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This study investigates how dynamically adjusting the bending stiffness of a heaving

foil affects its propulsion performance in a flow of Reynolds number 200. The foil

is forced to oscillate sinusoidally at the leading edge, and its bending stiffness is

tuned in a square-wave manner. Such a fluid-structure interaction (FSI) problem

is explored using an immersed boundary lattice Boltzmann method (IBLBM) based

numerical framework. The results reveal that when the lower and upper bounds of the

foil’s time-dependent bending stiffness are moderate, the net thrust can be evidently

enhanced compared to those in the corresponding constant-bending-stiffness cases,

while the propulsion efficiency is not apparently ameliorated. The most significant

enhancement is observed when the bending stiffness has lower and upper bounds of

the same duration (i.e., a duty cycle of 1/2) and also it remains at the lower bound

during stroke reversals (corresponding to an actuation phase angle of π/2). When the

two bounds simultaneously increase or decrease, however, dynamically adjusting the

bending stiffness fails to improve the net thrust. Through this study, competitions

among various forces/moments, including the inertial force, tension force, bending

moment and fluid loading, acting on the foil and their influences on the foil’s dynamics

are also unveiled.
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I. INTRODUCTION

Flapping motion is one of the most sophisticated thrust generation methods found in

nature. Adopted by insects, birds and fishes, it is able to provide superior maneuverabil-

ity and locomotor performance1. Due to the increasing interests in the micro air vehicles

(MAVs), flapping motion has attracted more and more attentions recently. Thus far, numer-

ous studies have been conducted to reveal the fundamental mechanisms of thrust generation

of single/multiple foils undergoing flapping motion2,3, or to investigate the influences of a

series of key parameters, including the Strouhal number4,5, reduced frequency4,6, Reynolds

number7, aspect ratio8, mass ratio9,10 and complex motion11,12 on flapping foil’s aerody-

namic/hydrodynamic performance. On these topics Shyy et al.13,14 and Videler15 have given

comprehensive reviews.

As one of the most significant parameters, the flexibility affects the competitions among

various forces/moments exerted on a flapping foil, thus influences the foil’s dynamics and

propulsion performance9,12. Hence, its effects have been extensively explored with different

configurations9,10,12,16,17. For simplification, in most of the existing studies the foil’s bending

stiffness was assumed time-independent. This, nevertheless, is not always the case in nature,

since the flexibility depends on the elastic properties of muscle tissue which can be modified

with time. For instance, fishes can use their muscles to modulate their body stiffness in

the course of cruising18,19, and birds behave similarly when they steer the strength of their

wing muscles during flight20. This difference indicates that the role played by the time-

dependent bending stiffness in the propulsion performance of natural flyers and swimmers

has rarely been explored and thus still remains unclear. To address this knowledge gap, this

paper aims to investigate the effect of dynamically adjusting the bending stiffness on the

propulsion performance of a foil heaving in a uniform flow. With the recent development of

novel elastomer actuators21,22, hopefully this study can provide some guidance on the design

and operation of these actuators in the field of flapping-wing aerodynamics/hydrodynamics.

2



y t

EI t

in
le

t

o
u

tl
et

bottom wall

top wall U¥

U¥

( )Ly t

sr( )EI t

c

x

y

o

U¥

fr n

(a)

60L c=

4
0

W
c

=

(b)

f/2p
0

-h*/2

h*/2

y*
L

n-1/2 n n+1/2 n+1n-1

T*
EIEI*max

EI*min

EI
*

t*

DT*
EI

FIG. 1. Schematic of a flexible foil undergoing a pure heaving motion yL(t) prescribed by Equation

1, and the computational domain (not in scale) with implemented boundary conditions (a), and

illustration for the definitions of the parameters of the time-dependent bending stiffness (EI∗(t∗))

(b).

