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 

Abstract— In a fringe projection profilometry (FPP) process, 

the captured fringe images can be modeled as the superimposition 

of the projected fringe patterns on the texture of the objects. 

Extracting the fringe patterns from the captured fringe images is 

an essential procedure in FPP; but traditional single-shot FPP 

methods often fail to perform if the objects have a highly textured 

surface. In this paper, a new single-shot FPP algorithm which 

allows the object texture and fringe pattern to be estimated 

simultaneously is proposed. The heart of the proposed algorithm 

is an enhanced morphological component analysis (MCA) tailored 

for FPP problems. Conventional MCA methods which use a 

uniform threshold in an iterative optimization process are 

inefficient to separate fringe-like patterns from image texture. We 

extend the conventional MCA by taking advantage of the low-rank 

structure of the fringe’s sparse representation to enable an 

adaptive thresholding process. It ends up with a robust single-shot 

FPP algorithm that can extract the fringe pattern even if the object 

has a highly textured surface. The proposed approach has a side 

benefit that the object texture can be simultaneously obtained in 

the fringe pattern estimation process, which is useful in many FPP 

applications. Experimental results have demonstrated the 

improved performance of the proposed algorithm over the 

conventional single-shot FPP approaches.  

 

Index Terms—Fringe projection profilometry, 3D model 

Reconstruction, morphological component analysis (MCA), 

Wavelets. 

 

I. INTRODUCTION 

he fringe pattern profilometry (FPP) is an active-range 

three-dimensional (3D) scanning method that has been 

used in many computer vision applications, such as industrial 

modeling and inspection [2-5], 3D scene reconstruction [6-11], 

and 3D face scanning [12, 13], etc. The FPP method offers fast, 

high resolution and full-field measurements of objects’ 3D 

information by performing triangulation between a camera and 

a projector. By projecting and processing sequences of time-

multiplexed periodic patterns, the 3D model of an object can be 

derived from the phase deformation of the patterns caused by 

the object’s geometry. 

According to the number of fringe projections, FPP methods 
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can be divided into two groups, namely, multi-shot FPP [8-10, 

12, 15, 16] and single-shot FPP [1, 17-22]. The multi-shot FPP 

methods (such as the Phase Shifted Profilometry (PSP) [11]) 

are known to have a more stable performance than the single-

shot ones. However, they require the projection of many fringe 

patterns to the target objects. And in order to achieve a complete 

correspondence between the projected patterns and captured 

images, the scene must be kept stationary during the image-

acquisition process, which is not realistic in many applications 

of FPP. In contrast, the single-shot FPP methods can work for 

dynamic scenes since they only require one fringe pattern 

projection. Without multiple fringe patterns, single-shot FPP 

methods require an explicit filtering process to remove the 

object’s textures from the fringe image. It introduces many 

problems related to the robustness in the implementation. Many 

solutions have been suggested to solve the problem. They 

include projecting an additional flat pattern to estimate the 

object texture [24, 25], but then the method is no longer single-

shot. Another kind of solutions is to enhance the filtering 

process using for instance the Fourier transform [17, 22, 26, 

27], wavelet transform [1, 18, 19, 21, 28], or heuristic 

approaches, such as interpolation [23] and linear compensation 

algorithms [29-31]. However, these approaches often fail when 

the target objects have vivid textures. In [23, 29-32], an 

interesting color-encoding PSP approach is adopted to allow the 

multi-shot FPP techniques to be carried out using a single-shot 

approach. Rather than projecting a number of fringe patterns in 

sequence, these fringe patterns are each encoded by a distinct 

color and combined into a single image to project to the object. 

Then by color filtering the resulting fringe image, different 

fringe patterns can be retrieved and the traditional multi-shot 

method can be performed. Although the approach can 

automatically remove the object texture similar to the 

traditional multi-shot FPP methods, the color filtering process 

can introduce all kinds of errors since the object can also have 

the same color as the fringes. There needs to be a more effective 

approach to separate the fringe pattern and object texture.  

In this paper, a robust single-shot FPP method is proposed. 

By “single-shot”, we mean that no additional illuminated image 

(either visible or non-visible) is employed. The proposed FPP 
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method also adopts the color-encoding PSP approach in [23, 

29-32], but we improve the robustness of the method by using 

the morphological component analysis (MCA) [14, 33-36] to 

separate the fringe pattern and object texture in the captured 

fringe image. However, unlike the conventional MCA, we 

introduce a new thresholding scheme by taking advantage of 

the low-rank structure of the fringe’s sparse representation to 

enable a spatially adaptive thresholding process.  It ends up with 

a robust single-shot FPP that can better extract the fringe pattern 

than the conventional approaches even if the object has a highly 

textured surface. Besides, the proposed method does not require 

pre-calibration for color-coupling compensation as in the 

approaches in [29, 30, 37].  

It should be noted that traditional single-shot FPP methods 

often only focus on the extraction of the fringe pattern. While 

the fringe pattern is essential to the reconstruction of the 3D 

model, the texture of the object is also an extremely useful 

information for many diagnostic applications of FPP. The 

proposed method can estimate the fringe pattern as well as 

object texture simultaneously, which is a side benefit in 

addition to the robustness it brings. A summary of the single-

shot FPP framework used in this work is shown in Fig. 1b. As 

shown in the figure, the captured color-encoded fringe image is 

decoded by a color filtering process. Each decoded fringe image 

is decomposed into a fringe pattern and an object texture image 

using the proposed MCA, which will be described in detail in 

Section III. We then use the object texture image to generate a 

binary-mask that indicates the region of interest in the fringe 

pattern where the wrapped phase information of the object can 

be found. Finally, the 3D model of the object can be computed 

using a phase-unwrapping procedure, and the estimated object 

texture can also be mapped to the 3D model to facilitate 

different FPP applications. 

 The rest of this paper is organized as follows. Section II 

describes the principle of FPP method, color-encoding phase 

shifting profilometry (PSP) method, and MCA. In Section III, 

the details of the improved MCA for FPP method are described. 

Section IV reports the experimental results and finally, 

conclusions are drawn in Section V. 

II. BACKGROUND AND RELATED WORKS 

The proposed method involves two broad areas of study, 

namely, FPP and MCA. To provide an introduction of these two 

areas, their background and related works are outlined in the 

following subsections.   

