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Abstract: The occurrence of natural disasters or accidents causes the obstruction or interruption of 

road traffic connectivity and affects the transportation of essential materials, especially for cross-

regional delivery under emergency situations. Affected by COVID-19, government administrators 

establish cross-regional quarantine roadblocks to reduce the risk of virus transmission caused by cross-

regional transportation. In this study, we propose an emergency logistics network design problem with 

resource sharing under collaborative alliances. We construct a state–space–time network-based multi-

objective mixed integer programming model to optimize the vehicle routes in order to meet customer 

demands for essential materials with the lowest cost and highest emergency response speed under 

limited transportation resources. A two-stage hybrid heuristic algorithm is then proposed to find good-

quality solutions for the problem. Clustering results are obtained using a 3D k-means clustering 

algorithm with the consideration of time and space indices. The optimization of the initial population 

generated by the improved Clarke and Wright saving method and improved nondominated sorting 

genetic algorithm-II with elite retention strategy provides stable and excellent performance for the 

searching of Pareto frontier. The cost difference of the entire emergency logistics network before and 

after collaboration, i.e., the profit, is fairly allocated to the participants (i.e., logistics service providers) 

through the Shapley value method. A real-world case in Chongqing City, China is used to validate the 

effectiveness of the proposed model and algorithm. This study contributes to smart transportation and 

logistics system in emergency planning and has particular implications for the optimal response of 

existing logistics system to the current COVID-19 pandemic. 

Keywords: Emergency logistics; resource sharing; state–space–time network; collaboration; Shapley 

value method 
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1. Introduction 

The construction of an emergency logistics network is a necessary and crucial task for government 

officials and managers to protect the residents’ normal life in the occurrence of some natural disasters 

or accidents (Shin et al., 2019). At the end of 2019, the outbreak of COVID-19 has caused many 

countries in the world to enter a state of emergency. Several countries have imposed some strict traffic 

control policies, including the policy of closing cities, to deal with the high infectivity and mortality 

of the new coronavirus. On the one hand, measures, such as road traffic restrictions, including cross-

regional quarantine inspection of transportation vehicles and prohibition of residents from purchasing 

materials across regions, reduce the risk of virus transmission, thereby ensuring the health of residents. 

On the other hand, ensuring the accessibility and timeliness of transportation of the living supplies is 

an important issue that must be addressed by logistics service providers and governors when 

transportation resources are limited and transportation is blocked. 

Compared with the logistics networks under a non-emergency mode, more factors, such as 

emergency response time, limited transportation resources, and high transportation costs, need to be 

considered in emergencies (Duque et al., 2016; Oruc and Kara, 2018). Sudden disasters, such as 

earthquakes, epidemic outbreaks, and other emergencies, usually have a series of adverse effects on 

logistics delivery activities, such as the lengthened travel time, the shortage of transportation resources, 

and the obstruction of cross-regional delivery operations. However, the timely and safe delivery of 

living materials to urban residents is vital to ensuring social stability. As a government manager, 

increasing the response speed to material delivery under emergency conditions with limited resources 

is necessary to ensure the normal delivery for residents. From an enterprise’s perspective, logistics 

service providers need to optimize delivery networks under various policy constraints to ensure the 

normal operation of their enterprises with a relatively low cost. Therefore, an optimization strategy 

that considers multiple decision goals is needed to achieve a holistic design of the delivery network in 

an emergency. 

 

1.1. Literature review 

The design of emergency logistics network for living materials plays a vital role in maintaining 

normal social order and ensuring residents’ daily lives when emergencies or unexpected disasters such 

as earthquakes and epidemics occur (Hamacher and Tjandra, 2001; Sheu, 2007). The occurrence of an 

emergency involves the research and exploration of the following issues: transportation supplies of 

living materials, formulation of evacuation plans, placement and transfer of casualties, and the location 

of emergency logistics facilities (Balcik and Beamon, 2008; Rath and Gutjahr, 2014; Rancourt et al., 

2015; Osman and Ram, 2017). In the past, research on emergency logistics and discussions and 

analyses for actual disasters are very limited due to the accidental and the low-frequency characteristics 

of disasters (Holguin-Veras et al., 2012; Ozguven, and Ozbay, 2012). Recently, with the increasing 

awareness of humanitarian and human fate community, more and more academic experts and decision-

makers of enterprises have focused on the research on emergency logistics (Galindo and Batta, 2013; 

Huang et al., 2015). For example, in 2020, with the impact of COVID-19, the time and cost of cross-

regional transportation are inevitably increased to avoid the risk of virus transmission caused by cross-

regional contact due to quarantine, epidemic prevention, and other policies (Zhang et al., 2020). 

Therefore, designing a safe and reliable emergency logistics network in face of the traffic interruption, 

such as the increase in travel time or costs for some sections of cross-regional transportation is of vital 
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importance to social stability (Cleophas et al., 2019; Gansterer and Hartl, 2020; Santos et al., 2020). 

Emergency logistics network design has focused on the optimization of relief routing in previous 

literature, especially on the quick and safe transfer of people who have experienced disasters to a 

predetermined refuge after a disaster (Zhang et al., 2017; Bayram and Yaman, 2018). The study of 

emergency logistics network design aims to find an effective solution for distributing life supplies to 

customers in need. Some researchers considered an emergency logistics network design in a 

deterministic environment with objectives of minimizing total delivery time (Campbell et al., 2008; 

Ozkapici et al., 2016). In response to emergency situations that may cause road damage such as natural 

disasters, Yan and Shih (2009) added emergency road maintenance considerations to solve a combined 

emergency logistics network optimization problem. In addition, delivery efficiency and operational 

cost should be taken into consideration when designing the emergency logistics network to ensure 

fairness (Camacho-Vallejo et al., 2015). However, for the possible road interruptions after disasters, 

such as the blocking of roads by debris in the emergency logistics network, many scholars focused on 

removing road barriers with minimum cost or minimum cleaning time to ensure the connectivity and 

reachability of the emergency delivery network (Celik et al., 2015; Sahin et al., 2016; Berktas et al., 

2016; Akbari and Salman, 2017). The research on how to satisfy the daily customer demands on the 

basis of existing accessible roads through multi-facility collaboration needs further exploration. 

Therefore, we consider the design of the emergency logistics network based on the feasible 

transportation network, and establish a collaborative delivery mode to meet the delivery demands of 

customers while ensuring the economic benefits of the logistics enterprises. 

However, all the aforementioned studies focused on the logistics network design problem for one 

logistics company only. They did not consider the possible collaboration and resource sharing among 

multiple logistic service providers, although it is important especially in an emergency. Through the 

formation of collaborative alliances, we can achieve a win-win solution for both customers and 

enterprises themselves. In the previous literature, the importance of coordination or allocation of 

limited resources, especially for multi-facility cross-regional collaborative delivery, has been largely 

ignored (Karlaftis et al., 2007; Duque and Sörensen, 2011; Wang et al., 2018). Many studies on 

resource allocation focused on route optimization only within a logistics company to achieve 

transportation accessibility (Huang et al., 2013; Balcik, 2017). Delays or undeliverable phenomena 

may occur in some cross-regional long-distance deliveries due to road traffic obstruction and non-

collaborative logistics operation modes. 

Moreover, most studies considered only one objective function, i.e., minimizing the total delivery 

cost. However, in an emergency, other aspects are also important. For example, the speed of emergency 

response, especially the timeliness of emergency delivery of blood, medical resources, daily necessities, 

etc., is crucial to the lives of residents. Zhou et al. (2017) proposed a multi-period emergency resource 

scheduling problem that aims to minimize the risk of unmet needs and the choice of damaged roads. 

Shin et al. (2019) proposed a comprehensive optimized scheduling strategy for maintenance personnel 

and rescue vehicles after a disaster, with the goal of minimizing the service completion time of the 

total demands. Although the timeliness of transportation or delivery after disasters or emergencies is 

extremely important, especially disasters that may cause casualties, such as earthquakes and hurricanes 

(Zhou et al., 2017; Shin et al., 2019), multiple objectives, such as emergency response time, delivery 

costs, and the efficiency of the used transportation resources (e.g., transportation trucks or vehicles) 

under emergency conditions are required to be considered simultaneously (Oruc et al., 2018). 

Therefore, we consider addressing a multi-objective optimization problem that takes into account the 
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logistics cost of the enterprise, the satisfaction of customer demands, and the limitation of social 

available resources to alleviate or improve the possible conflicts in the emergency situation. 

Therefore, reducing cross-regional conditions through collaborative logistics operations while 

satisfying the demand of existing customers is another important issue for emergency logistics network 

optimization. Most of the previous logistics delivery issues concerning collaboration only considered 

the vehicle routing optimization through the collaborative operations between multiple facilities in the 

entire static or dynamic situation rather than the particularity of emergency situations, such as the 

increase in travel time or costs for some sections of cross-regional transportation (Cleophas et al., 2019; 

Gansterer and Hartl, 2020; Santos et al., 2020). 