II. PROBLEM DESCRIPTION AND METHODOLOGY

A. Problem description

In this study, a foil with chord length c, linear density ρs and time-dependent bending

stiffness EI(t) is immersed in a uniform flow of velocity U∞, density ρf and kinematic

viscosity ν, as shown in Figure 1(a). The foil undergoes a purely harmonic heaving motion

which can be specified as

yL(t) =
h

2
cos(2πft) (1)

where yL is the transverse displacement of the foil’s leading edge, f the heaving frequency

and h the heaving amplitude.

Assuming the foil as a clamped-free, inextensible elastic plate, its dynamics is governed

by two nonlinear equations23

ρs
∂2X

∂t2
−

∂

∂s
(TF

∂X

∂s
) +

∂2

∂s2
(EI(t)

∂2X

∂s2
) = Ff (2)

∂X

∂s
⋅

∂X

∂s
= 1 (3)

with boundary conditions

y(t,0) = yL(t);
∂X

∂s
(t,0) = (1,0) imposed at the leading edge,

and TF (t, c) = 0;
∂2X

∂s2
(t,c) =

∂3X

∂s3
(t, c) = (0,0) imposed at the trailing edge,
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where s is the Lagrangian coordinate along the foil, X the foil’s position, TF the tension

force serving to satisfy the inextensible condition23, and Ff the fluid loading acting on the

foil.

The flow dynamics can be described by the incompressible Navier-Stokes equations

∂v

∂t
+ v ⋅ ∇v = −

1

ρf
∇p + ν∇2v + fe (4)

∇ ⋅ v = 0 (5)

where v is the flow velocity, p the pressure, ∇ the gradient operator, and fe the external

force per unit volume.

To parameterize this fluid-structure interaction (FSI) system, the freestream velocity

(U∞), chord length (c), fluid density (ρf ) and heaving frequency (f) are chosen as repeating

variables. Equations 1 to 5 can be non-dimensionalized as

y∗L(t
∗
) =

h∗

2
cos(2πt∗) (6)

m∗k2

π2

∂2X∗

∂t∗2
−

∂

∂s∗
(T ∗

F

∂X∗

∂s∗
) +

∂2

∂s∗2
(EI∗(t∗)

∂2X∗

∂s∗2
) = F ∗

f (7)

∂X∗

∂s∗
⋅

∂X∗

∂s∗
= 1 (8)

k

π

∂v∗

∂t∗
+ v∗ ⋅ ∇∗v∗ = −∇∗p∗ +

1

Re
∇
∗2v∗ + f∗e (9)

∇
∗
⋅ v∗ = 0 (10)

For ease of reference, the definitions of all the dimensionless parameters in Equations 6 to

10 are elaborated in Table I.

Herein, the bending stiffness EI∗(t∗) is assumed as a square wave function of time with a

dimensionless period T ∗

EI , a duty cycle D, a phase angle φ with respect to the foil’s heaving

motion, and lower and upper bounds EI∗min and EI∗max, as shown in Figure 1(b). By taking

all these factors into account, it can be expressed as

EI∗(t∗) =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

EI∗max
φ
2π+(i − D

2 )T ∗

EI ≤ t
∗
<

φ
2π+(i + D

2 )T ∗

EI

EI∗min
φ
2π+(i+D

2 )T ∗

EI ≤ t
∗
<

φ
2π+(i + 1 − D

2 )T ∗

EI

, i = 0,1,2... (11)

Note that when the duty cycle D = 0 or 1, the bending stiffness becomes time-independent,

i.e., EI∗ ≡ EI∗min or EI∗max. More detailed definitions for all the above parameters are given

in Table I.
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TABLE I. Definitions and selected values of dimensionless parameters in this study.