A. The Principle of FPP Method 

In this section, the principle of FPP method is outlined. The 
optical setup of an FPP system with crossed optical axis 
geometry is shown in Fig.1a. As shown in the figure, an FPP 
system uses a projector to projects a fringe pattern from 𝐸𝑝 to 

the target object. A camera at 𝐸𝑐  is then used to capture the 
deformed fringe pattern due to the object’s height profile. The 
camera and projector have a distance of 𝑑0 and their lens are 
strictly aligned in the horizontal/vertical direction. They are 
placed at a distance of 𝑙0 from a reference plane 𝑅. The fringe 
image captured by the camera at 𝐸𝑐  can be modeled 
mathematically as a sinusoidal function as follows [17]: 

𝐺(𝑥, 𝑦) = 𝐴(𝑥, 𝑦) + 𝐵(𝑥, 𝑦) cos[𝜙(𝑥, 𝑦) ], (1) 

where 𝐺(𝑥, 𝑦)  represents the image pixel at spatial position 
(𝑥, 𝑦); 𝐵 is the local amplitude of the fringe; and 𝐴 is the bias 
due to the reflectance of the object surface. It appears as the 
texture of the object in a fringe image. In (1), 𝜙(𝑥, 𝑦) =
2𝜋𝑓0𝑥 + 𝜑(𝑥, 𝑦) is the phase angle in which 𝑓0 is the carrier 
frequency, and 𝜑(𝑥, 𝑦) is the phase shift of the fringe in 𝑥 and 
𝑦 directions. The object height ℎ then can be defined as follows 
[17]: 

ℎ(𝑥, 𝑦) ≈ −
𝑙0

2𝜋𝑓0𝑑0

Δ𝜑(𝑥, 𝑦) (2) 

In (2),  Δ𝜑(𝑥, 𝑦) = 𝜑(𝑥, 𝑦) − 𝜑0(𝑥, 𝑦),  where 𝜑0  is the 𝜑 
when there is no object. It is assumed to be known in the initial 
calibration process. Hence if 𝜙 is known, 𝜑  and also Δ𝜑 can be 
determined. Then the object height profile ℎ and in turn the 3D 
model of the object can be reconstructed. The problem is how 
to retrieve 𝜙 from the fringe image 𝐺 in (1). 

B. Color-Encoding PSP 

Rather than projecting one fringe pattern to retrieve 𝜙, the 

the PSP method [11], which is one of the multi-shot FPP 

methods, suggests to project three fringe patterns having 

different phase shifts to the object in sequent. The captured 

fringe images can then be modeled mathematically as follows:  

 

𝐺𝑛(𝑥, 𝑦) = 𝐴(𝑥, 𝑦) + 𝐵(𝑥, 𝑦) cos (𝜙(𝑥, 𝑦) −
2𝑛𝜋

3
 ) , 

(3) 

where 𝑛 ∈ {0,1,2}  corresponds to the three captured fringe 

images. It can be seen in (3) that the projected patterns have a 

 

  
 (a)   (b) 

 
Fig. 1.  (a) FPP setup in crossed optical axes geometry. (b) The single-shot FPP framework used in this work. The shaded block is the proposed MCA algorithm 

for separating the fringe pattern and object texture from a fringe image. 
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phase shift of  
2𝑛𝜋

3
.  The phase information  𝜙  in (3) can be 

evaluated from 𝐺𝑛 by,  

𝜙̂ = 𝑎𝑟𝑐𝑡𝑎𝑛 [√3
𝐺0 − 𝐺2

2𝐺1 − 𝐺0 − 𝐺2 
] . (4) 

It can be seen that the evaluation in (4) will not be affected by 

the bias term 𝐴. It thus allows the PSP method to be more robust 

in general than the single-shot approaches. However, the 

sequential projection of fringe patterns requires the object to be 

kept absolutely static or severe distortion will result. To solve 

this problem, the color-encoding PSP method suggests to 

encode the three phase shifted fringe patterns with different 

colors (such as red, green, and blue, respectively). They are 

combined into a single full-color image and projected onto the 

object. In theory, 𝐺𝑛  can be obtained by color filtering the 

captured color fringe image. However, many practical 

problems, such as the color crosstalk and nonlinear property of 

the projector and camera for different colors, can introduce 

distortion to the colored sinusoids such that they do not follow 

the model in (3). Since these distortions are static, some 

compensation methods were developed to remove the 

distortion. They include using a compensation matrix [31, 37, 

38] (which can be estimated with a calibration method), the 

generalized phase-shifting algorithm [29], or a phase error 

suppression method using a simple band-pass filter [30]. 

However, color errors can also be incurred by the reflectance of 

the target objects. Due to the material or color patterns on the 

object surface, an object can have different reflectance for 

different colors at different parts of the object. Such error is far 

more difficult to compensate since it is object dependent. To 

accommodate such error, (3) can be rewritten as,  

𝐺𝑛(𝑥, 𝑦) = 𝐴𝑛(𝑥, 𝑦) + 𝐵(𝑥, 𝑦) cos (𝜙(𝑥, 𝑦) −
2𝑛𝜋

3
 ) , 

(5) 

where the bias term 𝐴𝑛  is affected by the reflectance of the 

target object. Different from (3), 𝐴𝑛  now becomes channel 

dependent. Thus, the phase information  𝜙  in (5) cannot be 

evaluated from 𝐺𝑛 directly as in (4). It can only be evaluated by 

the second term of (5) as follows:  

𝜙̂ = 𝑎𝑟𝑐𝑡𝑎𝑛 [√3
𝐺0

′ − 𝐺2
′

2𝐺1
′ − 𝐺0

′ − 𝐺2
′  

] 
(6) 

where 𝐺𝑛(𝑥, 𝑦) = 𝐴𝑛(𝑥, 𝑦) + 𝐺𝑛
′ (𝑥, 𝑦) and  

𝐺𝑛
′ (𝑥, 𝑦) = 𝐵(𝑥, 𝑦) cos (𝜙(𝑥, 𝑦) −

2𝑛𝜋

3
 ). 

