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This study considers a periodic-review joint pricing and inventory control problem for a single product,

where production incurs a fixed cost plus a convex or concave variable cost. Our objective is to maximize

the expected discounted profit over the entire planning horizon. We fully characterize the optimal policy

for the single-period problem. As the optimal policy for the multi-period problem is too complicated to be

implemented in practice, we develop well-structured heuristic policies, and establish worst-case performance

bounds on the profit gap between the heuristic policies and the optimal policies. Numerical studies show

that our heuristic policies perform extremely well. To further reveal the structural properties of the optimal

policies, we also introduce two new concepts named κ-convexity and sym-κ-convexity, provide the associated

preservation results, and then characterize the optimal policies.

1. Introduction

1.1. Motivation

As demand is usually price sensitive, incorporating the dynamic pricing mechanism increases flex-

ibility to inventory management, allowing us to match demand with supply more effectively. For

this reason, joint pricing and inventory control has been adopted by many industries. In the past

decade, joint pricing and inventory control problems have also received considerable academic

attention. Chen and Simchi-Levi (2012) provided an up-to-date survey of the progress made in

this area. Most studies of joint pricing and inventory control problems in the literature assume

that the variable cost is a linear function of the production/ordering quantity. However, many real

applications has either a convex or concave variable cost. As illustrated in Lu and Song (2014),

a piecewise linear convex variable cost structure may arise in scenarios such as multiple sourcing
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(each supplier has a different cost and capacity) in the retail sector or multiple labor costs (owing

to overtime pay) in the manufacturing sector. Lu and Song (2014) provided detailed discussions of

this cost structure. A piecewise linear concave variable cost structure may arise when an economy

of scale exists in production or ordering, see e.g., Porteus (1971, 1972) and Fox et al. (2006). A

fixed cost may represent the transportation cost and machine set-up cost.

In this study, we consider a periodic-review joint pricing and inventory control problem for a

single product over a finite planning horizon with a fixed and a piecewise linear variable product

cost, where the latter could be either convex or concave. At the beginning of each period, the

production quantity and selling price are determined simultaneously. Demand in each period is

stochastic and dependent on the selling price. Moreover, any leftover inventory is carried over to the

next period, and unsatisfied demand is backlogged. The objective is to determine the production

quantity and selling price in each period to maximize the expected total discounted profit over the

planning horizon. Our purpose is to understand the structure of the optimal inventory control and

pricing policies, so that we can offer managers practically implementable and efficient heuristic

policies for solving these problems.

For convex variable cost, we first study the case in which the fixed cost is zero, and find that

this problem enjoys a well-structured optimal policy. There is a threshold on the initial inventory

level below which a firm should produce and above which a firm should not produce. The optimal

produce-up-to level is an increasing function of the initial inventory level. Moreover, it is either a

straight line with slope 1 (produce the same constant) or a flat line (produce up to the same level)

over each region. The optimal pricing policy is a multi-list-price policy in which the optimal price

always decreases with the produce-up-to level. When the initial inventory decreases, the firm can

adopt two strategies. The first is to increase the price to decrease demand, and the second is to

pay a higher marginal cost (e.g., order from a supplier with a higher unit cost or ask employees to

work overtime) to push up the inventory level. One important finding is that it is never optimal

for a firm to adopt both strategies at the same time. In other words, when the initial inventory

level decreases, the price should remain at the same level until the capacity of the current source

is exhausted, and should then increase only if the current source is at full capacity. When there is

a positive fixed cost, the optimal inventory and pricing policy for the single-period problem is the

same, except that there is a jump in the optimal produce-up-to level. However, the optimal policy

for the multi-period problem with a fixed cost can be more complicated. Therefore, we develop a

heuristic policy based on the structure of the optimal policy for the single period problem. Over

extensive numerical studies, the heuristic policy achieves 99.992% of the optimal profit on average

and 98.951% in the worst case. Moreover, we are able to establish a worst-case performance bound

on the profit gap between the heuristic policy and optimal policy.
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For concave variable cost, the structure of the optimal policy is complex even without the fixed

cost. Hence, we first study the optimal policy of the single period problem, and show that it follows

a generalized (s,S, p) policy. Similar to the convex variable cost problem, we develop a heuristic

policy that is based on the structure of the optimal policy of the single period problem. Extensive

numerical studies show that this heuristic policy achieves 99.98% of the optimal profit on average

and 95.55% in the worst case. A worst-case performance bound on the profit gap between the

heuristic policy and optimal policy is also established.

To understand why our heuristic policies perform well, we try to characterize the optimal poli-

cies of the general multi-period problems by introducing concepts named κ-convexity and sym-κ-

convexity, which are generalizations of the sym-K-convexity introduced in Chen and Simchi-Levi

(2004) and the strong (K,c,q)-convexity introduced in Lu and Song (2014), respectively. After

careful characterizations, we find several structural properties of the optimal policies that are con-

sistent with the structures of our heuristic policies, which provides theoretical support for the

strong performances of the heuristic policies.

1.2. Literature Review

In the subsection, we review the literature related to our model. Our study belongs to the stream

of research on inventory control that started with Scarf (1960), the first paper to discuss and

analyze fixed production costs and the associated optimal policy. By introducing a concept called

K-convexity, Scarf (1960) showed that the (s,S) policy is optimal for the linear variable production

cost case. Porteus (1971, 1972) further generalized the model of Scarf (1960) to include piecewise

linear concave variable costs. Under some conditions on demand uncertainties (e.g., positive Pólya

or uniform densities), the author managed to prove the optimality of a generalized (s,S) policy for

this system. Fox et al. (2006) studied a two-supplier problem with log-concave demand uncertainties

and showed that the optimal policy is well-structured. Zhang et al. (2012b) extended the model of

Fox et al. (2006) by adding a capacity constraint on the supplier with the lower unit ordering cost,

and characterized the optimal inventory control policy under this scenario. Chen (2015) tried to

characterize the optimal policy of the inventory control problem with a general concave variable

cost.

Convex variable production cost functions have been studied since Karlin (1960), whose focus

was the influence of demand densities on the base-stock level. Henig et al. (1997) investigated

the inventory policy under a given supply contract that leads to a two-linear-piece convex vari-

able production cost without fixed cost, where the optimal policy can be characterized by two

critical levels. It should be noted that the inventory model with a fixed cost plus a linear pro-

duction variable cost and limited production capacity are also related to our models. Shaoxiang

and Lambrecht (1996) found that the optimal policy becomes more complicated. They proved
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that the modified base-stock policy is not necessarily optimal, and the optimal policy exhibits the

X-Y band structure. Later, Shaoxiang (2004) further characterized the policy based on a con-

cept called (C,K)-convexity. Gallego and Scheller-Wolf (2000) introduced a related concept called

CK-convexity and reported a more complete characterization of the optimal policy. Lu and Song

(2014) characterized the optimal inventory control policy for a periodic-review inventory control

system in which the production incurs both a fixed cost and convex variable cost, and developed

a suitable heuristic policy. Chao and Zipkin (2008) discussed a production cost function with a

fixed cost that is incurred once the production quantity exceeds a given threshold, and then char-

acterized the optimal policy based on K-convexity. Caliskan-Demirag et al. (2012) considered a

case in which the production cost is a step-function of the production quantity. Their characteri-

zation is based on several convexity-like concepts, including CK-convexity, (C,K)-convexity, and

C-(K1,K2)-convexity. Other studies discussing a similar pattern include Li et al. (2009). All of

these studies assume that price is exogenously given rather than constituting a decision, whereas

price is a decision in this paper.

This study also contributes to the stream of research on joint pricing and inventory models. Our

model has settings similar to the model in Federgruen and Heching (1999), who focused on linear

ordering/production cost functions. Federgruen and Heching (1999) proved that the base-stock

list-price policy is optimal, and showed the benefit of integrating pricing and inventory control

decisions via numerical examples. Li and Zheng (2006) studied the same model with random yields,

and showed that an extended base-stock list-price policy is optimal. When a fixed production cost

is involved, however, the base-stock list-price policy is not optimal in general. Studies along this

line focused primarily on the optimality of (s,S, p) policy and its extensions. For the linear variable

production cost case, if demand uncertainty follows the additive model, Thomas (1974) adopted the

concept of K-convexity introduced by Scarf (1960) and proved that the (s,S, p) policy is optimal.

However, Chen and Simchi-Levi (2004) provided a counterexample showing that such a policy could

be suboptimal if the demand model involves a multiplicative uncertainty term. They introduced a

concept called sym-K-convexity and proved the optimality of a so-called (s,S,A, p) policy, which

can be seen as an extension of the (s,S, p) policy. Chen et al. (2010) studied the joint pricing and

inventory control problem with a concave production cost, and proved that a generalized (s,S, p)

policy is optimal if demand follows an additive model and the random noise is Pólya or uniform.

When production quantity is capacitated and demand uncertainty follows the additive model, both

Chao et al. (2012) and Zhang et al. (2012a) used the CK-convexity introduced by Gallego and

Scheller-Wolf (2000) to show that the optimal policy is of an (s,S, p)-like structure. Compared with

these studies, our setting is more general in terms of cost structure, demand model, and demand

distribution. Therefore, the results of this study have wider applications for various real scenarios.
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The reminder of this paper is organized as follows. We provide the basic model settings in Section

2. In Section 3, we focus on the case of a convex variable cost plus a fixed cost, and fully characterize

the optimal policy of the problem in two special cases. We then move to the general problem and

develop an easy-to-implement heuristic policy and analyze its performance bound. We also test its

performance in extensive numerical studies. Section 4 is parallel to Section 3, but our focus is on the

case of a concave variable cost plus a fixed cost. Furthermore, Section 5 propose two new convexity-

like concepts, namely, κ-convexity and sym-κ-convexity, together with corresponding preservation

results, and then characterizes the optimal policies of the general multi-period problems for both

convex and concave cases. Conclusions are drawn in Section 6. To streamline the discussion, all of

the proofs of our results are presented in the Appendix.

2. Model Setting

We consider a firm that makes joint inventory and pricing decisions to satisfy a sequence of demands

for a single product over a T -period planning horizon. In each period t, the firm observes the initial

inventory level x at the beginning of the period, then selects a selling price p from a bounded

interval Pt and decides a production quantity z ≥ 0 simultaneously. Producing quantity z > 0 incurs

a cost

c(z) =
∑n

i=1
(Ki + ciz)1{qi−1<z≤qi}, (1)

where ci ≥ 0 for all i, 0 = q0 < q1 < · · ·< qn−1 < qn = +∞, K1 ≥ 0, Ki+1 =Ki− (ci+1− ci)qi for all

1≤ i < n, and 1{·} is the indicator function. We define c(0) =K1. Observe that c(z) is increasingly

continuous, and consists of n linear pieces. Producing z > 0 incurs a fixed cost c(0) =K1 ≥ 0. Thus,

the production cost can be expressed by c(z)1{z>0} for any z ≥ 0. In this paper, we are interested

in the following two cases(see Figure 1 for an illustration):

(i) c(z) is convex, implying that c1 < c2 < · · ·< cn and K1 >K2 > · · ·>Kn; and

(ii) c(z) is concave, implying that c1 > c2 > · · ·> cn and K1 <K2 < · · ·<Kn.

z

c(z)

K1 + c1z

K2 + c2z

K3 + c3z
q1 q20 0

z

c(z)

K3 + c3z

K2 + c2z

K1 + c1z
q1 q2

Figure 1 Cost function c(z): convex case (left) and concave case (right)
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After production in period t, demand Dt for this period is realized and satisfied with the on-

hand inventory. We assume that it follows a general model Dt = ξtdt(p) + εt, where ξt and εt

are random variables with ξt > 0,Eξt = 1 and Eεt = 0. Moreover, d = dt(p) denotes the expected

demand associated with selling price p∈Pt. Similar to Chen and Simchi-Levi (2004), we consider

its inverse function p= pt(d) over Dt = {dt(p) : p∈Pt} and express demand in term of d as

Dt = ξtd+ εt, ∀d∈Dt. (2)

In addition, we assume that random vectors (ξt, εt) are independent across time period t, demand

Dt is non-negative with probability 1, price pt(d) is continuous, and expected revenue dpt(d) is

concave in d ∈Dt. Note that the demand model is called multiplicative when εt ≡ 0, and additive

when ξt ≡ 1 for all 1≤ t≤ T .

After satisfying realized demand Dt in period t with the on-hand inventory, any leftover inventory

is carried over to the next period, and any unsatisfied demand is backlogged. This incurs an

associated inventory holding and shortage cost ht(I) in terms of inventory level I at the end of

period t. We assume that

ht(I) =−h−t (0∧ I) +h+
t (0∨ I),

where coefficients h−t and h+
t are non-negative for all 1≤ t≤ T , and a∧ b= min{a, b} and a∨ b=

max{a, b} for any real numbers a and b.

Let γ ∈ [0,1] be the discount factor. The firm’s objective is to find an inventory and pricing

policy to maximize the total expected discounted profit over the entire planning horizon. For each

period t= 1, · · · , T , given the initial inventory level x in this period, the profit-to-go function vt(x)

satisfies the following dynamic programming:

vt(x) = max
z≥0

{
ut(x+ z)− c(z)1{z>0}

}
, (3a)

ut(y) = max
d∈Dt

{
dpt(d)−Eht(y− ξtd− εt) + γEvt+1(y− ξtd− εt)

}
, (3b)

where ut(y) can be interpreted as the maximal expected profit-to-go after raising the inventory

level to y in period t. In addition, for notational convenience, we suppose that there is no terminal

value at the end of the planning horizon, i.e., vT+1(x) = 0. In the following, we denote z∗t (x) and

d∗t (y) as the optimal solutions to problems (3a) and (3b), respectively. Note that the optimal selling

price can be expressed as p∗t (x) = pt(d
∗
t (z
∗
t (x) +x)).

To characterize the optimal policy, we define function v0
t (x) as below to represent the profit-to-go

function in period t if the fixed cost c(0) =K1 always incurs even when nothing is produced (i.e.,

z = 0), i.e.,

v0
t (x) = max

z≥0

{
ut(x+ z)− c(z)

}
. (4)

We denote z0
t (x) as an optimal solution to problem (4). Moreover, by K1 ≥ 0,

vt(x) = v0
t (x)∨ut(x). (5)
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Similar to an assumption made in Federgruen and Heching (1999), we assume that lim
|y|→∞

[ut(y)−
ciy] =−∞ for each 1≤ i≤ n and hence St(ci) and Pt(ci) are finite, where for any a, we define

St(a) = minarg max
y

{ut(y)− ay} and Pt(a) = pt(d
∗
t (St(a))). (6)

As ut(y)− ay is submodular in (a, y), by Theorem 2.8.2 in Topkis (1998), St(a) is decreasing in a.

This implies that St(c1)≥ · · · ≥ St(cn) when c(z) is convex, and St(c1)≤ · · · ≤ St(cn) when c(z) is

concave. Furthermore, we define Ot as the set of initial inventory levels at which it is optimal to

produce in period t. From the definitions of z∗t (x) and v0
t (x), it is straightforward to see that

Ot = {x : z∗t (x)> 0}= {x : v0
t (x)>ut(x)}.

In addition, let Oct be the complement of set Ot. Observe that Ot ⊆ {x<Rt} with Rt given by

Rt = min{x : x∈Oct}= min
{
x : v0

t (x)≤ ut(x)
}
. (7)

3. Convex Variable Cost

When the variable cost function c(z) is convex, we first characterize the optimal policy of model (3)

for two special cases. Subsection 3.1 studies the case without a fixed production cost (i.e., K1 = 0).

This is a special case of the general problem with a well-structured optimal policy and interesting

insights. Moreover, its result can help us to establish the results in many other cases. Subsection

3.2 studies the single-period problem. The optimal joint pricing and inventory control policy can

be fully characterized and is well-structured. More importantly, such characterization helps us to

better understand the structure of the optimal policy for the general problem, and motivates us

to develop a practically implementable and efficient heuristic policy in Subsection 3.3. Numerical

studies testing the policy’s performance are presented in Subsection 3.4.