Dimensionless parameter Definition Values

Duty cycle D = PW /TEI 0,1/8,1/4,1///2,3/4,7/8,1

Bending stiffness EI∗ = EI/ρfU
2
∞
c3 -

Maximum bending stiffness EI∗max = EImax/ρfU
2
∞
c3 1,3,9

Minimum bending stiffness EI∗min = EImax/ρfU
2
∞
c3 1/3,1,3

Heaving frequency f∗ = f/fN = (2π/k
2
1)
√

m∗k2/π2EI∗ -

External force per unit volume f∗e = fec/U
2
∞

-

Fluid loading F ∗

f = Ff /ρfU
2
∞

-

Heaving amplitude h∗ = h/c = Stπ/k 0.6

Reduced frequency k = πfbc/U∞ π/2

Mass ratio m∗
= ρs/ρfc 1

Pressure p∗ = p/ρfU
2
∞

-

Reynolds number Re = U∞c/ν 200

Lagrangian coordinate s∗ = s/c -

Strouhal number St = fbhb/U∞ 0.3

Time t∗ = tf -

Variation period of EI∗ T ∗EI = TEIf 1/2

Tension force T ∗F = TF /ρfU
2
∞
c -

Velocity v∗ = v/U∞ -

Foil’s position X∗
=X/c -

Leading-edge y-displacement y∗L = yL/c Prescribed by Equation 6

Phase angle φ 0, π/4, π///2, 3π/4, π

Derivative operator ∇
∗
= c∇ -

a PW is the pulse width of the square waveform. Herein, it refers to a single duration when the bending

stiffness remains larger.
b fN is the first natural frequency of the flexible foil in vacuum, defined as fN = k

2
1

√

EI/ρs/2πc
2, where

k1 = 1.875124.
c Symbol “-” indicates that the corresponding parameters are updated during the simulation.
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Table I also includes another two key independent parameters, i.e., the Strouhal number

(St) and the dimensionless frequency (f∗). St reflects the ratio of the foil’s heaving speed

to its forward speed, thus characterizes the associated vortex shedding behavior9. Typically,

St adopted by natural flyers and swimmers varies from 0.2 to 0.414, thus it is set as 0.3

in the present study. f∗ is a function of the ratio of the foil’s effective inertia (defined as

m∗k2/π2, where m∗ is the mass ratio) to its bending stiffness (EI∗), thus dictates the foil’s

dynamics and the resulting propulsion performance. Our previous study12 has revealed that

the effect of m∗ on the foil’s propulsion performance is roughly opposite to the effect of

EI∗. As such, only the latter, or more exactly, the effect of changing EI∗ lower and upper

bounds, is examined in this work, while the former is fixed as m∗
= 1. Furthermore, when

f∗ is roughly in the range of 0.33 to 0.6, the foil can usually attain an optimal propulsion

performance9,12,25. Therefore, in this study f∗ is selected within this range, i.e., f∗ = 0.52,

when EI∗ is moderate, i.e. EI∗ = 3. Under this condition, k = π/2 and h∗b = πSt/k = 0.6,

which are applied for all the cases throughout this study.

Equation 7 reveals that the foil’s dynamics is determined by the competition among

various types of forces/moments, including the inertial force, tension force and bending

moment (the three terms on the LHS of Equations 7) as well as the fluid loading (the term

on the RHS of Equation 7). Since the foil is assumed inextensible, its deformation is mainly a

result of competitions among transverse forces including the inertial force, bending moment

and fluid loading. Thus, only these three types of forces/moments are considered, which are

evaluated as follows.

As will be revealed in Section III, in the cases of most interest, f∗ varies within 1. This

means that the foil’s deformation is mainly determined by its first bending mode. Under

this circumstance, the bending moment usually achieves its maximum at the foil’s leading

edge, which can be expressed as

M∗

L = ∣EI
∗
∂2X∗

∂s∗2
(t∗,0) ∣ (12)

In this study, M∗

L is defined as positive when the foil is upward-deflected, and negative if

the other way around.