 

1.2. Objectives and contributions 

To close the above research gaps, we design an emergency logistics network based on a 

collaborative mode with resource sharing from multiple perspectives, including the cost, the 

emergency response time, and the effective utilization of transportation resources. The change in cross-

regional travel time due to unexpected conditions is considered when calculating the objective 

functions of the entire delivery network cost and response time. Designing a relatively closed regional 

collaborative delivery network reduces the transportation time, including quarantine time when 

transportation trucks perform delivery tasks across regions. The logistics cost of independent operation 

under noncollaborative mode is also reduced, thereby ensuring the timeliness of delivery services and 

accessibility of cargo transportation under an emergency situation. The cost difference due to 

collaboration, that is, the additional profit can be fairly allocated by comparing the total logistics cost 

under the optimized delivery strategy and the original delivery mode to promote the formation of the 

collaborative relationship and maintain its stability and sustainability. 

Compared with previous research on the optimization of emergency logistics networks, this study 

has the following innovations: (i) we propose a collaborative emergency logistics strategy among 

multiple logistics facilities based on state–space–time network using existing road resources to fulfill 

the delivery demands rather than the independent operations among different logistics facilities or 

enterprises; (ii) we consider multiple objectives, including the total logistics delivery costs, the total 

time, and the number of used vehicles, to get the lowest cost and highest emergency response speed 

while using limited transportation resources, thus achieving the Pareto optimality under multiple 

objectives; (iii) we adopt a two-stage heuristic algorithm to validate the advantages of the collaborative 

delivery strategy in an emergency in terms of total delivery cost, total time, and used transportation 

resources in a real case in Chongqing City, China. 

The remainder of the paper is organized as follows. Section 2 presents the problem statement. 

Section 3 introduces the mathematical model formulation for the investigated problem, including the 

assumptions and notations. Section 4 proposes a two-stage heuristics algorithm by combining the 

Clarke and Wright (CW) saving method and improved nondominated sorting genetic algorithm-II 

(NSGA-II). Section 5 conducts the numerical experiments in Chongqing City, China. Section 6 

summarizes the conclusions. 

2. Problem statement 

Taking the conventional logistics delivery network in a non-emergency mode as a reference, we 

explain the superiority of a collaborative emergency logistics network based on resource sharing when 

an unexpected event occurs. The state–space–time network is used to describe and analyze the 
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emergency response speed and logistics cost between the non-emergency and emergency modes 

(Mahmoudi and Zhou, 2016). Compared with the traditional delivery network optimization, delivery 

activities are regarded as single logistics delivery operations that only consider the delivery destination. 

The stocking operations of these delivery goods are ignored, and the initial state of these delivery 

trucks is defaulted to be fully loaded. However, such a process may make the potential risk of untimely 

stocking in emergency conditions due to the shortage of resources and the increase in demand. 

Therefore, this study transforms the delivery operation into a pickup and delivery problem with paired 

origin and destination. Fig. 1 shows the optimized delivery network without driving restrictions under 

a noncollaborative non-emergency mode. 
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Fig. 1 Optimized delivery network without driving restrictions under a noncollaborative mode 

In Fig. 1, two trucks (k1 and k2) departing from two delivery centers (DC1 and DC2) 

independently complete the delivery tasks for the given customer demands along the optimized 

shortest path. Considering the stocking operations of these goods to be delivered, delivery operations 

are defined as pickup and delivery operations with specific origin and destination (O–D), that is, a 

paired O–D pickup and delivery problem. Under the non-emergency condition, the two delivery 

centers complete the delivery tasks in a relatively independent service mode. The shortest path with 

visiting sequence (O,1,DC1,1,2,S1,2,4,3,S2,3,1,O) in truck k1’s state–space–time network is shown in 

Fig. 2. 
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Fig. 2 Shortest path with visiting sequence (O,1,DC1,1,2,S1,2,4,3,S2,3,1,O) in truck k1’s state–space–time network 
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In Fig. 2, the state of the truck at any time and any place can be known for information acquisition 

and flexible deployment of the truck. At the same time, the pickup and delivery states are represented 

by green and blue lines, respectively, and 0 and 1 in square brackets (e.g., [0 0], [0 1]), respectively, 

indicate whether the storage space is empty or full. The network optimization results in non-emergency 

mode can then be obtained by summarizing the operating costs and delivery time of all independent 

facilities. However, the original independently operated optimized network may have difficulty in 

meeting the existing demands with low costs and less delivery time when an emergency occurs and 

the road traffic conditions change. Therefore, we designed a collaborative emergency logistics network 

based on resource sharing as shown in Fig. 3. 
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Fig. 3 Optimized delivery network with driving restrictions under a collaborative mode 

In Fig. 3, we designed a delivery service network in a relatively enclosed area centered on DC1 

and DC2 because of the formation of collaboration between DC1 and DC2 and as the travel restrictions. 

Customer service can then be shared by collaborative logistics facilities, thereby minimizing total cost 

and delivery time while maximizing resource utilization based on the customers’ geographic locations, 

demands, and time windows in an emergency logistics network. Similarly, the shortest path with 

visiting sequence (O,1,DC1,1,5,S4,5,3,S2,3,1,O) in truck k1’s state–space–time network under a 

collaborative mode is shown in Fig. 4. 
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Fig. 4 Shortest path with visiting sequence (O,1,DC1,1,5,S4,5,3,S2,3,1,O) in truck k1’s state–space–time network 
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We explain the superiority of the collaborative emergency logistics network based on resource 

sharing in terms of the total cost, total time, and the number of used trucks. Without loss of generality, 

the unit transportation cost in transportation or service arcs using a truck can be set to $30/h, and the 

unit penalty cost for waiting or late can be defined as $40/h. Trucks waiting in the depot (i.e., logistics 

center) should not be imposed with the waiting costs because resources are not unnecessarily occupied. 

Therefore, the total cost and related optimization results of the noncollaborative and collaborative 

networks in accordance with the shortest paths and the above definitions are shown in Table 1. 

Table 1 Result comparison between noncollaborative and collaborative logistics networks 

Scenario Case 
Delivery 

time (h) 

Waiting 

time (h) 

Transportation 

cost ($) 

Penalty 

cost ($) 

Rental 

cost ($) 

Total cost 

($) 

Total 

time (h) 

Number 

of trucks 

Non-emergency Non-collaborative network 36 0 1080 0 400 1480 36 2 (0*) 

Emergency 
Non-collaborative network 40 2 1200 80 400 1680 42 2 (0*) 

Collaborative network 30 0 900 0 400 1300 30 2 (2*) 

*: The number of shared trucks. 

As shown in Table 1, the collaborative emergency logistics network shows a remarkable 

superiority from the perspectives of cost and timeliness of the delivery operation. Logistics companies 

are faced with high transportation costs across distant regions due to the obstruction of road traffic. 

The total cost of the noncollaborative network under an emergency condition is $1,680, which is higher 

than a collaborative network (i.e., $1,300). At the same time, the timeliness of delivery is greatly 

affected because of the increase in the cross-regional travel time, and the waiting cost should be paid 

additionally for the violation of the time window. The rental cost based on the number of used trucks 

should be paid for delivering the living materials. Therefore, the collaborative emergency logistics 

network based on resource sharing has potential advantages in responding to unexpected situations, 

improving emergency response speed, and reducing logistics operating costs. 

3. Optimization model 

The shortage of transportation resources and the extended travel time for quarantine in emergency 

conditions may cause the increase in waiting time and logistics operating costs of logistics companies 

during the delivery process. Therefore, a multi-objective optimization model with the consideration of 

emergency response speed and transportation resource sharing is conducted to study the design of 

emergency logistics network, thus to achieve the optimization of total logistics operating costs, waiting 

time, and transportation resources. 

 

3.1. Assumptions and notations 

In emergencies, such as earthquakes, epidemics, etc., which may cause extended travel time 

across regions, therefore, we consider reducing the logistics delivery costs and reduce the situation of 

untimely or even unable to deliver due to emergencies by first delimiting collaborative delivery areas 

and then optimizing routes in the enclosed delivery areas. Before the construction of the mathematical 

model, several necessary and reasonable assumptions are as follows. 

 Under an emergency situation, customer demands remain relatively stable and known in 

advance with the government’s allocation of resources and macro-control (e.g., restricted 

purchase policy).  
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 Delivery goods should be transferred from the delivery centers to the delivery satellites by 

trucks in the first echelon and be delivered to the customers by vehicles in the second echelon. 

 To improve the emergency response to unexpected events (e.g., epidemic or earthquake), the 

government usually adopts financial subsidies to promote the formation of collaborative 

alliances, thereby ensuring the timeliness and accessibility of delivery. 

