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The prefrontal cortex (PFC) is a heterogeneous area that is critical to reward-based decision-making. 17 

In particular, the dorsal anterior cingulate cortex (dACC), ventromedial prefrontal cortex (vmPFC), 18 

and orbitofrontal cortex (OFC) are frequently implicated in different aspects of choice behaviour. 19 

These regions receive projections from midbrain dopamine neurons, and in turn project to other key 20 

dopaminergic regions such as the striatum. However, our current understanding of the role of 21 

dopamine in reward-based processes is based mainly on studies of midbrain dopaminergic neurons 22 

and striatal dopamine release from non-human animal models. An important gap in the literature 23 

surrounds the precise functions of dopamine release in the prefrontal cortex, particularly in humans. 24 

A priority for future research will be to integrate, both computationally and biologically, the 25 

seemingly disparate value representations across different nodes within the reward processing 26 

network. Such models should aim to define the functional interactions between the prefrontal 27 

cortex and basal ganglia, through which dopaminergic neurotransmission guides reward-based 28 

behaviour. 29 

 30 

  31 
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Decisions are often made between options whose outcomes are represented in different, 32 

and sometimes very abstract, attributes (e.g., buying a car vs going on holiday; choosing a 33 

relationship vs a career). Traditional economic theories argued that such decisions are made by 34 

computing an abstract utility that allows qualitatively dissimilar options to be quantitatively 35 

comparable. Neuroeconomic studies inspired by this approach have found that rewards are 36 

represented in a distributed network of areas across the prefrontal cortex (PFC), striatum, and 37 

midbrain (O'Doherty, 2004; Izuma et al., 2008; Lau and Glimcher, 2008; Zink et al., 2008; Peters and 38 

Buchel, 2010; Levy and Glimcher, 2012).  39 

The PFC is a heterogeneous area that plays a broad role in multiple stages of value-based 40 

decision-making, from representing the subjective value of a reward; comparing the value difference 41 

between available rewards; motivating the decision-making process itself; and guiding flexible 42 

choices (Murray and Rudebeck, 2018). These “reward-sensitive” processes are instantiated in three 43 

key subdivisions of the PFC, including the dorsal anterior cingulate cortex (dACC), ventromedial 44 

prefrontal cortex (vmPFC), and orbitofrontal cortex (OFC) (Padoa-Schioppa and Assad, 2008; 45 

Rushworth and Behrens, 2008; Grabenhorst and Rolls, 2011).  46 

Dopamine itself has been widely implicated in reward processing (Schultz et al., 2015; Hamid 47 

et al., 2016; Volkow et al., 2017).  These prefrontal areas receive extensive projections from 48 

midbrain dopamine neurons via the mesocortical pathway, and in turn project in a highly organised 49 

manner to the striatum. Together, this network of prefrontal and subcortical areas comprises the 50 

core of the brain’s reward network. However, many studies on the role of dopamine in reward 51 

processing have focused on dopamine neurotransmission within the midbrain and striatum, and it 52 

remains largely unclear how dopamine regulates the interaction between prefrontal and 53 

midbrain/striatal activity.  54 

In this review, we first consider the anatomy and function of the three prefrontal areas that 55 

are directly involved in reward-based decisions – the dACC, vmPFC and OFC – before discussing the 56 
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key role of dopamine in encoding reward prediction errors. We then consider how the prefrontal 57 

cortex may interact with dopaminergic pathways to facilitate reward-based decisions. Finally, we 58 

conclude by highlighting useful approaches to studying prefrontal dopamine in humans that are 59 

based on combining currently available methodological techniques.  60 
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1. The Anatomy and Function of Reward-Sensitive PFC Regions 61 

First, we survey the roles of three key PFC regions in reward-based decision making – the 62 

dACC, vmPFC and OFC. We consider each of these regions in turn, in a dorsal-to-ventral order, 63 

reflecting their topographic striatal projections (Figure 1). 64 

 65 

1.1. Dorsal anterior cingulate cortex  66 

The ACC lies on the medial surface of the frontal lobe, and consists of Brodmann areas 24, 67 

25 and 32, which lie in and around the cingulate sulcus. The dorsal ACC (dACC) in turn encompasses 68 

regions referred to as the anterior mid-cingulate cortex and rostral cingulate zone (Cole et al., 2009; 69 

Shackman et al., 2011; Procyk et al., 2014; Heilbronner and Hayden, 2016; Vogt, 2016). Notably, it is 70 

distinct from adjacent areas such as the pre-supplementary motor area (pre-SMA), and is a key hub 71 

in a network of regions implicated in domain-general executive function. Some authors have 72 

suggested that the human dACC is unique, but others have argued that the dACC and its connections 73 

are relatively preserved across humans and macaques (Cole et al., 2009). Similarly, cross-species 74 

comparisons between primates and rodents suggest that primate area 24 may be homologous to 75 

rodent area Cg or area 24 (Passingham and Wise, 2012; Heilbronner et al., 2016). As in the primate, 76 

the rodent ACC is strongly connected with the core of the NAc and the basolateral amygdala. This 77 

further supports the view that ACC is preserved across rodent and primate species. 78 

The connectivity of the dACC (and in particular area 24) positions it optimally to facilitate 79 

value-based decisions. It is tightly linked to nearby areas of frontal cortex, such as the dorsolateral 80 

prefrontal cortex (dlPFC), and adjacent ACC areas, such as the perigenual ACC. The dACC itself is 81 

directly connected to much of the striatum, as well as other subcortical regions such as the 82 

amygdala that encode reward and value (Haber, 2011). Through this connectivity, the dACC may 83 

therefore influence, and be influenced by, dopaminergic activity, and its direct connections to motor 84 

areas (e.g., the pre-supplementary motor area) allows it to exert direct influence over motor output 85 
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(Luppino et al., 1991; He et al., 1995). In sum, the dACC sits at an important interface between the 86 

brain’s reward valuation networks and their translation to action.  87 

The dACC plays a central role in encoding choice value. Neuronal activity in the macaque 88 

dACC reflects reward history (Kolling et al., 2016), as does fMRI BOLD activity from the human dACC, 89 

which can be used to predict future rewards and guide decisions to maintain or change behaviour 90 

(Wittmann et al., 2016). Consistent with these findings are studies that have shown that dACC 91 

lesions impair the use of reward-history-dependent values to determine the balance between 92 

persistence and change (Kennerley et al., 2006). Together, the value signals in the dACC may 93 

therefore reflect the recency-weighted history of previously chosen rewards. 94 

However, the dACC has also been implicated in a multitude of cognitive processes, and its 95 

precise role remains highly controversial (Cole et al., 2009; Shackman et al., 2011; Kolling et al., 96 

2012; Procyk et al., 2014; Shenhav et al., 2014; Heilbronner and Hayden, 2016; Vogt, 2016). It has 97 

been implicated in motivation, error monitoring (Posner and Petersen, 1990; Holroyd and Coles, 98 