For the same reason, the foil’s transverse inertial force can be estimated from the y-
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component inertial forces at its leading and trailing edges, which are expressed as

F ∗

I,L,y = −
m∗k2

π2
a∗L,y (13)

F ∗

I,T,y = −
m∗k2

π2
a∗T,y (14)

where a∗L,y and a∗T,y are the leading- and trailing-edge’s y accelerations. Since a∗L,y and a∗T,y

are just the second derivatives of the leading- and trailing-edge’s y displacements which

are either an exact sinusoidal or sinusoidal-like function of time in this study, they are

approximately anti-phase with their corresponding y displacements. Thus, the foil’s inertial

forces are roughly in-phase with its y displacements.

As for the fluid force, it can be evaluated through analyzing the distributed fluid loading

along the foil, which will be presented during the discussion. According to Kang et al. 9 ,

the fluid force can be decomposed into three major components, namely the viscous force,

the vortex force and the acceleration-reaction force. These three types of forces are roughly

proportional to three scalings, i.e., St/2kRe, St2/4k and kSt/2, respectively, where Re is the

Reynolds number which will be fixed at 200 as will be explained in Section II C. Recalling that

St = 0.3 and k = π/2, these three scalings are 0.00048, 0.01432 and 0.23562, respectively. This

means that the acceleration-reaction is the overwhelmingly dominant factor in determining

the fluid loading, whereas the vortices play a negligible role and thus will not be discussed

in this study.

To evaluate the foil’s propulsion performance and the associated energy consumption

under various conditions, two coefficients, i.e., the thrust and energy coefficients, are adopted

and defined as

CT =

2FT
ρfU2

∞
c

(15)

CE =

2E

ρfU2
∞
c2

(16)

where FT is the thrust and E is the input energy comprising two major components: one is

the driven energy applied at the foil’s leading edge, which can be attained by integrating the

positive power (defined as the positive product of the driving force applied at the leading

edge and the leading-edge velocity) over one heaving cycle, and the other is the energy used

to realize the bending stiffness rising from the lower bound to the upper bound per heaving

cycle.
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B. Methodology

To explore the aforementioned FSI problem, the lattice Boltzmann method (LBM)26

is adopted as an alternative for solving the two-dimensional Navier-Stokes equations. The

finite difference method23,27 is applied to solve Equations 7 and 8 for simulating the structure

dynamics. The immersed boundary method (IBM) is integrated with the LBM to resolve the

interplay between the fluid flow and the structure dynamics through capturing the structure’s

motion and evaluating the fluid loading28. Details of the current numerical algorithm and

its validation can be found in our previous works12,29,30.

Throughout this study, the computational domain is set as 60c(L)×40c(W) with a uniform

flow flowing rightwards with a speed U∞, as shown in Figure 1(a). The flexible foil is placed

20c downstream from the inlet boundary, and the heaving motion imposed at its leading-edge

is symmetric about the channel centerline. At the inlet boundary, the non-reflecting inlet

boundary condition31 is used, whereas at the outlet boundary the homogenous Neumann

boundary condition is implemented. On the top and bottom walls, the Dirichlet boundary

condition is applied with the x velocity U∞ and y velocity 0.

C. Case summary

According to Section II A, the foil’s aerodynamic/hydrodynamic performance mainly de-

pends on the time-dependent bending stiffness which is determined by five parameters in-

cluding the period T ∗

EI , the duty cycle D, the phase angle φ, and the lower and upper bounds

EI∗min and EI∗max. Herein, T ∗

EI is fixed at 1/2 for simplification, and the focus is mainly

placed on exploring the effects of the other four parameters on the foil’s propulsion perfor-

mance. Specifically, seven D values are selected from 0 to 1. φ is chosen from 0 to π with an

increment π/4. The ratio of EI∗max to EI∗min is set as 3, a value close to the bending stiffness

ratio of eels with unstimulated and stimulated muscles19. As such, in this study EI∗min is

selected as 1/3, 1 and 3, and EI∗max is set as 1,3 and 9, accordingly. Although the Reynolds

number should also play an important role in the foil’s aerodynamic/hydrodynamic perfor-

mance, in this study it is fixed at Re = 200 to focus the discussion, which is slightly larger

than the minimum Reynolds numbers adopted by natural swimmers (O(10−2))15 and flyers

(O(10))1. The selected values for the above parameters are all summarized in Table I.

