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Abstract: Optical angular memory effect (AME) describes a phenomenon that light remembers 
its incident direction even within or through a scattering medium, such as biological tissue. 
When the incident light beam tilts, the entire speckle pattern shifts yet maintains its 
morphological features within a certain range, a.k.a., the AME range. It is the theoretical 
foundation of many promising techniques, such as optical phase conjugation or wavefront 
shaping assisted microscopies, that have allowed us to see clearer and deeper into biological 
tissues. Conventional predictions in the field only take medium thickness into account, and 
have been proved to deviate away from practice, especially for biological tissues. Some recent 
explorations have improved the theory; the paraxial condition governed in most studies, 
however, restricts the accurate prediction to very thin layers, say, less than 300 µm even when 
the anisotropy factor is larger than 0.95. To explore the boundaries and promote applications 
of aforementioned techniques under different circumstances, a full and accurate understanding 
of the angular memory effect range is urgently needed. In this work, we explore the influence 
of anisotropy factor 𝑔𝑔 on the AME range with different sample thicknesses, and an empirical 
relationship among the AME range, sample thickness, and 𝑔𝑔 is derived and verified: as 𝑔𝑔 
approaches 1, the AME range yields significant enhancement; such dependence on 𝑔𝑔, however, 
diminishes rapidly with increased sample thickness. It confirms a rule of thumb that it is 
meaningful to exploit the AME only when ballistic photons or forward scattering dominate in 
light propagation, i.e., the penetration is within one transport mean free path.  

 

1. Introduction 
When transmitting within or through a turbid medium, photons undergo multiple scatterings 
and interfere with each other, resulting in randomly fluctuated intensity distributions, i.e., 
speckles. As the distribution of the internal refractive index inhomogeneity of the medium is 
out of order, currently there is no way to directly link a speckle pattern to the internal 
morphology of the medium, although it should be. That said, a speckle pattern is connected to 
the incident light beam, as represented by the famous angular memory effect (AME) that a 
speckle pattern remembers the direction of the incident beam [1,2]. When the incident beam is 
tilted within a certain range, a.k.a., the AME range, the entire speckle pattern shifts yet 
maintains its morphological features. Consequentially, object images can be reconstructed by 
speckle autocorrelation imaging [3-11] directly, or by speckle deconvolution [12], optical phase 
conjugation [13-17] and wavefront shaping [18-20] with a guide star, respectively. In the 
beginning, AME was derived as long-distance correlation in a waveguide geometry and the 
AME range was predicted at ∆θ ≈ 𝜆𝜆 2𝜋𝜋𝜋𝜋⁄ , where 𝜆𝜆 is the wavelength and 𝜋𝜋 is the medium 
thickness [1,2]. Later, it was found that the measured AME range was significantly larger than 
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the theoretical prediction, especially for biological tissues with large anisotropy factors [21,22, 
20]. Such a discrepancy has stimulated intensive discussion on the mechanism of memory 
effect [23-27]. For example, based on the macroscopic characteristics of the scattering 
transmission matrices of anisotropically scattering media, Judkewitz et al. proposed a new type 
of memory effect, the shift memory effect, from matrix correlations, and explained its 
relationship with the AME [23]; Osnabrugge et al. predicted a more general class of combined 
shift and tilt correlation in scattering media under the paraxial approximation [24]; Yilmaz et 
al. found that when light is coupled into transmission eigenchannels of scattering media, it had 
a larger AME range [25]. The memory effect was also found in spectral domain [26]. Recently, 
Liu et al. demonstrated that the AME was a higher order spatial shift invariance quantified by 
intensity correlation in space. The team derived a new formula to calculate the AME range, and 
modified a multiple-random-phasemask model for scattering media, which allows simulation 
of the wavefront propagation in the media [27]. As the paraxial condition governs in most of 
these studies, the prediction accuracy is limited to very thin layers, say, less than 300 µm even 
when the anisotropy factor is larger than 0.95. To explore the boundaries and promote 
applications of aforementioned techniques under different circumstances, a full and accurate 
understanding of the angular memory effect range is urgently needed. 