Based on the assumptions, we design a state–space–time-based two-echelon collaborative 

emergency logistics network in accordance with the actual operational mode of logistics delivery 

enterprises. The first-echelon network is composed of logistics center facilities (i.e., logistics delivery 

centers, l L ) and satellite facilities (i.e., delivery satellites, s S ), and the second-echelon network 

is composed of satellite facilities s S  and customers d D . In the first echelon, truck k K  is used 

to transport living materials between logistics delivery centers and delivery satellites. Correspondingly, 

transportation cost ( , , , , , , )i j t t kc     should be paid when truck k travels from node i at time t in state   

and arrives at node j at time t’ in state . Similarly, in the second echelon, vehicle v V  is used to 

deliver living materials from delivery satellites to customers. Transportation cost ( , , , , , , )p q w w vc      when 

vehicle v travels from node p at time t in state w and arrives at node q at time t’ in state w . Compared 

with the independent operation mode of each logistics facility under the traditional emergency mode 

in the past, we introduce variable l   to explore the influence of a collaboration strategy on the 

delivery cost, emergency response time and resource usage. If delivery center l joins in the 

collaborative alliance, =1l ; otherwise =0l . All the other notations and explanations used in the 

whole study are listed in the appendix. The multi-facility collaboration and resource sharing in 

emergency logistics network design, as well as the multiple objectives consideration in the formulation, 

are explored in this paper. 

 

3.2. Model formulation 

As one of the most important factors to maintain the operation of logistics enterprises, the total 

cost, which is composed of the transportation cost in the two-echelon emergency logistics network and 

the maintenance cost of trucks, vehicles, and facilities, is formulated as our first objective function. 

Then, to reduce the possible excessive waiting time caused by cross-regional transportation and 

guarantee the delivery timeliness, we consider minimizing the total delivery time as the second 

objective function for the improved emergency response speed. In addition, with the consideration of 

shortage for transportation resources in emergencies, we apply the minimum number of shared vehicles 

in the second echelon as the third objective function to improve the utilization rate of transportation 

resources. Therefore, we construct a mixed-integer programming model with multiple objectives, 

including the minimum of the total logistics operating cost, the total delivery time of the entire 

transportation network, and the number of vehicles used to complete customer services. 

We establish a mixed-integer programming multi-objective optimization model considering state-

space-time to design a collaborative emergency logistics network. The mathematical model is 

established as follows. Eqs. (1) – (3) express the three objectives including the minimum of the total 

logistics operating cost f1, the total delivery time f2, and the number of vehicles f3, respectively. The 

total logistics operating cost is composed of the total cost of the first echelon 1TC  and the total cost 

of the second echelon 2TC . 

1 1 2
min f TC TC                                    (1) 
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2 ( , , , , , , ) ( , , , , , , )

( , , , , , ) ( , , , , , )

min
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i j t t k pqv p q w w v

k K i j t t v V p q w w

k v

ijk j q

k K j L S v V q S D

f Tt x Tt y Wt Wt
   

     

   

            

              (2) 

3 ( , , , , , , )

( , , , , , ) ,

min
v

s p q w w v

s S p q w w p sv

f N y
 

  

 

   

                             (3) 

 1 ( , , , , , , ) ( , , , , , , )

( , , , , , ) k

k

i j t t k i j t t k k l l l l l

k K i j t t l L k K l L l L

TC c x m N m c   
  

    

      

                (4) 

2 ( , , , , , , ) ( , , , , , , )

( , , , , , , ) v

v

p q w w v p q w w v v s s

v V p q w w v s S v V s S

TC c y m N m   
  

   

     

                (5) 

In Eq. (4), different from the cost under the conventional non-collaborative emergency mode (i.e., 

the transportation cost of the trucks, the maintenance cost of the trucks and facilities), two additional 

cost components, including collaborative cost and financial subsidy from gorvenment, are 

supplemented in 1TC   induced by the establishment of collaborative alliances. In practice, as an 

additional quantity-based cost lc , when the logistics company l  serves customers initially affiliated 

to other collaborative company l , collaborative cost should be added to the total cost. In additon, to 

compensate for the collaborative cost of logistics company l   and promote the formation of 

collaborative alliances under emergency, a quantity-based financial subsidy is deducted from the total 

cost as a cost compensation. Since collaborative cost and financial subsidy have been considered in 

the first echelon, in Eq. (5), the total cost of the second echelon 2TC  only includes the transportation 

cost of the vehicles, the maintenance cost of the vehicles and facilities. 
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 The constraints in the first echelon. 
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( , , , , , , ) 1      , 2 1i j t t k k k k

j S i S

x S S S L S n  

 

                     (15) 

( , , , , , , ) ( , , , , , , )

( , , , , , ) ( , , , , , )

,       
k k

k

j i j t t k k i j t t k

i j t t k K i j t t k K

Q x Q x i L   
     

   

      

                (16) 



10 

 

1 2

, ,
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Eqs. (6) – (8) express the flow balance at truck k’s origin, destination, and intermediate vertex, 

respectively. Eq. (9) indicates that the satellite demand in the first echelon can and only served by one 

truck. Eq. (10) indicates that the delivery service can only be completed within the maximum capacity 

of trucks. Eq. (11) represents the maximum service capacity of the logistics delivery centers. Eq. (12) 

indicates that the delivery service in the first echelon must be completed by trucks within the time 

window of the logistics delivery satellites. Eqs. (13) – (14) ensure the delivery service continuity of 

trucks in the first echelon. Eq. (15) is the constraint for eliminating subtours in the first echelon. Eq. 

(16) shows the number of trucks within shared utilization between multiple logistics facilities in the 

first echelon under emergency logistics mode. Eqs. (17)–(18) express the collaborative cost and 

financial subsidy from the government, respectively. Generally, to promote and sustain the formation 

of collaborative alliances, the subsidy coefficient should be slightly higher than the collaborative 

coefficient by 10%-20% (Govindan et al, 2014; Wang et al., 2020). The constraints in the second 

echelon. 
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Eqs. (19) – (21) express the flow balance at vehicle v’s origin, destination, and intermediate vertex, 

respectively. Eq. (22) indicates that the customer demand in the second echelon can and only served 

by one vehicle. Eq. (23) indicates that the delivery service can only be completed within the maximum 

capacity of vehicles. Eq. (24) represents the maximum service capacity of the logistics delivery 

satellites. Eq. (25) indicates that the delivery service in the second echelon must be completed by 

vehicles within the time window of customers. Eqs. (26) – (27) ensure the delivery service continuity 

of vehicles in the second echelon. Eq. (28) is the constraint for eliminating subtours in the second 

echelon. Eqs. (29) – (30) show the number of vehicles within shared utilization between multiple 

logistics facilities in the second echelon under emergency logistics mode. 

4. Solution methods 

To solve the proposed mathematical model with multiple objectives and two echelons based on 

the emergency logistics network, we design a two-stage solution algorithm, including a 3D k-means 

clustering algorithm based on the enclosed area of the customers’ geographic locations and service 

time windows and an improved NSGA-II algorithm. We use the 3D k-means clustering algorithm to 

divide an enclosed collaborative delivery area. The geographic location and service time window of 

logistics facilities and customers will be used as input parameters, and then the service clusters can be 

obtained by using the 3D k-means clustering method based on time and space indices. Then an 

improved NSGA-II algorithm is used to optimize the delivery routes in the enclosed area with the 

lowest cost, the minimum delivery time, and the maximum utilization of transportation resources. 

Details can be found in the next subsections. 

4.1. 3D k-means clustering algorithm 

3D k-means clustering algorithm is an improved clustering algorithm used to reduce the 

computation complexity by dividing a large-scale network into multiple subnetworks in accordance 

with certain indicators. The basic procedure of the algorithm is shown in Algorithm 1. Specifically, we 

increase the time dimension on the basis of the traditional k-means clustering algorithm and use the 

customers’ time windows and geographic locations as the common indicator to achieve the division 

of logistics facility service area. The closed emergency logistics network is optimized by reducing the 

cost of over-distance transportation caused by cross-regional transportation, and the potential for 

untimely delivery caused by cross-regional operations is avoided. The comparison of clustering results 

between the traditional k-means clustering algorithm and the improved 3D K-means clustering 

algorithm is illustrated in Fig. 5. 

Algorithm 1: 3D k-means clustering algorithm based on time and space indices 

Input: Customer data (i.e., customers’ geographical coordinates and time windows); Cluster parameters (e.g., number 

of clusters, satellite facilities). 

Output: Cluster data for emergency deliveries. 

   //Clustering center initialization. 

      Randomly select k clustering centers for customers; 

   //3D distance calculation. 

Calculate the 3D distance between each customer and the clustering center in accordance with the customers’ 
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geographical coordinates and time windows; 

Determine and mark the affiliation of customer d in accordance with the minimum distance between each 

customer d to clustering center i; 

   //Update 

      Update customers affiliations until the clustering center no longer change; 

Determine the customers’ affiliation in accordance with the distance between the calculated clustering center 

and actual k satellite facilities as the output cluster data. 
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Fig. 5 Algorithm comparison between the traditional K-means and 3D k-means clustering 

In Fig. 5(a), the time index is normally ignored in the traditional k-means clustering algorithm. 

Thus, customers whose time window differences are extremely large, such as customers with [1,4] and 

[8,12] time windows are clustered together, resulting in excessive waiting or delay. In Fig. 5(b), 

clustering based on time windows and geographic locations may result in extremely concentrated 

service times and demands for many transportation vehicles when the time index is included in the 

clustering parameters. The total number of vehicles can be reduced due to the vehicle sharing mode at 

different time periods and different service facilities in the enclosed area. 