(7) 

(6) and (7) show that the phase 𝜙 can only be evaluated when 

the bias term 𝐴𝑛  and the fringe pattern term 𝐺𝑛
′  can be well 

separated. Thus, we consider the task of recovering the fringe 

pattern from the abovementioned color errors due to the object 

texture as a signal separation problem. MCA is a possible tool 

to solve the problem since the fringe pattern and object texture 

have quite different morphological structures. More details of 

MCA are given in the next subsection. 

C. MCA  

In this subsection, the related work and the background of 
MCA are introduced. MCA is an iterative optimization process 
for separating the components of a signal if they have different 
morphological structures. It does not need to have an extremely 
good initial guess to guarantee the convergence of the 
optimization, and can give good performance with incomplete 
input data (due to noise or other perturbation of the system). 
The MCA algorithm often involves operations in both spatial 
and transform domains. For the ease of presentation, we will 
use uppercase letters to denote quantities in the spatial domain 
and their corresponding lowercase letters to denote their 
transform coefficients. Let 𝑌  be an image containing two 
components 𝑌1 and 𝑌2 as follows:  

𝑌 = 𝑌1 + 𝑌2 + 𝑁, (8) 

where 𝑁 is the additive noise in the image and is assumed to be 
white Gaussian. Under MCA, we can recover 𝑌1 and 𝑌2 from 𝑌 
by solving the following constrained optimization problem:  

arg min
𝑦1,𝑦2

‖𝑦1‖1 + ‖𝑦2‖1 𝑠. 𝑡. ‖𝑌 − 𝛷1
𝑇𝑦1 − 𝛷2

𝑇𝑦2‖2 < 𝜁, 
(9) 

where 𝛷𝑖=1,2  are the dictionaries that generate the 

decomposition of 𝑌𝑖=1,2 into 𝑦𝑖=1,2: 𝑦𝑖=1,2 = 𝛷𝑖=1,2𝑌𝑖=1,2 and 𝜁 

is the standard deviation of the noise 𝑁. 𝛷𝑖
𝑇 is the inverse of 𝛷𝑖. 

In (9), it is assumed that each component 𝑦𝑖=1,2 is associated 

with a sparse dictionary 𝛷𝑖=1,2  that is mutually incoherent to 

each other. More specifically, for each i, 𝑦𝑖   is only sparse in 𝛷𝑖 
and not, or at least not as sparse, in 𝛷𝑗, for all 𝑗 ≠ 𝑖. (9) can be 

solved through an iterative alternate-thresholding scheme. In 
each iteration of the scheme, the image is transformed with the 
sparse basis 𝛷𝑖=1,2  alternately. Thus, the magnitude of the 

transform coefficients of component 𝑦𝑖  should have a larger 
magnitude than those of component 𝑦𝑗  for all 𝑗 ≠ 𝑖 . By 

thresholding the transform coefficients, it is likely that more 
coefficients of the component 𝑦𝑖   will be retained while those 
of 𝑦𝑗 will be removed. By alternately iterating the thresholding 

process for different components, the errors of their estimations 
will be gradually reduced and they will be separated from each 
other when the iteration converges. Hence, one of the important 
parameters for determining the performance of the algorithm is 
the value of the thresholds. 

 The thresholding method of MCA has been studied in 
different works as it largely determines the performance of the 
algorithm. Various ways have been suggested to determine the 
threshold and how it is updated in each iteration  [33, 34]. For 
example, in [34], the threshold is decreased linearly or 
exponentially toward a constant proportional to the noise 
variance in each iteration. To achieve a fast decomposition with 
the least number of iteration, [33, 34] employs an adaptive 
thresholding strategy which suggests the threshold can be 
estimated by a so-called mean of max (MOM) approach. 
However, the estimation is made based on the mutual 
incoherence assumption of the dictionaries associated to 
different components. Although recent developments in 
harmonic analysis have introduced many new multiscale 
transforms, it is still not possible to ensure the mutual 
incoherence assumption is valid in every application. If the 
assumption cannot be fulfilled, the optimization process of 
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MCA will be lengthened or even may not converge to the 
desired solution. It is exactly the problem when applying MCA 
to FPP. First, since many FPP applications require fast, if not 
real-time, performance, the implementation of the dictionaries 
needs to have fast algorithms. Hence, there are not too many 
choices but only the structured transforms can meet the 
requirement. As we will show in Section III, the similarity in 
the fringe pattern and object texture introduces much difficulty 
in finding the required structured transforms that can fully 
fulfill the mutual incoherence assumption. Directly applying 
MCA to FPP thus often gives unsatisfactory results, particularly 
when the object contains strong texture. To solve the problem, 
we extend the conventional MCA by taking advantage of the 
low-rank structure of the fringe’s sparse representation to 
enable an adaptive thresholding process. We found that 
although the transform coefficients of the fringe pattern and 
object texture cannot be directly differentiated since the 
transform base cannot fulfill the mutual incoherence 
assumption, the threshold can still be determined by their 
difference in regularity as reflected by their rank. As a side 
effect, the threshold thus obtained will be adaptive and 
contextual to the spatial information of the fringes. We show 
that this new strategy is practical and can better extract the 
fringe pattern than the conventional approaches even if the 

object has a highly textured surface.   

III.  IMPROVED MCA FOR FRINGE PATTERN AND 

OBJECT TEXTURE SEPARATION 

In this section, an improved MCA algorithm for FPP is 

proposed. To follow the notations used in Section IIC, let 𝑌 be 

one of the color channels of the captured fringe image (i.e., 𝐺𝑛 

in (5)). It is composed of the object texture 𝑌1 (i.e., the bias term 

𝐴𝑛 in (5)) and fringe pattern 𝑌2 (i.e, the fringe pattern term 𝐺𝑛
′  

in (5)) plus noise 𝑁. To apply MCA to estimate 𝑌1 and 𝑌2 for 

each color channel of the captured fringe image, we should first 

select an appropriate set of sparse bases 𝛷𝑖=1,2. As mentioned 

above, it is required that 𝑦𝑖 should only be sparse in 𝛷𝑖 and not, 

or at least not as sparse, in 𝛷𝑗, for all 𝑗 ≠ 𝑖. Since many FPP 

applications require fast, if not real-time, performance, the 

implementation of 𝛷𝑖=1,2 needs to have fast algorithms. Hence 

there are not too many choices but only the structured 

transforms can meet the requirement. Following the traditional 

MCA, we implement 𝛷1  and 𝛷2  with the tunable-Q wavelet 

transform (TQWT) [39] and discrete cosine transform (DCT), 

respectively. They both have fast algorithms. When applying to 

 