2002b; Debener et al., 2005), conflict detection (Carter et al., 1998; Botvinick, 2007), and detecting 99 

the volatility of the reward environment (Behrens et al., 2007). Across all of these roles, two broad 100 

overarching functions for the dACC are thought to be the valuation of effort-related costs, and 101 

adaptive decision-making. 102 

Motivating Effortful Actions 103 

Motivation involves a cost-benefit analysis, in which the costs of an action are weighed 104 

against its potential rewards (Chong et al., 2016). The dACC, together with the OFC and striatum, are 105 

key structures in the valuation of effort costs. Lesions encompassing the dACC disrupt the willingness 106 

of rats to invest effort in pursuit of rewards (Walton et al., 2002; Walton et al., 2003; Schweimer and 107 

Hauber, 2005; Schweimer et al., 2005; Rudebeck et al., 2006; Walton et al., 2009). Importantly, this 108 

lowered motivation is not due to a motor deficit or altered reward sensitivity (Walton et al., 2002; 109 

Walton et al., 2003; Rudebeck et al., 2006). Rather, it is due to an impairment in the ability to 110 
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integrate effort and reward information, suggesting a particularly important role for the dACC in 111 

effort-based decision-making, in both the physical (Shidara and Richmond, 2002; Amemori and 112 

Graybiel, 2012) and cognitive domains (Hosking et al., 2014). 113 

Similarly, human studies have shown that the dACC encodes the subjective value of effortful 114 

actions (Croxson et al., 2009; Chong et al., 2017). Recent work has shown that the subjective value of 115 

rewards discounted by effort are encoded in the dACC, regardless of the specific domain of effort 116 

involved (i.e., for both cognitive and physical effort) (Chong et al., 2017). The causative role of the 117 

dACC in energisation and motivated behaviour is evidenced by lesion studies, which have shown that 118 

dACC lesions have been associated with general slowing of response time (Stuss et al., 2005), and a 119 

higher threshold for overcoming effortful obstacles (Holroyd and Yeung, 2012). Lesions to areas 120 

encompassing the human dACC result in clinically severe impairments in motivation, such as akinetic 121 

mutism. Conversely, dACC stimulation produces experiences of a ‘willingness to persevere’ through 122 

impending challenges (Parvizi et al., 2013).  123 

Adaptive decision-making 124 

Another influential set of theories has linked the dACC to ‘conflict monitoring’ – the process 125 

of monitoring action outcomes, and detecting when two competing choices might be made during a 126 

difficult task (Botvinick et al., 2004; Botvinick, 2007). By these accounts, the dACC underlies our 127 

ability to flexibly adjust behaviour to accord with internally-maintained goals, and away from 128 

behaviours that may distract from those goals, especially in response to unexpected events (Holroyd 129 

and Coles, 2002a). A possible mechanism for this conflict monitoring process is the encoding of 130 

prediction errors within the dACC. Although prediction errors are often discussed in the context of 131 

striatal dopamine signalling (see Section 2), several studies have shown that prediction error signals 132 

are also encoded at the cellular level within single dACC neurons (Matsumoto et al., 2007; Bryden et 133 

al., 2011; Hayden et al., 2011). However, the types of prediction error that are signalled by 134 

dopaminergic and dACC neurons are fundamentally different. Dopaminergic neurons 135 
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characteristically signal a signed difference between the predicted and actual outcomes (Schultz et 136 

al., 1997). In contrast, dACC neurons rarely generate signed prediction errors (although see 137 

Kennerley et al., 2011), but instead generate representations of expected outcomes based on the 138 

accumulation of previous outcomes (Hyman et al., 2017). This comparison process that takes into 139 

account previous trial history may then be used to detect violations of expected outcomes.  140 

In humans, a topical alternative approach to determining the role of the dACC in adaptive 141 

decision-making has been to examine human foraging behaviour with fMRI. A recent study 142 

examined how humans decide whether to explore a set of alternative choices, or stick with the 143 

opportunity to make a ‘default’ choice (Figure 2B) (Kolling et al., 2012). This study therefore required 144 

individuals to weigh the value of the encountered option (the default ‘encounter value’), against the 145 

richness of the environment (‘search value’), and the effort cost of searching elsewhere (‘search 146 

cost’). The value of exploring was encoded by a positive ‘search value’ signal in dACC, which indexed 147 

the average value of the set of alternative actions. Conversely, dACC activity was negatively 148 

influenced by both the encounter value and search costs. However, dACC activity was not 149 

modulated by the choice participants subsequently made. This pattern of positive and negative 150 

modulations may represent an inverse value difference signal, as activity increases when the 151 

difference between the value of the chosen option and the value of the option that is foregone 152 

decreases (Hare et al., 2011). Overall, this pattern of activity is suggestive of a comparison process in 153 

the dACC that could inform decisions about whether to continue exploiting the current reward 154 

patch, or to explore the environment for superior alternatives (Kolling et al., 2012). 155 

However, decisions close to the subjective indifference point between searching and 156 

engaging also tend to be more difficult. Thus, an alternative interpretation suggests that the dACC 157 

does not necessarily encode search value, but the difficulty of a decision in general (Shenhav et al., 158 

2014). In the context of the foraging experiment above, difficulty can be operationalised as the 159 

absolute difference between the search and engage values, as opposed to the relative exploration 160 
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value that is the signed difference between the two values. Based on connectivity patterns 161 

(Beckmann et al., 2009; Neubert et al., 2015), the subregions within the dACC that encode 162 

‘exploration’ and ‘difficulty’ appear to be anatomically segregated (Figure 2A). Specifically, it is 163 

possible to concurrently observe an exploration signal in a relatively ventral dACC region, and a 164 

difficulty signal in a relatively dorsal dACC region (sometimes also known as pre-supplementary 165 

motor area (pre-SMA); Figure 2C) (Kolling et al., 2016).  These data suggest that different subregions 166 

of the dACC may play separate roles in adaptive decision-making, although the broader functional 167 

specialisations of different dACC subregions remains to be clarified. 168 

  169 
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1.2. Ventromedial prefrontal cortex  170 

The vmPFC is a poorly-defined anatomical region in the PFC, with its precise location and 171 

boundaries varying widely across different studies. For example, the part of the medial PFC adjacent 172 

to the genu of the corpus callosum has been variously labelled the ‘vmPFC’ or ‘ACC’.  The nominal 173 

‘vmPFC’ is large, with cytoarchitectonic studies parcellating the ‘ventromedial’ part of the human 174 

PFC into areas 10m, 10r, 11m, 14c and 14r (Carmichael and Price, 1994; Ongur and Price, 2000; 175 

Price, 2007). Despite this heterogeneity, research in the last two decades has provided strong 176 

evidence that parts of the ventromedial PFC are important to reward-based decisions, by 177 

representing subjective reward value, as well as by implementing value-based comparisons between 178 

available options. 179 

vmPFC encodes reward value 180 

A large volume of data has shown that the vmPFC encodes the value of a presented reward. 181 