3.1. No Fixed Cost Problem

Consider the multi-period problem with zero fixed production cost, i.e., K1 = 0. In this case, by

c(0) =K1 = 0, we have c(z)1{z>0} = c(z) for all z ≥ 0, implying that vt(x) = v0
t (x) and z∗t (x) = z0

t (x)

in each period t. Furthermore, because dpt(d) is concave in d and ht(y) is convex, by the convexity of

c(z), one can inductively verify that both problem (3b) and problem (5) are concave maximization

problems, implying that ut(y) are concave for t= T, · · · ,1. In this case, we have the following result

for problem (5) and its optimal solution z0
t (x).

Proposition 1. When ut(y) is concave and c(z) is convex, Rt ≤ St(c1), and v0
t (x) > ut(x) if

and only if x<Rt. Moreover, an optimal solution to problem (4) is

z0
t (x) =


0 if x≥ St(c1),

St(ci)−x if St(ci)− qi ≤ x<St(ci)− qi−1 for 1≤ i≤ n,

qi if St(ci+1)− qi ≤ x<St(ci)− qi for 1≤ i < n.

(8)
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Proposition 1 completely characterizes the production policy when ut(y) is concave. Specifically,

it states that a firm should produce if and only if the initial inventory level is below the threshold

Rt ≤ St(c1). Moreover, it also provides a closed form of the optimal solution z0
t (x) that solves

problem (4). Notice that z0
t (x) is decreasing and piecewise linear in x, which is equal to 0 or belongs

to the set {St(ci)−x, qi : 1≤ i≤ n}.

By Proposition 1, we are able to characterize the optimal policy in each period as below.

Theorem 1. When K1 = 0 and c(z) is convex, Ot = {x<St(c1)}, z∗t (x) = z0
t (x) with z0

t (x) given

in (8), and p∗t (x) = Pt(ci) if z∗t (x) = St(ci)−x. Furthermore, z∗t (x) and p∗t (x) are decreasing in x.

Figure 2 illustrates the optimal policy specified in Theorem 1. In each period t, the state space

can be partitioned into at most 2n regions. Over each region, either z∗t (x) or p∗t (x) must be a

constant, whereas the other is decreasing in x, implying that the firm should either reduce the

production quantity or charge a lower price in response to a higher initial inventory level. However,

these two strategies should be applied alternatively, not simultaneously. In particular, when z∗t (x)

is decreasing over some region, it has the specific expression z∗t (x) = St(ci)−x, i.e., the firm should

produce up to a constant level St(ci) and charge a constant price Pt(ci). When z∗t (x) = qi, which

means when the produce up to level z∗t (x)+x increases, the optimal price should decrease as shown

in Figure 2. This is an indication of a multi-list-price policy.

q4

q3

q2

q1

q0 = 0 x

z∗t (x)

St(c1)St(c1)− q1St(c2)− q1St(c2)− q2St(c3)− q2St(c3)− q3St(c4)− q3

Pt(c2)

Pt(c3)

Pt(c4)

p∗t (x)

Figure 2 Optimal production quantity z∗t (x) and price p∗t (x) when c(z) is convex and K1 = 0
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3.2. Single-Period Problem

Now we consider the optimal policy of the single-period problem with K1 > 0. The single-period

model corresponds to a perishable product whose inventory cannot be carried over to the next

period. The optimal policy for the single-period problem can also help us to understand the optimal

policy of the multi-period problem.

We only need to consider the last period t = T . In this case, observe that ut(y) is obviously

concave by the convexity of ht(y). Recall that Rt = min{x : v0
t (x)≤ ut(x)}. Thus, Proposition 1

remains valid, which implies that Rt ≤ St(c1) and vt(x) = v0
t (x)> ut(x) if and only if x <Rt, i.e.,

Ot = {x<Rt}. Furthermore, the optimal policy can be characterized as below.

Theorem 2. When t= T and c(z) is convex, Rt ≤ St(c1), Ot = {x <Rt}, z∗t (x) = z0
t (x)1{x<Rt}

with z0
t (x) given in (8), and p∗t (x) = Pt(ci) when z∗t (x) = St(ci)−x. Furthermore, z∗t (x) is decreasing

in x, and p∗t (x) is decreasing when x<Rt, increasing at x=Rt, and decreasing when x>Rt.

Figure 3 illustrates Theorem 2. It shows that for the single-period problem, production is exe-

cuted if and only if the initial inventory level x falls below a threshold Rt ≤ St(c1). When x<Rt,

the optimal production quantity z∗t (x) and optimal price p∗t (x) are the same as those for the case

studied in the previous subsection. At x=Rt, z
∗
t (x) jumps down to 0, and p∗t (x) takes an upward

jump. When x > Rt, the firm should produce nothing and charge a lower price when the initial

inventory level x increases.

q4

q3

q2

q1

0 x

z∗t (x)

z∗t (x)

RtSt(c2)− q1St(c2)− q2St(c3)− q2St(c3)− q3St(c4)− q3

Pt(c2)

Pt(c3)

Pt(c4)
p∗t (x)

p∗t (x)

Figure 3 Optimal production quantity z∗t (x) and price p∗t (x) in the last period t= T when c(z) is convex
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3.3. Heuristic for Multi-Period Problem

We now move to the general multi-period problem with K1 > 0. Unlike the special cases studied

in Subsections 3.1 and 3.2, the profit-to-go function is not concave in this case. Due to the lack

of concavity, it is not surprising that both the analysis and the structure of the optimal policy

become much more complicated. Thus, in this subsection, we develop easy-to-implement heuristic

policies and show their worst-case performance bounds.

To circumvent the challenge brought by the lack of concavity, we need a concept called a lower

convex envelope. Specifically, the lower convex envelope of a function f(x), denoted by f e(x), follows

the definition below and denotes the largest convex function such that f e(x)≤ f(x) for all x:

f e(x) = inf {(1−λ)f(x0) +λf(x1) : x= (1−λ)x0 +λx1, λ∈ [0,1]} .

Proposition 2 below provides an interesting and useful result for the function and its lower convex

envelope, which plays an important role in estimating the performance of Algorithm 1.

Proposition 2. Suppose f(x) is continuous and f e(x) is the lower convex envelope of f(x).

If lim inf
x→+∞

[x−1f(x)]> 0 (or limsup
x→−∞

[x−1f(x)]< 0) and f(x) has a greatest (or least) minimizer x∗,

then x∗ is also the greatest (or least) minimizer of f e(x) and satisfies f(x∗) = f e(x∗).

The following heuristic policy has the same structure as the optimal policy for the single-period

problem studied in Subsection 3.2. It shows how to compute the heuristic inventory and pricing

policy, denoted by z̄t(x) and p̄t(x), backwards from period T to period 1.

Algorithm 1. Initialize v̄T+1(x) = vT+1(x). Consider any t= T, · · · ,1.

1. Compute ūt(y) as below and let d̄t(y) be the corresponding optimal solution:

ūt(y) = max
d∈Dt

{
dpt(d)−Eht(y− ξtd− εt) + γEv̄t+1(y− ξtd− εt)

}
.

2. For each 1≤ i≤ n, compute S̄t(ci) = minarg max{ūt(y)− ciy}. Define

z̄0
t (x) =


0 if x≥ S̄t(c1),

S̄t(ci)−x if S̄t(ci)− qi ≤ x< S̄t(ci)− qi−1 for 1≤ i≤ n,

qi if S̄t(ci+1)− qi ≤ x< S̄t(ci)− qi for 1≤ i < n.

and v̄0
t (x) = ūt(x+ z̄0

t (x))− c(z̄0
t (x)).

3. Compute R̄t = sup{x : v̄0
t (x)> ūt(x)} and

z̄t(x) =

z̄
0
t (x), if x< R̄t,

0, if x≥ R̄t.
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4. Compute ȳt(x) = x+ z̄t(x), p̄t(x) = pt(d̄t(ȳt(x))) and v̄t(x) =

v̄
0
t (x), x < R̄t,

ūt(x), x≥ R̄t.

In Algorithm 1, given the profit-to-go function v̄t+1(x) under the heuristic policy, Step 1 obtains

ūt(y) and d̄t(y) as counterparts of ut(y) and d∗t (y), which are associated with problem (3b). In other

words, given the after-production inventory level y in period t, ūt(y) is the profit generated by the

heuristic policy and d̄t(y) is the expected demand chosen by the heuristic policy. Step 2 computes

S̄t(a) for any a ∈ {c1, · · · , cn}, which is the heuristic counterpart of St(a) in (6). Moreover, z̄0
t (x)

is the heuristic counterpart of production quantity z0
t (x), and v̄0

t (x) represents the profit-to-go

associated with z̄0
t (x). Note that z̄0

t (x)> 0 if and only if x< S̄t(c1).

Step 3 selects a threshold point R̄t as the maximum of the initial inventory level above which

producing nothing is always no worse than producing a positive amount in the heuristic. In other

words, if x > R̄t, then the firm would be better off producing nothing rather than z̄0
t (x) in the

heuristic. By K1 = c(0)> 0, if x≥ S̄t(c1), then v̄0
t (x) = ūt(x)− c(0)< ūt(x) and hence R̄t < S̄t(c1).

Thus, z̄0
t (x)> 0 when x< R̄t, implying that R̄t is the threshold below which we produce a positive

amount in the heuristic. Consequently, the heuristic inventory policy z̄t(x) is defined as z̄0
t (x) if

x < R̄t and zero otherwise, which has the same structure as the optimal policy for the single-

period problem (see Theorem 2). Finally, Step 4 generates the after-production inventory level

ȳt(x) under the heuristic inventory policy and the heuristic pricing policy p̄t(x) by applying the

expected demand d̄t(y) of the heuristic policy computed in Step 1 and the profit v̄t(x) obtained by

the heuristic policy from period t to the end of the planning horizon. Notice that functions ūt, v̄
0
t ,

and v̄t obtained in the algorithm may not be concave in general when t < T .

With Proposition 2, we are able to show the performance of Algorithm 1 as below.

Theorem 3. In any period t= 1, · · · , T , v̄t(x) obtained by Algorithm 1 satisfies

0≤ vt(x)− v̄t(x)≤
∑T−t

i=0
[(2i+ 1)K1]γi−K1γ

T−t. (9)

Moreover, the heuristic policy is optimal, i.e., v̄t(x) = vt(x), if any of the following conditions holds:

(a) it is a single period problem, i.e., t= T ;

(b) the fix cost K1 = 0; or

(c) an (s,S) policy is optimal to problem (3a), e.g., demand uncertainty follows the additive model

and the fixed cost K1 >
(∑T

i=t γ
i−th−i − cn

)
qn−1−

∑n−1

i=1 (ci− ci+1)qi for any 1≤ t≤ T .

Theorem 3 gives the performance bound of Algorithm 1 in (9), which only depends on the

fixed cost K1, the number of periods T , and the discounted factor γ. Furthermore, it also lists

three important cases in which the heuristic policy is optimal. In particular, part (a) and part (b)

correspond to the single-period case and the case without the fixed cost K1, which are consistent
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with Theorem 1 and Theorem 2, respectively. Moreover, if the fixed cost K1 is sufficiently large

and demand uncertainty is additive, then part (c) states that the heuristic policy is also optimal

and is reduced to an (s,S) policy.

When γ = 1, note that the performance bound of Algorithm 1 is quadratic in the number of

periods T . We now provide another heuristic policy with a worst-case performance bound that is

linear in T . It has the same structure as the optimal policy for the case without a fixed cost, which

is illustrated in Figure 2.

Algorithm 2. Let v̂0
T+1(x) = vT+1(x) and v̂T+1(x) = vT+1(x) for any x. Consider any t =

T, · · · ,1.

1. For each y, compute ût(y) as below and let d̂t(y) be the corresponding optimal solution:

ût(y) = max
d∈Dt

{
dpt(d)−Eht(y− ξtd− εt) + γEv̂0

t+1(y− ξtd− εt)
}
.

2. For any a∈ {c1, · · · , cn}, compute Ŝt(a) = minarg maxy {ût(y)− ay}. For any x, define

ẑt(x) =


0 if x≥ Ŝt(c1),

Ŝt(ci)−x if Ŝt(ci)− qi ≤ x< Ŝt(ci)− qi−1 for 1≤ i≤ n,

qi if Ŝt(ci+1)− qi ≤ x< Ŝt(ci)− qi for 1≤ i < n.

and v̂0
t (x) = ût(x+ ẑt(x))− c(ẑt(x)).

3. For each x, compute ŷt(x) = x+ ẑt(x), p̂t(x) = pt(d̂t(ŷt(x))), and

v̂t(x) = d̂t(ŷt(x))p̂t(x)−Eht
(
ŷt(x)− ξtd̂t(ŷt(x))− εt

)
+ γEv̂t+1

(
ŷt(x)− ξtd̂t(ŷt(x))− εt

)
− c(ẑt(x))1{ẑt(x)>0}.

Steps 1 and 2 of Algorithm 2 are very similar to those of Algorithm 1. The only difference is

that ût(y) and d̂t(y), which are the heuristic counterparts of ut(y) and d∗t (y), are computed using

v̂0
t (x), which is the heuristic counterpart of v0

t (x). The basic idea of Algorithm 2 is to assume that

the fixed cost K1 is always charged in each period no matter whether the firm produces or not.

This means that the value of K1 does not affect the heuristic policy. Hence, functions ût, v̂
0
t and

v̂t obtained in the algorithm are concave. Moreover, the structure of the heuristic policy, i.e., ẑt(x)

and p̂t(x), is the same as that of the case without a fixed cost, which is shown in Theorem 1 of

Subsection 3.1. As the actual production cost in a period is zero if nothing is produced, the actual

profit of implementing the heuristic policy, which is v̂t(x) computed in Step 3, is larger than v̂0
t (x).

The performance of heuristic Algorithm 2 is given by the following theorem.

Theorem 4. For any period t, 0≤ vt(x)− v̂t(x)≤
∑T−t

i=0 γ
iK1.

Theorem 4 shows that the performance bound of Algorithm 2 is linear in T when γ = 1, which

is better than that of Algorithm 1. Nevertheless, we need to point out that the latter has the
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advantage of a threshold-type structure in its Step 3, which makes Algorithm 1 optimal in the single

period problem according to Theorem 3(a) and also optimal when ξt ≡ 1 and K1 is sufficiently

large according to Theorem 3(c). Through extensive numerical studies, we find that Algorithm 1

performs as well as, if not better than, Algorithm 2 when K1 is small, and outperforms Algorithm

2 when K1 is large, which is shown in the next subsection. In summary, we recommend Algorithm

1 to be implemented in practice. The purpose of presenting Algorithm 2 is to support Algorithm 1

by numerically comparing its performance with an algorithm whose worst-case performance bound

is O(TK1).

3.4. Numerical Analysis

This subsection uses a set of numerical experiments to demonstrate that the heuristic policy accord-

ing to Algorithm 1 is very close to optimal and outperforms that of Algorithm 2, especially for a

large fixed cost K1. The experiments are designed as follows. For each n∈ {2,3}, 100 instances with

12 periods, i.e., T = 12, are generated independently and considered for all K1 ∈ {20,40,60,80}.

In addition to the production cost specified by K1, ci for all 1≤ i≤ n, and qi for all 1≤ i < n,

we also impose a production capacity denoted by qn for each period. For all instances, cn is fixed

to 1, ci for all 1≤ i < n are set to the order statistics of n− 1 uniform random numbers in [0.6,1],

and qi for all 1≤ i≤ n are set to the order statistics of n uniform random numbers in [200,1200].

For any 1≤ t≤ 12, the inventory holding and shortage penalty cost is defined as ht(I) = aI+ + bI−,

where a and b are uniformly generated in [0.02,0.2]. The salvage value at the end of the planning

horizon is vT+1(x) = aT+1x
+− bT+1x

−, where aT+1 and bT+1 are uniformly generated in [0,0.4] and

[1.4,2.2], respectively. Furthermore, the discount factor γ is fixed to 0.95.

For the demand model, we let Dt = [200,500] for any 1 ≤ t ≤ 12. The price as a function of

demand is set to pt(d) = α−βd, where α and β are uniformly generated in [5,6] and [0.005,0.0075],

respectively. We assume that ξt and εt are independent and have stationary distributions over time.