 
Fig. 2.  TQWT coefficients (Levels 3 to 5), their histograms, and distribution fits (red curves) obtained from a fringe image (first and second rows) and a flat image 

of the same object with no fringe (third and fourth rows). 
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FPP, TQWT can give sparse outputs for the object texture due 

to the vanishing moments of its tunable Q-factor wavelet 

function. DCT on the other hand can give sparse outputs for the 

fringes due to its good frequency selectivity. Fig. 2 shows the 

results when applying TQWT to a fringe image. It is seen that in 

some scales the magnitudes of the transform coefficients of the 

fringe pattern and object texture are quite similar (e.g. scale 3 

and 4 in the second row of Fig. 2). Both of them can be clearly 

seen at those scales. In fact, such result can be found when using 

most of the wavelet transforms. To further illustrate the above 

point, let us take a closer look to Fig. 3 where the TQWT 

coefficients along the dash lines in Fig. 2 are shown. The blue 

line shows the TQWT coefficients of the fringe image while the 

red line shows the TQWT coefficients of the object texture. It 

can be seen that most parts of the blue line are oscillating. They 

correspond to the TQWT coefficients of the fringe pattern. 

They have a rather large magnitude comparable to the 

coefficients of the object texture (red line). Now assume that we 

would like to set a threshold to kill the fringe coefficients in the 

blue line while keeping those for the object texture. A uniform 

threshold used in the traditional MCA algorithms obviously 

will be difficult to achieve task since the TQWT coefficients of 

the fringe pattern and object texture can have similar 

magnitude. The above illustrates why the traditional MCA is 

inefficient for FPP problems. While it is not easy to find other 

bases that can fulfill all the requirements as mentioned above, 

we suggest to change the thresholding scheme. Rather than 

using a uniform threshold, we propose that the threshold should 

be selected adaptively according to the context of each scale 

and spatial region. As shown in the second row of Fig. 2, not all 

scales of a fringe image contain both the object texture and 

fringe pattern components. Different thresholding schemes 

should then be used for different scales. And for the scales 

having both components (such as the case shown in Fig. 3), the 

thresholds at the positions where object texture’s TQWT 

coefficients are found should be small while those at the other 

positions should be large. As will be discussed below, such 

adaptive threshold can be obtained by exploiting the low-rank 

property of the fringe pattern in the TQWT domain. 

Let us start our discussion of the proposed MCA algorithm 
by looking at the optimization problem resulting from the 
following modification of (9).  

𝑎𝑟𝑔 𝑚𝑖𝑛 
𝑦1,𝑦2

‖𝑦1‖1 + ‖𝑦2‖1 +  ‖𝑌 − 𝛷1
𝑇𝑦1 − 𝛷2

𝑇𝑦2‖2. 
(10) 

The problem in (10) is commonly solved using the iterative 

alternate-thresholding method by updating 𝑦1  and 𝑦2 

alternately in each iteration. More specifically, we can first 

focus on 𝑦1 by fixing 𝑦2. (10) can then be written as  

𝑦̂1 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑦1

‖𝑦1‖1 + ‖𝑅1 − 𝛷1
𝑇𝑦1‖2. 

(11) 

In (11), 𝑅1 = 𝑌 − 𝛷2
𝑇𝑦̂2 = 𝑌1 + 𝑌̃2 + 𝑌𝑛 ,  where 𝑌̃2  is the 

estimation error of 𝑌2 in the previous iteration. The solution of 

(11) can then be used to obtain 𝑅2 = 𝑌 − 𝛷1
𝑇𝑦̂1,  and then 

applied to the optimization of finding 𝑦2 as follows: 

𝑦̂2 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑦2

‖𝑦2‖1 + ‖𝑅2 − 𝛷2
𝑇𝑦2‖2, 

(12) 

It then iterates between (11) and (12) until converged. Given 

𝑟𝑖=1,2 = 𝛷𝑖=1,2𝑅𝑖=1,2,  it is known that (11) and (12) can be 

analytically solved by using a hard thresholding operation 

𝐻𝜆𝑖
with a threshold 𝜆𝑖  [14], where 

𝐻𝜆𝑖=1,2
(𝑟𝑖=1,2) = {𝑟𝑖=1,2 𝑖𝑓 |𝑟𝑖=1,2|

> 𝜆𝑖=1,2 𝑎𝑛𝑑 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒}. (13) 

The performance of the algorithm is largely determined by the 

thresholds 𝜆𝑖 ,  which should be set proportional to the 

magnitude of the deviation of 𝑟𝑖  from 𝑦𝑖 .  Traditional MCA 

assumes such deviation is scattered in the transform domain and 

has a small magnitude comparing with 𝑦𝑖 . Hence a uniform 

threshold is used. However, we have shown above that such 

assumption is not valid for 𝑟1, since the TQWT coefficients of 

the object texture and the fringe pattern can have similar 

magnitude for some scales. Rather than a uniform threshold, 𝜆1 

should be selected to be adaptive to the scale and context of the 

fringe image. Note that not all scales have both the fringe and 

object texture components. For those scales with only object 

texture component (such as scale 5 in Fig. 2), the traditional 

uniform threshold can still be used. So for these scales,  

𝑦̂1 = 𝐻𝜆1
(𝑟1) = {𝑟1 𝑖𝑓 |𝑟1| > 𝜆1 𝑎𝑛𝑑 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒}, (14) 

where 𝜆1 = √2𝑙𝑜𝑔𝑀𝜁 is the universal threshold; 𝑀 is the total 

number of data; and 𝜁 is the standard deviation of the noise 𝑁.  

