upper bound at each iteration. After 10 iterations, since the upper bound heuristic becomes less

likely to be able to identify a better upper bound, we execute the upper bound heuristic with only probability

20% at each iteration.

5.2 Computational results

Tables 5 and 6 summarize the results of the first part of the computational study. The “No. of iterations”

column reports the number of iterations that the subgradient optimization process has gone through during

the 5-hour computation. The “No. of executions of UB heuristic” column reports the number of times that the

subgradient optimization process has executed the upper bound heuristic. The “No. of improving solutions”

column reports the number of new upper bound solutions obtained during this process. The “Gap” column

reports the optimality gap, where

Gap =
UB∗ − LB∗

LB∗
× 100%,

UB∗ is the objective function value of the heuristic solution, and LB∗ is the best lower bound value identified

in the subgradient optimization process. The “service level” of each solution is also reported, where

service level =

(

1−
number of unsatisfied passengers

total number of passengers

)

× 100%.

As can be seen from Table 5, the heuristic solution value increases as |K| increases, because the cost of

operating the trains is higher as the number of trains increases. The number of iterations and number of

executions of the upper bound heuristic decrease as |K| increases. This is because the upper bound heuristic,

which needs to solve an MCMCNF problem on a large time-space network with a large number of commodities,

is time-consuming to execute, and the computational burden of each execution increases as the problem size

increases. The number of improving solutions tends to increase as |K| increases. This indicates that for

small-size instances, the upper bound heuristic can identify a near-optimal solution in the first iteration of the

subgradient optimization process, and relatively few improvements need to be made in later iterations. The

performance gaps of these test instances range between 18.8% and 29.7%. We observe that the performance gaps

have a similar scale for instances with |K| = 30 and instances with |K| = 50, and tend to be larger for instances

with |K| = 70. This indicates that as the computational burden reaches a certain level, the performance of

the heuristic begins to drop. We also observe that the service level tends to increase as |K| increases. This
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Table 5: Computational results: Part 1.

Instance |K | κ No. of No. of executions No. of improving UB∗ LB∗ Gap Service
iterations of UB heuristic solutions level

1 30 0.8 2714 532 5 21041.7 17273.8 21.8% 72.8%

2 30 0.8 3673 714 1 17609.3 14611.7 20.5% 57.4%

3 30 0.8 2583 551 4 19596.7 16262.6 20.5% 74.1%

4 30 0.8 2939 600 3 19212.8 15745.4 22.0% 73.3%

5 30 0.8 2728 529 8 20518.7 17274.1 18.8% 71.2%
Average: 2927.4 585.2 4.2 19595.8 16233.5 20.7% 69.8%

6 50 0.8 1299 282 8 36022.1 29946.2 20.3% 76.8%

7 50 0.8 1305 279 12 32643.2 27145.3 20.3% 74.1%

8 50 0.8 1416 277 5 33766.8 27998.8 20.6% 76.4%

9 50 0.8 1248 281 2 31712.3 26697.4 18.8% 77.2%

10 50 0.8 1202 242 9 36373.8 30487.8 19.3% 75.9%
Average: 1294.0 272.2 7.2 34103.6 28455.1 19.9% 76.1%

11 70 0.8 534 142 15 46716.9 37473.9 24.7% 81.2%

12 70 0.8 603 121 7 48629.0 38767.9 25.4% 78.2%

13 70 0.8 713 151 7 45661.9 36938.3 23.6% 77.5%

14 70 0.8 522 124 4 49833.6 38421.4 29.7% 74.5%

15 70 0.8 837 160 9 45495.4 38029.4 19.6% 79.3%
Average: 641.8 139.6 8.4 47267.4 37926.2 24.6% 78.1%

is because as the number of trains increases, the service capacity of the system increases, and thus a higher

percentage of passengers can be served.

As can be seen from Table 6, the heuristic solution value increases as κ increases. This is because the

cost of handling more passengers is higher as the passenger traffic intensity increases. The performance gap is

Table 6: Computational results: Part 1 (cont’d).