4.2. Improved NSGA-II with CW saving algorithm 

Improved NSGA-II with CW saving algorithm is used to obtain the optimal routes in the enclosed 

areas. The basic procedure of the algorithm is shown in Algorithm 2. The clustering results of 

customers and their service facilities in the enclosed area obtained by Algorithm 1 are used as the input 

data of Algorithm 2 for the next optimization of the delivery network. In Algorithm 2, we optimize the 

generation of the initial population and elite retention and iteration using the traditional NSGA-II to 

improve the stability and global search ability of the algorithm. The CW saving algorithm optimizes 

the randomly generated initial population through the distance saving value to obtain initial individuals 

with excellent genes (Clarke and Wright, 1964). With the consideration of time and space, the distance 

in the CW saving algorithm adopts an improved Manhattan distance, that is, 

| | | | | |sd s d s d s dD x x y y t t       , as shown in Fig. 6. 

 

Algorithm 2: Improved NSGA-II 
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Input: Each cluster data; Parameters of the constructed emergency logistics delivery network (e.g., maintenance cost 

for each vehicle); Parameters used in the algorithm (e.g., population size, number of generations, number of 

runs). 

Output: The total logistics operating cost, the total delivery time of the entire transportation network, and the number 

of vehicles used in the second echelon. 

   //Population initialization. 

      Generate the initial population (i.e., parent) Pt with N individuals using the CW saving algorithm based on 

cluster data; 

          Calculate distance Dsd between satellite s and customer d; 

          Calculate distance Dsd’ between satellite s and customer d’; 

          Calculate the distance savings by Ds= (Dsd+Dsd’)-Ddd’ ; 

          Stop calculating when all customer nodes are considered; 

          Obtain N optimization solutions (individuals) by sorting the distance savings; 

      Calculate the fitness of the initial population; 

   //Genetic operation. 

Perform binary tournament selection, order crossover (OX), and polynomial mutation operators to generate the 

children population Qt; 

   //Elite retention strategy. 

      Combine the parent population Pt and child population Qt, Rt=Pt∪Qt; 

   //Non-dominated sorting and crowding distance comparison. 

      Perform non-dominated sorting to determine the non-dominated ranking, (F1,F2,…,Fi)=nondominated (Rt); 

      Repeat  

         Pt+1= ∪Fi; 

      Until the number of individuals in Pt+1 exceeds N; 

Perform crowding distance comparison operator to select the last individuals for obtaining the next generation 

population with N individuals; 

Repeat the genetic operation, elite retention strategy, nondominated sorting, and crowding distance 

comparison until the iteration criteria can be satisfied and the Pareto frontier of a multi-objective problem 

can be obtained. 
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(a) Traditional CW saving algorithm (b) Improved CW saving algorithm
 

Fig. 6 Algorithm comparison between traditional and improved CW saving algorithm 

On the basis of the optimized initial population Pt generated by the improved CW saving 

algorithm, we adopted genetic operators including binary tournament selection, OX, and polynomial 

mutation operators, to generate children population Qt. The elite retention mechanism through the 
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combination of parent and offspring populations guarantees the maximum retention of the population’s 

genes, as shown in Fig. 7.  
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Fig. 7 Improved NSGA-II with elite retention strategy 

In Fig. 7, the merging of the parent and offspring populations allows the excellent genes to be 

retained, but the number of individuals in the population becomes twice higher than that of the original 

population. Therefore, two operators, namely, fast non-dominated sorting and crowding distance 

comparison, are used to obtain the Pareto rank and screen for good individuals. The next-generation 

population with excellent genes is then obtained. The Pareto frontier is obtained after multiple 

iterations through repeated genetic operation, elite retention strategy, non-dominated sorting and 

crowding distance comparison. 

4.3. Profit allocation and strictly monotonous path (SMP) 

The cooperative game theory states that the cost or profit of a collaborative alliance should be 

fairly allocated to all participants when multiple participants form a collaborative alliance (Lozano et 

al., 2013; Kumoi and Matsubayashi, 2014; Chen et al., 2019). The fairness of cost or profit allocation 

is a crucial factor that determines whether the collaborative alliance can exist stably. Shapley (1953) 

proposed the Shapley value method to allocate the cost or profit through the marginal contributions of 

each collaborative members, which has many favorable properties in terms of efficiency, symmetric, 

and monotonicity, etc. (Cruijssen et al, 2010; Wang et al., 2020). On the basis of the basic premise of 

the Shapley value method, that is, a collaborative member will not participate in other forms of 

collaboration if it does not participate in a collaborative alliance, the profit allocated to collaborative 

participant l can be expressed as follows:  

 
 

    
,

! 1
,

!
l

T G l T

T G T
G T l T

G
   

 

 
                    (31) 

Where   represent the cost or profit to be shared, and the allocated profit for participant l is 

summarized in accordance with the product of the collaborative probability of participating alliance T 

and its marginal contribution ( ( ) ( ))T l T   . When a collaborative member receives additional 

profit for participating in a collaborative alliance, this part of the profit will serve as the incentive for 

the concerned member to maintain the collaboration because it offsets part of the original cost. 
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Particularly, the percentage of cost reductions obtained by collaborative member l from an alliance is 

given by 

 
 

 
 

0
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, , ,
l

l l
C l

  
  

    


 
 
                       (32) 

where the denominator is the original cost when the member l does not participate in collaborative 

alliance T, i.e., the cost of independent operation; the numerator represents the profit allocation value 

in collaborative sequence   when member l joins the collaborative alliance as the  -th collaborative 

member; and   represents the total number of cooperative members, i.e., | |T  . On the basis of 

the cost reduction percentage of each member in the alliance, we can then obtain a feasible 

collaboration sequence through a principle named strictly monotonous path (SMP), which denotes that 

when a new member takes part in the collaborative alliance, the members in the original collaborative 

alliance and the newly joined member simultaneously obtain an increasing cost reduction percentage 

(Cruijssen et al., 2010; Chen et al., 2019). 

For the profit allocation problem under the traditional classic mode, the additional profit 

generated by the collaboration is usually taken as a part of the coordination cost of the collaboration 

organizer. This part of the profit is characterized by the coordination coefficient   (Baruah et al., 

2016). However, the organizer of a collaborative alliance in emergencies is usually a functional 

department, such as the government or a public welfare organization. They usually act as a public 

welfare organizer to coordinate all resources in response to emergencies. The value of this coefficient 

is thus set to zero. In other words, all additional profits are used to promote the profit allocation for 

achieving the formation and stable existence of collaborative alliances. At the same time, when the 

total cost in the emergency logistics network under collaboration is higher than the total cost under 

noncollaboration, the government uses a compensation mechanism to promote the formation of 

cooperation, i.e., the financial subsidy when a logistics facility joining a collaborative delivery. 

       01 max ,0
l T

T C l C T 


 
   

 
                   (33) 

where the coordination coefficient    is set to zero for ensuring the maximum allocation of 

collaborative profit. The excess is the additional profit and is allocated to the participants in the 

collaborative alliance when the original cost of all members under noncollaboration is greater than the 

total cost of the collaborative alliance. On the contrary, the excess costs are compensated by the 

government when high costs are incurred by the collaboration to ensure the formation of collaboration 

in an emergency and the smooth delivery of life materials. 

5. Empirical analyses 

5.1. Algorithm comparison 

The effectiveness and stability of the improved INSGA-II with elite strategy are verified in 

searching the Pareto frontier of the multi-objective problem. We obtain an improved Solomon dataset 

by replacing the coordinates in the original Solomon dataset (Solomon, 1987) with geographic 
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coordinates based on the actual network. We compare and analyze the performance with the traditional 

NSGA-II (Deb et al., 2002) and multi-objective harmony search algorithm (MOHSA) (Alikar et al., 

2017) in solving multi-objective problems from the perspective of the computation time, the total cost, 

and the total number of used vehicles. All three heuristic algorithms are executed on a personal 

computer with an Intel (R) Core (TM) i5-8565 1.8 GHz CPU and 8 GB RAM and on MATLAB. The 

three algorithms are executed under the same parameter settings with the same samples, and the 

relevant parameters are designed as follows: the number of generations (NoGs) is set as 200, and the 

number of populations (NoPs) is set to 100. The probabilities of crossover (Pc) and mutation (Pm) are 

initialized to 0.8 and 0.2, respectively. The specific calculation results, including the total cost (Cost), 

the number of used vehicles (Vehicle), and the total computing time (Time), t-test value and p-value 

are shown in Table 2. 