For the scales that contain both fringe and object texture 

components (such as scale 3 and 4 in Fig. 2), it is noted that, 

𝑟1 = 𝑦1 + 𝛷1𝑌̃2 + 𝛷1𝑌𝑛 = 𝑦1 + 𝑦̃2 + 𝑛1, (15) 

where 𝑦̃2 and 𝑛1  are the TQWT coefficients of 𝑌̃2  and noise, 

respectively. So our target is to find a way to remove 𝑦̃2 + 𝑛1 

from 𝑟1 as much as possible to get a good estimation of 𝑦1. Note 

that while 𝑦2  represents the TQWT coefficients of the fringe 

pattern, the estimation error of 𝑦2, i.e. 𝑦̃2, also has a fringe-like 

structure. So if we stack each term in (15) into a matrix form, 

𝑦̃2 will have a much lower rank than that of 𝑟1 because of its 

repetitive characteristics. That is, 

 𝜌 = 𝑟𝑎𝑛𝑘(𝑦̃2) ≪ 𝑟𝑎𝑛𝑘(𝑟1).  (16) 

Then 𝑦̃2 can be estimated by solving the following optimization 

problem, 

𝑦̃2
𝜌

= arg min
𝑦̃2

‖𝑟1 − 𝑦̃2‖𝐹   𝑠. 𝑡.   𝑟𝑎𝑛𝑘(𝑦̃2) ≤ 𝜌, 
(17) 

where ‖𝑥‖𝐹 is the Frobenious norm of 𝑥. By using the singular-

value decomposition (SVD), 𝑟1 can be factorized as 𝑟1 = 𝑈Σ𝑉𝑇 , 

where  Σ = diag(𝜎1, … , 𝜎𝑛)  are the singular values of 𝑟1  such 

that 𝜎1 ≥ ⋯ ≥ 𝜎𝑛 . Based on the Eckart–Young–Mirsky 

 
Fig. 3.  The TQWT coefficients along the dashed lines in the second (blue line) 

and last rows (red line) of Fig. 2. 
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theorem [40], (17) can be solved analytically by, 

𝑦̃2
𝜌

= 𝑈𝜂𝜌(Σ)𝑉𝑇 ,  (18) 

where   𝜂𝜌(Σ) = 𝑑𝑖𝑎𝑔(𝜎1, … , 𝜎𝜌, 0, … ,0). The operator 𝜂𝜌(Σ) 

sets the diagonal elements in Σ  to zero except the first 𝜌 

singular values. Then a rough estimation of 𝑦1 can be obtained 

as follows: 

𝑦̃1
𝜌

= 𝑟1 − 𝑦̃2
𝜌

.  (19) 

As mentioned above, 𝑦̃1
𝜌

 is just a rough estimate of 𝑦1. It can be 

noisy and include the error of the low rank estimation process. 

Fig. 4 gives an illustration of the above. In the figure, the plots 

of a column of 𝑟1, 𝑦1, and 𝑦̃1
𝜌

at the first and second iteration are 

shown. It can be seen in the upper plot that the sinusoidal fringe 

in 𝑦̃1
𝜌

 is largely suppressed after the subtraction in (19). To 

further reduce the remaining fringe pattern, a uniform threshold 

can be applied. Since 𝑦1  is sparse, we can make use of the 

robust statistics to determine the threshold value as [41],  

𝜆1 = 𝑀𝐴𝐷/0.6745,  (20) 

where MAD is the median of the absolute value of 𝑦̃1
𝜌

. Then the 

final 𝑦̂2 is obtained by a hard thresholding operation as follows: 

𝑦̂1 = 𝐻𝜆1
(𝑦̃1

𝜌
) = {𝑦̃1

𝜌
 𝑖𝑓 |𝑦̃1

𝜌
| > 𝜆1 𝑎𝑛𝑑 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒}. (21) 

As shown in the upper plot of Fig. 4, the resulting 𝑦̂1 after 

thresholding contains very small amount of fringe data. 𝑦̂1 is 

then sent to the next stage to further enhance with the transform 

base 𝛷2. After completing the first iteration, the residue fringe 

image 𝑟1 becomes very close to 𝑦1 as shown in the lower plot 

of Fig. 4. It can be seen that the blue line almost coincides with 

the red line. The uniform threshold determined by (20) becomes 

a very small value so as not to too much affect the already rather 

accurate 𝑦̂1. For this particular case, in fact only one iteration is 

sufficient to obtain the desired solution. By means of (14), (19) 

and (21), a thresholding scheme which is adaptive to the scale 

and context of the fringe image is designed.  

The way to determine the rank 𝜌 in (16) deserves further 

elaboration. Note that the target here is to find a 𝜌 such that the 

estimated 𝑦̃2
𝜌

 will give the best 𝑦̂1 in (11). Although we do not 

know the true 𝑦1, some properties of it can be found by looking 

at its probability density function (pdf) across scales. They will 

guide us to find the best 𝜌. Since 𝑦1 is just the TQWT transform 

of a normal texture image, a good approximation of its marginal 

density can be achieved by a generalized Gaussian distribution 

[42-44]. For 𝑦1 at a particular scale, its pdf can be defined as, 

𝑝(𝑦1; 𝛼, 𝛽) =
𝛽

2𝛼Γ(1/𝛽)
exp (−

|𝑦1|

𝛼
)

𝛽

, (22) 

where Γ(∙) is the Gamma function. In (22), 𝛼 and 𝛽 model the 
shape of the pdf of 𝑦1 at that scale. So the optimal 𝜌 should be 
the one that can give a 𝑦̂1 such that its 𝛼 and 𝛽 are closest to 
those of 𝑦1. Mathematically, it can be written as follows: 

𝜌𝑜𝑝𝑡 = arg min
𝜌

|𝛽𝜌 − 𝛽| + |𝛼𝜌 − 𝛼|, 
(23) 

where 𝛼𝜌  and 𝛽𝜌  are the 𝛼  and 𝛽  of the resulting 𝑦̂1  when a 

particular 𝜌 is chosen. To solve (23), we need to know 𝛼 and 𝛽. 

They can be estimated based on the pdf of the observed fringe 

image in the TQWT domain. As shown in the third row of Fig. 

2, the shapes of the histograms at different scales of the object 

texture  𝑦1 actually are similar (as can be seen from the values 

of 𝛼 and 𝛽 at different scales). However, it is not the case if 

there exists fringe patterns on 𝑦1 (see the first row of Fig. 2). So 

𝛼 and 𝛽 can be estimated from the histogram of the TQWT of 

the fringe image at the scales that do not have fringe pattern 

(such as scale 5 in Fig. 2). Then the parameter 𝜌𝑜𝑝𝑡  can be 

obtained by solving (23) with a binary-search algorithm over 

the sorted elements of matrix Σ.  It is fast, with the worst 

logarithmic time complexity 𝑂(log 𝜌). 