Instance |K | κ No. of No. of executions No. of improving UB∗ LB∗ Gap Service
iterations of UB heuristic solutions level

16 30 0.2 3295 656 2 11994.4 10518.1 14.0% 64.8%

17 30 0.2 3227 661 4 12013.0 10508.9 14.3% 65.4%

18 30 0.2 3229 672 4 12009.5 10515.8 14.2% 67.1%
Average: 3250.3 663.0 3.3 12005.6 10514.3 14.2% 65.8%

19 30 0.4 3032 637 4 15108.7 12851.4 17.6% 66.3%

20 30 0.4 3091 610 11 15083.7 12812.2 17.7% 72.6%

21 30 0.4 3044 634 6 15143.1 12875.1 17.6% 73.9%
Average: 3055.7 627.0 7.0 15111.8 12846.2 17.6% 70.9%

22 30 0.6 2879 594 9 18258.5 15361.1 18.9% 72.6%

23 30 0.6 2720 617 9 18238.1 15302.7 19.2% 74.1%

24 30 0.6 2854 604 5 18206.0 15305.6 18.9% 75.8%
Average: 2817.7 605.0 7.7 18234.2 15323.1 19.0% 74.2%

25 30 0.8 2566 525 4 21399.0 17893.5 19.6% 73.1%

26 30 0.8 2727 533 8 21355.7 17935.9 19.1% 72.5%

27 30 0.8 2691 529 10 21370.2 17817.5 19.9% 70.3%
Average: 2661.3 529.0 7.3 21375.0 17882.3 19.5% 72.0%

28 30 1.0 2370 480 9 24457.4 20621.1 18.6% 69.4%

29 30 1.0 2238 473 13 24620.0 20568.5 19.7% 67.9%

30 30 1.0 2375 476 9 24596.1 20612.6 19.3% 70.4%
Average: 2327.7 476.3 10.3 24557.8 20600.7 19.2% 69.2%
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Table 7: Computational results: Part 2.

Instance |K | κ No. of No. of executions No. of improving UB∗ LB∗ Gap Service
iterations of UB heuristic solutions level

31 70 0.8 1831 375 3 28577.2 24029.2 18.9% 69.5%

32 70 0.8 2341 464 1 24291.8 20610.8 17.9% 59.3%

33 70 0.8 2015 384 1 24304.0 20363.9 19.3% 65.7%

34 70 0.8 2267 453 2 21724.4 18574.8 17.0% 63.5%

35 70 0.8 1821 367 4 30320.8 25325.2 19.7% 71.0%

Average: 2055.0 408.6 2.2 25843.6 21780.8 18.6% 65.8%

36 110 0.8 803 149 4 45180.8 37089.4 21.8% 74.9%

37 110 0.8 900 178 5 45039.6 37347.5 20.6% 75.3%

38 110 0.8 1030 202 2 41101.7 34289.4 19.9% 74.2%

39 110 0.8 897 213 1 38397.2 31706.9 21.1% 64.2%

40 110 0.8 1113 230 3 38764.9 32723.1 18.5% 67.6%
Average: 948.6 194.4 3.0 41696.8 34631.3 20.4% 71.2%

41 150 0.8 684 147 3 56293.6 45318.7 24.2% 70.1%

42 150 0.8 547 111 6 54200.2 42945.0 26.2% 74.6%

43 150 0.8 429 99 1 61352.3 47613.0 28.9% 68.7%

44 150 0.8 780 174 2 61246.7 49598.9 23.5% 73.7%

45 150 0.8 479 97 5 55183.8 43089.1 28.1% 76.4%
Average: 583.8 125.6 3.4 57655.3 45712.9 26.2% 72.7%

significantly smaller when κ = 0.2. This indicates that the performance of the heuristic is significantly better

when the passenger traffic is low. We also observe that the service level is the highest when κ = 0.6. When κ is

greater than 0.6, the service level decreases as κ increases. This is because when the passenger traffic intensity

is high, more passengers fail to get satisfied as the demand increases. However, when κ is less than 0.6, the

service level tends to be lower when κ is smaller. This is because when the traffic intensity drops below a certain

level, minimizing train operating costs becomes more important than minimizing passenger costs. Therefore,

the trains are assigned more skipped stops and less dwell time at stations. As a result, less passenger demand

can be satisfied by the train service.