Table 2 Best solutions obtained by the three heuristic algorithms with adjusted Solomon datasets 

Instance 
Proposed algorithm  NSGA-II  MOHSA 

Cost Vehicle Time  Cost Vehicle Time  Cost Vehicle Time 

C1_2_1 11293.4 11 187.34  12479.6 12 199.8  11479.6 12 213.3 

C1_2_2 13121.6 13 189.49  13121.6 13 178.5  13739.9 13 201.2 

C1_2_3 12378.2 11 203.66  13231.3 11 183.5  13361.3 11 203.1 

C1_2_4 14028.3 14 185.89  15231.2 14 183.8  14028.3 14 188.2 

C1_2_5 13836.4 15 194.9  13836.3 15 185.4  13836.4 15 199.9 

C1_2_6 12697.7 15 189  13452.5 15 182.3  13366.7 15 199.2 

C1_2_7 13052.3 16 191.2  14537.9 16 172.5  13052.3 16 189.2 

C1_2_8 14023.2 13 199.6  15241.0 14 189.5  15242.4 14 200.1 

C1_2_9 12931.7 16 207.5  12931.7 16 288.8  12481.5 16 221.2 

C1_2_10 12037.8 14 201.5  12971.6 15 203.7  12971.6 15 211.2 

C2_2_1 28204.1 19 226.6  29964.7 20 208.7  30304.1 21 240.2 

C2_2_2 22361.2 20 243.6  22361.2 20 185.7  24333.4 20 273.1 

C2_2_3 25335.5 22 266.3  26206.7 22 275.7  25335.5 22 244.2 

C2_2_4 30608.3 24 235.7  31342.2 24 239.1  30608.3 24 239.1 

C2_2_5 26235.7 23 244.1  26235.7 23 198.6  27732.7 23 278.2 

C2_2_6 30113.2 21 234.9  30113.2 22 244.0  30113.2 21 291.2 

C2_2_7 28805.7 26 267.5  29239.1 26 273.3  29239.1 26 249.1 

C2_2_8 27957.4 28 268.4  30134.2 29 281.9  30134.2 29 277.1 

C2_2_9 27240.2 23 254.8  27240.2 23 265.1  27240.2 23 258.1 

C2_2_10 30579.5 27 245.2  31023.1 27 259.6  33234.2 27 265.2 

Average 20342.07 18.55 221.859  21044.75 18.85 219.975  21091.75 18.85 232.105 

t-test - - -  -4.74 - -  -3.69 - - 

p-value - - -  1.43E-4 - -  1.55E-03 - - 

Table 2 shows the best solutions for each improved Solomon dataset in five runs. From the 

perspective of cost optimization, the proposed algorithm frequently performs better than the traditional 

NSGA-II and MOHSA. In terms of the number of used vehicles, the results calculated by the traditional 

NSGA-II and MOHSA have the same optimization effectiveness but display worse results than the 

proposed algorithm. The improved NSGA-II algorithm is slightly inferior to the traditional NSGA-II 

in terms of calculation time because of the addition of tailored components, such as the generation of 

the initial population by the CW saving method. However, for the calculation example from C1_2_1 

to C2_2_10 with 200 customers, the calculation time gap between the proposed algorithm and the 

traditional NSGA-II is less than 1% but it is still better than the MOHSA. Therefore, the improved 

NSGA-II algorithm has strong robustness and computational efficiency in calculating medium or 

large-scale multi-objective vehicle routing optimization problems. The 20 sets of test data are 
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significantly uncorrelated from the t-test and p-value, thereby demonstrating the performance of the 

proposed algorithm on any case.  

5.2. Data and parameter settings 

To verify the effectiveness of the established model and designed algorithm for the emergency 

logistics network design problem. We select Chongqing’s delivery network when COVID-19 broke 

out in early 2020 as the research object to verify the advantages of the emergency logistics strategy 

proposed in this paper in terms of cost, emergency response time, and resource utilization, as shown 

in Fig. 8. Fig. 8 shows the geographic locations of customers (i.e., C1,…, C210) and related logistics 

service facilities, including logistics delivery centers (i.e., DC1,… , DC6) and logistics delivery 

satellites (i.e., S1,…, S12) within the main city of Chongqing, China. In a non-emergency situation, 

each logistics center satisfies its affiliated customers’ demands through the two-echelon logistics 

service network of “logistics delivery center–logistics delivery satellite–customers” under a relatively 

independent logistics operation mode. More specifically, the customers from C46 to C81 and delivery 

satellites S1 and S2 indicated by the black five-pointed star belong to the logistics delivery center DC1. 

Trucks with loading life materials are dispatched from DC1 to S1 and S2, and vehicles are used to 

complete delivery service for customers. Customer C50 whose geographical location is far from DC1 

are still served by DC1, although an S12 is found in its vicinity that can provide the delivery service. 

When the COVID-19 occurred, many cross-regional roads are prolonged due to quarantine inspection. 

The customer’s delivery service is severely affected by long-distance transportation when an 

emergency occurs. On the contrary, road traffic in the enclosed area is not affected because no risks of 

cross-regional contact are found. In this case, we optimize the design of the urban delivery network to 

complete the rapid, high-contingency, low-cost delivery of living supplies with limited transportation 

resources, such as transportation trucks or vehicles. 

 
Fig. 8 Spatial distribution of customers and logistics facilities 

In accordance with the actual logistics operating mode of logistics enterprises, combined with the 

parameter design of literature (Govindan et al, 2014; Wang et al., 2020), we set the input parameters 
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as follows: maintenance cost for each truck 1500km  , maintenance cost for each vehicle 200vm  , 

maintenance cost of facilities 1 990Sm   , 2 840Sm   , 3 510Sm   , 4 780Sm   , 5 2301Sm   , 

6 1320Sm   , 7 41 01Sm   , 8 720Sm   , 9 5901Sm   , 10 780Sm   , 11 0198Sm   , 12 0126Sm   , cost 

coefficient 1 0.3  , 2 0.1  , subsidy coefficient 1 0.5  , 2 0.2  , the number of running times 

NoRs=5, NoGs=500, NoPs=100, crossover probability Pc=0.8, and mutation probability Pm=0.2.  

 

5.3. Results comparison to a non-emergency scenario 

On the basis of the proposed emergency logistics strategy with state–space–time resource 

configuration, we list the customers and their corresponding service facilities before and after 

optimization in Table 3. The customer’s delivery demands can be satisfied through the redesigned 

emergency logistics network based on the shared state–space–time collaborative network. 

Table 3 Affiliation comparison of emergency and non-emergency scenarios 

Optimized 

affiliation 

under 
emergency 

situations 

DC1 
S1 C13,C23,C24,C31,C55,C58,C59,C76,C86,C127,C148,C200,C200,C210 

S3 C6,C14,C18,C19,C30,C32,C51,C54,C56,C57,C62,C65,C77,C78,C80,C107,C109,C110,C126,C139,C150,C151,C154,C155,C161,C162,C163 

DC2 
S2 C2,C25,C33,C34,C46,C52,C53,C66,C79,C92,C138,C147,C149,C164,C181,C186,C192,C199 

S9 C5,C27,C36,C47,C74,C91,C119,C121,C124,C158,C182,C183,C184,C195,C197 

DC3 
S5 C15,C16,C17,C37,C38,C39,C103,C111,C125,C140,C141,C143,C156,C157,C185 

S12 C10,C50,C104,C112,C142,C165,C173,C174,C175,C176,C205,C206 

DC4 
S6 C3, C4,C9,C40,C45,C73,C75,C97,C98,C102,C118,C133,C191,C194, ,C196,C203 

S7 C26,C28,C48,C49,C71,C84,C89,C90,C100,C105,C106,C134,C166,C171,C172,C177,C204  

DC5 
S4 C1,C8,C35,C41,C42,C43,C64,C72,C82,C95,C116,C117,C122,C123,C137,C160 

S10 C12,C21,C63,C67,C70,C83,C96,C99,C101,C120,C132,C136,C152,C167,C170,C178,C179,C188,C189,C190,C193,C202 

DC6 
S8 C11,C20,C44,C60,C61,C68,C69,C88,C113,C115,C128,C130,C131,C135,C146,C159,C168,C169,C201 

S11 C7,C22,C27,C81,C85,C87,C93,C94,C108,C114,C128,C144,C145,C153,C180,C207,C208,C209 

Original 

affiliation 

under non-
emergency 

situations 

DC1 
S1 C46,C47,C48,C49,C50,C51,C52,C53,C54,C55,C56,C57,C58,C59,C60,C61,C62,C63 

S2 C64,C65,C66,C67,C68,C69,C70,C71,C72,C73,C74,C75,C76,C77,C78,C79,C80,C81 

DC2 
S3 C121,C122,C123,C124,C125,C126,C127,C128,C129,C130,C131,C132,C133,C134,C135,C136 

S4 C137,C138,C139,C140,C141,C142,C143,C144,C145,C146,C147,C148,C149,C150 

DC3 
S5 C181,C182,C183,C184,C185,C186,C187,C188,C189,C190,C191,C192,C193,C194 

S6 C195,C196,C197,C198,C199,C200,C201,C202,C203,C204,C205,C206,C207,C208,C209,C210 

DC4 
S7 C151,C152,C153,C154,C155,C156,C157,C158,C159,C160,C161,C162,C163,C164,C165 

S8 C166,C167,C168,C169,C170,C171,C172,C173,C174,C175,C176,C177,C178,C179,C180 

DC5 
S9 C1,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C14,C15,C16,C17,C18,C19,C20,C21,C22,C23,C24,C25 