After discussing the method to obtain 𝜆1, let us consider the 

threshold 𝜆2. Similar to 𝑟1, 𝑟2 can also be defined as, 

𝑟2 = 𝑦2 + 𝑦̃1 + 𝑛2, (24) 

where 𝑦̃1 and 𝑛2  are the DCT coefficients of 𝑌̃1  and noise, 

respectively. Unlike TQWT, the DCT coefficients of the 

fringes, i.e. 𝑦2, usually concentrate around a certain frequency 

band due to their narrow band nature. They are much sparse and 

have larger magnitudes than 𝑦̃1. So the uniform threshold used 

in the traditional MCA can be applied. 𝜆2  should be set 

proportional to 𝑦̃1 + 𝑛2, which can be determined through the 

total estimation error 𝑅𝑇 defined as follows: 

𝑅𝑇 = 𝑌̃1 + 𝑌̃2 + 𝑁 = 𝑌 − 𝛷1
𝑇𝑦̂1 − 𝛷2

𝑇𝑦̂2. (25) 

As defined in (25), 𝑅𝑇  is the total error in the previous 

estimations of 𝑌1  and 𝑌2  plus noise. Since 𝑌,  𝑦̂1  and 𝑦̂2  are 

known, 𝑅𝑇 can be easily obtained by (25). Then based on 𝑅𝑇, 

we can estimate  𝑦̃1 + 𝑛2 as follows: 

𝑦̃1 + 𝑛2 = 𝛷2(𝑅𝑇 − 𝑌̃2) ≅ 𝛷2(𝑅𝑇 − 𝛷1
𝑇𝑦̃2

𝜌
). (26) 

𝑦̃2
𝜌

 in (26) is obtained in (18). Hence the threshold 𝜆2 can be set 

as,  

𝜆2 = ‖𝛷2(𝑅𝑇 − 𝛷1
𝑇𝑦̃2

𝜌
)‖

∞
.  (27) 

 

 
Fig. 4.  A plot of a column of the wavelet transform of the residue fringe image 

𝑟1(blue line), the texture ground truth 𝑦1 (red line), the low rank subtraction 

result 𝑦̃1
𝜌

 (thin black line), the uniform threshold 𝜆𝑖 (green dash line), and the 

resulting texture 𝑦̂1  (thick black line) in the first (top) and second (bottom) 

iteration. The object is the one in Fig. 2. 
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where ‖𝑥‖∞ is the infinite norm of 𝑥, i.e. the maximum of |𝑥|.  
Then the final 𝑦̂2 is obtained by a hard thresholding operation 

as follows: 

𝑦̂2 = 𝐻𝜆2
(𝑟2) = {𝑟2 𝑖𝑓 |𝑟2| > 𝜆2 𝑎𝑛𝑑 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒}. (28) 

Note that 𝜆2 is uniform to all 𝑟2 . Here we have made a mild 

assumption that the noise component 𝑛2 is not so strong that 

‖𝑦̃1 + 𝑛2‖∞ is smaller than ‖𝑦2‖∞. To further increase the rate 

of convergence, the DCT coefficients at frequencies lower than 

a constant are ignored when determining the threshold 𝜆2 and 

also in the final 𝑦̂2. It is because the fringes are basically narrow 

band signals which do not have too low frequency components. 

Such constant can be determined during the initial calibration 

after the frequency of the fringe is determined. 

The proposed MCA algorithm for FPP is summarized in 

Algorithm I. Fig. 5 shows the estimation results of the 

proposed algorithm at the first, second, fourth and the final 

iteration. It can be seen that on the estimated object texture (top 

row) the fringe pattern gradually diminishes. At the same time, 

the magnitude of the object’s texture also gradually reduces as 

shown on the estimated fringe pattern (lower row).  

 

Algorithm I. MCA algorithm for FPP 

Inputs: A channel of the captured fringe image 𝑌 ≡ 𝐺𝑛 in (5);  
Output:  A channel of the texture image 𝑌1 ≡ 𝐴𝑛 and a channel of the 

fringe image 𝑌2 ≡ 𝐺𝑛
′  in (5) 

1:   Initialize  𝑌̂1
(0)

= 0, 𝑌̂2
(0)

= 0, 𝑘 = 1 

2:   Repeat until converged 

3:   Compute 𝑅1
(𝑘)

= 𝑌 − 𝑌̂2
(𝑘−1)

 and generate its TQWT coefficient 

𝑟1
(𝑘)

= 𝛷1𝑅1
(𝑘)

 

4:  For scales contain both the fringe and object texture 

components, compute 𝑦̃1
𝜌

 based on (19) and then determine 𝜆1 

as in (20). 

5:  Obtain 𝑌̂1
(𝑘)

= 𝛷1
𝑇 (𝐻𝜆1

(𝑦̃1
𝜌

)) , where 𝐻𝜆1
(. )  is the hard 

thresholding operator defined in (21). 

6:  Compute 𝑅2
(𝑘)

= 𝑌 − 𝑌̂1
(𝑘)

 and generate its DCT coefficient 

𝑟2
(𝑘)

= 𝛷2𝑅2
(𝑘)

. 

7:  Compute 𝑅𝑇
(𝑘)

= 𝑌 − 𝑌̂1
(𝑘)

− 𝑌̂2
(𝑘−1)

 and determine 𝜆2 =

‖𝛷2 (𝑅𝑇
(𝑘)

− 𝛷1
𝑇𝑦̃2

𝜌
)‖

∞
 as in (27). 

8: Obtain 𝑌̂2
(𝑘)

= 𝛷2
𝑇 (𝐻𝜆2

(𝑟2
(𝑘)

)) , where 𝐻𝜆𝟐
(. )  is the hard 

thresholding operator defined in (28). 

9:  k = k + 1.  

IV. EXPERIMENTAL RESULTS 

For testing the performance of the proposed algorithm, we 

implemented an FPP system using a DLP projector and a digital 

SLR camera. The camera has a 22.0×14.7 mm APSC sensor 

and a 17-55 mm lens, and the projector has a 2000:1 contrast 

ratio with a light output of 3000 lumens. Both devices were 

connected to a computer with a 3.4 GHz CPU and 16 GB RAM. 