Importantly, however, the activity of this region does not merely correlate with the objective value 182 

of a reward, but in fact is better explained by how subjectively rewarding that option is to the 183 

individual (Kable and Glimcher, 2007; Lebreton et al., 2009).  Neuroeconomic theories posit a central 184 

role for subjective value in guiding individuals’ decisions. An important characteristic of neural signal 185 

that reflects value is that it should be greater when an option is more rewarding, as well as when an 186 

option is less aversive (i.e., the relationship between the signal and value should be linear 187 

throughout the positive and negative sides of the valence spectrum).  A recent meta-analysis on 206 188 

fMRI studies on subjective value found that just such a value signal in a cluster of vmPFC regions that 189 

peaked at area 10r (standard Montreal Neurological Institute coordinates of 2, 46, -8; Figure 3A) 190 

(Bartra et al., 2013).  The subjective value signal in the vmPFC is therefore thought to provide an 191 

important biophysical substrate for value-based decisions.  192 

Human lesion studies support the causal role of the vmPFC on decision-making, and show 193 

that focal vmPFC lesions result in specific decision-making impairments.  For example, Damasio and 194 
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colleagues showed that, in a gambling-like task, patients with vmPFC lesions prefer riskier choices 195 

(Damasio, 1996; Bechara et al., 2005). However, although such patients are more stochastic in 196 

reward-based decisions, the speed of their decisions is not necessarily impaired, and their 197 

performance in perceptual-based decision-making tasks, are comparable to controls (Fellows and 198 

Farah, 2005, 2007; Henri-Bhargava et al., 2012; Noonan et al., 2017).  Thus, the vmPFC should not be 199 

considered a ‘primary decision cortex’ for general value computations and decision-making; rather, 200 

it is involved specifically in decisions driven by subjective preferences.  To understand the exact role 201 

of vmPFC in decision making, it is important to consider the nature of the signal in this region. 202 

vmPFC encodes a value difference signal 203 

A key property of any area that is purported to be involved in the process of reward-based 204 

decision-making is its capacity to represent the relative values of available options, in order to be 205 

able to compare the difference between them. In the vmPFC, a “value difference” signal has been 206 

broadly reported in human fMRI studies.  When a person is choosing between two options, vmPFC 207 

activity is both positively correlated with the value of one option, and negatively correlated with the 208 

value of the other, such that the difference in value between the two options is compared.  Similar 209 

findings have been observed during neurophysiological recordings from vmPFC neurons, while 210 

macaques were making decisions between two sequentially-presented options (Strait et al., 2014).  211 

When the second option was presented, the activity of vmPFC neurons was modulated by the value 212 

of that option, and in the opposite direction by the value of the option presented earlier.  In other 213 

words, the vmPFC neurons encoded a signal that was related to the value difference between the 214 

current offer and the alternative option (Figure 3B). A value difference signal is an important neural 215 

signature of decision making, and understanding the nature of this signal is important to revealing 216 

the specific role of vmPFC in value-based decisions. 217 

There are multiple frameworks through which the values of two options can be compared to 218 

reach a decision. For example, a neural network can use a space-based framework to compare the 219 
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value difference between two options located in physically different locations (e.g., left vs right).  In 220 

more posterior regions such as the lateral intraparietal area, each neuron has a receptive field that 221 

corresponds to a small proportion of the visual field.  Their activity is modulated positively as a 222 

function of the value of the option presented spatially within their response field, and negatively as a 223 

function of other options outside their receptive field (Platt and Glimcher, 1999; Churchland et al., 224 

2008).  This neuronal signal is particularly useful to evaluate the value of an option at a given 225 

location, relative to options elsewhere.  However, unlike posterior visual regions, vmPFC neurons 226 

lack the spatial tuning required for a space-based framework.  227 

An alternative to the space-based approach suggests that the vmPFC uses an attention-228 

based framework, which compares attended versus unattended options.  Lim and colleagues 229 

recorded eye movements when human participants were choosing between two options (Lim et al., 230 

2011).  When they attended to an option by gazing at it, the vmPFC signal was positively related to 231 

the value of the attended option, and negatively related to the value of an unattended option, which 232 

suggested that the vmPFC encoded a value difference between both alternatives.  Importantly, 233 

however, the attentional modulation of the vmPFC signal was independent of the option that was 234 

eventually chosen (Lim et al., 2011). Collectively, these data suggest that, even though the vmPFC 235 

signals the difference in value between options, it is not involved in choice selection per se. The 236 

causal role of the vmPFC in guiding attention during reward-based decisions is further supported by 237 

patients with vmPFC lesions, who show less attention to information relevant to the decision itself 238 

(Vaidya and Fellows, 2015, 2016).  239 

In contrast to the spatial/attentional frameworks, vmPFC signals have also been proposed to 240 

encode the value difference between an option that is about to be chosen and an alternative that is 241 

about to be foregone.  Several human fMRI studies have shown that the vmPFC encodes a value 242 

difference signal between the chosen and unchosen options (Figure 3C) (Boorman et al., 2009; 243 

Kolling et al., 2012; Jocham et al., 2014; Papageorgiou et al., 2017).  This framework is appealing 244 
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because it suggests that the vmPFC is not only critical to value comparison, but is also involved in the 245 

choice selection process by encoding the value of the impending choice.  Note that this contrasts 246 

with the attentional framework, in which the vmPFC is not critical to the selection of an option. 247 

Neurophysiological data support this idea by showing that the firing rate of a large proportion of 248 

neurons is modulated by the value of the chosen option before the decision is made (Strait et al., 249 

2014).  However, critics argue that the signal difference between the chosen and unchosen options 250 

is post-decisional, and is not critical to the choice selection process.   251 

Finally, a more recent proposal has been that the vmPFC encodes value in a preference-252 

based framework.  Such theories propose that the vmPFC compares options in a preferred category 253 

with an alternative in a non-preferred category. For example, one might in general prefer chocolate 254 

to cookies, but the exact decision would depend on the actual choices offered (e.g., one might 255 

dislike particular types of chocolate).  Lopez-Persem and colleagues (2016) asked human participants 256 

to choose between a snack item from a preferred category and another snack item from a non-257 

preferred category (Figure 3D).  The vmPFC signal was modulated positively as a function of the 258 

snack of the preferred category, and negatively as a function of the snack of the non-preferred 259 

category, regardless of which option was then chosen.  They also ran a computational model to 260 

explain participants’ choices, which suggested that both category preference and visual attention 261 

are important factors that explain choice.  Further investigations could test whether the vmPFC 262 

simultaneously encodes both preferred versus nonpreferred value difference, and attended versus 263 

unattended value difference. 264 

Value difference signals in vmPFC of humans versus monkeys 265 

Although cytoarchitectonic and connectivity studies have demonstrated the homologous 266 

relationship between the vmPFC of human and non-human primates, a direct comparison using the 267 

same measurement and decision-making task provides the best test to assess whether the vmPFC is 268 

functionally comparable across primate species. A recent study applied fMRI in one human 269 
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experiment and two monkey experiments that involved binary choice decision-making tasks 270 