S10 C26,C27,C28,C29,C30,C31,C32,C33,C34,C35,C36,C37,C38,C39,C40,C41,C42,C43,C44,C45 

DC6 
S11 C82,C83,C84,C85,C86,C87,C88,C89,C90,C91,C92,C93,C94,C95,C96,C97,C98,C99,C100 

S12 C101,C102,C103,C104,C105,C106,C107,C108,C109,C110,C111,C112,C113,C114,C115,C116,C117,C118,C119,C120 

The optimized second-echelon emergency logistics network based on the optimized affiliation 

under emergency situations is shown in Fig. 9. In each enclosed area, each customer can be served by 

an adjacent delivery satellite in this area. At the same time, the delivery satellite can be served by its 

neighboring delivery center in accordance with the affiliation in Table 3. Vehicles belonging to the 

same delivery center can be shared and used at different time periods to transport living materials for 

customers. 
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Fig. 9 Optimized logistics delivery network under the emergency scenario 

In Fig. 9, the logistics delivery network is redesigned to reduce the risk of virus spread that 

potentially caused by cross-regional transportation. In the redesigned emergency logistics network, 

customers can be served by their relatively adjacent facilities in the enclosed area. Cross-regional 

transportation which requires a large amount of travel time due to the mandatory quarantine 

requirement and road traffic restrictions has been improved. To further demonstrate the merits of 

establishing collaborative alliances, we compare the travel time of logistics delivery operation in a 

non-collaborative mode and collaborative mode under the emergency situation, using DC1 in Fig. 9 as 

an example for ease of illustration. Specifically, Figs. 10 and 11 respectively show the shortest path 

from the DC1 under cross-regional non-collaborative and intra-regional collaborative scenarios. Table 

4 lists the specific travel time of trucks under non-emergency non-collaborative (T.T.N) and emergency 

collaborative (T.T.E) scenarios. 

 

Fig. 10 The shortest delivery path from the DC1 under cross-regional and non-collaborative scenario 
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Fig. 11 The shortest delivery path from the DC1 under intra-regional and collaborative scenario 

In Fig. 10 and 11, the red line is a quarantine boundary established in accordance with the 

administrative division, and necessary quarantine or inspection is imposed when trucks or vehicles 

travel across it. In Fig. 10, due to the lack of collaborative alliance between DC1 and other logistics 

facilities, trucks have to be dispatched to serve the satellite S1 and S2 independently, thereby resulting 

in an additional quarantine time when trucks travel from S1 to S2 and from S2 back to DC1. However, 

in Fig. 11, if collaborative alliances are established between DC1 and other logistics facilities, trucks 

are only dispatched from DC1 to serve the enclosed area close to it according to the optimized 

affiliation in Table 3, instead of undergoing the cross-regional transportation under a non-collaborative 

mode with a longer travel time as shown in Table 4.  

Table 4 Travel time comparison of the truck from delivery centers to satellites under non-emergency (T.T.N) and 

emergency (T.T.E) scenarios (unit: h) 

From 

 To 

 DC1   DC2   DC3  DC4   DC5   DC6  

T.T.N T.T.E  T.T.N T.T.E  T.T.N T.T.E  T.T.N T.T.E  T.T.N T.T.E  T.T.N T.T.E 

S1 0.20 0.20  0.38 0.47  0.57 0.73  0.67 0.92  0.47 0.55  0.40 0.48 

S2 0.52 0.60  0.22 0.22  0.38 0.47  0.48 0.65  0.28 0.45  0.53 0.70 

S3 0.22 0.22  0.23 0.32  0.43 0.60  0.68 0.93  0.55 0.63  0.50 0.58 

S4 0.38 0.47  0.32 0.40  0.48 0.65  0.55 0.63  0.23 0.23  0.38 0.47 

S5 0.58 0.75  0.33 0.42  0.30 0.30  0.50 0.58  0.33 0.50  0.62 0.87 

S6 0.60 0.68  0.50 0.58  0.38 0.47  0.25 0.25  0.18 0.26  0.50 0.67 

S7 0.67 0.83  0.45 0.53  0.42 0.50  0.32 0.32  0.20 0.28  0.45 0.62 

S8 0.50 0.58  0.38 0.55  0.53 0.70  0.50 0.58  0.25 0.33  0.33 0.33 

S9 0.53 0.62  0.33 0.33  0.40 0.48  0.42 0.50  0.32 0.48  0.62 0.78 

S10 0.58 0.67  0.37 0.45  0.47 0.63  0.50 0.58  0.18 0.18  0.33 0.42 

S11 0.33 0.42  0.53 0.70  0.57 0.73  0.62 0.78  0.48 0.57  0.30 0.30 

S12 0.73 0.90  0.53 0.62  0.18 0.18  0.32 0.40  0.48 0.65  0.65 0.90 

In accordance with the initial and optimized affiliations in Table 3, the travel time from each DC 

to its affiliated satellites under non-emergency and emergency scenarios are highlighted in bold. It can 

be seen that from the non-emergency mode to the emergency mode, most of the travel times increase 

due to quarantine or road restrictions. For example, the travel time from DC1 to its affiliated satellite 

S2 increases from 0.52 to 0.60 when an emergency occurs. On the contrary, in our designed optimized 

collaborative emergency logistics network, the travel times from DC1 to its new affiliated satellites S1 

and S3 still maintain the lowest values for collaboration and the trucks will travel in an enclosed area 
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rather than across regions. 

In this case, the government promotes collaboration between different transportation companies 

through subsidies and other incentives, redistributed the delivery area, and reassigned resources to 

meet and stabilize customer demands by sharing customer service in relatively enclosed areas. Thus, 

the risk of virus transmission caused by cross-regional contact is reduced while increasing the speed 

of emergency logistics in the case of limited transportation resources and reducing the operating cost 

for logistics enterprises. In accordance with the optimization results, the shortest paths based on the 

state–space–time network for DC3-centered closed delivery are illustrated in Fig. 12. 
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Fig. 12 Shortest paths in the state–space–time network of one truck and two vehicles 

In Fig. 12, the orange line shows that in the first-echelon network, a truck full of living materials 

with the state of [1,1] departs from DC3, transports these living materials to S5 and S2, and returns to 

DC3 with the state of [0,0]. Given that the truck only serves two satellite facilities, the state is [1,1] 

when the truck is fully loaded, and the state becomes [0,0] after the delivery is completed. Similarly, 

the black line represents the process where living materials are delivered from the delivery satellite to 

the customers in the second-echelon network. The vehicle’s state changes from 1 to 0 when the 

customer delivery task is completed. [1,…,1] denotes that the vehicle is full of a series of customers’ 

demand, and [0,…,0] indicates that all customer demands are satisfied. The number of used service 

vehicles changes from three to two because of the sharing mode in different service periods and the 

sharing of vehicles in the enclosed area. In accordance with the affiliation of delivery services under 

emergency and non-emergency situations, we calculate the total cost, the total transportation time, and 

the number of used vehicles under collaborative and non-collaborative networks respectively, as shown 

in Table 5. 
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Table 5 Result comparison between non-emergency and emergency scenarios 

Scenario Case 
Delivery 

time (h) 

Waiting 

time (h) 

Transportation 

cost ($) 

Penalty 

cost ($) 

Rental 

cost ($) 

Total 

cost ($) 

Total 

time (h) 

Number of 

vehicles 

Non-emergency Non-collaborative network 45.8 4.5 32539.2 3381.1 6000 41920.3 50.3 30 (0*) 

Emergency 
Non-collaborative network 49.6 14.5 38317.3 10853.3 6800 55970.6  64.1 34 (0*) 

Collaborative network 40.3 4.1 30779.5 3069.9 4000 37849.4  44.4 20 (18*) 

*: The number of shared vehicles. 

In an emergency scenario, adopting a collaborative strategy can effectively improve the 

emergency response speed (i.e., 44.4h) at a low cost (i.e., $37,849.4) while reducing the number of 

used vehicles (i.e., 20 vehicles) with 18 shared vehicles. We can easily speculate that in a non-

emergency scenario, the collaborative mode can perform better in cost savings, delivery timeliness, 

and resource utilization by comparing the total cost, the total time, and the total number of vehicles 

used. However, this collaborative mode is rarely used in the actual operation of logistics enterprises. 

Therefore, we conduct a comparative analysis of the cost before and after optimization under 

emergency and non-emergency situations to explore the formation of the collaborative alliances and 

the influencing factors of their stabilities. Fig. 13 shows the cost comparison of 63 collaborative 

alliances that may be formed through the cooperation of six members. 

 
Fig. 13 Cost comparison of 63 possible collaborative alliances 

As shown in Fig. 13, the cost gap before and after optimization gradually increases under an 

emergency situation with the increase of the number of alliance members until they form a grand 

collaborative alliance to achieve the maximum cost savings, $18,121.2. For the entire logistics delivery 

network, the adoption of a collaborative delivery mode can reduce the high transportation costs caused 

by unreasonable transportation, such as excessive transportation. 