The distribution of ξt is randomly selected from the following:

• a uniform distribution on the support {0.6,0.8,1,1.2,1.4}; or

• a discretized normal distribution such that P (ξt = 0.6) = Φ(0.7,1, σξ), P (ξt = ξ) = Φ(ξ +

0.1,1, σξ)−Φ(ξ − 0.1,1, σξ) for all ξ ∈ {0.8,1,1.2}, and P (ξt = 1.4) = 1−Φ(1.3,1, σξ), where σξ is

uniformly generated in [0.1,0.3] and Φ(·, µ,σ) denotes the cumulative distribution function of a

normal distribution with mean µ and standard deviation σ.

Similarly, the distribution of εt is randomly selected from the following:

• a uniform distribution on the support {−100,−60,−20,20,60,100}; or

• a discretized normal distribution such that P (εt = −100) = Φ(−80,0, σε), P (εt = ε) = Φ(ε+

20,0, σε)−Φ(ε− 20,0, σε) for all ξ ∈ {−60,−20,20,60}, and P (εt = 100) = 1−Φ(80,0, σε), where

σε is uniformly generated in [30,60].
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Table 1 Performance of Algorithms 1 and 2 (%)

n= 2 t= 1 t= 2 t= 3 t= 4 t= 5 t= 6 t= 7 t= 8 t= 9 t= 10 t= 11

K1 = 20

Alg 1
Avg 99.998 99.998 99.997 99.997 99.997 99.996 99.996 99.996 99.995 99.994 100

Min 99.926 99.908 99.920 99.898 99.867 99.895 99.853 99.911 99.862 99.747 99.996

Alg 2
Avg 99.623 99.610 99.594 99.573 99.547 99.513 99.476 99.409 99.320 99.183 98.924

Min 98.592 98.598 98.609 98.616 98.634 98.644 98.671 98.674 98.704 98.582 98.349

K1 = 40

Alg 1
Avg 99.995 99.994 99.994 99.995 99.994 99.994 99.993 99.992 99.991 99.987 99.990

Min 99.801 99.802 99.803 99.808 99.818 99.824 99.814 99.801 99.823 99.782 99.501

Alg 2
Avg 98.925 98.902 98.875 98.834 98.790 98.733 98.671 98.552 98.416 98.185 97.803

Min 97.036 97.049 97.066 97.064 96.847 96.897 96.998 96.879 96.962 96.557 96.601

K1 = 60

Alg 1
Avg 99.997 99.996 99.996 99.995 99.994 99.993 99.991 99.989 99.979 99.965 99.934

Min 99.927 99.926 99.903 99.908 99.873 99.844 99.840 99.813 99.659 99.561 98.951

Alg 2
Avg 98.043 98.011 97.975 97.915 97.854 97.771 97.691 97.522 97.343 97.020 96.634

Min 95.032 95.020 95.005 94.995 94.528 94.641 94.750 94.831 94.518 94.392 94.758

K1 = 80

Alg 1
Avg 99.996 99.995 99.995 99.993 99.992 99.992 99.986 99.985 99.969 99.957 99.927

Min 99.935 99.930 99.911 99.883 99.865 99.808 99.800 99.736 99.505 99.204 99.279

Alg 2
Avg 97.035 96.994 96.950 96.870 96.794 96.686 96.590 96.368 96.150 95.729 95.391

Min 92.648 92.607 92.627 92.635 92.065 92.238 92.368 92.399 91.783 92.183 92.693

n= 3 t= 1 t= 2 t= 3 t= 4 t= 5 t= 6 t= 7 t= 8 t= 9 t= 10 t= 11

K1 = 20

Alg 1
Avg 100 100 100 100 100 100 100 100 100 100 100

Min 100 99.999 99.999 99.999 99.999 99.999 99.999 99.999 99.994 99.963 99.999

Alg 2
Avg 99.616 99.602 99.588 99.568 99.544 99.516 99.478 99.423 99.346 99.214 98.949

Min 98.558 98.558 98.557 98.558 98.557 98.557 98.557 98.552 98.563 98.613 98.450

K1 = 40

Alg 1
Avg 100 100 100 99.999 99.999 99.999 99.999 99.998 99.997 99.994 99.990

Min 99.992 99.991 99.988 99.985 99.982 99.976 99.969 99.952 99.917 99.818 99.550

Alg 2
Avg 98.943 98.918 98.893 98.856 98.812 98.764 98.700 98.604 98.484 98.254 97.853

Min 96.724 96.713 96.728 96.741 96.713 96.767 96.765 96.712 96.967 96.702 96.744

K1 = 60

Alg 1
Avg 99.996 99.996 99.996 99.996 99.997 99.996 99.995 99.993 99.991 99.985 99.966

Min 99.782 99.745 99.743 99.806 99.908 99.875 99.817 99.835 99.845 99.847 99.407

Alg 2
Avg 98.056 98.019 97.986 97.935 97.874 97.811 97.722 97.592 97.443 97.113 96.707

Min 94.669 94.662 94.723 94.730 94.716 94.861 94.782 94.823 95.245 94.689 94.864

K1 = 80

Alg 1
Avg 99.998 99.997 99.997 99.996 99.996 99.995 99.993 99.992 99.988 99.981 99.957

Min 99.933 99.921 99.900 99.885 99.925 99.896 99.847 99.865 99.867 99.634 99.475

Alg 2
Avg 97.009 96.963 96.924 96.859 96.785 96.708 96.600 96.442 96.269 95.831 95.507

Min 92.519 92.534 92.638 92.619 92.660 92.861 92.696 92.879 93.386 92.632 92.820

For each instance and K1 ∈ {20,40,60,80}, the optimal dynamic programming recursion in model

(3) computes the optimal policy {z∗t (x), p∗t (x)} and the optimal profit vt(x), whereas Algorithms 1

and 2 obtain the heuristic policies {z̄t(x), p̄t(x)} and {ẑt(x), p̂t(x)} and the corresponding profits

v̄t(x) and v̂t(x), respectively. The performances of Algorithms 1 and 2 are measured by

inf
x∈[−800,800]:
vt(x)>0

v̄t(x)

vt(x)
× 100% and inf

x∈[−800,800]:
vt(x)>0

v̂t(x)

vt(x)
× 100%,
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which correspond to the percentage of the optimal profit that can be achieved by Algorithms 1

and 2, respectively. In other words, if the performance measure of a policy is a%, then the profit

of the policy is a% of the maximal profit of the optimal policy. Also note that the performance

measure is evaluated for initial inventory levels falling into the interval [−800,800], where 800 is

the maximum possible demand one can observe in any period.

Table 1 presents the profits of Algorithms 1 and 2 as percentages of the optimum for any

n, K1, and t. As 100 instances are available for each combination, we report the average and

minimum profits for the 100 instances in the rows headed “Avg” and “Min”, respectively. Note

that t corresponds to a (T − t+1)-period problem. As T = 12, we omit the results of t= 12 because

our heuristic policy is always optimal for the single period problem.

Table 1 demonstrates that Algorithm 1 is very close to optimal. For all of the instances generated,

it achieves 99.992% of the optimal profit on average and obtains 98.951% of the optimal profit

in the worst case. When n increases from 2 to 3, the average and worst-case profits change from

99.989% and 98.951% to 99.995% and 99.407%, respectively, which indicates that there is no

significant difference when n varies. Moreover, the performance tends to improve as t decreases.

Because the profit for period t corresponds to that of a (T − t+1)-period problem, this observation

implies that the performance of Algorithm 1 (in terms of percentage) will not deteriorate when the

planning horizon expands. We also observe that the performance of Algorithm 1 is not sensitive

to the fixed cost K1, unlike Algorithm 2. The performance of Algorithm 2 is also satisfactory,

achieving 98.055% of the optimal profit on average. However, its performance is shadowed by that

of Algorithm 1, especially for a large K1. For example, when K1 = 80, the average and minimum

profits of Algorithm 2 are 96.521% and 91.783%, respectively, which are 3.465% and 7.421% smaller

than those of Algorithm 1, respectively.

4. Concave Variable Cost

In this section, we focus on the case where the variable cost function c(z) is concave. Specifically,

we first characterize the optimal joint pricing and inventory policy for the single-period problem

in Subsection 4.1, which is well-structured. Based on this structure, a practically implementable

and efficient heuristic policy is developed for the multi-period problem in Subsection 4.2. The

performance of the heuristic is explored through extensive numerical studies in Subsection 4.3.

This section is parallel to Section 3, which considers the convex variable cost, but here we do not

study the special case of zero fixed cost because it does not lead to a significantly simpler optimal

policy for the multi-period problem when the variable cost is concave.
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4.1. Single-Period Problem

In this subsection, we study the optimal policy of the single-period problem. Hence, we only need

to focus on the last period t= T . As function ut(y) in problem (3a) is concave, it is known (see,

e.g., Chapter 9 in Porteus 2002) that a generalized (s,S) policy is optimal for problem (3a). That

is, there are m≤ n and

sm ≤ sm−1 ≤ · · · ≤ s1 ≤ S1 ≤ · · · ≤ Sm−1 ≤ Sm, (10)

such that it is optimal to raise the inventory level to Sm if x < sm, to Si if si+1 ≤ x < si for

1≤ i <m, and to x if x≥ s1. Furthermore, Lemma 9.13 in Porteus (2002) shows how to calculate

{(sj, Sj) : 1≤ j ≤m}. To develop the heuristic policy for the multi-period problem, we provide an

alternative method for determining the optimal generalized (s,S) policy for problem (3a), which

is shown in the following algorithm.

Algorithm 3. 1. For each 1≤ i < n, compute

ri = max
i<j≤n

sup{x : [ut (St(ci))− c (St(ci)−x)]< [ut(St(cj))− c (St(cj)−x)]} .

2. Let I = {1≤ i < n : ri <St(ci)} ∪ {n} and denote by I = {i1 < i2 < · · ·< ik = n}. Observe that

I = {n} if it has only one element.

3. Initialize J = {i1}. For each 1< l < k, sequentially add index il ∈ I into J when ril <min{ril′ :

1≤ l′ < l}. Finally, add index ik = n into J and denote by J = {j1 < · · ·< jm−1 < jm = n}.
Observe that J = {n} if it has only one element.

4. Compute sequence {(sl, Sl) : 1≤ l≤m} by letting s1 = S1 = St(cj1), sl = rjl−1
and Sl = St(cjl)

for each l= 2, · · · ,m.

In Algorithm 3, ri in Step 1 is well-defined because the concavity of c(z) and St(ci)≤ St(cj) imply

that [ut (St(ci))− c (St(ci)−x)]− [ut(St(cj))− c (St(cj)−x)] is increasing in x. This monotonicity

implies that

ut (St(ci))− c (St(ci)−x)≥ max
j:i<j≤n

[ut(St(cj))− c (St(cj)−x)]

if x> rt and

ut (St(ci))− c (St(ci)−x)< max
j:i<j≤n

[ut(St(cj))− c (St(cj)−x)]

if x < rt. That is, given the initial inventory level x, if x > ri, then raising the inventory level to

St(ci) is more beneficial than raising it to St(cj) for any j > i; otherwise, it is less beneficial than

raising the inventory level to St(cj) for some j > i.

Step 2 generates the index set I by collecting all indices i such that either ri < St(ci) or i= n.

Step 3 further generates an index set J ⊆ I such that ri > rj for any i, j ∈J with i < j. Note that

sl and Sl obtained in Step 4 for 1≤ l≤m satisfy inequality (10), s1 = S1, and Sm = St(cn).

The following proposition helps us to characterize the optimal solution to problem (3a).
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Proposition 3. If a generalized (s,S) policy is optimal to problem (3a), then Rt ≤ s1 and

v0
t (x)>ut(x) if and only if x<Rt, and for any x<Rt,

z0
t (x) =

Sm−x, if x< sm,

Sl−x, if sl+1 ≤ x< sl and 1≤ l <m,
(11)

where the sequence {(sl, Sl) : 1≤ l≤m} is computed by Algorithm 3.

Proposition 3 states that there is a threshold Rt ≤ s1 below which we produce and above which

we do not produce. Please note that this study uses Rt instead of s1 to denote the reproduce point.

Moreover, Proposition 3 provides a closed form of an optimal solution z0
t (x) that solves problem

(4) when x<Rt, which only depends on St(ci) and ut(St(ci)) for all 1≤ i≤ n.

We are ready to characterize the optimal policy in the last period t= T as follows. Recall that

Rt = min{x : v0
t (x)≤ ut(x)}.

Theorem 5. When t = T and c(z) is concave, Ot = {x < Rt}, Rt ≤ s1, z∗t (x) = z0
t (x)1{x<Rt}

with z0
t (x) given in (11), and p∗t (x) = Pt(cjl) when z∗t (x) = Sl−x. Furthermore, z∗t (x) is decreasing

in x, and p∗t (x) is increasing when x≤Rt and decreasing when x≥Rt.

Figure 4 illustrates Theorem 5. It shows that for the single-period problem, production is exe-

cuted if and only if the initial inventory level x falls below a threshold Rt. The state space on

the left side of Rt can be partitioned into m regions with m ≤ n. Over each region, we have

z∗t (x) = St(cj)−x and pt = Pt(cj) for some 1≤ j ≤ n, i.e., the firm should produce up to a constant

level St(cj) and charge a constant price Pt(cj). As the initial inventory level x increases, the optimal

production quantity z∗t (x) decreases when x<Rt, jumps down to 0 at x=Rt and then remains 0

for all x >Rt. Moreover, the optimal price p∗t (x) increases when x≤Rt and then decreases when

x≥Rt. This suggests that if production is executed, then the firm should produce less and charge

more in response to a higher initial inventory level. However, if production is not executed, then

the firm should offer a deeper price discount for a higher initial inventory level.

4.2. Heuristic for the Multi-Period Problem

Similar to Section 3.3, in this subsection we provide a heuristic policy and show its worst-case

performance for a concave c(z). The following heuristic policy has the same structure as the optimal

policy for the single-period problem illustrated in Figure 4 in Subsection 4.1. It shows how to

compute the heuristic inventory and pricing policy, denoted by z̄t(x) and p̄t(x).

Algorithm 4. Initialize v̄T+1(x) = vT+1(x). Consider any t= T, · · · ,1.

1. Compute ūt(y) as below and let d̄t(y) be the corresponding optimal solution:

ūt(y) = max
d∈Dt

{
dpt(d)−Eht(y− ξtd− εt) + γEv̄t+1(y− ξtd− εt)

}
.
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Figure 4 Optimal production quantity z∗t (x) and price p∗t (x) in the last period t= T when c(z) is concave

2. For each 1≤ i≤ n, compute S̄t(ci) = minarg max{ūt(y)− ciy} and ūt(S̄t(ci)). Apply Algorithm

3 to obtain index set J and sequence {(sl, Sl) : 1≤ l≤m} with St(ci) and ut(St(ci)) replaced

by S̄t(ci) and ūt(S̄t(ci)) for all 1≤ i≤ n, respectively. Define

z̄0
t (x) =

Sm−x, if x< sm,

Sl−x, if sl+1 ≤ x< sl and 1≤ l <m,

and v̄0
t (x) = ūt(x+ z̄0

t (x))− c(z̄0
t (x)).

3. Compute R̄t = inf{x< s1 : v̄0
t (x)≤ ūt(x)} and

z̄t(x) =

z̄
0
t (x), if x< R̄t,

0, if x≥ R̄t.

4. Compute ȳt(x) = x+ z̄t(x), p̄t(x) = pt(d̄t(ȳt(x))) and v̄t(x) =

v̄
0
t (x), x < R̄t,

ūt(x), x≥ R̄t.

Notice that functions ût, v̂
0
t and v̂t obtained in the algorithm are not necessarily concave. Similar

to Theorem 3, we can prove the following results for the performance of Algorithm 4.

Theorem 6. In any period t= 1, · · · , T , v̄t(x) obtained by Algorithm 4 satisfies

0≤ vt(x)− v̄t(x)≤
∑T−t

i=1
iKnγ

i. (12)

Moreover, the heuristic algorithm is optimal, i.e., v̄t(x) = vt(x), if a generalized (s,S) policy is

optimal to problem (3a), e.g.,
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(a) the single period problem, i.e, t= T ;

(b) demand uncertainty follows the additive model and εt is a positive Pólya or positive uniform

random variable; and

(c) demand uncertainty follows the additive model and K1 > (
∑T

i=t γ
i−th−i − cn−1)qn−1 for any

1≤ t≤ T .