They were placed at a distance of 700 – 1000 mm from the 

target object. The resolution of the testing fringe images was 

cropped to 1024×1024 pixels to simplify the TQWT processing. 

For all our experiments, a single fringe pattern mixed with 

fringes of color red, green and blue is projected unto the object. 

Then the captured color image is separated into 3 images 

(channels) by the red, green, and blue color filters of the camera. 

Each fringe image (channel) is then fed individually into the 

proposed MCA algorithm to extract the fringe pattern deformed 

by the object 3D profile. After the 3 fringe patterns are 

retrieved, the traditional PSP will be applied to reconstruct the 

3D profile of the object. 

A. Quantitative Evaluation  

To verify the proposed method, we first conducted a 

quantitative evaluation by measuring the 3D profile of a flat 

shiny board as shown in Fig. 6 (left). The dimensions of the 

board are 45 cm × 35 cm. Since the board is flat, its 3D profile 

is exactly known. This allows us to perform objective 

comparisons of the accuracies of different methods. Different 

single-shot FPP methods were compared, including the 

conventional color-encoding phase-shifting profilometry 

(CPSP), Fourier-transform profilometry with the bias-removal 

strategy (FTP-BR) [1], CPSP with the conventional MCA 

(CPSP-MCA) [14] and the proposed method. All methods 

employ the simple Goldstein phase-unwrapping algorithm with 

a small marker placed at the center of the fringe image as the 

reference. While CPSP is the conventional approach, FTP-BR 

serves as a recently proposed single-shot approach that can 

address the bias in the fringe image due to the textured surface. 

To further understand the importance of the proposed MCA in 

CPSP, we compared with CPSP-MCA, which is actually a 

direct implementation of the conventional MCA in CPSP. In 

       
 

       
Fig. 5.  The evolution of the residue 𝑅1 (top row) and 𝑅2 (bottom row) at the 

first, second, and fourth iteration and the final result 𝑌1 (top row, last column) 

and 𝑌2 (bottom row, last column) of a jar with strong texture (column 4 in Fig. 

10). It is the result of one of the channels. 

 

           
Fig. 6.  The captured fringe patterns of a flat board with shiny surface (left) 

and flower pattern surface (right). 
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this experiment, a color-encoded fringe pattern was projected 

onto the flat board and a camera captured the reflected image 

50 times. The total number of reconstruction points is 

1,008,016, ignoring a few pixels at the boundary that contain 

some artifacts. The error of the reconstructed phase value at 

each point was evaluated. The errors over the whole surface was 

then averaged and expressed as a root mean square (RMS) 

value. Fig. 7 shows the results of the compared methods when 

fringe patterns of different frequencies are used. As shown in 

the left figure, the conventional CPSP has the lowest accuracy. 

Apparently, any bias-removal strategy or MCA can improve the 

accuracy of the measured 3D profile significantly, whereas the 

proposed algorithm outperforms all other compared approaches 

consistently. In addition, unlike conventional MCA, it is also 

fast and requires only a few iterations.  

A side benefit of the MCA method is that it can also recover 

the object texture during the iteration. Most of the existing 

single-shot FPP methods, including CPSP, do not have such 

feature. To allow a comparison of the proposed approach in 

recovering the object texture, we assume the bias-removal 

approach in [1] will allow the object texture to be recovered by 

subtracting the extracted fringe pattern from the fringe image. 

In this case, we have two methods to compare with and the 

results are shown in Fig. 7 (right) in terms of the peak signal-

to-noise ratio (PSNR) of the texture image. As expected, all 

compared approaches cannot estimate the textured surface 

accurately. Once the proposed MCA is applied to CPSP, the 

PSNR improves significantly over all other approaches.  

To further verify the robustness of the proposed method, a 

flower pattern paper is attached to the flat board as shown in 

Fig. 6 (right). It introduces further difficulty in extracting the 

fringe pattern from the captured fringe image. The previously 

mentioned experiments are then repeated with the flat board 

with flower pattern. Fig. 8 shows the results of the compared 

method when fringe patterns of different frequencies are used. 

As shown in the left figure, the proposed algorithm outperforms 

all competing approaches in reconstructing the 3D profile of the 

flat board. And, as shown in Fig. 8 (right), the proposed 

algorithm can improve the PSNR of the extracted image 

significantly over all other approaches. We will see in the next 

section that the improvement of the proposed algorithm will be 

even higher when the object is not just a simple flat board.   

         
 

Fig. 7.  Experimental results of different single-shot FPP methods on a shiny flat board 

 

   
    Fig. 8.  Experimental results of different single-shot FPP methods on a shiny flat board with flower pattern. 
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 53.45 dB  20.28 dB  -12.82 dB  -6.48 dB  5.76 dB 

                         
 49.18 dB  34.14 dB  56.56 dB  17.48 dB 49.09 dB 

                         
 55.10 dB   33.92 dB  49.50 dB  11.33 dB  37.74 dB 

                         
 57.21 dB  34.75dB  15.62dB  15.84dB  15.02 dB 

                         
 57.36 dB  35.31 dB  58.13 dB  54.17 dB  51.00 dB 

                         
 Fig. 9.  3D reconstructions of various objects with different textures. (First row) Results of CPSP; (second row) results of FTP-BR[1]; (third row) results of 

CPSP-MCA[14]; (fourth row) CPSP-NLO [23]; (fifth row) results of the proposed method; (sixth row) the ground truths. 
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B. Qualitative Evaluation 

 We further tested the proposed algorithm in a real working 

environment. Six objects with various textured surfaces, shown 

in Fig. 10, were considered. The first object is a ceramic jar that 

has a mono-color surface and high reflectivity index (first 

column). The second object is a ceramic cup with a relatively 

weak textured pattern (second column). The third object has 

strong texture covering almost the entire object (third column). 

The fourth object is a jar covered with some vivid textural 

patterns (fourth column). Finally, a ceramic cat statue with 

strong texture was used (last column). It has a complex shape 

and large curvature region. They introduce greater difficulty to 

all methods when measuring their 3D profile.  