In this paper, based on the aforementioned multiple-random-phasemask model, the influence 
of anisotropy factor 𝑔𝑔  on phasemask and consequently the AME range is studied 
systematically. Simulation shows that the transverse correlation length of the phasemask is 
sensitive to 𝑔𝑔 , while its contrast is only sensitive to the weight of ballistic photons in 
transmission. As 𝑔𝑔 approaches 1, the enhancement of the AME range is significant. However, 
increasing the medium thickness diminishes the dependence on 𝑔𝑔 quickly. Experiment results 
agree with the simulation quite well. It should be pointed out that the AME range plays a crucial 
role in determining the field of view of turbidity suppression-assisted microscopies [28-38]. 
This study shows that the existence of the AME depends on the weight of ballistic photons and 
the dominance in forward scattering. For most biological tissues, the anisotropy factor 𝑔𝑔 > 0.8 
[39,40] within the visible and near infrared regimes, and the penetration upper limit to apply 
the AME is one transport mean free path. Recalling that the AME range is also sensitive to the 
position of compensation plane, especially for a layer thinner than one transport mean free path 
[41]. Together it provides a gauge to maximize the field of view of different optical imaging 
and manipulation techniques based on the memory effect.  

In the following, we first introduce the modified multiple-random-phasemask model, then 
simulate the time reversed focus through a scattering layer to obtain the AME range at different 
anisotropy factors and layer thicknesses. We also implement experiments to measure the AME 
ranges of tissue mimicking samples to verify the simulation. The influence of the anisotropy 
factor on the AME range is analyzed systematically. 

 

2. Principle 
Different from the conventional multiple-random-phasemask model that has fixed mean free 
path (MFP) intervals between adjacent phasemasks with each phasemask representing a single 
scattering event, the modified multiple-random-phasemask model has flexible intervals as 
shown in Fig.1. Each phasemask is constraint by the spatial power spectrum density (sPSD) 
consisting of ballistic and multiple scattered light components. Because of the ballistic 
components. the phasemasks in the modified model have lower contrast than those in the 
conventional ones. Here, scattering coefficient 𝜇𝜇𝑠𝑠 = 10 𝑚𝑚𝑚𝑚−1 (for typical biological tissues) 
and anisotropy factor 𝑔𝑔 = 0.98 are used. To have a better understanding of the modified model, 
let us take a close look at the individual phasemasks at different thicknesses. According to 
Beer’s law, the intensity of ballistic light exponentially decays with the penetration thickness. 
As the weight of ballistic light decreases, the contrast of phasemask increases, so does the width 



of the histograms. In contrast, the phasemask of singly scattered light has the highest contrast 
with a uniform phase distribution within [−𝜋𝜋 𝜋𝜋]. In the meantime, the transverse coherence 
length, i.e., the mean grain size of the phasemask, decreases with thickness.    

From Ref. 27, the memory effect is a spatial shift invariance in terms of intensity correlation, 
and the AME range 

𝜃𝜃 = 𝜆𝜆
2𝜋𝜋𝜋𝜋

∙ 𝜅𝜅
√2(𝑛𝑛−1)𝜎𝜎

,                                    (1) 
where 𝜅𝜅 is the transverse coherence length and 𝜎𝜎 is the height deviation of a ground glass 
diffuser, a typical physical reality of phasemask. Within the memory effect range, changes to 
the input only results in a corresponding alteration to the output. The invariance range of the 
diffuser, however, is usually orders of magnitude smaller compared to that of a conventional 
shift invariance system, such as a lens system. Although we know that the sPSD of a random 
phasemask equals to that of a volumetric scattering medium 

𝜆𝜆𝜅𝜅
2√𝜋𝜋(𝑛𝑛−1)𝜎𝜎

exp �− 𝜅𝜅2𝑠𝑠𝑠𝑠𝑛𝑛2𝜃𝜃
[2(𝑛𝑛−1)]2𝜎𝜎2

� = ∑ 𝑊𝑊𝜋𝜋,𝑛𝑛𝑃𝑃𝑛𝑛(𝜃𝜃)𝑛𝑛 ,                          (2) 

where 𝑊𝑊𝜋𝜋,𝑛𝑛  and 𝑃𝑃𝑛𝑛(𝜃𝜃)  represent respectively the weight and phase function of different 
components through a scattering layer of thickness 𝜋𝜋. It is difficult to derive an expression for 
the modification factor 𝜅𝜅

√2(𝑛𝑛−1)𝜎𝜎
 in Eq.(1).  

With the aid of the modified multiple-random-phasemask model, we can evaluate the AME 
range at arbitrary anisotropy factors: first, we created a point source in front of the scattering 
medium and recorded the wavefront of diffused light through the medium; then, we phase 
conjugated the wavefront to generate a focus at the original position of the point source; lastly, 
we loaded a phase ramp, i.e., a phase grating, together with the conjugated wavefront to scan 
the focus along a coordinate axis and applied a curve fitting for the focal intensities at different 
scanning angles, whose half width at 1 𝑒𝑒⁄  was selected to be the AME range. In these 
simulations, the interval between adjacent masks was always the MFP, and we used thicknesses 
of 0.5, 1, and 1.5 mm to observe how the AME range changes with the anisotropic factor 𝑔𝑔.   