Theorem 6 provides a performance bound of Algorithm 4 that depends on Kn, the number of

periods T , and the discounted factor γ. Furthermore, it shows that this heuristic algorithm is

optimal in three interesting cases, where part (a) and part (c) are consistent with Theorem 3, and

part (b) is implied by Theorem 3 in Chen et al. (2010).

As the bound given by (12) is quadratic in the number of periods T , we provide another heuristic

policy whose performance bound is linear in T . The basic idea is to replace the cost function c(z)

with (Kn + cnz)1{z>0} in each period. Hence, the profit-to-go function in this heuristic policy is

not necessarily concave but symmetric-Kn concave. Therefore, the structure of this policy is the

same as that of the optimal policy in Chen and Simchi-Levi (2004).

Algorithm 5. Let v̂0
T+1(x) = vT+1(x) and v̂T+1(x) = vT+1(x) for any x. Consider any t =

T, · · · ,1.

1. For each y, compute ût(y) as below and let d̂t(y) be the corresponding optimal solution:

ût(y) = max
d∈Dt

{
dpt(d)−Eht(y− ξtd− εt) + γEv̂0

t+1(y− ξtd− εt)
}
.

2. For each x, compute v̂0
t (x) as below and let ẑt(x) be the corresponding optimal solution

v̂0
t (x) = max

z≥0

{
ût(x+ z)− (Kn + cnz)1{z>0}

}
,

3. For each x, compute ŷt(x) = x+ ẑt(x), p̂t(x) = pt(d̂t(ŷt(x))), and

v̂t(x) = d̂t(ŷt(x))p̂t(x)−Eht
(
ŷt(x)− ξtd̂t(ŷt(x))− εt

)
+ γEv̂t+1

(
ŷt(x)− ξtd̂t(ŷt(x))− εt

)
− c(ẑt(x))1{ẑt(x)>0}.

In this algorithm, v̂0
t (x) is used to compute the heuristic policy ẑt(x) and p̂t(x), which, when

implemented, leads to the actual profit v̂t(x). The performance of the heuristic policy obtained by

Algorithm 5 is given below.

Theorem 7. For any period t, 0≤ vt(x)− v̂t(x)≤
∑T−t

i=0 γ
i(Kn−K1).

Just as Algorithm 2 supports Algorithm 1, the purpose of presenting Algorithm 5 is to sup-

port Algorithm 4 by numerically comparing its performance with an algorithm whose worst-case

performance bound is O(TKn). In the next subsection, our extensive numerical studies show that

Algorithm 4 outperforms Algorithm 5, despite the fact that its worst-case performance bound is

not as good as that of Algorithm 5.
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4.3. Numerical Analysis

Table 2 Performance of Algorithms 4 and 5 (%)

n= 2 t= 1 t= 2 t= 3 t= 4 t= 5 t= 6 t= 7 t= 8 t= 9 t= 10 t= 11

K1 = 20

Alg 4
Avg 99.989 99.988 99.988 99.988 99.985 99.979 99.975 99.971 99.958 99.923 99.827

Min 99.518 99.454 99.465 99.499 99.481 99.310 99.325 99.208 99.137 98.448 96.487

Alg 5
Avg 99.848 99.841 99.832 99.813 99.793 99.773 99.710 99.643 99.533 99.059 98.099

Min 96.717 96.747 96.770 96.581 96.609 96.775 96.269 96.260 96.707 95.255 92.363

K1 = 40

Alg 4
Avg 99.999 99.999 99.999 99.999 99.999 99.998 99.997 99.995 99.993 99.985 99.953

Min 99.981 99.978 99.973 99.968 99.955 99.919 99.882 99.859 99.768 99.541 98.173

Alg 5
Avg 99.919 99.916 99.902 99.891 99.880 99.854 99.815 99.758 99.641 99.197 98.328

Min 98.192 98.172 98.090 98.090 98.028 97.889 97.826 97.670 96.705 96.110 92.481

K1 = 60

Alg 4
Avg 100 100 100 100 100 100 100 100 99.999 99.998 99.991

Min 99.996 99.995 99.994 99.992 99.988 99.972 99.959 99.951 99.917 99.839 99.098

Alg 5
Avg 99.955 99.950 99.942 99.934 99.925 99.903 99.878 99.840 99.697 99.284 98.491

Min 99.101 99.044 98.871 99.011 98.896 98.487 98.747 98.527 97.469 96.782 92.635

K1 = 80

Alg 4
Avg 100 100 100 100 100 100 100 100 100 99.999 99.994

Min 99.998 99.998 99.997 99.996 99.994 99.985 99.978 99.974 99.956 99.913 99.427

Alg 5
Avg 99.975 99.970 99.967 99.961 99.953 99.938 99.916 99.885 99.730 99.353 98.593

Min 99.437 99.346 99.388 99.308 99.376 99.053 98.963 99.031 98.208 96.719 92.742

n= 3 t= 1 t= 2 t= 3 t= 4 t= 5 t= 6 t= 7 t= 8 t= 9 t= 10 t= 11

K1 = 20

Alg 4
Avg 99.976 99.971 99.971 99.969 99.964 99.963 99.960 99.951 99.931 99.890 99.804

Min 98.176 97.837 97.892 97.857 97.735 97.686 97.852 97.924 97.519 97.194 95.550

Alg 5
Avg 99.885 99.874 99.860 99.840 99.815 99.775 99.732 99.650 99.465 98.961 97.763

Min 97.553 97.437 97.300 97.315 97.349 97.149 96.714 96.096 95.909 93.880 88.254

K1 = 40

Alg 4
Avg 99.986 99.986 99.987 99.985 99.983 99.983 99.982 99.976 99.965 99.943 99.890

Min 99.082 99.135 99.179 99.099 98.927 98.889 99.047 99.101 98.673 97.747 97.268

Alg 5
Avg 99.947 99.938 99.927 99.911 99.895 99.862 99.834 99.763 99.596 99.091 97.973

Min 98.906 98.767 98.699 98.661 98.763 98.475 98.005 97.530 97.076 93.964 88.312

K1 = 60

Alg 4
Avg 99.998 99.998 99.998 99.997 99.996 99.995 99.993 99.990 99.983 99.966 99.935

Min 99.868 99.854 99.847 99.803 99.734 99.632 99.529 99.524 99.239 98.575 97.856

Alg 5
Avg 99.972 99.966 99.957 99.945 99.927 99.904 99.891 99.814 99.646 99.179 98.096

Min 99.672 99.587 99.475 99.284 99.312 99.094 98.752 97.863 97.787 94.020 88.160

K1 = 80

Alg 4
Avg 100 99.999 99.999 99.999 99.999 99.999 99.998 99.996 99.993 99.986 99.947

Min 99.971 99.967 99.962 99.951 99.933 99.901 99.874 99.840 99.740 99.502 98.067

Alg 5
Avg 99.981 99.977 99.970 99.962 99.948 99.929 99.917 99.854 99.698 99.245 98.196

Min 99.760 99.694 99.606 99.511 99.386 99.333 98.845 98.120 98.169 94.107 88.233

The numerical experiments in this subsection are designed in the same fashion as those in

Subsection 3.4 except for the following two changes, which ensure the concavity of c(x). First, we

let c1 = 1 and ci for all 1< i≤ n be the reverse order statistics of n−1 uniform random numbers in

[0.6,1]. Second, the capacity qn is set to +∞ and qi for all 1≤ i < n are set to the order statistics

of n− 1 uniform random numbers in [200,1200]. As in Subsection 3.4, 100 instances with T = 12
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are generated independently for each n ∈ {2,3}. For each instance and K1 ∈ {20,40,60,80}, the

optimal dynamic programming recursion in model (3), Algorithm 4, and Algorithm 5 are applied

to obtain the policies {z∗t (x), p∗t (x)}, {z̄t(x), p̄t(x)}, and {ẑt(x), p̂t(x)} and the corresponding profits

vt(x), v̄t(x), and v̂t(x), respectively. For any given n, K1 and t, Table 2 summarizes the profits of

Algorithms 4 and 5 as percentages of the optimum for the average and worst case of 100 instances.

Table 2 shows that Algorithm 4 is close to optimal as it achieves 99.98% and 95.55% of the

optimal profit for the average and worst case, respectively. Moreover, the performance improves

slightly as t decreases. Therefore, its excellent performance could be preserved for problems with

long planning horizon. The performance also gets better for a larger K1. This observation can be

explained by part (c) of Theorem 6, which suggests that Algorithm 4 may perform very well for a

sufficiently large K1.

On average, Algorithm 5 also achieves 99.641% of the optimal profit, which is very satisfactory.

However, this is still 0.339% smaller than the average performance of Algorithm 4. The worst-case

performance of Algorithm 5 is 88.16% of the optimal profit, which is 7.39% smaller than that of

Algorithm 4. Therefore, we conclude that Algorithm 4 performs better than Algorithm 5.

5. Characterization of Optimal Policy

In this section, we try to characterize the optimal policies of the general multi-period problems. As

shown by counter examples in Lu and Song (2014) and Chen (2015), we know that even for pure

inventory control problems without a pricing decision, the optimal policy can be very complicated

such that a full characterization is not possible or meaningful. However, this does not mean that

the optimal policies do not have any structural properties. The purpose of this section is to show

that the structures of the optimal policies have some common features with those of the heuristic

policies developed in this study.

A commonly used method in the literature is to construct a convex-like concept, show its preser-

vation in the dynamic programming problem, and then characterize the optimal policy on the basis

of such a convex-like concept. We follow this idea and introduce the following concepts.

Definition 1. Given a non-negative and increasing function κ(x) defined on <+, a function

f(x) is κ-convex if the following inequality holds for any a, b≥ 0 and x0 + a≤ x1− b:

b[f(x0 + a)− f(x0)] + a[f(x1− b)− f(x1)]≤ aκ(b). (13)

It is sym-κ-convex if the following inequality holds for any a, b≥ 0 and x0 + a≤ x1− b:

b[f(x0 + a)− f(x0)] + a[f(x1− b)− f(x1)]≤ [aκ(b)]∨ [bκ(a)]. (14)

Moreover, f(x) is κ-concave (or sym-κ-concave) if −f(x) is κ-convex (or sym-κ-convex).
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To better understand this new concept intuitively, we rewrite (13) as

f(x0 + a)− f(x0)

a
≤ f(x1)− f(x1− b)

b
+
κ(b)

b
.

Please note that x0 ≤ x0 + a≤ x1− b≤ x1. Similarly, (14) holds if and only if

f(x0 + a)− f(x0)

a
≤ f(x1)− f(x1− b)

b
+
κ(a)

a
∨ κ(b)

b
.

Hence, the above two inequalities basically say that the slope of a κ-convex or sym-κ-convex

function f(x) does not decrease by some proper adjustment of κ(x).

Definition 1 is closely related to K-convexity in Scarf (1960), sym-K-convexity in Chen and

Simchi-Levi (2004), strong (K, [c1, · · · , cn], [q1, · · · , qn])-convexity in Lu and Song (2014), and c-

convexity in Chen (2015). For convenience, their definitions are provided below.

Definition 2. Given K ≥ 0, a function f(x) is

(a) K-convex if f((1−λ)x0 +λx1)≤ (1−λ)f(x0) +λ[f(x1) +K] for any 0≤ λ≤ 1 and x0 ≤ x1;

(b) sym-K-convex if the following inequality holds for any 0≤ λ= 1−µ≤ 1 and x0, x1:

f(µx0 +λx1)≤ µf(x0) +λf(x1) + (λ∨µ)K; (15)

(c) strong (K, [c1, · · · , cn], [q1, · · · , qn])-convex for 0 ≤ c1 < · · · < cn, and 0 < q1 < · · · < qn = +∞ if

b[f(x0 + a)− f(x0)] + a[f(x1− b)− f(x1)]≤ aκ(b) for any a∨ b≤ a+ b≤ x1−x0, where

κ(x) =K11{0≤x≤q1}+
n∑
i=2

[Ki + (ci− c1)x]1{qi−1<x≤qi}, (16)

where K1 =K and Ki+1 =Ki− (ci+1− ci)qi for i= 1, · · · , n− 1; and

(d) c-convex for some non-negative, increasing, and concave function c(x) if f(µx0 + λx1) ≤
µf(x0) +λ[f(x1) + c(µ(x1−x0))] for any 0≤ λ= 1−µ≤ 1 and x0 ≤ x1.

It is easy to see that a strong (K, [c1, · · · , cn], [q1, · · · , qn])-convexity is equivalent to the κ-

convexity with κ(x) given by (16). Moreover, the following proposition shows how the (sym-)κ-

convexity is related to the other convexities.

Proposition 4. (a) K-convexity is equivalent to κ-convexity with κ(x) =K.

(b) Sym-K-convexity is implied by sym-κ-convexity with κ(x) =K.

(c) Given a non-negative, increasing, and concave function c(x), c-convexity is implied by κ-

convexity with κ(x) = c(x).

We now provide two propositions on the preservation of κ-convexity or sym-κ-convexity in a

class of parametric optimization problems associated with our applications.

Proposition 5. Given random variables ε and ξ ∈ [L,U ] with 0<L≤ U , a convex function h

defined on Z, and any non-negative and increasing function κ(x) defined on <+, suppose

f(x) = min
z∈Z
{Eg(x− ξz− ε) +h(z)} .
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If g(x) is κ-convex and U = L (i.e., ξ is deterministic), then f(x) is also κ-convex; if g(x) is

sym-κ-convex and either κ(x) is constant or U ≤ 2L, then f(x) is also sym-κ-convex.

Proposition 6. For the cost function c(z) given in (1), consider

f(x) = min
z≥0
{g(x+ z) + c(z)1{z>0}}.

When c(z) is convex, the following statements hold:

(a) if g(x) is κ-convex with κ(x) = c(x)− c1x, then so is f(x);

(b) if g(x) is sym-κ-convex with κ(x) = c(x)− c1x, then so is f(x); and

(c) if Kn ≥ 0 and g(x) is sym-κ-convex with κ(x) =K1, then so is f(x).

Moreover, when c(z) is concave, the following statements hold:

(d) if g(x) is κ-convex with κ(x) = c(x)− cnx, then so is f(x); and

(e) if g(x) is sym-κ-convex with κ(x) = c(x)− cnx, then so is f(x).

Notice that the preservation results presented in the above two propositions extend the corre-

sponding results of previous studies such as Scarf (1960), Chen and Simchi-Levi (2004), Lu and

Song (2014), and Chen (2015). They could be potentially useful to many similar applications. In

particular, we are ready to characterize the optimal policy for the multi-period problem in our

application for each period t. Recall that Ot is the set where it is optimal to produce. Hence, its

complementary set Oct is the set where it is optimal to produce nothing. In the demand model, the

multiplicative term has a random variable ξ ∈ [L,U ] with 0<L≤U .

Theorem 8. When c(z) is convex, z∗t (x) + x increases with x ∈Ot, and it is equal to St(ci) if

St(ci)−qi <x≤ St(ci)−qi−1 for 1≤ i≤ n. Furthermore, {x<Rt} ⊆Ot and the following statements

hold:

(a) if U =L or Kn ≥ 0, then {x≥ St(c1)} ⊆Oct ; and

(b) if U ≤ 2L, then {x≥ St(c1− cn)} ⊆Oct .

When c(z) is concave, z∗t (x)+x decreases with x∈ (−∞,Rt), and it is equal to some St(ci) for any

x<Rt. Furthermore, {x<Rt} ⊆Ot and the following statements hold:

(a) if U =L, then {x≥ St(cn)} ⊆Oct ; and

(b) if U ≤ 2L, then {x≥ St(0)} ⊆Oct .