(Papageorgiou et al., 2017). In humans, a classical value difference signal was reported at vmPFC 271 

area 10r – activity in this region was correlated with the value difference between the two options.  272 

This accords with the results from two monkey experiments, which also showed a value difference 273 

signal in area 10m, which is considered structurally homologous to human area 10r (Price, 2007; 274 

Neubert et al., 2015). Interestingly, however, the sign of the value difference signals differed across 275 

species, such that it was positive in humans (consistent with previous studies), but negative in both 276 

macaque experiments.   277 

The reason for the reversed value difference signal across species is unclear, and is a further 278 

illustration of the complexities of generalising findings across studies involving human and non-279 

human animals. Such discrepancies are unlikely to have been simply due to experimental factors. All 280 

experiments were conducted using a similar MRI scanner. Although there were some task 281 

differences between the human and macaque experiments (humans were explicitly presented the 282 

reward probabilities of each option, but monkeys had to learn these probabilities trial-by-trial), 283 

these alone should not have reversed the sign of the value difference signal.  One possible reason for 284 

this discrepancy might be due to even minor differences between the neural networks across the 285 

two species. For example, a single inhibitory connection would be sufficient to reverse the positivity 286 

or negativity of a signal, and it may be that the direction of a signal may be of less functional 287 

consequence than its magnitude. Nevertheless, it remains for future studies to clarify whether this 288 

discrepancy in the sign of the value signal reflects divergent evolutionary decision processes across 289 

primate species.   290 

Value signals and cognitive maps 291 

Apart from computing value difference, recent evidence suggests that the vmPFC also 292 

encodes a “cognitive map”, which provides insights into how value signals emerge in this region.  In 293 

spatial perception, physical space can be represented by a two-dimension Cartesian map, and grid 294 
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cells in the entorhinal cortex use a hexagonally symmetric code to represent this two-dimensional 295 

space (Hafting et al., 2005).  Similar to physical space, concepts can also be represented by 296 

continuous dimensions.  For example, the identity of bird species can be represented by continuous 297 

dimensions of leg length and neck length, and different bird species can be located at different 298 

positions of the two-dimensional leg-and-neck space.  Constantinescu and colleagues taught 299 

participants to recognise birds using this two-dimensional “bird space” (Constantinescu et al., 2016). 300 

Similar to the representation of physical space, both the entorhinal cortex and the vmPFC used a 301 

hexagonally symmetric code to represent “bird space”. In reward-based decision-making, integrating 302 

decision attributes (e.g., reward magnitude and probability) is an important computation for 303 

representations of value.  Such a two-dimensional cognitive map in the vmPFC could be useful in 304 

value-based computations during choice behaviour. 305 

  306 
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1.3. Orbitofrontal cortex  307 

The human OFC lies on the ventral surface of the prefrontal cortex adjacent to the orbits.  It 308 

can be divided into medial area 14, central-anterior area 11, central-posterior area 13, and lateral 309 

area 47/12 (Carmichael and Price, 1994; Wallis, 2007). These areas are separated by three major 310 

sulci, namely the medial orbital sulcus, lateral orbital sulcus, and transverse orbital sulcus.  In terms 311 

of cytoarchitecture, the human OFC comprises an anterior granular cortex and a posterior agranular 312 

cortex, which are distinguished based on the presence or absence of small and round neurons in 313 

layer IV (Wise, 2008; Wallis, 2012). This anterior-to-posterior gradient in cytoarchitecture of OFC is 314 

shared by other non-human primates, including macaques and marmosets (a more distant relative 315 

to humans than macaques) (Burman and Rosa, 2009).  In addition, OFC connectivity in humans and 316 

monkeys are similar – for example, area 47/12 in both species are strongly connected to regions 317 

such as area 44v, anterior temporal regions, striatum, hypothalamus, hippocampus, and amygdala 318 

(Neubert et al., 2015).  Due to the similarities in cytoarchitecture and connectivity profiles, it is 319 

widely accepted that human and monkey OFCs are homologous. In contrast, the rodent OFC is 320 

arguably a homolog of only the posterior human OFC (mainly posterior part of area 13), as it consists 321 

of an agranular cortex only.  Thus, findings from the monkey OFC are likely generalisable to humans, 322 

but caution should be exercised in extrapolating rodent OFC data to humans. 323 

Stimulus-reward associations 324 

Like the vmPFC and striatum, the OFC has been shown to encode reward value. More 325 

specifically, a major function of central OFC area 11/13 is to encode stimulus-reward associations – 326 

the value of a stimulus based on past experiences with it (Thorpe et al., 1983; Tremblay and Schultz, 327 

1999; Padoa-Schioppa and Assad, 2006, 2008; Bouret and Richmond, 2010).  For example, if an 328 

animal has learnt that objects A and B are associated with a reward of an apple or a grape 329 

respectively, a population of central OFC neurons will then encode the value of object A, and a 330 

separate population will encode the value of object B (Padoa-Schioppa and Assad, 2006, 2008).  331 
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Importantly, the neuronal activity is independent of visuospatial features of the stimuli and the 332 

motor response required to obtain the object, suggesting that the signal is related specifically to the 333 

value of the object itself. 334 

The notion that the central OFC area 11/13 is important for learning stimulus-reward 335 

associations fits well with findings from reinforcement devaluation studies.  In a typical study, 336 

subjects must choose between two objects that are associated with different rewards (e.g., a grape 337 

and an apple). These choices are assessed at baseline, and after a devaluation session in which they 338 

are fed with one of the rewards to satiety. Usually, subjects avoid the sated reward after the 339 

devaluation session.  However, this devaluation effect is weaker in monkeys with bilateral central 340 

OFC lesions (Izquierdo et al., 2004; Murray and Izquierdo, 2007; Rudebeck and Murray, 2011b, a), as 341 

well as monkeys with smaller central OFCs (Burke et al., 2014).  This suggests an important role for 342 

the central OFC in updating stimulus-reward associations. 343 

In addition, some have argued that the central OFC is involved in the choice selection 344 

process itself.  This is based on the aforementioned findings that the firing of individual neurons 345 

captures the value of a presented option, while the firing of other neurons within the same region 346 

captures the value of the chosen option. Importantly, however, the activity of individuals neurons in 347 

OFC reflect only the value of a single option, and is independent of the value of the alternative 348 

(Padoa-Schioppa and Assad, 2006, 2008). Thus, unlike vmPFC neurons, the activity of central OFC 349 

neurons do not show any evidence of comparison or competition between the available options. If 350 

one accepts that an important signature for the choice selection process is value comparison (see 351 

section on vmPFC above), separate populations of OFC neurons are more likely to provide an input 352 

to this process, rather than be central to the decision-making process itself.  353 