Table 7 summarizes the results of the second part of the computational study. These results bear a lot of

similarities as the results in Table 5. For example, as |K| increases, the heuristic solution value increases, the

number of iterations decreases, the number of executions of the upper bound heuristic decreases, the number

of improving solutions tends to increase, and the service level tends to increase. Note that both instances

11–15 and instances 31–35 have |K| = 70. However, the number of iterations and the number of executions of

the upper bound heuristic for instances 31–35 are larger than those for instances 11–15. This is because the

trains in instances 31–35 have shorter travel distances than those in instances 11–15, and thus instances 31–35

require less computational work per execution of the upper bound heuristic. The lower computational burden

of instances 31–35 also results in smaller performance gaps than instances 11–15.
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6 Conclusions

We have studied a train timetabling problem with stop-skipping and platform assignment decisions while taking

into account the passenger flow. We formulated this problem as a constrained MCMCNF problem on a time-

space network, and proved that the problem is NP-hard in the strong sense. We developed a Lagrangian

relaxation heuristic to solve the problem. Our computational results demonstrate the effectiveness of our

Lagrangian relaxation heuristic and report how the solution is influenced by passenger traffic intensity and

railway service capacity.

One limitation of this study is that our Lagrangian relaxation heuristic requires a large amount of com-

putational time for the subgradient optimization procedure to converge, particularly when solving large-size

instances. Thus, an interesting future research topic is to develop mathematical techniques to improve the

tightness of the lower bound and speed up the convergence of the solution process. Developing other solution

methods to tackle this difficult problem is also an interesting research topic. One reason for the heavy compu-

tational burden required by our Lagrangian relaxation heuristic is that every time the upper bound heuristic

is executed, it needs to solve an MCMCNF problem on a large time-space network with a large number of

commodities to determine the passengers’ schedule. Hence, exploring other approaches to modeling passenger

flows in train-timetabling problems with stop-skipping and platform choice considerations so as to improve the

complexity of the model is another possible research direction.

Rail operations are vulnerable to unexpected disruptions. When a disruption occurs, efficient rescheduling

methods that can generate passenger-friendly timetables are desirable. Since stop-skipping patterns, platform

choices, and passenger flows are also key factors in the rescheduling process, an important research direction is

to develop efficient methods to re-optimize the solution in our model when facing a disruption, so as to minimize

the impact on the passenger flow. Another interesting future research direction is to consider other variants

of our problem. This includes the extension of our model to bidirectional rail networks, models with energy

consumption considerations, etc.
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Appendix A. Proof of Theorem 1

We transform Exact Cover by 3-Sets (X3C) to the decision version of problem P. Given a set X of 3b elements

and a collection K of 3-element subsets of X, the X3C problem asks whether there exists K′ ⊆ K such that every

element of X occurs in exactly one member of K′. X3C is known to be strongly NP-hard (Garey and Johnson

1979). Let u = |K|. For notational convenience, we denote X = {φ1, φ2, . . . , φ3b} and K = {{φνk1, φνk2, φνk3} |

k = 1, . . . , u}.

Given an arbitrary instance of X3C, we construct a corresponding instance of problem P as follows. There

are 6b + 3 stations, u trains, and 3b + 1 passenger groups. Each station has u platform tracks. Each terminal

station has zero passing tracks, and each intermediate station has one passing track. The origin station of each

train is s1, and the destination station of each train is s6b+3. For each k = 1, 2, . . . , u, train k must stop at

stations s1, s2νk1 , s2νk1+1, s2νk2 , s2νk2+1 , s2νk3 , s2νk3+1, s6b+2, and s6b+3, and it must skip the other stations