Please note that when c(z) is convex, St(c1)<St(c1− cn). Hence, the result of (a) is better than

the result of (b). When U =L, the demand model is additive. It is expected that we can get a better

result in this case because it is a special case of U ≤ 2L. Kn ≥ 0 implies that average production

cost c(z)/z decreases with the production quantity z. This nice property helps us to establish the

result without any assumption about the support of the random variable ξ. Theorem 8 shows that

the structures of optimal policies share some common features with those of the heuristic policies

developed in this study.
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6. Conclusion

In this paper, we study the joint pricing and inventory control problem with a fixed cost and a

convex or concave variable cost. We fully characterize the optimal policies for the single-period

problems. The optimal policies are well-structured, which motivates us to develop practically

implementable heuristic policies for the general multi-period problems. The heuristic policies have

worst-case performance bounds, and their close-to-optimal performances are shown in our exten-

sive numerical studies. In our characterizations of the optimal policies in Section 5, we propose new

variations of convexity, namely, κ-convexity and sym-κ-convexity. We expect that these concepts

will have applications in other problems with a similar cost structure.
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Appendix

Proof of Proposition 1

We first prove that v0
t (x)− ut(x) is decreasing in x and negative at x= St(c1). To see it, consider

any x< x̃. By the definition of v0
t (x) given in (4),

v0
t (x̃)−ut(x̃) = max

z≥0
{ut(x̃+ z)− c(z)−ut(x̃)}

≤ max
z≥0
{ut(x+ z)−ut(x)− c(z)}= v0

t (x)−ut(x),

where the inequality holds by the concavity of ut(y) and z ≥ 0. Furthermore, if x= St(c1), then

v0
t (x)−ut(x) = max

y≥x
{[ut(y)− c1y] + [c1y− c(y−x)]}−ut(x)

≤ [ut(x)− c1x] + max
y≥x
{[c1y− c(y−x)]}−ut(x)

≤ [−c1x] + [c1x− c(0)] =−c(0)≤ 0,
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where the first inequality holds because x= St(c1) maximizes the concave function ut(y)− c1y, and

the second inequality holds because c1y− c(y− x) is decreasing in y by c(z) = max{Ki + ciz : 1≤
i≤ n} ≥ c1z for any z ≥ 0. Thus, v0

t (x)>ut(x) if and only if x<Rt and Rt <St(c1).

To see z0
t (x) given in (8) solves problem (4), notice that problem (4) is a concave maximization

problem. It is well-known in convex analysis that as a sufficient condition for the optimality of

z0
t (x), we only need to verify the following inequality for z = z0

t (x).

−∂−ut(x+ z) + ∂−c(z)≤ 0≤−∂+ut(x+ z) + ∂+c(z), (A.1)

where ∂+f(x) and ∂−f(x) denote the right-derivative and left-derivative of function f(x), respec-

tively, and we specify ∂−c(0) =−∞. Three cases are considered as below.

(a) If St(ci)− qi ≤ x < St(ci)− qi−1 for some 1≤ i≤ n, then obviously z0
t (x) = St(ci)− x satisfies

qi−1 < z
0
t (x)≤ qi. By the definition of c(z), inequality (A.1) reduces to−∂

−ut(St(ci)) + ci ≤ 0≤−∂+ut(St(ci)) + ci, if z0
t (x)< qi,

−∂−ut(St(ci)) + ci ≤ 0≤−∂+ut(St(ci)) + ci+1, if z0
t (x) = qi.

Both inequalities are satisfied because St(ci) is a minimizer of the convex function −ut(y)+ciy

and ci < ci+1 by the convexity of c(z).

(b) When St(ci+1)− qi ≤ x<St(ci)− qi for some 1≤ i < n, by z0
t (x) = qi, inequality (A.1) becomes

−∂−ut(x+ qi) + ci ≤ 0≤−∂+ut(x+ qi) + ci+1, ∀St(ci+1)− qi ≤ x<St(ci)− qi.

Because both−∂−ut(y) and−∂+ut(y) are increasing in y by the convexity of−ut(y), a sufficient

condition to the above inequality is

−∂−ut (St(ci)) + ci ≤ 0≤−∂+ut (St(ci+1)) + ci+1,

which is satisfied since that St(ci) is a minimizer of the convex function −ut(y) + ciy.

(c) When x≥ St(c1), by the definition of c(z), inequality (A.1) reduces to 0≤−∂+ut(x) + c1. It

holds because −∂+ut(x) is increasing in x by the convexity of −ut(x), and −∂+ut(St(c1))+c1 ≥
0 since that St(c1) is a minimizer of the convex function −ut(y) + c1y. �

Proof of Theorem 1

Since that z∗t (x) has been characterized in Proposition 1, we only need to consider the optimal

price p∗t (x) = pt(d
∗
t (y
∗
t (x))), where by (8), the inventory level after producing y∗t (x) = x+ z0

t (x) is

y∗t (x) =


x, if x≥ St(c1),

St(ci), if St(ci)− qi ≤ x<St(ci)− qi−1 for 1≤ i≤ n,

x+ qi, if St(ci+1)− qi ≤ x<St(ci)− qi for 1≤ i < n,
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By the definition of Pt(a), it is straightforward to see p∗t (x) = Pt(ci) when z∗t (x) = z0
t (x) = St(ci)−x.

To see the monotonicity of p∗t (x), because pt(d) is decreasing in d, it suffices to show d∗t (y) is

increasing in y and y∗t (x) is increasing in x. The monotonicity of y∗t (x) can be directly verified

from its expression. Moreover, since that the objective function of problem (3b) is supermodular

in (y, d) by ξt ≥ 0 and the concavity of −ht(x) + γvt+1(x), we know from Theorem 2.8.2 in Topkis

(1998) that d∗t (y) is increasing in y. �

Proof of Theorem 2

We only need to show the monotonicity of z∗t (x) and p∗t (x). Other statements are either straight-

forward or can be verified by an argument similar to the proof of Theorem 1.

Because z0
t (x) is non-negative and decreasing in x, obviously z∗t (x) = z0

t (x)1{x<Rt} is also decreas-

ing in x. In addition, when x < Rt, because z∗t (x) = z0
t (x), similar to the proof of Theorem 1,

p∗t (x) is also decreasing in x. When x≥Rt, we have p∗t (x) = pt(d
∗
t (x)) because the inventory level

after production is x. d∗t (y) is increasing in y since that the objective function of problem (3b)

is supermodular in (y, d) by the concavity of ut and ξt ≥ 0. Thus, p∗t (x) is decreasing in x ≥ Rt.
Furthermore, because the inventory level after production is x+ z∗t (x)> x when x < Rt and it is

equal to x when x=Rt, we know that p∗t (x) takes an upward jump at x=Rt. �

Proof of Proposition 2

Because x∗ is the least minimizer of f(x) if and only if −x∗ is the greatest minimizer of f(−x),

and f e(x) is the lower convex envelope of f(x) if and only if f e(−x) is the lower convex enve-

lope of f(−x), it suffices to focus on the greatest minimizer part, where the least minimizer part

immediately follows by considering function f(−x) instead.

Given the greatest minimizer x∗ of f(x), it is also a minimizer of f e(x) because by the definition

of the lower convex envelope, the following inequality is satisfied for any x:

f e(x∗) ≤ f(x∗) = inf{(1−λ)f(x∗) +λf(x∗) : λ∈ [0,1]}

≤ inf {(1−λ)f(x0) +λf(x1) : x= (1−λ)x0 +λx1, λ∈ [0,1]}= f e(x).

Moreover, letting x= x∗ in the above inequality yields f e(x∗)≤ f(x∗)≤ f e(x∗), i.e., f(x∗) = f e(x∗).

To further ensure that x∗ is the greatest minimizer of f e(x), by f(x∗)≥ f e(x∗), we only need to

verify f e(x)> f(x∗) for any x> x∗. Notice from the definition of f e(x) that

f e(x) = f(x)∧ inf {(1−λ)f(x0) +λf(x1) : x= (1−λ)x0 +λx1,0<λ< 1}

= f(x)∧ inf {[bf(x− a) + af(x+ b)]/(a+ b) : a> 0 and b > 0} .
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For any fixed x > x∗, because x∗ is the greatest minimizer, we have f(x)> f(x∗) and hence as a

sufficient condition to f e(x)> f(x∗), it remains to verify

0< inf
a>0,b>0

{
b

a+ b
[f(x− a)− f(x∗)] +

a

a+ b
[f(x+ b)− f(x∗)]

}
. (A.2)

First, we derive a lower bound of f(x+ b). On the one hand, because lim inf
x→+∞

[x−1f(x)]> 0, there

exist δ0 > 0 and B0 > 0 such that for any b≥B0, (x+ b)−1f(x+ b)≥ 2δ0 and hence

f(x+ b)− f(x∗)

x+ b−x∗
≥ 2δ0(x+ b)− f(x∗)

x+ b−x∗
= 2δ0 +

2δ0x
∗− f(x∗)

x+ b−x∗
.

Because its right side converges to 2δ0 > 0 as b goes to infinity, there exists B ≥B0 such that

∀ b≥B : f(x+ b)− f(x∗)≥ δ0(x+ b−x∗).

On the other hand, when 0< b≤B, because x∗ <x+ b≤ x+B, x∗ is the greatest minimizer, and

function f(y) is continuous on the compact set [x,x+B], it follows that

inf
0<b≤B

f(x+ b)− f(x∗)

x+ b−x∗
≥ inf

0≤b≤B

f(x+ b)− f(x∗)

x+B−x∗
= min

0≤b≤B

f(x+ b)− f(x∗)

x+B−x∗
> 0.

The above inequality suggests that there exists positive δ1 such that

∀0< b≤B : f(x+ b)− f(x∗)≥ δ1(x+ b−x∗).

In summary, we have f(x+ b)≥ f(x∗) + δ(x+ b−x∗) with δ= δ0 ∧ δ1 > 0 for all b > 0.

By the obtained inequality on f(x+ b), to see inequality (A.2) holds, we only need to verify

0< inf
a>0,b>0

{
b

a+ b
[f(x− a)− f(x∗)] +

a

a+ b
δ(x+ b−x∗)

}
. (A.3)

Denote by θ(a, b) the objective function on the right side. It is straightforward to prove that

θ(a, b) =
b[f(x− a)− f(x∗) + aδ] + aδ(x−x∗)

a+ b

= [f(x− a)− f(x∗) + aδ] +
−a[f(x− a)− f(x∗) + aδ] + aδ(x−x∗)

a+ b
,

where term b appears only in the denominator of the second term on the right side. Thus, θ(a, b)

is either increasing or decreasing in b, implying that for any b > 0,

θ(a, b)≥ θ(a,0)∧ lim
b→+∞

θ(a, b) = [δ(x−x∗)]∧ [f(x− a)− f(x∗) + aδ].

By substituting this into the desired inequality (A.3), it remains to prove

0< inf
a>0

{
[δ(x−x∗)]∧ [f(x−a)− f(x∗) + δa]

}
= inf

y<x

{
[δ(x−x∗)]∧ [f(y)− f(x∗) + δ(x− y)]

}
. (A.4)

Let x̄= (x∗+x)/2, where x∗ < x̄< x by x∗ <x. On the one hand, when y≤ x̄, obviously

f(y)− f(x∗) + δ(x− y)≥ δ(x− y)≥ δ(x− x̄) = 1
2
δ(x−x∗).
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On the other hand, when x̄ < y < x, f(y)− f(x∗)> 0 uniformly on [x̄, x] because x∗ is the largest

minimizer and function f(y) is continuous. Thus, there exists δ′ > 0 such that

min
x̄≤y≤x

f(y)− f(x∗)

x−x∗
= δ′,

implying that f(y)− f(x∗) + δ(x− y)≥ f(y)− f(x∗)≥ δ′(x−x∗). In summary, we know that

inf
y<x

[f(y)− f(x∗) + δ(x− y)]≥
[
( 1

2
δ)∧ δ′

]
(x−x∗),

which yields the desirable inequality (A.4). This completes the proof, i.e., x∗ is indeed the greatest

minimizer of f e(x). �

Proof of Theorem 3

Because Algorithm 1 generates a feasible solution [z̄t(x), d̄t(x)] to problem (3), vt(x)≥ v̄t(x) in all

periods t. We now focus on the upper bound of vt(x)− v̄t(x). To see it, consider for each t the

lower convex envelopes of −v̄t(x) and −ūt(x), denoted by −v̄et (x) and −ūet(x), respectively. Define

constants At and Bt for each 1≤ t≤ T + 1 as below:

At = sup
x

[v̄et (x)− v̄t(x)] and Bt = sup
x

[vt(x)− v̄t(x)].

Observe that AT+1 = BT+1 = 0 by vT+1(x) = v̄T+1(x) = 0 in Algorithm 1. Moreover, since the

heuristic policy has the same structure as the optimal policy for the single-period problem (see the

discussion below Algorithm 1), by Theorem 2, we also have BT = 0.

In any period t≤ T , because 0≤ vt+1(x)− v̄t+1(x)≤Bt+1, and ūt(x) given in Step 1 is a coun-

terpart of ut(x) given in (3b) with vt+1(x) replaced by v̄t+1(x), we have that

0≤ ut(y)− ūt(y)≤ γBt+1. (A.5)

Define ût(y) below as a counterpart of ut(x) in (3b) with vt+1(x) replaced by v̄et+1(x):

ût(y) = max
d∈Dt

{
dpt(d)−Eht(y− ξtd− εt) + γEv̄et+1(y− ξtd− εt)

}
.

Because −v̄et+1(x)≤−v̄t+1(x)≤At+1− v̄et+1(x) by the definition of At+1, we know that

−ût(y)≤−ūt(y)≤−ût(y) + γAt+1, (A.6)

where ût(y) is obviously concave by the convexity of ht(x) and the concavity of v̄et+1(x). Because

−ût(y) is a convex function no more than −ūt(y) by the first inequality in (A.6), and −ūet(y) is

the lower convex envelope of −ūt(y), we know that −ût(y)≤−ūet(y). Furthermore, by the second

inequality in (A.6) and −ūet(y)≤−ūt(y), we have that −ūet(y)≤−ūt(y)≤−ūet(y) + γAt+1, i.e.,

0≤ ūet(y)− ūt(y)≤ γAt+1. (A.7)
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This together with (A.5) ensures that

ut(y)− ūet(y)≤ γBt+1− [ūet(y)− ūt(y)]≤ γBt+1. (A.8)

To see the relation among Bt, Bt+1 and At+1, define functions

v̂t(x) = max
z≥0

{
ūet(x+ z)− c(z)1{z>0}

}
, (A.9a)

v̂0
t (x) = max

z≥0

{
ūet(x+ z)− c(z)

}
, (A.9b)

which are counterparts of vt(x) in (3a) and v0
t (x) in (4) with ut(y) replaced by ūet(y), respectively.

By inequality (A.8) and 0≤ c(z)− c(z)1{z>0} ≤K1, we have that

vt(x)− v̂t(x)≤ γBt+1 and 0≤ v̂t(x)− v̂0
t (x)≤K1. (A.10)

Since that ūet(y) in (A.9) is concave, similar to the results for the single-period problem, there is

some threshold R̂t such that

v̂t(x) =

v̂
0
t (x)≥ ūet(x), if x< R̂t,

ūet(x)≥ v̂0
t (x), if x≥ R̂t.

We next prove that z̄0
t (x) in Step 2 solves problem (A.9b), i.e.,

v̂0
t (x) = ūet(x+ z̄0

t (x))− c(z̄0
t (x)). (A.11)

The basic idea is to apply Proposition 2. We make three observations below:

(i) The least minimizer of ciy− ūt(y) defined in Step 2, is finite, because |ut(y)− ūt(y)| ≤ γBt+1

by (A.5) and lim
|y|→∞

[ut(y) − ciy] = −∞ as assumed in Section 2. Moreover, we can show

lim
y→−∞

y−1[ūt(y)− ciy]> 0 by applying the following lemma, whose proof is presented after the

proof of Theorem 3.

Lemma 1. Consider c(z) defined in (1). For any 1≤ t≤ T , there exist ẋt, ẏt >−∞ such

that

(a) z∗t (x) = St(cn)−x and vt(x) = vt(ẋt)− cn(ẋt−x) for any x≤ ẋt;
(b) ut(y) = ut(ẏt)− (h−t + γ1{t<T}cn)(ẏt− y) for any y≤ ẏt.

Lemma 1 (b) implies

lim
y→−∞

y−1[ut(y)− ciy] = h−t + γ1{t<T}cn− ci.