5.4. Results comparison to non-shared vehicle scenario 

According to the optimized results shown in Fig. 12 and Table 5 in Section 6.2, we find that using 

shared vehicles in the second-echelon logistics network reduces the demand for transportation 

resources with a fixed cost for using additional vehicles. Fig. 14 clearly shows the state–space–time-

based shortest paths of the truck and vehicles when the customer service can be shared in the delivery 
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process but the vehicles cannot be shared between different satellite facilities. 
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Fig. 14 Shortest paths in the state–space–time network of one truck and three vehicles 

In Fig. 14, vehicles are needed to wait in the satellite facility or additionally dispatch from the 

delivery satellite for new delivery tasks because of the non-shared vehicles. Therefore, the number of 

vehicles changes from two shared vehicles to three non-shared delivery vehicles. Vehicle 1 is in a 

waiting state for a long time. In an emergency situation where transportation resources are relatively 

scarce, such idle transportation resources evidently have great disadvantages. We then compare the 

difference between modes with shared and non-shared vehicles in terms of travel time, waiting time, 

and other aspects. 

Table 6 Result comparison between shared and non-shared vehicle scenarios 

Scenario  
Delivery 

time (h) 

Waiting 

time (h) 

Transportation 

cost ($) 

Penalty 

cost ($) 

Rental 

cost ($) 

Total 

cost ($) 

Total 

time (h) 

Number of 

vehicles 

Shared vehicles 3.7 0.6 3425.2 320 400 4145.2 4.3 2 (2*) 

Non-shared vehicles 4.2 1.0 3824.2 1120 600 5544.2 5.2 3 (0*) 

*: The number of shared vehicles. 

In Table. 6, adopting a vehicle-sharing mode between different satellites in the same enclosed 

area can evidently reduce the total cost (i.e., $4,145.2) and simultaneously improve the emergency 

response speed with less total time (i.e., 4.3 h). From the composition of the total cost, the vehicle-

sharing-based delivery mode can reduce the number of used vehicles (i.e., two shared vehicles), 

thereby reducing vehicle rental costs. The transportation and penalty costs under the vehicle-sharing 

mode are lower than those in the non-shared mode because of the reduced waiting time. Therefore, the 

shared use of vehicles has a remarkable cost-saving advantage on the basis of the collaborative mode. 
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5.5. Results of profit allocation 

For each collaboration participant, the reasonableness of the profit allocation is a key factor that 

determines whether he/she is willing to participate in the collaborative alliance. Therefore, for this part 

of the cost savings, i.e., additional profit, we compare four profit/cost allocation methods, namely, 

Shapley value method (SVM), nucleus method (NM), cost gap allocation method (CGAM), and equal 

profit method (EPM) (Shapley, 1964; Tijs and Driessen, 1986; Kumoi and Matsubayashi, 2014). On 

the basis of “Snowball” theory (Lozano et al., 2013), we select the Shapley value method as the profit 

allocation method based on the core distance between the core center and the result of each method. 

Table 7 Core distance comparison in accordance with SVM, NM, CGAM, EPM, and Core center 

Facility SVM NM CGAM EPM Core center 

DC1 3211.4 2902.7 3189.4 3400.8 2944.4 

DC2 2992.4 3232.7 3301.6 2332.0 3150.2 

DC3 2938.4 3142.7 2948.2 2623.4 2996.8 

DC4 2944.1 3157.7 3202.4 2574.9 2925.6 

DC5 3209.2 2737.7 2792.3 3935.2 3180.1 

DC6 2825.7 2947.7 2687.3 3255.0 2924.0 

Distance 332.4 529.2 607.0 1349.0 - 

In accordance with the results shown in Table 7, the SVM is selected as the fair allocation strategy 

for the additional profit of the smallest core distance (i.e., 332.4) between this method and the core 

center (2944.4, 3150.2, 2996.8, 2925.6, 3180.1, 2924.0). Therefore, the SVM can be considered to be 

beneficial to the stable maintenance of the collaborative alliance. SVM is widely used in cost/profit 

allocation based on the marginal contribution value of each member to the alliance. The specific profit 

allocation results are shown in Table 8.  

Table 8 Profit allocation based on Shapley value method under the 63 possible collaborative alliances 

Alliance DC1 DC2 DC3 DC4 DC5 DC6 

{DC1} 1050.0  - - - - - 

{DC2} - 720.0  - - - - 

{DC3} - - 810.0  - - - 

{DC4} - - - 795.0  - - 

{DC5} - - - - 1215.0  - 

{DC6} - - - - - 1005.0  

{DC1,DC2} 1209.2  879.2  - - - - 

{DC1,DC3} 1035.2  - 795.2  - - - 

{DC1,DC4} 1156.7  - - 901.7  - - 

{DC1,DC5} 1179.9  - - - 1344.9  - 

{DC1,DC6} 1041.9  - - - - 996.9  

{DC2,DC3} - 868.3  958.3  - - - 

{DC2,DC4} - 853.5  - 928.5  - - 

{DC2,DC5} - 711.9  - - 1206.9  - 

{DC2,DC6} - 768.6  - - - 1053.6  

{DC3,DC4} - - 958.3  943.3  - - 

{DC3,DC5} - - 801.9  - 1206.9  - 

{DC3,DC6} - - 818.1  - - 1013.1  

{DC4,DC5} - - - 786.9  1206.9  - 

{DC4,DC6} - - - 803.1  -  1013.1  

{DC5,DC6} - - - - 1223.1  1013.1  

{DC1,DC2,DC3} 1327.2  1160.4  1076.3  - - - 

{DC1,DC2,DC4} 1376.0  1072.8  - 1095.3  - - 

{DC1,DC2,DC5} 1329.6  861.6  - - 1327.3  - 

{DC1,DC2,DC6} 1372.1  1098.8  - - - 1142.5  

{DC1,DC3,DC4} 1269.4  - 1071.0  1177.5  - - 

{DC1,DC3,DC5} 1261.9  - 883.8  - 1433.6  - 

{DC1,DC3,DC6} 1216.4  - 992.7  - - 1194.4  

{DC1,DC4,DC5} 1233.2  - - 840.2  1283.4  - 

{DC1,DC4,DC6} 1276.3  - - 1037.6  - 1132.8  

{DC1,DC5,DC6} 1120.8  - - - 1302.1  954.0  

{DC2,DC3,DC4} - 1067.7  1172.6  1142.7  - - 

{DC2,DC3,DC5} - 1050.5  1140.5  - 1389.1  -  
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{DC2,DC3,DC6} - 1076.8  1126.4  - - 1221.6  

{DC2,DC4,DC5} - 1073.7  - 1148.7  1427.1  - 

{DC2,DC4,DC6} - 1081.5  - 1116.1  - 1241.1  

{DC2,DC5,DC6} - 939.8  - - 1394.3  1241.0  

{DC3,DC4,DC5} - - 1123.7  1108.7  1372.2  - 

{DC3,DC4,DC6} - - 1161.9  1146.9  - 1216.7  

{DC3,DC5,DC6} - - 1020.8  - 1425.8  1232.0  

{DC4,DC5,DC6} - - - 951.6  1371.6  1177.8  

{DC1,DC2,DC3,DC4} 1929.3  1727.6  1725.8  1744.8  - - 

{DC1,DC2,DC3,DC5} 1768.0  1556.6  1578.8  - 1829.8  - 

{DC1,DC2,DC3,DC6} 1767.1  1627.5  1521.4  - - 1636.9  

{DC1,DC2,DC4,DC5} 1751.9  1592.4  - 1571.0  1803.0  - 

{DC1,DC2,DC4,DC6} 1918.3  1723.4  - 1662.2  - 1758.8  

{DC1,DC2,DC5,DC6} 1829.8  1648.7  - -  1876.6  1741.2  

{DC1,DC3,DC4,DC5} 1837.4  - 1727.9  1684.2  1940.3  - 

{DC1,DC3,DC4,DC6} 1750.7  - 1636.3  1681.2  - 1698.1  

{DC1,DC3,DC5,DC6} 1734.7  - 1634.6  - 1944.0  1704.8  

{DC1,DC4,DC5,DC6} 1825.2  - - 1655.9  1920.4  1769.8  

{DC2,DC3,DC4,DC5} - 1558.4  1608.4  1616.6  1862.9  - 

{DC2,DC3,DC4,DC6} - 1626.7  1707.2  1696.8  - 1775.7  

{DC2,DC3,DC5,DC6} - 1561.2  1642.2  - 1910.1  1742.7  

{DC2,DC4,DC5,DC6} - 1662.2  - 1674.0  1952.3  1766.3  

{DC3,DC4,DC5,DC6} - - 1684.2  1615.0  1893.8  1738.3  

{DC1,DC2,DC3,DC4,DC5} 2460.5  2181.5  2317.0  2309.1  2394.1  - 

{DC1,DC2,DC3,DC4,DC6} 2333.5  2209.6  2122.4  2263.3  - 2167.7  

{DC1,DC2,DC3,DC5,DC6} 2377.9  2204.5  2190.4  - 2533.3  2352.7  

{DC1,DC2,DC4,DC5,DC6} 2351.9  2188.9  - 2196.1  2398.2  2366.3  

{DC1,DC3,DC4,DC5,DC6} 2275.9  - 2134.9  2156.2  2419.0  2176.8  

{DC2,DC3,DC4,DC5,DC6} -  2218.9  2240.9  2272.7  2486.0  2398.8  

{DC1,DC2,DC3,DC4,DC5,DC6} 3211.4  2992.4  2938.4  2944.1  3209.2  2825.7  

Table 8 shows the profit allocation results of 63 possible collaborative alliances. DC1, DC2, DC3, 