Similar to the previous experiment, we compared the 

 

                       
 29.23 dB  32.03 dB  28.01 dB  26.66 dB    27.91 dB 

                       
  21.92 dB 24.25 dB  23.78 dB  20.67 dB  22.79 dB 

                       
  18.04 dB  19.92dB  19.82dB  18.22dB  18.46 dB 

                       
  35.55 dB 33.72 dB  28.81 dB  33.41 dB  30.91 dB 

                       
 

Fig. 10.  Object textures obtained by different methods: (first row) results of FTP-BR[1]; (second row) results of the CPSP-MCA[14]; (third row) the CPSP-NLO 
[23]; (fourth row) results of the proposed method; (fifth row) the ground truths. 

  



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

 

 

11 

proposed method with CPSP, FTP-BR, and CPSP-MCA. We 

also compare with a recent method, namely CPSP with non-

linear optimization (CPSP-NLO) [23]. The CPSP-NLO method 

interpolates the peak intensities of the fringe pattern image to 

estimate the initial texture image. It is then used to compute the 

fringes pattern and depth information. Finally, a non-linear 

optimization is performed to smooth both the initial texture and 

depth image. The performances of different approaches in 3D 

measurement are depicted in Fig. 9. In this comparison, we 

generated the ground truths by scanning the scenes using 50 

projections of color-encoded fringe patterns (see the last row of 

Fig. 9 and Fig. 10). As shown in Fig. 9(first row), the resulting 

3D models generated by CPSP are erroneous for objects with 

textured surfaces (2nd, 3rd, 4th and 5th objects), particularly for 

highly textured surfaces (3rd, 4th and 5th objects). When an 

object contains vivid textures, the captured fringe image will 

have various artifacts due to color crosstalk and bias from the 

texture. Although the 1st object has a high SNR value, small 

irregular distortions can be seen due to the phase error resulting 

from the arbitrary object’s surface reflectivity. For the 2nd 

object, the texture is relatively weak and hence only a few 

artifacts can be found. For the 3rd object, the surface is almost 

completely covered by strong texture. Hence, it introduces 

inconsistent discontinuities in the wrapped phase. For the 4th 

and 5th object, some dark areas and strong colors can be found 

on the object surface. Hence, some fringes have either nearly 

zero amplitude or abrupt bias that make the amplitudes of the 

colored sinusoids change differently. They all contribute to the 

errors when using the CPSP method. As shown in  Fig. 9 (fourth 

row), the resulting 3D models generated by CPSP-NLO is 

superior for object with solid texture (1st object) and weak 

texture (2nd object) but will give erroneous results for objects 

with highly textured surfaces (3rd, 4th and 5th objects). The 

initial texture interpolation often fails since finding the peak 

intensities of fringes is affected by the presence of vivid texture. 

Unlike CPSP and CPSP-NLO, the other comparing methods 

(FTP-BR, CPSP-MCA, and the proposed method) have been 

implemented with sparse regularization. It enhances the 

imperfect fringe images such that the true phase can be better 

recovered, as shown in Fig. 9 (2nd, 3rd, 4th and 5th objects). 

However, both FTP-BR and CPSP-MCA gives erroneous 

results when the objects contain vivid textured areas, as 

depicted in Fig. 9 (4th and 5th objects). And in fact, some small 

distortions can still be perceptible in the 2nd, 3rd, 4th and 5th 

objects as shown in Fig. 9. On contrary, the proposed MCA 

method removes most of the errors in the reconstructed 3D 

model; the SNRs measured against the ground truths are also 

the highest comparing with all other approaches. While FTP-

BR has many free parameters to determine empirically and 

CPSP-MCA can have a long iteration time, the proposed MCA 

method is obviously a better choice for single-shot FPP 

problems. A summary of the execution time required by 

different approaches is given in Table I.   

For the recovered object textures, FTP-BR, CPSP-MCA, and 

CPSP-NLO can only give blurry images as can be seen in the 

1st, 2nd, 3rd row of Fig. 10. The result given by FTP-BR is blurry 

because there is no simultaneous texture estimation during each 

iteration. The textured surface is obtained by just subtracting 

the extracted fringe pattern from the fringe image at the end of 

the process. So there is no control over the accuracy of the 

recovered object texture. Similarly, the non-linear optimization 

method used to smooth the initial texture estimation in CPSP-

NLO will also introduce blurred texture. It should be noticed 

that even in CPSP-MCA, the resulting object texture is also 

blurry. It is due to the inaccurate uniform threshold used during 

the iteration. The same problem does not exist in the proposed 

MCA method since, using the low-rank approximation, the 

optimum threshold can be estimated to achieve a good 

separation of the fringe and texture images. The performance 

can be clearly seen in Fig. 10 (fourth row). They are very close 

to the ground truths.  

V. CONCLUSION 

In this research, we proposed a new single-shot fringe 

projection profilometry (FPP) algorithm that can separate the 

fringe pattern and object texture of a fringe image to allow 

robust three-dimensional (3D) measurements. The new 

algorithm employs a conventional color-encoding PSP such 

that only a single RGB fringe image needs to be projected. The 

key ingredient of the proposed algorithm is an improved 

morphological component analysis (MCA) method designed 

particularly for FPP problems. For the proposed MCA method, 

a low-rank approximation is performed to tune the optimum 

threshold during the iterations. This thresholding scheme 

differs from the traditional ones in the sense that it is adaptive 

and contextual. It does not require many additional hand-tuning 

parameters. In addition, it does not need a very good initial 

guess as in other approaches to guarantee the convergence. 

Experimental results have demonstrated the effectiveness of the 

proposed algorithm for simultaneously measuring the 3D 

profile and texture of an object. We believe that the proposed 

method will open many new applications for single-shot FPP 

where simultaneous depth and image sensing are needed.   
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TABLE I 
COMPARISON OF EXECUTION PERFORMANCE 

Methods Approximation 
Time Cost (s) 

Remarks 

FTP-BR[1] 71.77 The maximum iteration is set to be 5 

CPSP-NLO 
[23]  

398.50 The optimization is performed by utilizing the 
Levenberg-Marquardt method in Matlab with 

maximum 7 iterations as in [23] 

CPSP-
MCA[14] 

138.32 The maximum iteration is set to be 50 with linearly 
decreasing threshold toward zero.  

Proposed 
Method 

38.71 It requires approximately 3-10 iteration to 
converge 
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