As lim
|y|→∞

[ut(y) − ciy] = −∞, Lemma 1 (b) also shows that h−t + γ1{t<T}cn − ci > 0. Thus,

lim
y→−∞

y−1[ut(y)− ciy]> 0. |ut(y)− ūt(y)| ≤ γBt+1 then yields lim
y→−∞

y−1[ūt(y)− ciy]> 0.
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(ii) ūt(y) is continuous. In fact, note that v̄T+1(x) = 0 is obviously continuous. Suppose v̄t+1(x) is

continuous in some period 1≤ t≤ T . In period t, because functions dpt(d), ht(y) and v̄t+1(y)

are continuous, we know that function ūt(y) in Step 1 is also continuous. Moreover, v̄0
t (x) in

Step 2 is continuous because z̄0
t (x) is continuous. According to the continuity of ūt(y) and

v̄0
t (x), the definition of R̄t in Step 3 implies ūt(R̄t) = v̄0

t (R̄t) as long as R̄t is finite. Therefore,

v̄t(x) is also continuous.

(iii) ciy− ūet(y) is the lower convex envelope of ciy− ūt(y) for any 1≤ i≤ n because

ciy− ūet(y) = ciy+ inf {−(1−λ)ūt(y0)−λūt(y1) : y= (1−λ)y0 +λy1, λ∈ [0,1]}

= inf {(1−λ)[ciy0− ūt(y0)] +λ[ciy1− ūt(y1)] : y= (1−λ)y0 +λy1, λ∈ [0,1]} .

where the first equation holds since −ūet(y) is the lower convex envelope of −ūt(y).

With the above observations, we know from Proposition 2 that S̄t(ci) is also the least minimizer of

cix− ūet(x). Because z̄0
t (x) specified in Step 2 only depends on the values of S̄t(ci) for 1≤ i≤ n, by

the concavity of ūet(y), similar to the proof of Proposition 1, we conclude that z̄0
t (x) indeed solves

problem (A.9b).

By (A.11) and v̄0
t (x) = ūt(x+ z̄0

t (x))− c(z̄0
t (x)) in Step 2, we next prove

0≤ v̂t(x)− v̄t(x)≤K1 + γAt+1. (A.12)

Recall from their definitions that

v̂t(x) =

v̂
0
t (x), if x< R̂t

ūet(x), if x≥ R̂t
, v̄t(x) =

v̄
0
t (x), if x< R̄t

ūt(x), if x≥ R̄t
.

Four cases are distinguished as below, where we let z̄ = z̄0
t (x) for notational simplicity.

(i) When x< R̄t ∧ R̂t, by (A.11) and the definition of v̄0
t (x), we can express

v̂0
t (x)− v̄0

t (x) = [ūet(x+ z̄)− c(z̄)]− [ūt(x+ z̄)− c(z̄)].

Thus, inequality (A.12) is immediately yielded by (A.7).

(ii) When R̄t ≤ x< R̂t, we know from (A.9b) and R̄t = sup{x : v̄0
t (x)> ūt(x)} that

v̂0
t (x)− ūt(x) ≥ ūet(x)− ūt(x),

v̂0
t (x)− ūt(x) ≤ v̂0

t (x)− v̄0
t (x) = ūet(x+ z̄)− ūt(x+ z̄).

Thus, inequality (A.12) is yielded by (A.7).

(iii) When R̂t ≤ x< R̄t, because ūet(x) = v̂t(x)≥ v̂0
t (x), by the definitions of v̂0

t (x) and v̄0
t (x),

ūet(x)− v̄0
t (x)≥ v̂0

t (x)− v̄0
t (x) = ūet(x+ z̄)− ūt(x+ z̄).
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Thus, ūet(x)− v̄0
t (x)≥ 0 by (A.7). Furthermore, by inequalities (A.10) and (A.7),

ūet(x)− v̄0
t (x) ≤

[
v̂0
t (x) +K1

]
− [ūt(x+ z̄)− c(z̄)]

≤
[
v̂0
t (x) +K1

]
− [ūet(x+ z̄)− c(z̄)] + γAt+1.

Thus, ūet(x)− v̄0
t (x)≤K1 + γAt+1 by (A.11), implying inequality (A.12) holds.

(iv) When x≥ R̄t ∨ R̂t, inequality (A.12) immediately follows from (A.7).

By the definition of Bt, as well as inequalities (A.10) and (A.12), we conclude that

Bt = sup
x
{[vt(x)− v̂t(x)] + [v̂t(x)− v̄t(x)]≤ γBt+1 + (K1 + γAt+1). (A.13)

To see the relation between At and At+1, observe from (A.10) and (A.12) that

−K1 ≤ v̂0
t (x)− v̄t(x)≤ v̂t(x)− v̄t(x)≤K1 + γAt+1.

By properly arranging terms in the above inequality, it leads to

−[K1 + v̂0
t (x)]≤−v̄t(x)≤K1 + γAt+1− v̂0

t (x). (A.14)

By the convexity of c(z), v̂0
t (x) given in (A.9b) is concave. Because −v̄et (x) is the lower convex

envelope of −v̄t(x), by (A.14), −[K1 + v̂0
t (x)]≤−v̄et (x) and hence −v̄t(x)≤ 2K1 + γAt+1 − v̄et (x),

implying

At = sup
x

[v̄et (x)− v̄t(x)]≤ 2K1 + γAt+1.

In summary, we conclude that BT = 0, AT = 2K1 and for any 1≤ t < T ,

At ≤ 2K1 + γAt+1 and Bt ≤K1 + γ(At+1 +Bt+1).

By some basic algebra, it can be verified that for each t < T ,

At ≤
∑T−t

i=0
(2K1)γi and Bt ≤

∑T−t

i=0
[(2i+ 1)K1]γi−K1γ

T−t.

Thus, by the definition of Bt, we obtain the upper bound of vt(x)− v̄t(x) in Theorem 3.

To see these sufficient conditions for v̄t(x) = vt(x), notice that condition (a) is ensured by BT = 0

as proved. Moreover, condition (b) can be derived from Theorem 1. Thus, it suffices to focus on

condition (c). Suppose that Bt+1 = 0, i.e., v̄t+1(x) = vt+1(x), for some 1≤ t≤ T . Then ūt(x) = ut(x)

and S̄t(cn) = St(cn). In addition, by the definition of c(z), it can be verified that

Kn =K1 + (c1− c2)q1 + · · ·+ (cn− cn−1)qn−1,

where Kn is the intercept of the last linear piece of c(z). Thus, the given assumption on K1 can be

expressed by Kn > (Ht − cn)qn−1 for Ht =
∑T

i=t γ
i−th−i . In addition, because demand uncertainty

is additive, we are able to prove the following result on z∗t (x):
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Lemma 2. Consider c(z) defined in (1). Suppose that Kn > (Ht− cn)qn−1 for any 1≤ t≤ T and

c(z)≥Kn + cnz for any z ≥ 0. Then, for any 1≤ t≤ T , z∗t (x) = St(cn)−x if x<Rn
t and z∗t (x) = 0

otherwise, where St(cn)−Rn
t > qn−1 and

Rn
t = sup{x≤ St(cn) : [ut(St(cn))− cnSt(cn)]> [ut(x)− cnx] +Kn}. (A.15)

The proof of Lemma 2 is moved to the end of this subsection to streamline the discussion. Lemma

2 states that it is optimal to produce if and only if x is below the threshold Rn
t ; moreover, if x≤Rn

t ,

then it is optimal to raise the inventory level to St(cn) by producing at least qn−1 units. That is,

an (s,S) policy is optimal to problem (3a).

It suffices to show Rn
t = R̄t for the threshold R̄t obtained in Step 3 because this ensures z̄t(x)

obtained in Step 3 is equal to z∗t (x) and v̄t(x) in Step 4 is equal to vt(x). There are two cases.

(i) To see Rn
t ≤ R̄t, by St(cn)−Rn

t > qn−1, we have v̄0
t (x) = ut(St(cn))− cn(St(cn)− x)−Kn for

any x≤Rn
t . Also note that ūt(x) = ut(x) for all x. The definitions of Rn

t and R̄t immediately

yield Rn
t ≤ R̄t.

(ii) To see Rn
t ≥ R̄t, for any x>Rn

t , because it is optimal not to produce by Lemma 2,

ut(x)≥max
z≥0
{ut(x+ z)− c(z)} ≥ ut(x+ z̄0

t (x))− c(z̄0
t (x)).

Thus, x> R̄t by the definition of R̄t, implying that Rn
t ≥ R̄t. �

Proof of Lemma 1: Let ẋT+1 = 0. vT+1(x) = 0 for any x implies vT+1(x) = vT+1(ẋT+1) for any

x ≤ ẋT+1. Consequently, for any given 1 ≤ t ≤ T , we can assume for induction that there exists

ẋt+1 >−∞ such that vt+1(x) = vt+1(ẋt+1)− 1{t<T}cn(ẋt+1− x) for any x≤ ẋt+1. Let ẏt = 0∧ ẋt+1.

Recall that ξtd+ εt ≥ 0 with probability 1 for any d ∈ Dt. As ht(I) =−h−t (0 ∧ I) + h+
t (0 ∨ I), we

have

ut(y) = max
d∈Dt

{
dpt(d) +h−t E(y− ξtd− εt) + γvt+1(ẋt+1)− γ1{t<T}cnE(ẋt+1− (y− ξtd− εt))

}
= (h−t + γ1{t<T}cn)y+ γvt+1(ẋt+1) + max

d∈Dt

{
dpt(d)−h−t d− γ1{t<T}cn(ẋt+1 + d)

}
for any y≤ ẏt, i.e., ut(y) = ut(ẏt)− (h−t +γ1{t<T}cn)(ẏt−y) for any y≤ ẏt. Also note that Section 2

assumes lim
|y|→∞

[ut(y)− ciy] =−∞ for all 1≤ i≤ n. It is straightforward that h−t +γ1{t<T}cn− ci > 0

and St(ci)≥ ẏt for all 1≤ i≤ n.

Let

ẋt = ẏt− qn−1 ∨
(

Kn

h−t + γ1{t<T}cn− cn
+ 1

)
>−∞.

Consider any x≤ ẋt. For any 0≤ z ≤ qn−1, we have x+ z ≤ ẏt. As h−t + γ1{t<T}cn − ci > 0 for all

1≤ i≤ n, the definition of c(z) implies that ut(x+ z)− c(z) is increasing in 0≤ z ≤ qn−1 and hence

max
0≤z≤qn−1

{
ut(x+ z)− c(z)

}
= ut(x+ qn−1)− c(qn−1). (A.16)
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Also note that x+ qn−1 ≤ ẋt + qn−1 ≤ ẏt ≤ St(cn). Therefore,

max
z≥qn−1

{
ut(x+ z)− c(z)

}
= max

y≥x+qn−1

{
ut(y)− c(y−x)

}
= max

y≥x+qn−1

{
ut(y)−Kn− cn(y−x)

}
= ut(St(cn))−Kn− cn(St(cn)−x)≥ ut(ẏt)−Kn− cn(ẏt−x), (A.17)

where the inequality follows from the definition of St(cn). (A.16) and (A.17) yield

v0
t (x) = max

z≥0

{
ut(x+ z)− c(z)

}
= ut(St(cn))−Kn− cn(St(cn)−x)≥ ut(ẏt)−Kn− cn(ẏt−x).

Recall that x≤ ẋt ≤ ẏt. We obtain ut(x) = ut(ẏt)− (h−t + γ1{t<T}cn)(ẏt−x) and so

ut(ẏt)−Kn− cn(ẏt−x) = ut(x) + (h−t + γ1{t<T}cn− cn)(ẏt−x)−Kn

≥ ut(x) + (h−t + γ1{t<T}cn− cn)(ẏt− ẋt)−Kn

≥ ut(x) + (h−t + γ1{t<T}cn− cn)

(
Kn

h−t + γ1{t<T}cn− cn
+ 1

)
−Kn >ut(x),

where the inequalities are yielded by h−t + γ1{t<T}cn− cn > 0, x≤ ẋt, and the definition of ẋt. As

a result,

vt(x) = v0
t (x)∨ut(x) = v0

t (x) = ut(St(cn))−Kn− cn(St(cn)−x) = vt(ẋt)− cn(ẋt−x),

and zt(x) = St(cn)−x for all x≤ ẋt. �

Proof of Lemma 2: Notice that if let HT+1 = 0, then we can inductively define Ht = h−t +γHt+1

for t= T, · · · ,1. We divide the proof into two parts.

(a) We first inductively prove that vHt (x) = vt(x)−Htx and uHt (x) = ut(x)−Htx are decreasing

in x for each t. Suppose vHt+1(x) is decreasing in x for some 1≤ t≤ T , where the statement is

trivial at t= T by vHT+1(x) = vT+1(x) = 0. By ξt = 1 and (3b), we have that

uHt (y) = max
d∈Dt

{
d[pt(d)−Ht] +Ewt(y− d− εt) + γEvHt+1(y− d− εt)

}
,

where wt(x) = (γHt+1 −Ht)x − ht(x) = −(h−t + h+
t )(0 ∨ x) is clearly decreasing in x. Thus,

uHt (y) is decreasing in y. In addition, by (3a), we can express

vHt (x) = max
z≥0

{
uHt (x+ z)− [c(z)−Htz]1{z>0}

}
,

which is clearly decreasing in x by monotonicity of function uHt (x).

(b) We next inductively prove that vt(x) is Kn-concave and equal to the function below for each t:

vnt (x) = max
z≥0

{
ut(x+ z)− (Kn + cnz)1{z>0}

}
. (A.18)

Suppose vt+1(x) is Kn-concave for some 1≤ t≤ T , where the statement is trivial at t= T by

vT+1(x) = 0. Then function ut(x) is also Kn-concave by applying Proposition 5(a) to problem

(3b). For problem (A.18), by Scarf (1960), vnt (x) is Kn-concave, and z∗t (x) = [St(cn)−x]1{x<Rn
t }
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given in Lemma 2 solves problem (A.18). Thus, to complete this proof, we only need to further

prove that z∗t (x) also solves problem (3a) and satisfies z∗t (x)> qn−1 for any x<Rn
t .

To see it, given any x < Rn
t , by Kn > (Ht − cn)qn−1, the definition of Rn

t in (A.15), mono-

tonicity of ut(x)−Htx proved in part (a), and the definition of z∗t (x), we have that

(Ht− cn)qn−1 <Kn ≤ [ut(St(cn))− cnSt(cn)]− [ut(x)− cnx]

≤ (Ht− cn)[St(cn)−x] = (Ht− cn)z∗t (x).

implying that z∗t (x)> qn−1 for any x<Rn
t . Thus, either z∗t (x) = 0 or z∗t (x)> qn−1 for all x. By

(Kn + cnz)1{z>0} = c(z)1{z>0} for either z = 0 or z > qn−1, we have that

vnt (x) = max
z

{
ut(x+ z)− c(z)1{z>0} : z = 0 or z > qn−1

}
≤ max

z

{
ut(x+ z)− c(z)1{z>0} : z ≥ 0

}
= vt(x).

On the other hand, because c(z)≥Kn + cnz for any z ≥ 0, we also have that

vt(x) = max
z

{
ut(x+ z)− c(z)1{z>0} : z ≥ 0

}
≤ max

z

{
ut(x+ z)− (Kn + cnz)1{z>0} : z ≥ 0

}
= vnt (x).

In summary, we conclude that vt(x) = vnt (x) is Kn-concave and z∗t (x) solves problem (3a). �

Proof of Theorem 4

We inductively show that for t= T + 1, · · · ,1, v̂0
t (x) is concave and

0≤ vt(x)− v̂t(x)≤ vt(x)− v̂0
t (x)≤Bt,

where BT+1 = 0 and Bt =
∑T−t

i=0 γ
iK1. Notice that we can express Bt =K1 +γBt+1 for t= T, · · · ,1.