Flexible decision-making  354 

In addition to encoding stimulus-reward associations, a second major function of the OFC is 355 

to guide flexible decisions. A typical paradigm to assess flexible decision-making is the reversal 356 
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learning task. Such tasks require participants to choose between one of two stimuli, one of which is 357 

associated with a reward, and the other an omission (Figure 4A).  The key manipulation is that the 358 

reward contingency is reversed once there is a high probability of the individual choosing the 359 

rewarded stimulus – the previously rewarded stimulus becomes non-rewarded and vice versa.  360 

Human fMRI studies of reinforcement learning have consistently reported strong activity at the OFC 361 

when participants reverse their choices (Monchi et al., 2001; O'Doherty et al., 2001; Kringelbach and 362 

Rolls, 2003; Ghahremani et al., 2010; Hampshire et al., 2012).  In addition, patients with OFC lesions 363 

show deficits in choice reversal, suggesting that the OFC plays a causal role in generating flexible 364 

decisions (Hornak et al., 2004; Fellows, 2011).  However, given that human OFC lesions are rarely 365 

focal, such studies are limited in revealing the precise OFC subdivision that contributes to flexible 366 

decision-making.   367 

Studies on animals with homologous OFC areas, such as macaques and marmosets, have 368 

been able to provide further insights. Traditionally, deficits in flexible decision-making have been 369 

attributed to lesions of central OFC areas 11/13. However, some of these earlier findings may have 370 

been attributable to damage in neighbouring regions. Recent studies that have specifically and 371 

precisely lesioned areas 11/13 in macaques using neurotoxin have failed to observe any impaired 372 

performance in reversal learning tasks (Kazama and Bachevalier, 2009; Rudebeck et al., 2013). In our 373 

recent study, we trained macaques to perform such a task while undergoing fMRI (Chau et al., 2015). 374 

We found that area 47/12, rather than area 11/13, was particularly active when the animals 375 

reversed their choices according to a change in reward contingencies. In addition, area 47/12 was 376 

also more active when animals repeated their choice of a rewarding option – in other words, the 377 

signal in this area was related to the implementation of a win-stay/lose-shift strategy, an optimal 378 

strategy for guiding flexible decisions (Figure 4B).   379 

The causal role of area 47/12 in flexible decision making has been further confirmed by a 380 

recent lesion study in macaques.    Rudebeck and colleagues lesioned a lateral prefrontal region that 381 
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includes area 47/12 (as well as the neighbouring ventrolateral PFC), and found that these animals 382 

performed poorly in reversing their choices after the change in reward contingency (Figure 4C) 383 

(Rudebeck et al., 2017). Interestingly, they also tested macaques with lesions in other OFC regions, 384 

including central areas 11/13 and medial area 14, and found that these animals’ performance was 385 

comparable to controls. In summary, current data suggest a division of labour in the primate OFC, 386 

with central areas 11/13 involved in value representation and stimulus-reward associations, and 387 

lateral areas 47/12 in flexible decision-making.  388 



Reward, prefrontal cortex and dopamine 

 

Page 20 of 41 
 

2. The roles of mesolimbic dopamine in reward-based signalling 389 

Turning now to the basal ganglia, a key reward pathway is the subcortical projection from 390 

the dopamine-rich ventral tegmental area (VTA) of the midbrain to the ventral striatum, which 391 

comprises a critical part of the mesolimbic pathway (Figure 1) (Bjorklund and Dunnett, 2007). The 392 

ventral striatum is the major input structure to the basal ganglia, and comprises the nucleus 393 

accumbens (NAc); the caudate nucleus and putamen ventral to the rostral internal capsule; the 394 

olfactory tubercle; and the rostrolateral portion of the anterior perforated space adjacent to the 395 

lateral olfactory tract in primates (Heimer et al., 1999). The striatum is broadly preserved across 396 

commonly studied animals, including humans, monkeys and rodents, which provides a solid 397 

foundation for generalising findings about striatal dopamine across species.  In addition to the 398 

striatum, the VTA projects to limbic structures including the amygdala and hippocampus. This 399 

mesolimbic pathway is central to reward-based learning and motivation, and provides a crucial link 400 

between emotion and action (Mogenson et al., 1980; Salamone and Correa, 2012; Chong and 401 

Husain, 2016).  402 

2.1 Midbrain dopaminergic neurons 403 

A well-described function of dopaminergic neurons in the VTA is in signalling a reward 404 

prediction error – the difference between expected and actual reward outcomes (Schultz, 1986). 405 

Early studies measured the firing rates of midbrain DA neurons in monkeys while they performed a 406 

Pavlovian behavioural conditioning task. The recorded neurons were identified as dopaminergic 407 

based on their location and firing pattern. The animals were trained to respond to auditory and 408 

visual cues that indicated the presence of a food reward, and these responses corresponded to 409 

spikes in DA firing rates that represented expected reward. In trials where reward was omitted, 410 

there was a marked reduction in firing rate following the initial spike. These results were later 411 

modelled using temporal difference learning algorithms, which confirmed that changes in DA firing 412 

rates corresponded to reward prediction errors (Schultz et al., 1997). These neural responses scale 413 
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according to differences in magnitude of possible rewards, rather than absolute differences in 414 

expected value (Tobler et al., 2005).  Such experiments provided important contributions to our 415 

understanding of the role of dopamine neurons in reinforcement learning.   416 

Recent advances in optogenetics have provided even more direct evidence of the role of 417 

dopamine neurons in reinforcement learning. Traditionally, neurons have been presumptively 418 

labelled as dopaminergic based on their location and activity, but this approach has recently been 419 

criticised (e.g. Lammel et al., 2008).  In contrast, state-of-the-art optogenetic techniques allow 420 

researchers to definitively identify midbrain dopaminergic neurons. For example, one study used 421 

light-sensitive channelrhodopsin to tag dopaminergic neurons in the rodent VTA, and recorded 422 

neuronal activity in the same region (Cohen et al., 2012). By testing these mice in an association 423 

learning task, the data definitively confirmed that reward prediction errors were signalled by specific 424 

dopaminergic neurons within the VTA.  Subsequent studies have also confirmed that VTA 425 

dopaminergic neurons compute reward prediction errors by an output subtraction mechanism, in 426 

keeping with previously suggested models of reinforcement learning (e.g., temporal difference 427 

models) (Eshel et al., 2015; Eshel et al., 2016). Finally, an impressive series of optogenetic 428 

experiments has shown that prediction error signals are not unique to the VTA; rather, partial 429 

components of those signals are encoded in a redundant manner across a distributed network of 430 

subcortical areas, which ultimately converge onto dopamine neurons (Tian et al., 2016).   431 