 
Fig. 1 Schematic illustration of the modified multiple-random-phasemask model in comparison 
with the conventional one. (a) In the conventional model, the interval between adjacent 
phasemasks is the MFP of the medium. The medium thickness 𝜋𝜋 = 𝑁𝑁 ∗𝑀𝑀𝑀𝑀𝑃𝑃, where 𝑁𝑁 is the 



number of random phasemasks. The first flat screen is usually omitted. The amplitude of the 
Fourier Transform of a conventional phasemask (b) is determined by the phase function P(θ) 
(c). (d) The histogram of the conventional phasemask with a uniform distribution within 
[−𝜋𝜋 𝜋𝜋] . (e) In the modified phasemask model, the interval 𝑙𝑙  is tunable and the Fourier 
Transform of a phasemask consists a zero-frequency ballistic component and high-frequency 
scattering components (g). (f, h, i) Examples of modified phasemasks at different intervals 𝜋𝜋 =
0.5, 1, and 3 𝑀𝑀𝑀𝑀𝑃𝑃, respectively, with their histograms shown in (j, k ,l).  

   
We also made several tissue mimicking scattering samples and measured their AME ranges. 

The tissue mimicking scattering samples were made of silica microspheres dispersed in gelled 
10% gelatin solutions. The refractive indexes of the microsphere and the background gel were 
1.45 and 1.33, respectively. Two kinds of microspheres of 1 and 2.5 𝜇𝜇𝑚𝑚 diameters were used. 
According to Mie Theory, the corresponding 𝑔𝑔 factors are 0.95 and 0.98, respectively. The 
concentrations of the microspheres were controlled to be 1.35 × 10−2 𝜇𝜇𝑚𝑚−3  and 6 ×
10−4 𝜇𝜇𝑚𝑚−3 for the 1 𝜇𝜇𝑚𝑚 and 2.5 𝜇𝜇𝑚𝑚 microspheres, respectively, to obtain a MFP of 0.1 mm. 
Fog each 𝑔𝑔 , we measured two samples with 0.5 and 1 mm thicknesses, respectively. In 
experiment, a 532 nm laser (Readylasers, MSL-FN-532) was split into two beams, i.e., a sample 
beam and a reference beam (see Fig.2). In the recording step, the sample beam was coupled 
into a single mode fiber (Thorlabs, P1-460Y-FC-1) to create a point-like source, after which 
light transmitted through the scattering medium and interfered with the expanded reference 
beam. The fiber had a 3.5 𝜇𝜇𝑚𝑚 diameter (the mode field diameter of the fiber), and it was placed 
100 mm before the sample. The output plane of the sample was imaged onto the surface of the 
SLM (Holoeye, LETO) by a commercial lens L1 (Nikon, Micro-Nikkor 105mm f/2.8) with a 
magnification of 3x. The expanded reference beam had a diameter of 33 mm@1 𝑒𝑒2⁄ . The 
interference pattern on the SLM was captured by CCD1 (PCO, PCO.edge 4.2) through another 
commercial lens L2 (Nikon, Micro-Nikkor 105mm f/2.8). A 4-step phase shifting 
interferometry method [42] was implemented to extract the diffused wavefront of the sample 
beam. In the playback step, the end of the fiber was removed and CCD2 (Stingray, F-504B/C) 
was inserted into the sample beam path. The extracted wavefront was loaded on the SLM. When 
the reference beam was illuminated on the SLM, conjugated wavefront was generated, which 
traced back to the original position of the reference point and was recorded by CCD2. A phase 
ramp was superposed on the SLM to scan the time reversed point.   

 
Fig. 2 Experimental setup for measuring the AME range based on time reversed focus. BS: 
beam splitter; L: lens; LCVR: liquid crystal variable retarder; BE: beam expander; SMF: single-
mode fiber; CCD: charge coupled device; SLM: spatial light modulator; DOPC: digital optical 
phase conjugation. 

 

3. Simulation and experimental results 



Before simulating time reversed focus with the random multiple phasemask model, we first 
examined the statistical distribution change of the phasemasks with anisotropic factor 𝑔𝑔 at 
different intervals of 𝜋𝜋 = 0.1 and 0.5 𝑚𝑚𝑚𝑚, respectively. As shown in Figs. 3&4, the grain size 
decayed fast with decreased 𝑔𝑔, while the contrast keeps relatively constant for fixed thickness 
except for 𝑔𝑔 = 0.60 𝑎𝑎𝑎𝑎𝜋𝜋  0.40. For simplicity, the sPSD of a scattering layer corresponding to 
the phasemask was obtained from Monte Carlo simulation instead of Eq.(2).   