Suppose the statement is true in period t+ 1 for some 1≤ t≤ T . In period t, obviously ût(y) in

Step 1 is concave and satisfies that

0≤ ut(y)− ût(y)≤ γBt+1. (A.19)

Similar to the proof of Theorem 1, we can verify that v̂0
t (x) obtained in Step 2 satisfies that

v̂0
t (x) = max

z≥0
{ût(x+ z)− c(z)} ,

and ẑt(x) generated in Step 2 solves the above problem. It is straightforward to see that v̂0
t (x) is

concave. By (A.19) and K1 ≥ c(z)− [c(z)1{z>0}]≥ 0, it follows that

v̂0
t (x) ≥ max

z≥0

{
[ut(x+ z)− γBt+1]− [c(z)1{z>0}+K1]

}
= vt(x)− (K1 + γBt+1) = vt(x)−Bt.
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Also note that

v̂0
t (x) = d̂t(ŷt(x))p̂t(x)−Eht

(
ŷt(x)− ξtd̂t(ŷt(x))− εt

)
+ γEv̂0

t+1

(
ŷt(x)− ξtd̂t(ŷt(x))− εt

)
− c(ẑt(x))

≤ d̂t(ŷt(x))p̂t(x)−Eht
(
ŷt(x)− ξtd̂t(ŷt(x))− εt

)
+ γEv̂t+1

(
ŷt(x)− ξtd̂t(ŷt(x))− εt

)
− c(ẑt(x))1{ẑt(x)>0}

= v̂t(x)

≤ max
y≥x,d∈Dt

{
dpt(d)−Eht

(
y− ξtd− εt

)
+ γEv̂t+1

(
y− ξtd− εt

)
− c(y−x)1{y>x}

}
≤ max

y≥x,d∈Dt

{
dpt(d)−Eht

(
y− ξtd− εt

)
+ γEvt+1

(
y− ξtd− εt

)
− c(y−x)1{y>x}

}
= vt(x).

We obtain 0≤ vt(x)− v̂t(x)≤ vt(x)− v̂0
t (x)≤Bt. �

Proof of Proposition 3

When ut(y) and c(z) are concave, because c(z) is piecewise linear, by Lemma 9.13 in Porteus

(2002), we know that a general (s,S) policy is optimal for problem (5). Therefore, v0
t (x)>ut(x) if

and only if x<Rt for some Rt. To see Rt ≤ S1, we first prove Rt ≤ St(cn). In fact, at x= St(cn),

v0
t (x) = max

y≥x
{[ut(y)− cny] + [cny− c(y−x)]}

≤ [ut(x)− cnx] + max
y≥x
{[cny− c(y−x)]}

≤ [ut(x)− cnx] + [cnx− c(0)]≤ ut(x),

where the first inequality holds because St(cn) maximizes the concave function ut(y)− cny, and

the second inequality holds because cny− c(y− x) is decreasing in y by the definition of c(z) and

cn ≤ ci for all 1 ≤ i ≤ n. Because v0
t (x) > ut(x) if and only if x < Rt, Rt ≤ St(cn) by the above

inequality.

To further see Rt ≤ S1, notice that S1 obtained in Algorithm 3 is equal to St(cj1) = St(ci1), the

least element of {St(ci) : i ∈ I}. If Rt > S1, then there is some i ∈ I such that St(ci)<Rt, where

i < n because Rt ≤ St(cn) as proved. Consider the optimal solution corresponding to the initial

inventory level x = St(ci). By x < Rt, the general (s,S) policy states that it is optimal to raise

the inventory up to some St(cj) for some j > i. However, because x > ri by i ∈ I, we know from

the definition of ri that ut(x)≥ ut(x)− c(0)≥ ut(St(cj))− c(St(cj)− x) for all j > i, i.e., it is not

optimal to raise the inventory up to any St(cj)>x. This is a contradiction. Thus, Rt ≤ S1.

We now focus on the expression of v0
t (x) when x<Rt. Because it is optimal to raise the inventory

level up to St(ci)>x for some 1≤ i≤ n, we can express

v0
t (x) = max

1≤i≤n
{ut(St(ci))− c(St(ci)−x) : x<St(ci)} . (A.20)
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Consider any i∈ {1,2, · · · , n} \I. The definition of I in Step 2 implies i < n and St(ci)≤ ri. When

x≥ St(ci), clearly i is infeasible to problem (A.20). When x<St(ci), we have x< ri by St(ci)≤ ri,
and by the definition of ri in Step 1, there is some i < j ≤ n such that x<St(cj) and

ut (St(ci))− c (St(ci)−x)<ut(St(cj))− c (St(cj)−x) .

Thus, index i is suboptimal to problem (A.20). In summary, any index i 6∈ I is either infeasible or

suboptimal to problem (A.20), implying that problem (A.20) is equivalent to

v0
t (x) = max

i∈I
{ut(St(ci))− c(St(ci)−x) : x<St(ci)} .

Because Rt ≤ S1 and S1 is the least element in {St(ci) : i ∈ I}, the constraint x < St(ci) in the

above problem is redundant for any x<Rt, implying that problem (A.20) is equivalent to

v0
t (x) = max

i∈I
{ut(St(ci))− c(St(ci)−x)} . (A.21)

It remains to show that z0
t (x) given in (11) solves problem (A.21) when x<Rt ≤ S1 = s1, which,

as J ⊆ I ⊆ {j : j1 ≤ j ≤ n}, is an immediate result of the following lemma.

Lemma 3. For any given ut(y),

max
j:j1≤j≤n

{ut(St(cj))− c(St(cj)−x)}=

ut(Sm)− c(Sm−x), if x< sm,

ut(Sl)− c(Sl−x), if sl+1 ≤ x< sl and 1≤ l <m,

where j1 = min{j : j ∈J } and {(sl, Sl) : 1≤ l≤m} are computed by Algorithm 3.

The proof of the lemma is presented subsequently. �

Proof of Lemma 3: For any 1≤ i < n, recall that the definition of ri and the concavity of c(z)

implies

ut (St(ci))− c (St(ci)−x)≥ max
j:i<j≤n

[ut(St(cj))− c (St(cj)−x)] ∀x> ri

ut (St(ci))− c (St(ci)−x)< max
j:i<j≤n

[ut(St(cj))− c (St(cj)−x)] ∀x< ri.

Furthermore, according to the continuity of c(z), we have

ut (St(ci))− c (St(ci)− ri) = max
j:i<j≤n

[ut(St(cj))− c (St(cj)− ri)]

for any i such that ri <St(ci), i.e., i∈ I \ {n}.
Consider any x≥ sl+1 = rjl for some 1≤ l <m. Note that jl ∈J \ {n} ⊆ I \ {n}. Thus,

ut(Sl)− c(Sl−x) = ut(St(cjl))− c(St(cjl)−x)≥ max
j:jl<j≤n

[ut(St(cj))− c (St(cj)−x)] . (A.22)

Consider any x< sl = rjl−1
for some 1< l≤m. Assume for induction that

max
j:i+1≤j≤jl

[ut(St(cj))− c (St(cj)−x)]≤ max
j:jl≤j≤n

[ut(St(cj))− c (St(cj)−x)] .

for some j1 ≤ i < jl, which obviously holds when i = jl − 1. We can show that ri ≥ sl = rjl−1
by

considering the following cases:
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(i) Note that there exists no i such that i ∈ J and jl−1 < i < jl, which means that ri ≥ rjl−1
for

all i∈ I and jl−1 < i< jl.

(ii) Suppose that i ∈ I and i ≤ jl−1. As jl−1 ∈ J , the definition of J implies that rjl−1
≤ ri as

i∈ I and i≤ jl−1.

(iii) Suppose that i /∈ I. Then we have ri ≥ St(ci) ≥ St(cj1) = S1 = s1 ≥ sl, where the second

inequality follows from the monotonicity of St(a) and ci ≤ cj1 .

Thus, x< sl implies x< ri and hence

ut (St(ci))− c (St(ci)−x)< max
j:i<j≤n

[ut(St(cj))− c (St(cj)−x)]

=

{
max

j:i+1≤j≤jl
[ut(St(cj))− c (St(cj)−x)]

}
∨
{

max
j:jl≤j≤n

[ut(St(cj))− c (St(cj)−x)]

}
≤
{

max
j:jl≤j≤n

[ut(St(cj))− c (St(cj)−x)]

}
,

where the second inequality follows from the induction assumption. Consequently,

max
j:i≤j≤jl

[ut(St(cj))− c (St(cj)−x)]≤ max
j:jl≤j≤n

[ut(St(cj))− c (St(cj)−x)] ∀j1 ≤ i≤ jl. (A.23)

Now we can complete the proof by applying (A.22) and (A.23).

(i) If x< sm, letting i= j1 and l=m in (A.23) yields

max
j:j1≤j≤n

[ut(St(cj))− c (St(cj)−x)]≤ ut(St(cjm))− c (St(cjm)−x) = ut(Sm)− c(Sm−x).

We obtain the desired result as Sm = St(cn)∈ {St(cj) : j1 ≤ j ≤ n}.
(ii) If sl+1 ≤ x< sl for some 1< l <m,

max
j:j1≤j≤n

[ut(St(cj))− c (St(cj)−x)]

=

{
max

j:j1≤j≤jl
[ut(St(cj))− c (St(cj)−x)]

}
∨
{

max
j:jl≤j≤n

[ut(St(cj))− c (St(cj)−x)]

}
=

{
max

j:jl≤j≤n
[ut(St(cj))− c (St(cj)−x)]

}
= ut(Sl)− c(Sl−x),

where the second and third equalities are obtained by (A.23) and (A.22), respectively.

(iii) If s2 ≤ x< s1, the desired result follows immediately from (A.22) with l= 1. �

Proof of Theorem 5

Since ut(y) is concave in the last period t= T , a general (s,S) policy is optimal to problem (3a).

The properties of z∗t (x) follows immediately from Proposition 3. Moreover, when z∗t (x) = Sl−x=

St(cjl)− x for some 1 ≤ l ≤m, z∗t (x) + x = St(cjl) and hence p∗t (x) = Pt(cjl) by the definition of

Pt(a) in (6).

It remains to show the monotonicity of p∗t (x). Recall that p∗t (x) = pt(d
∗
t (y
∗
t (x))), where y∗t (x)

denotes the inventory level after producing, and pt(d) is decreasing in d as assumed. Moreover,
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because the objective function of problem (3b) is supermodular in (y, d) by the concavity of

−ht(x) + γvt+1(x) and ξt ≥ 0, we know that d∗t (y) is increasing in y. Thus, p∗t (x) is increasing (or

decreasing) in x if y∗t (x) is decreasing (or increasing) in x. In particular, p∗t (x) is increasing when

x < Rt because y∗t (x) is decreasing when x < Rt by the specification of the general (s,S) policy.

When x≥Rt, since that y∗t (x) = x is increasing in x, the associated optimal price p∗t (x) is decreas-

ing in x. Furthermore, because y∗t (x)>x when x<Rt and y∗t (x) = x at x=Rt, we know that p∗t (x)

takes an upward jump at x=Rt. In summary, p∗t (x) is increasing when x≤Rt and then decreasing

when x≥Rt. �

Proof of Theorem 6

Because Algorithm 4 generates a feasible solution [z̄t(x), d̄t(x)] of problem (3), vt(x)≥ v̄t(x) in all

periods t. To find the upper bound of vt(x)− v̄t(x), let −v̄et (x) and −ūet(x) be the lower convex

envelopes of −v̄t(x) and −ūt(x), respectively. Moreover, define

At = sup
x

[v̄et (x)− v̄t(x)] and Bt = sup
x

[vt(x)− v̄t(x)],

where AT+1 =BT+1 = 0 by vT+1(x) = v̄T+1(x) = 0. Proposition 3 and Theorem 5 yield that BT = 0.

Furthermore, as shown in the proof of Theorem 3, we can obtain (A.7) and (A.8), i.e.,

0≤ ūet(y)− ūt(y)≤ γAt+1 (A.24)

and

ut(y)− ūet(y)≤ γBt+1. (A.25)

Similar to the proof of Theorem 3, let

v̂t(x) = max
z≥0

{
ūet(x+ z)− c(z)1{z>0}

}
, (A.26)

which, by (A.25) implies

vt(x)− v̂t(x)≤ γBt+1. (A.27)

We next prove that there exists some R̂t ≤ s1 such that

v̂t(x) =


v̄0
t (x)> ūet(x), if x< R̂t,

ūet(x)≥ v̄0
t (x), if R̂t ≤ x< s1,

ūet(x), if x≥ s1,

(A.28)

where s1 and z̄0
t (x) are computed in Step 2. Similar to the proof of Theorem 3, we make three

observations below:
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(i) Note that Lemma 1 holds as long as c(z) is non-negative, nondecreasing, and piecewise linear

continuous. Following the argument in the proof of Theorem 3, ciy− ūt(y) has a finite least

minimizer and lim
y→−∞

y−1[ūt(y)− ciy]> 0.

(ii) ūt(y) is continuous. This can be shown inductively by assuming that v̄t+1(x) for some 1≤ t≤ T
is continuous, which obviously holds for v̄T+1(x) = 0. Note that function ūt(y) in Step 1 is

continuous as dpt(d), ht(y) and v̄t+1(y) are all continuous. Furthermore, Lemma 3 shows that

v̄0
t (x) = max

j:j1≤j≤n

{
ūt(S̄t(cj))− c(S̄t(cj)−x)

}
∀x< s1,

which is continuous as c(z) is continuous. To see the continuity of v̄t, note that s1 = S1.

Therefore, lim
x↑s1

z̄0
t (x) = 0 and lim

x↑s1
v̄0
t (x) = ūt(s1) − K1 ≤ ūt(s1). Applying the continuity of

v̄0
t and ūt, the definition of v̄t immediately yields v̄t(R̄t) = lim

x↑R̄t

v̄0
t (x) = ūt(R̄t) and so v̄t is

continuous.

(iii) As shown in the proof of Theorem 3, ciy− ūet(y) is the lower convex envelope of ciy− ūt(y)

for any 1≤ i≤ n.

With the above observations, we know from Proposition 2 that S̄t(ci) is also the least minimizer

of cix− ūet(x). Furthermore, ciS̄t(ci)− ūet(S̄t(ci)) = ciS̄t(ci)− ūt(S̄t(ci)), which implies ūet(S̄t(ci)) =

ūt(S̄t(ci)). Because z̄0
t (x) specified in Step 2 only depends on the values of S̄t(ci) and ūt(St(ci)) for

1≤ i≤ n, by the concavity of ūet(y), similar to the proof of Proposition 3, there exists some R̂t ≤ s1

such that

v̂t(x) =


ūet(x+ z̄0

t )− c(z̄0
t )> ū

e
t(x), if x< R̂t,

ūet(x)≥ ūet(x+ z̄0
t )− c(z̄0

t ), if R̂t ≤ x< s1,

ūet(x), if x≥ s1.

Also note that x+ z̄0
t ∈ {S̄t(ci) : 1≤ i≤ n} and ūet(S̄t(ci)) = ūt(S̄t(ci)). It is straightforward that

ūet(x+ z̄0
t )− c(z̄0

t ) = ūt(x+ z̄0
t )− c(z̄0

t ) = v̄0
t (x) ∀x< s1,

which immediately yields (A.28).

As in the proof of Theorem 3, we next prove

0≤ v̂t(x)− v̄t(x)≤ γAt+1. (A.29)

Let z̄ = z̄0
t (x) for notational simplicity. Note that (A.28) implies R̂t = inf{x < s1 : v0

t (x)≤ ūet(x)}.
Recall that R̄t = inf{x < s1 : v0

t (x) ≤ ūt(x)} and ūet(x) ≥ ūt(x). We obtain R̂t ≤ R̄t. Thus, it is

sufficient to consider the following three cases.

(i) When x < R̄t ∧ R̂t, by (A.28) and the definition of v̄t(x), we have v̂t(x)− v̄t(x) = 0, which

obviously satisfies (A.29).
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(ii) When R̂t ≤ x< R̄t ≤ s1, we know that v̂t(x)− v̄t(x) = ūet(x)− v̄0
t (x)≥ 0. Furthermore, by the

definition of R̄t, x< R̄t implies v0
t (x)> ūt(x) and so

v̂t(x)− v̄t(x) = ūet(x)− v̄0
t (x)≤ ūet(x)− ūt(x).

Inequality (A.29) immediately follows from (A.24).

(iii) When x≥ R̄t ∨ R̂t, v̂t(x)− v̄t(x) = ūet(x)− ūt(x). Inequality (A.29) immediately follows from

(A.24).