8



0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00 CT

D

f (p)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(a)

EI* = 1

EI* = 3

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00(b) CE

D

f (p)

5.0
6.3
7.5
8.8
10.0
11.3
12.5
13.8
15.0EI* = 3

EI* = 1

FIG. 2. Contours of the net thrust coefficient (C̄T ) (a) and net energy coefficient (C̄E) in the map

of the duty cycle (D) versus the phase angle (φ) when the bending stiffness (EI∗) is bounded by

EI∗min = 1 and EI∗max = 3.

III. RESULTS AND DISCUSSION

A. Overview of the results

Figure 2 shows contours of the time-averaged thrust coefficient (C̄T ) and input energy

coefficient (C̄E) in maps spanned by the actuation phase angle (φ) and duty cycle (D). In all

these cases, the bending stiffness (EI∗) flips between EI∗min = 1 and EI∗max = 3 in a periodic,

square-wave fashion. Note that these two EI∗ bounds correspond to non-dimensionless

frequencies smaller than 1, indicating that the foil mainly deforms in its first bending mode.

As shown in Figure 2(a), the maximum net thrust C̄T = 0.8 is achieved at the map center

(φ = π/2 and D = 1/2), a case where the foil becomes more rigid during strokes and becomes

more flexible during stroke reversals. This net thrust is over 2700% and 50% larger than

those (C̄T = 0.028 and 0.53) in the constant-bending-stiffness cases with EI∗ = 1 and 3,

respectively, confirming that dynamically adjusting the bending stiffness can significantly

improve the foil’s propulsion performance. As either the phase angle or the duty cycle

deviates from the map center, the net thrust reduces progressively.

If comparing Figure 2(b) with Figure 2(a), it is seen that the contour of the net input

energy coefficient is akin to that of the net thrust. This reflects that the more the thrust is

enhanced, the more the energy input is required. As a result, the foil’s propulsion efficiency

defined as their ratio is not significantly improved. For instance, the maximum propulsion

efficiency is 6.4% among the cases presented in Figure 2, which is slightly larger than 5.9%

9
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FIG. 3. Time histories of the (a) leading-edge y displacement (y∗L), (b) bending stiffness (EI∗), (c)

trailing-edge y displacement (y∗T ), (d) bending moment at the leading edge (M∗

L), and (e) thrust

coefficient (CT ) for the baseline case where EI∗min = 1 and EI∗max = 3 and the cases with the

constant bending stiffness, i.e., EI∗ ≡ EI∗min = 1 and EI∗ ≡ EI∗max = 3.

obtained in the case with the constant bending stiffness EI∗ = 3.

B. Effects of dynamically adjusting bending stiffness

To unveil the reasons for the thrust enhancement, in this section the case with φ = π/2

and D = 1/2 is selected as a baseline case and studied in details. For comparison purpose, the

cases with the constant bending stiffness EI∗ = 1 and 3 are also presented, which are denoted

herein as the “flexible” and “stiff” cases, respectively. Since the propulsion performance

of the foil with various constant bending stiffness has been systematically studied in our

previous work12, for the sake of brevity we will not repeat the discussions on these two

10



FIG. 4. Distribution of dimensionless fluid stress (F ∗

f ) over the heaving flexible foil during the

downstroke in the constant-bending-stiffness cases with EI∗ = 1 (a), EI∗ = 3 (b), the baseline case

where EI∗min = 1, EI∗max = 3 and φ = π/2 (c), and the case with EI∗min = 1, EI∗max = 3 and φ = 0

(d). The dashed triangle-headed arrow indicates the foil’s heaving direction, and its length reflects

the heaving speed.

cases. Instead, here we only present their results in Figures 3 and 4 for easy comparison.