   432 

2.2 Striatal dopamine 433 

Like the VTA, extensive data across multiple species demonstrate that the ventral striatum is 434 

sensitive to reward prediction errors.  The magnitude of prediction errors correlates specifically with 435 

dopamine release from the rodent striatum, as recorded at high temporal resolution using fast-scan 436 

cyclic voltammetry (Gan et al., 2010; Papageorgiou et al., 2016; Syed et al., 2016).  Human fMRI 437 

studies provide convergent evidence, showing that the ventral striatum encodes reward prediction 438 
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error (Pagnoni et al., 2002; McClure et al., 2003; Abler et al., 2006).  Subsequent work showed that 439 

prediction error signals from these areas are processed in the ventral putamen to learn stimulus-440 

reward associations (Tobler et al., 2006). Interestingly, these reward prediction error signals in the 441 

human striatum could be modulated by exogenous administration of levodopa or haloperidol, which 442 

enhanced or antagonised dopaminergic function, respectively (Pessiglione et al., 2006).  Together, 443 

these data indicate that striatal synaptic plasticity is important in representing prediction errors, and 444 

translating action-reward associations into optimum behavioural policies.   445 

How can the role of the striatum in reward-based learning be reconciled with its other well-446 

characterised role in motor control? The prevailing framework considers that phasic bursts of striatal 447 

dopamine activity are central to encoding reward prediction errors, while slower fluctuations in 448 

tonic levels of striatal dopamine are more closely related to locomotor activity. However, this 449 

traditional view has been challenged by emerging optogenetic data showing that phasic signalling in 450 

striatum-targeting dopaminergic axons is capable of triggering locomotion in mice (Howe and 451 

Dombeck, 2016). This close relationship between reward processing and motor execution has been 452 

emphasised by separate studies showing that the expected phasic striatal dopamine release that 453 

follows a reward-predicting cue is present only when the required action is correctly initiated, but is 454 

otherwise attenuated (Syed et al., 2016). Such findings emphasise a close mechanistic link between 455 

learning and motor initiation, and have led to recent attempts to more parsimoniously explain the 456 

role of the striatal dopamine in both reward-based processes and motor control (Berke, 2018). 457 

 458 

2.3. Role of other neurotransmitter systems 459 

Although the focus of this review is on dopaminergic signalling, we emphasise that 460 

dopamine has complex interactions with other neurotransmitter systems (e.g., GABA, acetylcholine, 461 

noradrenaline) in guiding reward-based decisions. For example, GABAergic signalling in the VTA 462 

facilitates the rapid reduction in firing rates of dopaminergic neurons associated with a negative 463 
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prediction error (Eshel et al., 2015). Some have also proposed that the switch between reward-464 

based learning and motor control may be driven by cholinergic interneurons, which modulate the 465 

firing rate of dopamine terminals in the striatum (Berke, 2018). In addition, noradrenergic neurons in 466 

the locus coeruleus also have extensive projections to the PFC, and the separate roles of 467 

noradrenaline and dopamine in decision-making are only just coming into focus. For example, a 468 

recent study required rhesus monkeys to decide whether to accept or reject different amounts of 469 

juice that were associated with varying levels of physical effort (Varazzani et al., 2015).  When the 470 

monkeys were presented with an option, dopaminergic neurons (specifically within the substantia 471 

nigra) encoded both the reward and effort cost associated with that option. In contrast, 472 

noradrenergic neurons increased mainly with the production of the effortful response. Together, 473 

these results suggest that dopaminergic neurons mainly encode the subjective value of an option 474 

(which integrates an action’s costs and benefits), whereas noradrenergic neurons reflect the 475 

energisation of behaviour. The interactions between dopamine and other neurotransmitter system 476 

in value-based decision-making is beyond the scope of this review, but will be a critical area of 477 

investigation for future studies. 478 

 479 

 480 

 481 

 482 

  483 
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3. Dopaminergic connectivity of reward-sensitive PFC regions 484 

To summarise, a large volume of data indicates that regions within the PFC and basal ganglia 485 

are broadly involved in encoding value. Importantly, these areas are heavily interconnected (Figure 486 

1). The major dopaminergic input to the PFC is via the mesocortical route – a direct projection from 487 

the VTA. The PFC in turn sends substantial efferent output to the ventral striatum. In human and 488 

non-human primates, this output is topographically-organised along a clear connectivity gradient 489 

(Figure 1; red to yellow arrows) (Haber and Knutson, 2010; Haber and Behrens, 2014). Specifically, 490 

the posterior PFC (including the dACC) is strongly connected to the dorsal striatum, and the anterior 491 

PFC (including vmPFC and OFC) is strongly connected to the ventral striatum. Together, therefore, 492 

the PFC, striatum and midbrain are organised within distinct cortico-basal ganglia loops that form 493 

the core of the brain’s reward pathway (Alexander et al., 1986; Sesack and Pickel, 1992). 494 

A key challenge for the field is to reconcile the two seemingly separate systems of value-495 

based representation in the striatum and PFC. As discussed above, traditional accounts emphasise 496 

the importance of midbrain tegmental and striatal reward prediction errors in learning action-497 

reward associations. However, accumulating data clearly indicate that the PFC implements multiple 498 

mechanisms for reward-based learning, some of which very closely resemble those traditionally 499 

attributed to dopamine-based reinforcement learning. As discussed in Section 1, regions of the PFC 500 

represent the value of actions, objects and states (Padoa-Schioppa and Assad, 2006; Rushworth and 501 

Behrens, 2008), and encode, not only the recent history of actions and rewards (Seo and Lee, 2008; 502 

Seo et al., 2012; Tsutsui et al., 2016), but also reward prediction errors themselves.  503 

In humans, for example, BOLD activity in both the striatum and OFC decrease with negative 504 

prediction errors, and increase with positive prediction errors in appetitive learning tasks (McClure 505 

et al., 2003; O'Doherty et al., 2003). Similarly, disrupting the dopaminergic innervation of the 506 

marmoset OFC results in more stochastic choices (relative to sham lesions) in a reversal learning task 507 

(Walker et al., 2009; Clarke et al., 2014). In addition, the OFC-lesioned animals showed greater 508 



Reward, prefrontal cortex and dopamine 

 

Page 25 of 41 
 

persistence in choosing a previously rewarding option (i.e., slower extinction). Such findings provide 509 

important evidence that mesocortical dopamine may play a role in modulating OFC activity during 510 

the generation of flexible decisions.  511 

How might dopamine convey the result of value computations across these corticostriatal 512 

loops? Dopamine is likely to modulate activity within this pathway in a bidirectional manner. Intra-513 