(i.e., Sk = S̄k = S \ {s1, s2νk1, s2νk1+1, s2νk2 , s2νk2+1, s2νk3 , s2νk3+1, s6b+2, s6b+3}). The time for each train k to

traverse each track segment si → si+1 is 1 time unit, regardless of whether train k skips stations si and si+1 or

not (i.e., αki = 1 and α′
ki = α′′

ki = 0). The minimum required dwell time of each train at a station that it stops

at is 1 time unit. The minimum headway between arrivals and the minimum headway between departures at

each station are both 0. The earliest start time of operation of each train is 0, and the latest completion time

of operation of each train is 12b + 22. The capacity of each train is 1. The number of passengers in each of

passenger groups 1, 2, . . . , 3b is 1, and the number of passengers in group 3b+1 is u− b. For r = 1, 2, . . . , 3b, the

origin station and destination station of passenger group r are s2r and s2r+1, respectively. The origin station

and destination station of passenger group 3b + 1 are s6b+2 and s6b+3, respectively. For r = 1, 2, . . . , 3b, the

earliest possible start time of the trip of a passenger in group r is 0, and the latest allowed completion time

of the trip of a passenger in group r is 6b + 11. The earliest possible start time of the trip of a passenger in

group 3b + 1 is 12b + 20, and the latest allowed completion time of the trip of a passenger in group 3b + 1

is 12b + 21. The operating cost of each train is 1 per time unit regardless of whether the train is running or

dwelling (i.e., ck = c′k = 1 for each k). The unit cost of each passenger’s time is 0 regardless of whether the

passenger is riding a train, waiting for a train, or walking between station platforms (i.e., ĉ = ĉ′ = 0). The

penalty of each unsatisfied passenger in any passenger group is u(6b + 11) + 1. Clearly, this construction can

be done in polynomial time. Let Y = u(6b + 11). We will show that there exists a feasible solution to this

constructed instance of problem P with a total cost no greater than Y if and only if the answer to the given

X3C problem is “yes.”

Suppose the answer to the given X3C problem is “yes.” Then, there exists K′ ⊆ K such that every element

of X occurs in exactly one member of K′. Let K′ = {k | {φνk1 , φνk2, φνk3} ∈ K
′; k = 1, . . . , u}. For each k ∈ K′,

we assign the passengers of groups νk1, νk2, and νk3 to train k. We let train k start its operation at time 0, spend

1 time unit dwelling at each of the 9 stations that it must stop at, and complete its operation at time 6b + 11.

This assignment is feasible, because train k stops at stations s2νk1 , s2νk1+1 , s2νk2 , s2νk2+1, s2νk3 , and s2νk3+1,
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which are the pickup and drop-off points of passenger groups νk1, νk2, and νk3. Then, each of the passengers in

groups 1, 2, . . . , 3b is served by exactly one train. For each k ∈ {1, . . . , u} \K′, we assign a passenger of group

3b + 1 to train k, and we let train k start its operation at time 6b + 11, spend 1 time unit dwelling at each of

the 9 stations that it must stop at, and complete its operation at time 12b + 22. This train schedule is feasible,

because train k departs from s6b+2 at time 12b+ 20 and arrives s6b+3 at time 12b+ 21, enabling the passengers

of group 3b +1 to board and alight the train at the right time. The total operating cost of each train is 6b +11,

and all passengers’ demands are satisfied. Hence, the total cost of this solution is Y .

Conversely, suppose that there exists a feasible solution to the constructed instance of problem P with a

total cost of no greater than Y . Then, all passengers’ demands are satisfied. Note that each train traverses 6b+2

track segments and dwells at 9 stations. Thus, the minimum possible operating cost of each train is 6b + 11. If

one of the trains begins its operation before time 6b+11 and serves one of the passengers in group 3b+1 (which

requires the train to reach station s6b+3 at time 12b + 21 and completes its operation at time 12b + 22), then

the total cost of the solution will exceed Y . Hence, those trains that serve the u− b passengers in group 3b + 1

must start their operations no earlier than time 6b + 11. Because the latest allowed completion time of the trip

of each passenger in groups 1, 2, . . . , 3b is 6b + 11, at most b trains are serving passenger groups 1, 2, . . . , 3b.