Our previous study12 has revealed that the thrust generation mainly depends on two

factors: one is the foil’s deflection, and the other is the bending moment that is positively

correlated with the foil’s shape recovering rate. If the foil has a larger deflection, the fluid

loading can contribute more in the upstream direction, favorable for thrust generation (for

11



example, at around t∗ = 0.4 in the flexible case, see Figures 3 and 4(a)). On the other hand,

larger bending moment can induce larger fluid loading as a reaction force, favorable for thrust

enhancement (for example, approximately at t∗ = 0.1 to 0.3 in the stiff case, see Figures 3

and 4(b)). Note that these two factors are oppositely affected by the bending stiffness, hence

they cannot simultaneously exert positive effects in the constant-bending-stiffness cases.

In the baseline case, the bending stiffness remains EI∗ = 1 at t∗ < 0.125. Hence, during

this period the foil’s dynamics is similar to that in the flexible case. Specifically, the foil

experiences a larger upward-oriented deflection than that in the stiff case. The bending

moment remains small and does not contribute too much to the foil’s dynamics. As such,

the foil’s dynamics is mainly affected by the fluid loading and the inertial force, as indicated

by Equations 7, 13 and 14. Under this circumstance, the fluid loading is roughly anti-phase

to the inertial force and mainly produces drag, as evidenced in Figures 4(c1) and 4(c2).

At t∗ = 0.125 when the foil is in its first half of downstroke, the bending stiffness suddenly

rises to EI∗ = 3. With the same deflection, the bending moment is immediately tripled.

Owing to that the deflection is larger than that in the stiff case, at this instant the bending

moment is enhanced by 57.9%, as shown in Figure 3(d). The sudden rise of bending moment

shortly leads to the foil’s faster shape recovering process that is accompanied by repelling

the fluid downstream and downward in a more intense way. Consequently, the fluid loading

quickly reverses its direction and points upwards, becoming even larger than in the stiff case,

as revealed in Figures 4(b3) and 4(c3). Furthermore, the foil’s larger deflection makes the

enhanced fluid loading more upstream-oriented, thus yields much more thrust, as shown in

Figure 3(e).

At t∗ = 0.23, the thrust approaches its maximum CT = 3.5 in the baseline case, 159% larger

than that in the stiff case at t∗ = 0.2. Such a dramatic enhancement completely surpasses

the thrust deficiency appearing during the immediately preceding upstroke-to-downstroke

reversal, eventually leads to a 50% increase in the net thrust over the stiff case.

At t∗ = 0.375 when the foil is about to do downstroke-to-upstroke reversal, the bending

stiffness drops to EI∗ = 1. Unlike the instant when the bending stiffness rises, however,

this sudden decrease does not invoke obvious change in the foil’s dynamics, except that the

following bending moment decreasing rate becomes much smaller, as revealed in Figure 3(d).

This stems from the fact that at this instant the foil almost recovers its original shape, as

evidenced by the nearly identical transverse displacements at the leading and trailing edges

12



as well as the small M∗

L, as shown in Figure 3.

As time progresses, the foil’s shape and all types of forces in the baseline case turns

similar to those in the stiff case, as shown in Figures 3, 4(b5) and 4(c5), even though the

bending stiffness remains as EI∗ = 1 in the baseline case. Hence, the foil’s dynamics and

the thrust generation seem similar in these two cases at around t∗ = 0.4.

The above discussions suggest that, through dynamically adjusting the foil’s bending

stiffness at suitable timings as in the baseline case, the two contradicting thrust generation

factors can be well utilized to help the foil attain larger deflection and meanwhile experience

larger bending moment, yielding a much greater thrust. Furthermore, the larger upward

fluid loading during the downstroke indicates that the foil does more work on its surrounding

fluid in the baseline case, suggesting the consumption of more energy than in the flexible

and stiff cases. Although not shown here for brevity, the fluid loading and resulting energy

consumption in the baseline case are also generally greater than those in the other bending-

stiffness-varying cases with the same lower and upper bounds. Since both the thrust and the

energy consumption are positively correlated to the fluid loading, these two quantities are

positively correlated and approach their respective maximums under the same conditions,

i.e., in the baseline case, as having been revealed in Section III A.