VTA stimulation leads to dopaminergic release, and measurable physiological effects, on PFC 514 

neurons. It is thought that tonic (~1-6Hz) dopamine release in the PFC maintains an extra-synaptic 515 

background concentration of dopamine, while phasic signalling occurs in response to behaviourally 516 

relevant stimuli. Indeed, just such a mechanism is understood to play a role in working memory 517 

processes. Conversely, when dopamine was depleted locally within the marmoset OFC, elevated 518 

dopamine levels were observed at the striatum (Clarke et al., 2014). This suggests that striatal 519 

dopamine is sensitive to dopamine levels in the PFC, and that region-specific dopamine can interact 520 

dynamically with the corticostriatal pathways to drive reward-based decisions.  Exciting refinements 521 

to this framework are undoubtedly poised to occur given the recent conceptual shifts in the role of 522 

phasic/tonic signalling to reward and motor control at the level of the striatum (see Section 2.2) 523 

(Berke, 2018). 524 

Indeed, optogenetic studies in rodents are beginning to elucidate the functional mechanisms 525 

underlying reward-based dopaminergic signalling in the corticostriatal pathways.   In two recent 526 

studies, rodents received optogenetic stimulation while performing reversal learning tasks that 527 

required flexible switching between two rules.  One study tested the contributions of the specific 528 

pathway between VTA and the prelimbic cortex (which is arguably homologous to human dACC 529 

(Heilbronner and Hayden, 2016)) to flexible behaviour (Ellwood et al., 2017).  Once animals started 530 

to respond reliably by one rule, the VTA-prelimbic pathway was either tonically or phasically 531 

stimulated, and this stimulation then continued throughout the rest of the task.  The results showed 532 

that phasic stimulation resulted in animals being unable to maintain the previously established rule, 533 
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resulting in their choices becoming more stochastic.  In contrast, tonic stimulation did not impair the 534 

animals’ ability to maintain the current rule – indeed, animals instead made perseverative errors 535 

after a rule switch, indicating a failure to adapt. These findings demonstrate the dissociable roles of 536 

phasic and tonic VTA-prelimbic dopamine input in maintaining and updating value representations.  537 

A separate study applied excitatory and inhibitory optogenetics to test the prelimbic-NAc 538 

pathway (Cui et al., 2018).  The results indicated that animals were slower to adjust to a new rule 539 

after a rule switch when the prelimbic-NAc pathway was inhibited. In contrast, they were faster to 540 

adapt their behaviour when the pathway was excited – note that this was an opposite effect to that 541 

observed after stimulation of the VTA-prelimbic pathway (Ellwood et al., 2017).  Interestingly, such 542 

stimulation was even able to counteract the impaired behavioural adaptation caused by local 543 

depletion of striatal dopamine. Taken together, the studies by Ellwood et al. and Cui et al. 544 

demonstrate that the VTA, prelimbic cortex and NAc interact to guide behavioural flexibility in a 545 

changing environment.  Further studies should be conducted to test the subtle functional differences 546 

of these pathways. 547 

Another outstanding question is how value-based representations in the prefrontal cortex 548 

and basal ganglia interact computationally, and how dopamine might drive that interaction. A 549 

current consensus is that the dopaminergic midbrain and striatum implement model-free 550 

reinforcement learning, which is based on direct associations between stimulus and response. For 551 

example, temporal difference models have been compelling in explaining the activity of 552 

dopaminergic neurons in VTA (Schultz et al., 1997; Watabe-Uchida et al., 2017). In contrast, the PFC 553 

is thought to implement a model-based type of reinforcement learning, which is based on internal 554 

representations of task structure (Daw et al., 2005; Bromberg-Martin et al., 2010). Recently, some 555 

have proposed to integrate both types of framework under a single theory of reward-based 556 

decision-making, in order to more parsimoniously describe the computations underlying reward 557 

valuation in the corticostriatal pathways (Wang et al., 2018). Others have proposed inter-region 558 
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models to describe the interactions between neurons in the frontal and parietal lobes during 559 

working memory and decision-making (Murray et al., 2017). A promising path for future research 560 

will be to refine such models to account for the interactions between these regions as a function of 561 

dopamine release.   562 

 563 

564 
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4. Studying prefrontal dopamine in humans 565 

Despite the highly organised corticostriatal connectivity, surprisingly little is known about 566 

how mesocortical dopamine modulates decision-making signals in different subregions of the PFC, 567 

especially in humans.  Studying the function of region-specific dopamine is challenging because it 568 

requires a high degree of spatiotemporal specificity. It requires anatomical specificity to focus on a 569 

defined brain region (e.g., dACC, vmPFC or OFC), and/or a defined neural circuit (e.g., the VTA-dACC 570 

pathway). It requires neurochemical specificity to focus on dopamine and its specific receptors, 571 

rather than the general function of a neural region or circuit. It also requires temporal specificity to 572 

test the role of dopamine in a precise event or cognitive process. In non-human species, such 573 

investigations are often conducted using invasive methods, such as fast cyclic voltammetry, 574 

microdialysis, dopamine-selective lesion or, more recently, dopamine-selective optogenetic 575 

stimulation, all of which are not feasible to apply in humans. 576 

Given that human research is necessarily limited by our inability to measure dopamine 577 

release non-invasively, our understanding of the role of prefrontal dopamine in human decision-578 

making relies partly on cross-species comparisons. Thus, as we have attempted to emphasise in this 579 

review, it is essential to be mindful of the differences in cross-species homologies and experimental 580 

paradigms that might limit our interpretation of cross-species data. However, other effective 581 

methodologies exist to examine region-specific dopamine function in humans less invasively.  For 582 

instance, although fMRI only captures surrogate markers of neuronal activity (the BOLD response), 583 

and lacks the specificity to isolate the effect of individual neurotransmitters, previous studies have 584 

suggested that the BOLD signal can capture dopaminergic responses reasonably well (Duzel et al., 585 

2009).  Combining fMRI with dopaminergic manipulations in healthy individuals or patient 586 

populations may therefore provide a useful approach to test the function of dopamine within 587 

different prefrontal areas in humans.   588 
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Another approach to elucidate the role of prefrontal dopamine in human decision-making 589 

has been through neurogenetic studies. The variability in dopamine function across individuals has 590 

been attributed to variability in a number of dopamine-specific genes. Dopamine levels in the 591 

prefrontal cortex are affected by polymorphisms in the catechol-O-methyltransferase (COMT) gene, 592 

which generates an enzyme involved in the degradation of dopamine.  In contrast, dopamine levels 593 

in the striatum are affected by polymorphisms in the DRD2 gene (which generate the dopamine D2 594 

receptor), and the DARPP-32 gene (which generates a protein for striatal synaptic plasticity).  Frank 595 

and colleagues recruited healthy volunteers with different polymorphisms of these genes, and 596 

tested how genetic variability accounts for differences in decision-making (Frank et al., 2009; Doll et 597 

al., 2011; Doll et al., 2016).  Their data revealed that COMT genotype predicted exploratory 598 

decisions; susceptibility to confirmation bias; and model-based learning.  In contrast, DRD2 or 599 