 
Fig. 3 Examples of phase distributions and the corresponding histograms at different 
anisotropic factors when 𝜋𝜋 = 0.1 𝑚𝑚𝑚𝑚 . (a-h) 𝑔𝑔 = 0.98, 0.96, 0.94, 0.92, 0.90, 0.80, 0.60,
𝑎𝑎𝑎𝑎𝜋𝜋 0.40, respectively. 



 
Fig. 4 Examples of phase distributions and the corresponding histograms at different 
anisotropic factors when 𝜋𝜋 = 0.5 𝑚𝑚𝑚𝑚 . (a-h) 𝑔𝑔 = 0.98, 0.96, 0.94, 0.92, 0.90, 0.80, 0.60,
𝑎𝑎𝑎𝑎𝜋𝜋 0.40, respectively. 

Same as for the ground glass, transverse coherence length 𝜅𝜅 and height deviation 𝜎𝜎 were used 
to characterize the phasemask. Table 1 shows the calculated results of 𝜅𝜅, 𝜎𝜎, and their ratio 
corresponding to Figs. 3&4. Note that for phasemasks we can only calculate its standard 
deviation ΔΨ in phase, and 𝜎𝜎 was obtained by dividing ΔΨ to the wavenumber 𝑘𝑘𝑛𝑛.  𝑘𝑘𝑛𝑛 = 2𝑛𝑛𝜋𝜋

𝜆𝜆
, 

where the wavelength 𝜆𝜆 = 0.532 µ𝑚𝑚, and the refractive index 𝑎𝑎 = 1.33 in this study. 

Table 1 Transverse coherence length 𝜅𝜅, height deviation 𝜎𝜎, and their ratio of the phasemasks at 
different 𝑔𝑔 and thicknesses. 

 



Clearly, the transverse coherence length decays fast with 𝑔𝑔, especially for thicker layers. The 
minimum transverse coherence length is the wavelength in medium, i.e., 𝜆𝜆 𝑎𝑎⁄ = 0.4 𝜇𝜇𝑚𝑚. For 
𝑔𝑔 = 0.60 and 0.40, however, the histograms in both Figs.3&4 are shaper comparing to other g 
values, and hence the corresponding 𝜎𝜎 are significantly smaller. A possible explanation is that 
more photons are backscattered with a small anisotropy factor,  resulting in larger weight of 
ballistic photons in the transmitted light. Based on the table, we can see a clear trend of the 
phasemask with the anisotropy factor. 

Fig.5a shows the time reversed intensities at different scanning angles in simulation and 
experiment. From the fitted curve, we can obtain the AME range based on Eq. (1). In Fig. 5b, 
the magenta pluses denote the AME ranges of 0.5 mm thick samples from simulation at 
different 𝑔𝑔, while black crosses and cyan circles represent the AME ranges of 1 mm and 1.5 
mm thick samples, respectively. The fitted curves share the same formula  

𝜃𝜃 = 𝑎𝑎
(1−𝑔𝑔)𝑚𝑚

+ 𝑏𝑏,                                                     (3) 

 where parameters a, b, and m are sensitive to thickness: 𝜋𝜋 = 0.5 𝑚𝑚𝑚𝑚 , 𝜃𝜃 = 8.23×10−3

(1−𝑔𝑔)0.9 +

3.54 × 10−2 ; 𝜋𝜋 = 1.0 𝑚𝑚𝑚𝑚 , 𝜃𝜃 = 8.36×10−4

(1−𝑔𝑔)1.2 + 3.65 × 10−2 ;  𝜋𝜋 = 1.5 𝑚𝑚𝑚𝑚 , 𝜃𝜃 = 3.51×10−4

(1−𝑔𝑔)1.3 +
3.37 × 10−2. Apparently, as thickness increases, the decaying of AME range with g becomes 
steeper, in response to a larger value of 𝑚𝑚. An interesting phenomenon is that the AME range 
does not monotonically decrease with 𝑔𝑔; it slightly rises at small 𝑔𝑔. A possible explanation is 
that weight of ballistic photons in transmission is larger with stronger backscattering (smaller 
g). For thick medium, the weight of ballistic photons drops exponentially with thickness and 
being much faster than diffused light does. Hence, there is no obvious rise for thicker samples. 
The yellow dots (𝑔𝑔 = 0.95) and green diamonds (𝑔𝑔 = 0.98) denote the measured AME ranges 
of 0.5 mm and 1 mm thick samples in experiment, respectively, agreeing with simulation quite 
well. From Eq.(1) we know that the AME range is proportional to a modification factor 

𝜅𝜅
√2(𝑛𝑛−1)𝜎𝜎

. For the 0.5 mm thick sample, the ratio of the AME ranges at 𝑔𝑔 = 0.98 to 𝑔𝑔 = 0.96 is 
1.63 in Fig.5, while the ratio of 𝜅𝜅 𝜎𝜎⁄  in Table 1 is 1.5. They are consistent, which is a convincing 
validation of the effect of the aforementioned modification factor. 