C. Effect of square-wave phase angle

As revealed in Figure 2(a), the net thrust decreases as the actuation duty cycle and

phase angle deviate from the values in the baseline case, i.e., D = 1/2 and φ = π/2. To unveil

the detailed effects of these two parameters, three representative cases, i.e., the case with

D = 1/2 and φ = 0, the case with D = 1/8 and φ = π/2 and the case with D = 7/8 and φ = π/2,

are selected and compared for further studies in this and the next sections.

In the case with D = 1/2 and φ = 0, the flip of bending stiffness is anti-phase with that

in the baseline case, as shown in Figure 5(b). Hence, the small and large bending moments

acting on the foil in these two cases are roughly swapped in time. Note that in both cases

the foils’ locomotion is in phase though, i.e., both the foils undergo small deflections during

stroke reversals and large deflections around mid strokes, as revealed in Figures 4(c) and

4(d). As such, in the case with D = 1/2 and φ = 0 the foil experiences small deflection when

its bending stiffness remains large, i.e., EI∗ = EI∗max = 3, so that it attains smaller bending

13
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FIG. 5. Time histories of the (a) leading-edge y displacement (y∗L), (b) bending stiffness (EI∗),

(c) trailing-edge y displacement (y∗T ), (d) bending moment at the leading edge (M∗

L), and (e) thrust

coefficient (CT ) for the baseline case where φ = π/2 and the case with φ = 0, when EI∗min = 1 and

EI∗max = 3.

moment thus smaller thrust than in the baseline case. Furthermore, its bending moment

is large during the stroke reversal, imposing more restrictions on the foil’s deformation and

giving rise to a smaller deflection, and hence further deteriorates the thrust generation. As

a result, the net thrust is much smaller in this case.

D. Effect of square-wave duty cycle

As the duty cycle D shrinks to 1/8 or expands to 7/8, the rise or drop of the bending

stiffness generally causes changes of the bending moment and the thrust similar to that in

the baseline case where D = 1/2, as shown in Figure 6. It is seen that, as D increases, the
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FIG. 6. Time histories of the (a) leading-edge y displacement (y∗L), (b) bending stiffness (EI∗),

(c) trailing-edge y displacement (y∗T ), (d) bending moment at the leading edge (M∗

L), and (e) thrust

coefficient (CT ) for the baseline case where D = 1/2 and the cases with D = 1/8 and 7/8, when

EI∗min = 1 and EI∗max = 3.

FIG. 7. Distribution of dimensionless fluid stress (F ∗

f ) over the heaving flexible foil at t∗ = 0.25

in the case with D = 1/8 (a), the baseline case where D = 1/2 (b), and the case with D = 7/8, when

EI∗min = 1 and EI∗max = 3.
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FIG. 8. Net thrust coefficient (C̄T ) (a) and maximum deflection (∣D∗
∣max) (b) for the cases with

time-dependent bending stiffness (represented by the symbol lines) and the corresponding cases

with constant bending stiffness (represented by the horizontal lines).

duration for generating positive thrust increases while the peak thrust reduces. This stems

from the fact that the large bending stiffness lasts longer as D increases. On one hand,

it leads to a longer time for the large bending moment, protracting the duration of the

upward- and upstream-oriented fluid loading. On the other hand, the longer large bending

moment imposes longer restrictions on the foil during the stroke reversal, resulting in the

reduction of the foil’s deflection. The reduced deflection then yields less upstream-oriented

fluid loading and hence causes a smaller jump in the bending moment and thrust when the

bending stiffness rises, leading to a smaller instantaneous thrust, as shown in Figures 6 and

7.