DARPP-32 genotype predicted exploitative decisions, and model-free learning.  These findings 600 

provide evidence that prefrontal and striatal dopamine have dissociable roles in decision making, 601 

and more broadly demonstrate how genetic variability may be a useful proxy to studying regional 602 

specialisations of human dopamine function.  603 

Further specificity can be achieved by combining such genetic approaches with 604 

neuroimaging techniques.  Gao and colleagues performed a gambling task on participants with 605 

different COMT genotypes, while recording their resting-state neural activity using fMRI (Gao et al., 606 

2016).  The stimuli either emphasised the gains or the losses of identical gambles, and participants 607 

demonstrated a typical ‘framing effect’, such that in general they tended to avoid risky choices when 608 

losses were emphasised. Importantly, the magnitude of this framing effect was associated with 609 

variability in the COMT gene, and this relationship was mediated by the resting-state connectivity 610 

strength between the OFC and amygdala.  These results illustrate the potential of combined 611 

genetic/neuroimaging approaches in understanding regional modulation of dopamine in the human 612 

PFC.  613 
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Another potentially useful approach is to image patients with dopaminergic dysfunction, 614 

such as those with idiopathic Parkinson’s disease (PD). Patients with disorders of dopamine function 615 

typically have high rates of motivational impairments, such as apathy (Chong et al., 2018). In 616 

addition, their sensitivity to reward is typically impaired – a deficit which is ameliorable with 617 

dopamine replacement (Chong et al., 2015; Chong and Husain, 2016; Muhammed et al., 2016). In a 618 

two-stage reinforcement learning experiment, patients with PD underwent fMRI scanning when they 619 

were ON or OFF dopamine medication (Shiner et al., 2012).  In the initial learning stage, patients 620 

were presented on each trial with pairs of stimuli, and were asked to learn which of the two was 621 

more often associated with a correct outcome. In a subsequent test phase, they were presented 622 

with the same stimuli, but in different combinations, and were again asked to choose the more 623 

correct option. The key result was that drug state had no effect on the initial learning of stimulus 624 

values. Instead, patients performed more accurately in the ON vs OFF state only in the test phase, 625 

when they had to perform novel associations. Interestingly, fMRI data showed that the vmPFC and 626 

the NAc encoded a signal related to the value of the chosen option, but only in the ON state, and not 627 

when patients were OFF.  These results suggest that value signals in vmPFC are modulated by 628 

dopamine, presumably via the mesocortical route, in deciding between novel associations.  629 
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5. Summary and concluding remarks  630 

The prefrontal cortex, together with its bidirectional connections with the basal ganglia, play 631 

important roles in reward-based decision-making. These areas are connected in a highly organised, 632 

topographic manner, with each node of this network having distinct, yet partially overlapping, roles 633 

in the representation of value, and in the decision-making process itself (Izuma et al., 2008; Zink et 634 

al., 2008; Levy and Glimcher, 2012). With current advances in neurophysiological techniques, we are 635 

well-positioned to elucidate the spatiotemporal properties of dopaminergic neurons in facilitating 636 

cortical value representations. In humans, the application of a convergence of techniques, such as 637 

neuroimaging, genetics, patient studies, and pharmacological manipulations, offer complementary 638 

approaches to understanding the properties of the mesocorticolimbic and corticostriatal pathways. 639 

These data should be integrated with novel computational models that can provide a more holistic 640 

understanding of how region-specific dopamine contributes to the broader neural circuitry during 641 

reward-based decision-making. 642 

  643 
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Figure legend 1002 

Figure 1. Reward-sensitive dopamine pathways. Midbrain dopaminergic neurons project directly to 1003 

the striatum and prefrontal cortex. The dACC, vmPFC and OFC are the three key prefrontal areas 1004 

that are directly involved in reward-based decision-making, specifically through their roles in 1005 

attributing value to stimuli, associating that value with choices, and adjudicating between different 1006 

options. The dPFC has an important role in cognitive control (not discussed in details in this paper). 1007 

These prefrontal areas in turn connect to the striatum in a highly topographically-organised manner.  1008 

Together, this network of corticostriatal loops comprise the core of a circuit that is central to 1009 

reward-based decision-making. dACC dorsal anterior cingulate cortex; DPFC dorsal prefrontal cortex; 1010 

OFC orbitofrontal cortex; S shell of nucleus accumbens; SN/VTA substantia nigra/ventral tegmental 1011 

area; vmPFC ventromedial prefrontal cortex. Adapted from (Haber and Knutson, 2010). 1012 

 1013 

Figure 2. Multiple decision signals are found in dACC. (A) A more ventral dACC region (yellow) and a 1014 

more dorsal pre-SMA region showed different signals associated with the decision.  (B) The dACC 1015 

activity was modulated as a function of relative search value – opposite value signals for ‘engaging’ 1016 

vs ‘searching’ were observed. (C) The pre-SMA encoded the difficulty of the trial. Adapted from 1017 

(Kolling et al., 2016). 1018 

 1019 

Figure 3. Value signals in vmPFC. (A) A meta-analysis showed that the vmPFC signal is modulated 1020 

linearly as a function of the option value – it becomes more active as the value increases from 1021 

negative to positive (adapted from (Bartra et al., 2013)). (B) Neurophysiology data showed that the 1022 

firing of vmPFC neurons was modulated by the value of two options in an opposite manner, 1023 

suggesting that vmPFC neurons compared the value between the two options. There are multiple 1024 

hypotheses on the framework of the value comparison in vmPFC (adapted from (Strait et al., 2014)). 1025 
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(C) One framework suggests that vmPFC compares the value between the chosen and unchosen 1026 

option (adapted from (Papageorgiou et al., 2017)).  (D) Another framework suggests that the vmPFC 1027 

compares the value between a default and a non-default option (adapted from (Lopez-Persem et al., 1028 

2016)). 1029 

 1030 

Figure 4. The role of OFC in flexible decision making. (A) An example of an object discrimination 1031 

reversal task (left).  Participants choose repeatedly between two objects (sometimes three in other 1032 

studies). Each object is associated with a certain probability of gaining a reward (usually a primary 1033 

reinforcer for animals, such as food, or a secondary reward for humans).  Initially, one option is 1034 

associated with a higher reward probability than the other (right). After a while, the reward 1035 

contingency will be reversed – the more rewarding option becomes less rewarding and vice versa.  1036 

(B) fMRI data showed that the signal in the lateral OFC (area 47/12) was stronger when individuals 1037 

were about to repeat the choice of a rewarded option (win-stay; green line), or switch to the 1038 

alternative after choosing a non-rewarded option (lose-shift; blue line) (A, B) adapted from (Chau et 1039 

al., 2015). (C) After the lateral OFC (as well as the ventrolateral PFC; blue lines) was lesioned, 1040 

individuals were poorer at choosing the more rewarding option after the reversal in reward 1041 

contingency (trials labelled by red dots). The blue, red and green dots indicate that Option A, B and C 1042 

was the most rewarding option on a given trial. lOFC lateral orbitofrontal cortex; vlPFC ventrolateral 1043 

PFC (adapted from (Rudebeck et al., 2017)). 1044 
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