DC4, DC5, and DC6 receive profits of 3211.4, 2992.4, 2938.4, 2944.1, 3209.2, and 2825.7, 

respectively, when all logistics center facilities form a shared delivery alliance. To explore the 

incentives of the allocated profits for each member, we use Eq. (32) to calculate the percentage of cost 

reduction for each member in each collaborative alliance. Taking DC1 as the first participant of the 

collaborative alliance as an example, we obtain collaborative alliance routes that satisfy the SMP, as 

shown in Fig. 15. 
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Fig. 15 Collaborative alliance routes that satisfy the SMP 
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As shown in Fig. 15, an incremental cost reduction percentage is obtained that can satisfy the 

SMP when a new member takes part in the collaborative alliance, including the members in the original 

collaborative alliance and the newly joined member (Cruijssen et al., 2010). Conversely, a 

collaborative sequence that violates the SMP is considered an unreasonable collaborative sequence, 

which is highlighted with a red dotted box and needs to be eliminated because the addition of new 

members damages the interests of the original alliance members. Fig. 15 shows the gradual deepening 

of the collaborative alliance from left to right. The collaborative sequence is terminated when the 

dotted line connection appears in the collaborative sequence, that is, SMP is unsatisfied. Among the 

many feasible collaboration sequences, we determine the optimal collaborative strategy through a 

strategy called maximizing the minimum cost reduction percentage. On the basis of this strategy, each 

member can save the largest cost percentage when participating in the collaborative alliance, that is, 

DC1 first, followed by DC4, DC2, DC6, DC3, and DC5. During the formation of the best collaborative 

sequence, the percentage change in the cost reduction of each member is shown in Fig. 16. 

 

Fig. 16 Cost reduction percentages for the best collaborative sequence 

In Fig. 16, DC1 first joins the collaborative alliance and receives 11.7% of the cost reduction, and 

DC4 joins the collaborative alliance. The cost reduction percentage of DC1 increases from 11.7% to 

12.9%, and DC4 receives 11.0% of the cost reduction. DC2, DC4, DC6, DC3, and DC5 enter the 

collaborative alliance until all the members join. In the grand collaborative alliance of {DC1, DC4, 

DC2, DC6, DC3, DC5}, the members in grand collaborative alliance obtain the largest cost savings of 

35.8%, 36.0%, 35.6%, 27.6%, 34.4%, and 27.6%, respectively. 

5.6. Managerial implications 

Ensuring the continuous supply of living materials is an important measure to maintain social 

stability when natural disasters or emergencies occur. In particular, a connectable emergency logistics 

network and an effective emergency logistics strategy are the prerequisites for achieving this goal. On 

the basis of the background of the COVID-19 outbreak in 2020, this study proposes an emergency 

logistics network under a collaborative delivery mode and the conditions of cross-regional roadblocks 

and limited resources by using the existing road transportation network. This study can provide 

theoretical and practical references for the formulation of government emergency response policies 

and the design of logistics enterprise delivery models. 

From the perspective of decision-makers and business operation managers, this study has the two 
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following implications. On the one hand, government administrators can impose cross-regional 

transportation and quarantine policies by promoting the collaboration of multiple enterprises and 

facilities and forming alternative services in enclosed areas to ensure the normal supply of residents’ 

living materials and reduce the risk of virus transmission due to cross-regional transportation. On the 

other hand, logistics companies under the collaborative delivery mode can reduce the quarantine cost 

and waiting time caused by cross-regional transportation and utilize tight transportation resources 

through customer service sharing and vehicle sharing. Therefore, this study has promotion significance 

in the emergency logistics design, especially in emergency logistics network design where roads are 

undamaged and man-made traffic restrictions, such as epidemic situations, are found in terms of 

transportation cost, emergency response speed, and full use of transportation resources. 

6. Conclusions 

This study focuses on the optimal design of emergency logistics network in the face of a natural 

disaster or some unexpected events considering the multi-facility collaboration and multiple objectives. 

To address the problem, we first establish a state–space–time network-based mixed-integer 

programming model to characterize the basic operating mode and optimal design of a two-echelon 

emergency logistics network. Due to government macro-control and financial subsidies, cross-regional 

transportation is reduced in emergencies and the service area should be divided into multiple sub-

regions based on customer geographic location and time windows. Therefore, we develop a 3D k-

means clustering algorithm considering the time window and geographic coordinate indices to 

decompose the complex network into multiple subnetworks with enclosed areas. In multiple 

subregions, we consider multiple objectives in terms of the delivery cost, the delivery time, and the 

number of vehicles in order to obtain good-quality solutions that meet the customer demands with low 

costs and high emergency response speed in the case of limited transportation resources. As such, we 

combine the improved CW saving method and the improved NSGA-II algorithm with elite retention 

mechanism to search for Pareto frontiers in the multi-objective NP-hard problem. A case study in 

Chongqing, China has demonstrated that the proposed two-stage hybrid heuristic algorithm is stable 

and excellent in terms of calculation and optimization performance. Taking cost as the main indicator, 

we also discuss the additional profits that logistics companies gain from participating in collaborative 

alliances and the optimal collaborative sequence to maintain the stability of the alliance. It shows that 

the proposed collaborative strategy has a clear positive effect on the optimization of emergency 

logistics networks. 

This study is conducted based on the assumption that the government can guarantee the stability 

of demand through purchase restriction or quantitative supply. In the future, the emergency logistics 

network optimization under demand uncertainty should be considered for more practical applications 

of the proposed model and methods. In addition, cost savings are considered as the sole incentives for 

logistics companies to form the collaborative alliances in the current study. Other factors for the 

formation and maintenance of collaboration such as the government regulation and the special industry 

standards in case of an emergency can be further explored. Last but not the least, the emergency 

scenarios considered by this study are concerned with general natural disasters or accidents. It would 

be very interesting to focus on one particular scenario and incorporate its special characteristics in the 

model. For example, for the outbreak of COVID-19 pandemic, we can introduce a virus transmission 

model and evaluate the advantages and disadvantages of the collaborative strategy based on the breadth 

of virus transmission.  
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Appendix 

Some symbol definitions and explanations are utilized to construct the time-discrete two-echelon 

emergency logistics network optimization model and can be listed below. 

 

Set 

k : Set of state–space–time arcs in truck k’s pickup and delivery network, k K . 

v : Set of state–space–time arcs in vehicle v’s pickup and delivery network, v V . 

 

Input parameters 

m
k
: Maintenance cost for each truck. 

m
l
: Maintenance cost of facility l, l L . 

m
v
: Maintenance cost for each vehicle. 

m
s
: Maintenance cost of logistics satellite s, s S . 

Et
j
,Lt

j
é
ë

ù
û: Service time windows for the logistics facility or satellite j , j L S  . 

Et
q
,Lt

q
é
ë

ù
û : Service time windows for the logistics satellite or customer q , q L D  . 

Tt
ijk

: Travel time of truck k traveling from node i to node j. 

Tt
pqv

: Travel time of vehicle v traveling from node p to node q. 

Q
j

k : Delivery demand of logistics facility j served by truck k. 

Q
q

v : Delivery demand of customer q served by vehicle v.  

1 : Cost coefficient when the first-echelon logistics center facilities form a collaborative alliance.  

2 : Cost coefficient when the second-echelon logistics satellites form a collaborative alliance.  
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1 : Subsidy coefficient when the first-echelon facilities form a collaborative alliance.  

2 : Subsidy coefficient when the second-echelon satellites form a collaborative alliance.  

 

Decision variables 

( , , , , , , )i j t t kx   : Decision variables. If truck k travels from node i at time t in state   and arrives at node 

j at time t’ in state ' , ( , , , , , , ) =1i j t t kx   ; otherwise ( , , , , , , ) 0i j t t kx    . 

, , ,( , ), ,q w vp wy     : Decision variables. If vehicle v travels from node p at time t in state w and arrives at 

node q at time t’ in state w , , , , , ,( , ) 1p q vw wy      ; otherwise , , , , ,( , ) 0p q vw wy      . 

l : Decision variables. If delivery center l joins in the collaborative alliance, =1l ; otherwise =0l . 

 

Other variables 

c
l
: Collaborative cost when delivery center l joins in the collaborative alliance. 

l : Financial subsidy from the government that depends on delivery center l’s service demand.  

Dt
i

k : Departure time of truck k from logistics delivery center i. 

At
j

k : Arrival time of truck k at the logistics center or satellite j . 

Wt
j

k : Waiting time of truck k at the logistics center or satellite j. 

Dt
p

v : Departure time of vehicle v from logistics satellite p. 

At
q

v: Arrival time of vehicle v at the logistics satellite or customer q. 

Wt
q

v : Waiting time of the vehicle v at the logistics satellite or customer q. 

N
l

k : Number of trucks used by logistics facility l, l L . 

N
s

v : Number of vehicles used by logistics satellite s, s S . 

'llQ : Shared delivery demands from facilities 'l  to l  in the first echelon.  

'ssQ : Shared customers’ demands from satellites 's  to s  in the second echelon. 