Although it is preferable to increase the instantaneous thrust and in the meantime prolong

the large thrust generation when aiming to improve the net thrust, the above observations

suggest that only one of these two factors is favored through adjusting the duty cycle. As

such, there is a tradeoff between these two factors and the optimal net thrust is attained

only when a moderate duty cycle is chosen, which is around D = 1/2 in the current study.

E. Effects of bending stiffness

Although dynamically adjusting the bending stiffness (EI∗) bounded by EI∗min = 1 and

EI∗max = 3 can greatly enhance the net thrust, this strategy does not work effectively when

these two bounds become smaller or larger. This can be evidenced by the results shown in
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Figure 8(a) that the net thrust in the cases with EI∗min = 1/3 and EI∗max = 1 is less than

that in the case with constant EI∗ = 1, and the net thrust in the cases with EI∗min = 3 and

EI∗max = 9 is less than that in the case with constant EI∗ = 3.

Unlike in the cases with EI∗min = 1 and EI∗max = 3 where the large bending moment

promotes the thrust generation, in the cases with EI∗min = 1/3 and EI∗max = 1, the bending

stiffness is consistently small so that the bending moment becomes negligible compared to

the foil’s inertial force and fluid loading. As such, in most of the time the fluid loading is

opposite to the inertial force, generating drag instead of thrust.

When EI∗min = 3 and EI∗max = 9, the foil remains stiff all the time. As a result, its

deflection cannot be greatly augmented compared to that in the case with constant EI∗ = 9,

as evidenced by Figure 8(b). Under this circumstance, the fluid loading is more in the

transverse direction and thus is not favorable for thrust improvement.

Therefore, in order to effectively enhance the propulsion performance, the lower and

upper bounds of the foil’s bending stiffness should be moderate so as to allow simultaneous

occurrence of adequately enhanced deflection and sufficiently large bending moment, just

like in the baseline case.

IV. CONCLUSIONS

This study numerically explores whether dynamically adjusting a heaving foil’s bend-

ing stiffness (EI∗), in a periodic, square-wave fashion, can enhance the foil’s propulsion

performance. The major findings are as follows:

1. When EI∗ is bounded by EI∗min = 1 and EI∗max = 3, the net thrust can be enhanced

compared to that in the corresponding constant-bending-stiffness cases. The most

improvement is achieved in the baseline case, where the EI∗ adjusting phase angle

φ = π/2 and duty cycle D = 1/2. The net thrust is enhanced by 2700% and 50%

compared to those in the EI∗ ≡ EI∗min = 1 and EI∗ ≡ EI∗max = 3 cases, respectively.

However, the propulsion efficiency cannot be ameliorated evidently.

2. In the baseline case, the two major thrust-generating factors, i.e., the foil’s deflection

and bending moment, can be simultaneously improved. As such, the foil attains much

larger net thrust.
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3. The phase angle determines the timing of the rise of bending stiffness. At φ = π/2,

EI∗ rises when the foil undergoes a large deflection, thus a larger bending moment and

thrust can be obtained. As φ deviates from π/2, the foil’s deflection reduces, leading

to the reduction in the bending moment and net thrust.

4. The duty cycle affects two contradicting factors dictating the net thrust, i.e., the rise

of instantaneous thrust and the duration of large thrust generation. As D varies, only

one of them is favored. Therefore, a moderate duty cycle around D = 1/2 does the

best for enhancing the net thrust.

5. When the EI∗ bounds become smaller or larger, the foil’s bending moment and deflec-

tion cannot be simultaneously improved. As such, dynamically adjusting the bending

stiffness fails to improve the net thrust.

This investigation confirms that dynamically adjusting the foil’s bending stiffness can be

beneficial to the thrust generation, which can provide some guidance on the design and op-

eration of newly emerging elastomer actuators in the field of aerodynamics/hydrodynamics.

Although insightful, it should be pointed out that the influences of several other important

parameters, such as the Strouhal number, the reduced frequency, three-dimensional effect

and bending-stiffness waveform, are not explored. All of these will be systematically studied

in our near-future work.
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