Because each of these trains stops at only 6 of stations s2, s3, . . . , s6b+1, each of them serves at most 3 passengers

in groups 1, 2, . . . , 3b. Therefore, exactly b trains are serving passenger groups 1, 2, . . . , 3b, and each of them

serves exactly 3 passengers in groups 1, 2, . . . , 3b. Let k1, k2, . . . , kb denote these b trains. For j = 1, 2, . . . , b, let

νkj1, νkj2, and νkj3 be the 3 passenger groups served by train kj. Let K′ = {{φνkj1 , φνkj2 , φνkj3} | j = 1, . . . , b}.

Then, every element of X occurs in exactly one member of K′. This completes the proof of the theorem.
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Appendix B. A Simpler Upper Bound Heuristic

The simpler upper bound heuristic mentioned in Remark 3 is as follows:

Step 1. Determine a train timetable using the basic constructive heuristic presented in Section 4.2. The output

of this basic constructive heuristic is a set of xk
uv values for all k ∈ K and u → v ∈ A. For each

u→ v ∈ A, the passenger capacity of arc u→ v is
∑

k∈K Γkxk
uv.

Step 2. Rank the passenger groups by increasing optimal values of the |R| shortest path subproblems.

Step 3. Following the ranked order determined in Step 2, for each passenger group r, construct the schedule

of the group by solving a single commodity minimum cost network flow problem, and then reduce the

passenger capacity of each arc by the number of passengers in group r assigned to that arc.

This upper bound heuristic is simpler than the original version presented in Section 4.2, as it does not need to

solve any MCMCNF problem. To estimate the performance of this simpler heuristic, we test it using those test

instances with |K| = 70 (i.e., instances 11–15 and 31–35 shown in Tables 5 and 7). For each test instance, we

execute the overall solution procedure with this simpler upper bound heuristic for 5 hours. A comparison of the

computational results of this simpler upper bound heuristic with those of the original upper bound heuristic is

presented in Table 8.

Table 8: Computational results: Original upper bound heuristic vs. the simpler upper bound heuristic.

Using the original UB heuristic Using the simpler UB heuristic

Avg. running UB value of LB value of Optimality gap Avg. running UB value of LB value of Optimality gap
Instance time of each Lagrangian Lagrangian of Lagrangian time of each Lagrangian Lagrangian of Lagrangian

execution of UB relaxation relaxation relaxation execution of UB relaxation relaxation relaxation
heuristic (sec.) heuristic heuristic heuristic heuristic (sec.) heuristic heuristic heuristic

11 117.0 46716.9 37473.9 24.7% 109.0 47382.6 38341.7 23.6%
12 135.7 48629.0 38767.9 25.4% 111.8 49053.3 39040.9 25.6%

13 106.3 45661.9 36938.3 23.6% 95.7 46344.3 37491.3 23.6%

14 136.9 49833.6 38421.4 29.7% 137.0 49978.1 37850.0 32.0%
15 105.6 45495.4 38029.4 19.6% 96.6 46008.9 38102.9 20.7%

Average: 120.3 47267.4 37926.2 24.6% 110.0 47753.4 38165.4 25.1%

31 36.2 28577.2 24029.2 18.9% 38.3 28733.7 24030.4 19.6%

32 26.2 24291.8 20610.8 17.9% 30.2 24532.1 20654.0 18.8%
33 33.4 24304.0 20363.9 19.3% 35.7 24530.8 20358.0 20.5%

34 27.4 21724.4 18574.8 17.0% 29.7 21952.6 18477.4 18.8%

35 36.5 30320.8 25325.2 19.7% 38.5 30625.6 25284.0 21.1%

Average: 31.9 25843.6 21780.8 18.6% 34.5 26075.0 21760.8 19.8%

From Table 8, we observe that determining the passenger schedules using the simpler upper bound heuristic

requires a comparable amount of computational time compared to the original upper bound heuristic. We also

observe that the solutions generated by the Lagrangian relaxation procedure with the simpler upper bound

heuristic are no better than those solutions generated by the procedure with the original upper bound heuristic

in most of these test instances. This is because solving a standard MCMCNF is guaranteed no worse (and often

better) than the passenger flow obtained by constructing the passenger schedules one by one.

38