 
Fig. 5 Simulation and experiment results. (a,b) Images of time reversed focus at scanning angles 
𝜃𝜃 = 0° and 0.1°, respectively. (c) Intensities of time reversed focus at different angles in 
simulation (blue circles) and experiment (black crosses), as well as their Gaussian fitted curves 
(95% confidence bounds). Sample thickness was 0.5 mm. (b) Simulation and experiment results 
of the AME range as a function of anisotropic factor 𝑔𝑔 at different thicknesses. The simulation 



data of  𝜋𝜋 = 0.5𝑚𝑚𝑚𝑚, 1mm, and 1.5mm are represented by magenta pluses, black crosses, and  
cyan dots, respectively. The green diamonds and yellow dots are measured values in 
experiment. 

Thus far, it can be concluded that forward scattering domination and certain portions of 
ballistic photons are two preconditions for the AME; at least one should be satisfied to yield 
the AME phenomenon. It also determines when (conditions) and where (field of view) the AME 
can be used for optical imaging and manipulation through scattering media.  

4. Discussion and conclusion 
From the perspective of differentiation, once the output itself is distinguishable without any 
external references, the spatial shift invariance is broken, and there is no more AME. For a 
scattering layer simulated by two random phasemasks, the wavefront after the 1st phasemask is 
scrambled with fine structures; when such scrambled wavefront meets the 2nd phasemask, 
because of its phase distribution, a shift of the wavefront can be differentiated. For a pure plane 
without any structures, it does not have the ability to distinguish any change of the incident 
wavefront. If the 2nd phasemask has finer grains, the resolution is higher, and consequently the 
AME range is smaller. Since the characteristic size, i.e., the transverse coherence length of the 
wavefront on the plane of 2nd phasemask, is proportional to the thickness according to van 
Cittert-Zernike Theorem [41], it will be easier to differentiate a wavefront with longer 
transverse coherence length. Intuitively, the resolution is inversely proportional to the 
thickness. The upper limit of the angular resolution of the system is its AME range.  

We must point out a shortcoming of the modified multiple-random-phasemask model. Due 
to the constraint in generating the phasemasks, the maximum standard deviation in phase ΔΨ 
is 𝜋𝜋

√3
, and the maximum height deviation 𝜎𝜎 = 0.1155 𝜇𝜇𝑚𝑚  in our case. Considering the 

minimum grain size is 0.4 𝜇𝜇𝑚𝑚 and the minimum of the modifying factor 𝜅𝜅
√2(𝑛𝑛−1)𝜎𝜎

= 7.4, the 

simulated AME range will be at least 7.4 folds of the calculated value according to 𝜃𝜃 = 𝜆𝜆
2𝜋𝜋𝜋𝜋

. In 
fact, all multiple-random-phasemask models have similar inaccuracy. A tricky situation is that 
the AME range of a thick sample is too small to be measured accurately. Hence, it is difficult 
to verify and correct the modification factor. That said, usually it does not cause any operational 
problem since we are interested in the AME only when its range is big enough. Nevertheless, 
we should keep it in mind in application.  

In summary, we studied the influence of anisotropy factor 𝑔𝑔 on phasemask and the AME 
range in this study. An empirical relationship among the AME range, thickness, and 𝑔𝑔 was 
found. As 𝑔𝑔 approaches 1, the enhancement in AME range is significant. However, increasing 
sample thickness diminishes the dependence on 𝑔𝑔 quickly. The investigation shows that it is 
only meaningful to make use of the AME when ballistic photons or forward scattering dominate 
in light propagation, i.e., the penetration thickness is within one transport mean free path. 
Recent progress in adaptive optics, two/three-photon microscopy, structure illumination 
microscopy [44,45], and photoacoustic microscopy [46,47] has allowed one to see clearer and 
deeper into biological tissues. Field of view of these implementations, however, need to be 
further expanded in vivo. Our study, together with optimized wavefront compensation against 
the scattering-induced phase distortions in biological tissue, provides a reference to maximize 
the field of view of various microscopies, and light manipulation techniques [48] as well.   
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