By the definition of Bt, as well as inequalities (A.27) and (A.29), we conclude that

Bt = sup
x
{[vt(x)− v̂t(x)] + [v̂t(x)− v̄t(x)]} ≤ γBt+1 + γAt+1.

To see the relation between At and At+1, consider the following function as a counterpart of

v̂t(x) with c(z)1{z>0} replaced by Kn + cnz:

ṽ0
t (x) = max

z≥0
{ūet(x+ z)− (Kn + cnz)} .

As 0≤ (Kn + cnz)− c(z)1{z>0} ≤Kn for all z ≥ 0, we have

0≤ v̂t(x)− ṽ0
t (x)≤Kn, i.e., − [Kn + ṽ0

t (x)]≤−v̂t(x)≤−ṽ0
t (x).

Also note that (A.29) yields −v̂t(x)≤−v̄t(x)≤ γAt+1− v̂t(x). Therefore,

−[Kn + ṽ0
t (x)]≤−v̄t(x)≤ γAt+1− ṽ0

t (x). (A.30)

Because −v̄et (x) is the lower convex envelope of −v̄t(x), and −ṽ0
t (x) is obviously convex by its

definition, we know from the first inequality in (A.30) that −[Kn + ṽ0
t (x)]≤−v̄et (x). Furthermore,

by the second inequality in (A.30), it leads to −v̄t(x)≤Kn + γAt+1− v̄et (x), implying that

At = sup
x

[v̄et (x)− v̄t(x)]≤Kn + γAt+1.

In summary, we conclude that BT = 0, AT =Kn and for any 1≤ t < T ,

At ≤Kn + γAt+1 and Bt ≤ γ(At+1 +Bt+1).

By some basic algebra, it can be verified that for each t < T ,

At ≤
∑T−t

i=0
Knγ

i and Bt ≤
∑T−t

i=1
iKnγ

i.

Thus, by the definition of Bt, we obtain the upper bound of vt(x)− v̄t(x).

To see these sufficient conditions for v̄t(x) = vt(x), notice that in the proof of Theorem 5 we

indeed shows that if ut(y) is concave, then a general (s,S) policy is optimal to problem (3a), and
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all other discussions in the proof of Theorem 5 remains valid. Thus, conditions (a) and (b) lead to

the desired result v̄t(x) = vt(x), where we refer readers to Theorem 3 in Chen et al. (2010) for the

latter. To see the sufficient condition (c), if we can prove vt(x) satisfies the following alternative

definition, then this proof is completed by applying the well-known result in Scarf (1960):

vt(x) = max
z≥0

{
ut(x+ z)− (Kn + cnz)1{z>0}

}
(A.31)

= ut(x)∨max
z≥0
{ut(x+ z)− (Kn + cnz)} ,

where the second equality holds by Kn ≥ 0. In fact, by c(z) = min{Ki + ciz : 1≤ i≤ n}, vt(x) given

in (3a) can be equivalently expressed by

vt(x) = ut(x)∨max
z≥0

max
1≤i≤n

{ut(x+ z)− (Ki + ciz)} . (A.32)

Obviously, (A.31) holds for any x such that max
z≥0

max
1≤i<n

{
ut(x+ z)−Ki− ciz

}
≤ ut(x). Therefore, it

is sufficient to prove (A.31) under the condition that max
z≥0

max
1≤i<n

{
ut(x+ z)−Ki− ciz

}
>ut(x), i.e.,

there exist z∗ ≥ 0 and 1≤ i∗ <n such that

ut(x+ z∗)−Ki∗ − ci∗z∗ = max
z≥0

max
1≤i<n

{
ut(x+ z)−Ki− ciz

}
>ut(x). (A.33)

Observe that the given assumption on K1 can be expressed by K1 > (Ht − cn−1)qn−1 with Ht =∑T

i=t γ
i−th−i ; moreover, part (a) of the proof of Lemma 2 remains valid in this case, which states

that ut(x)−Htx is decreasing in x. By (Ht−ci)qn−1 ≤ (Ht−cn−1)qn−1 <K1 ≤Ki for any 1≤ i < n,

(A.33) implies

(Ht− ci∗)qn−1 ≤Ki∗ <ut(x+ z∗)−ut(x)− ci∗z∗

=
[
ut(x+ z∗)−Ht(x+ z∗)

]
−
[
ut(x)−Htx

]
+ (Ht− ci∗)z ≤ (Ht− ci∗)z,

where the last inequality holds since that ut(x)−Htx is decreasing in x. As Ki∗ ≥ 0, the above

inequality yields Ht − ci∗ > 0 and hence z ≥ qn−1. Furthermore, the concavity of c(z) implies

Ki + ciz ≥Kn + cnz for any 1≤ i < n and z ≥ qn−1. Therefore,

ut(x+ z∗)−Ki∗ − ci∗z∗ ≤ ut(x+ z∗)−Kn− cnz∗ ≤max
z≥0
{ut(x+ z)− (Kn + cnz)} .

By combining it and inequality (A.33), we conclude that vt(x) given by (A.32) satisfies the alter-

native definition (A.31). �

Proof of Theorem 7

Let BT+1 = 0 and Bt =
∑T−t

i=0 γ
i(Kn−K1). We inductively show that for t= T + 1, · · · ,1,

Bt ≥ vt(x)− v̂0
t (x)≥ vt(x)− v̂t(x)≥ 0.

42



Obviously the above inequality holds for t = T + 1 by vT+1(x) = v̂0
T+1(x) = v̂T+1(x). Suppose it

is true in period t + 1 for some 1 ≤ t ≤ T . In period t, observe that ût(y) in Step 1 satisfies

γBt+1 ≥ ut(y)− ût(y)≥ 0 by the inductive assumption Bt+1 ≥ vt+1(x)− v̂0
t+1(x)≥ 0. Note that

max
z≥0
{Kn + cnz− c(z)}= max

z≥0
max
1≤i≤n

{Kn + cnz−Ki− ciz} ≤ max
1≤i≤n

{Kn−Ki}=Kn−K1,

where the inequality follows from cn ≤ ci for all 1≤ i≤ n, i.e., Kn + cnz ≤ c(z) + (Kn−K1) for all

z ≥ 0. As Bt = (Kn−K1) + γBt+1, v̂0
t (x) obtained in Step 2 satisfies

v̂0
t (x) = max

z≥0

{
ût(x+ z)− (Kn + cnz)1{z>0}

}
≥ max

z≥0

{
[ut(x+ z)− γBt+1]− c(z)1{z>0}− (Kn−K1)]

}
= vt(x)−Bt.

Moreover, by the definitions of v̂0
t (x), ẑt(x), d̂t(x), ŷt(x), p̂t(x) and v̂t(x) in Steps 2 and 3,

v̂0
t (x) = d̂t(ŷt(x))p̂t(x)−Eht

(
ŷt(x)− ξtd̂t(ŷt(x))− εt

)
+ γEv̂0

t+1

(
ŷt(x)

)
− (Kn + cnẑt(x))1{ẑt(x)>0}

≤ d̂t(ŷt(x))p̂t(x)−Eht
(
ŷt(x)− ξtd̂t(ŷt(x))− εt

)
+ γEv̂t+1

(
ŷt(x)

)
− c(ẑt(x))1{ẑt(x)>0} = v̂t(x),

where the inequality holds by the inductive assumption v̂0
t+1(x)≤ v̂t+1(x) and c(z)≤Kn + cnz for

any z ≥ 0. Finally, by the definitions of v̂t(x) and vt(x) and the inductive assumption vt+1(x) ≥
v̂t+1(x),

v̂t(x) ≤ max
y≥x,d∈Dt

{
dpt(d)−Eht (y− ξtd− εt) + γEv̂t+1 (y− ξtd− εt)− c(y−x)1{y>x}

}
≤ max

y≥x,d∈Dt

{
dpt(d)−Eht (y− ξtd− εt) + γEvt+1 (y− ξtd− εt)− c(y−x)1{y>x}

}
= vt(x).

In summary, we conclude that Bt ≥ vt(x)− v̂0
t (x)≥ vt(x)− v̂t(x)≥ 0 for any 1≤ t≤ T + 1. �

Proof of Proposition 4

Observe that if x∆ = x1 − x0, a= λx∆ and b= µx∆ in Definition 1, then f(x) is κ-convex if and

only if the inequality below holds for any x0 ≤ x1 = x0 +x∆ and 0<λ≤ 1−µ< 1:

λf(x1−µx∆) +µf(x0 +λx∆)≤ λf(x1) +µf(x0) +λκ(µx∆).

Thus, part (c) is satisfied. In addition, K-convexity is implied by κ-convexity with κ(x) =K and

λ= 1−µ in part (a). To see the other direction in part (a), i.e., K-convexity also implies κ-convexity

with κ(x) =K, consider any x0 ≤ x1 = x0 +x∆ and 0≤ λ≤ 1−µ≤ 1. If f(x) is K-convex, then

f(x1−µx∆) ≤ µf(x0) + (1−µ)[f(x1) +K],

f(x0 +λx∆) ≤ (1−λ)f(x0) +λ[f(x1) +K].

By taking the sum of the two inequalities multiplied by λ and µ, respectively, it implies that

λf(x1−µx∆) +µf(x0 +λx∆)≤ µf(x0) +λ[f(x1) +K],
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Thus, f is also κ-convex with κ(x) =K by Definition 1.

It remains to show part (b). Given a sym-κ-convex function f(x) with κ(x) =K, to see its sym-

K-convexity, we only need to verify inequality (15) for any 0≤ λ≤ 1 and x0 > x1. Let λ̄= 1− λ
and x̄i = x1−i for i= 0,1. Clearly 0≤ λ̄≤ 1 and x̄0 < x̄1. By the sym-κ-convexity of f(x),

f((1−λ)x0 +λx1) = f((1− λ̄)x̄0 + λ̄x̄1)

≤ [(1− λ̄)f(x̄0) + λ̄f(x̄1)] + [(1− λ̄)∨ λ̄]K

= [λf(x1) + (1−λ)f(x0)] + [λ∨ (1−λ)]K.

Thus, inequality (15) holds, i.e., f(x) is sym-K-convex. �

Proof of Proposition 5

For any a, b≥ 0 and x0 + a≤ x1− b, we need to prove the inequality below:

b[f(x0 + a)− f(x0)] + a[f(x1− b)− f(x1)]≤ θ(a, b),

where to unify the discussion, we introduce θ(a, b) = aκ(b) if g(y) is κ-convex, and θ(a, b) = [aκ(b)]∨
[bκ(a)] if g(y) is sym-κ-convex. Let x∆ = x1 − x0 and note that x∆ ≥ a+ b ≥ 0. Since the above

inequality is trivial when x∆ = 0, we assume x∆ > 0 in the following.

Suppose that zi ∈Z solves the problem associated with parameter xi for each i= 0,1, that is,

f(x0) =Eg(x0− ξz0− ε) +h(z0), f(x1) =Eg(x1− ξz1− ε) +h(z1).

Let ρ= x−1
∆ (z1−z0) and λ= 0∨ρ∧L−1. Observe that 0∧(ρx∆)≤ λx≤ 0∨(ρx∆) for any 0<x<x∆.

In particular, because 0<a≤ x∆−b < x∆, we have z0∧z1 ≤ z0 +λa≤ z0∨z1 and z0∧z1 ≤ z1−λb≤
z0 ∨ z1, implying that z0 + λa and z1 − λb belong to the convex set Z. By the definition of f , we

have

f(x0 + a)≤Eg(x0 + a− ξ(z0 +λa)− ε) +h(z0 +λa),

f(x1− b)≤Eg(x1− b− ξ(z1−λb)− ε) +h(z1−λb).

By substituting above four inequalities into the desired inequality to eliminate terms related to

function f(x), we only need to prove

EG+ [ah(z1−λb) + bh(z0 +λa)]− [ah(z1) + bh(z0)]≤ θ(a, b), (A.34)

where G given below collects all terms related to function g(y):

G = b[g(x0 + a− ξ(z0 +λa)− ε)− g(x0− ξz0− ε)]

+ a[g(x1− b− ξ(z1−λb)− ε)− g(x1− ξz1− ε)].

44



Because h(z) is convex and z0 +λa, z1−λb∈ [z0 ∧ z1, z0 ∨ z1], we know that

|z1− z0|h(z0 +λa) ≤ (|z1− z0| −λa)h(z0) + (λa)h(z1),

|z1− z0|h(z1−λb) ≤ (λb)h(z0) + (|z1− z0| −λb)h(z1).

By taking sum of the two inequalities multiplied by b and a respectively, we have

|z1− z0|[ah(z1−λb) + bh(z0 +λa)]≤ |z1− z0|[ah(z1) + bh(z0)].

Thus, to see inequality (A.34), we only need to verify G ≤ θ(a, b) for any ξ ∈ [L,U ]. We distinguish

among three cases as below. We recall that λξ = 0∨ (ρξ)∧ (L−1ξ).

(i) If ρξ = 1 or ρξ > 1 and ξ =L, then λξ = (ρξ)∧ (L−1ξ) = 1. Clearly, G = 0 by its definition.

(ii) If ρξ < 1, then ρξ <L−1ξ and λξ = 0∨ (ρξ)< 1. It ensures 0< 1−λξ ≤ 1 and hence

x0− ξz0 <x0 + a− ξ(z0 +λa)≤ x1− b− ξ(z1−λb)<x1− ξz1.

By the definition of G and the (sym-)κ-convexity of g, as well as the above inequality,

(1−λξ)G = [(1−λξ)b][g(x0 + a− ξ(z0 +λa)− ε)− g(x0− ξz0− ε)]

+ [(1−λξ)a][g(x1− b− ξ(z1−λb)− ε)− g(x1− ξz1− ε)]

≤ θ ((1−λξ)a, (1−λξ)b) .

By 0 < 1− λξ ≤ 1 and the monotonicity of function κ(z), it is straightforward to see that

G ≤ θ(a, b) for either θ(a, b) = aκ(b) or θ(a, b) = [aκ(b)]∨ [bκ(a)].

(iii) If ρξ > 1 and ξ >L, then λξ = (ρξ)∧ (L−1ξ)> 1, which implies that

x1− ξz1 <x1− b− ξ(z1−λb)≤ x0 + a− ξ(z0 +λa)<x0− ξz0.

By the (sym-)κ-convexity of g and the definition of G, similar to the previous case, we have

that

(λξ− 1)G ≤ θ ((λξ− 1)b, (λξ− 1)a) .

Recall that ξ > L corresponds to the setting that g is sym-κ-convex, i.e., θ(a, b) = [aκ(b)] ∨
[bκ(a)]. Substituting it into the above inequality, it follows that

G ≤ [aκ((λξ− 1)b)]∨ [bκ((λξ− 1)a)].

If κ(z) is constant, then clearly G ≤ θ(a, b). If U ≤ 2L, then λξ− 1≤L−1ξ− 1≤L−1U − 1≤ 1

by the definition of λ, and hence G ≤ θ(a, b) by the monotonicity of κ(z). �

45



Proof of Proposition 6

Given any a, b≥ 0 and x0 + a≤ x1− b, we need to verify the following inequality,

b[f(x0 + a)− f(x0)] + a[f(x1− b)− f(x1)]≤ θ(a, b).

Similar to the proof of Proposition 5, we introduce θ(a, b) as below to unify the discussion.

(a) θ(a, b) = aκ(b) if c(z) is convex and g(x) is κ-convex with κ(x) = c(x)− c1x;

(b) θ(a, b) = [aκ(b)]∨ [bκ(a)] if c(z) is convex and g(x) is sym-κ-convex with κ(x) = c(x)− c1x;

(c) θ(a, b) = [aκ(b)]∨ [bκ(a)] if c(z) is convex, Kn ≥ 0, and g(x) is sym-κ-convex with κ(x) =K1;

(d) θ(a, b) = aκ(b) if c(z) is concave and g(x) is κ-convex with κ(x) = c(x)− cnx; and

(e) θ(a, b) = [aκ(b)]∨ [bκ(a)] if c(z) is concave and g(x) is sym-κ-convex with κ(x) = c(x)− cnx.

We assume a> 0 in the following because otherwise the desired inequality holds obviously.

Let h(z) = c(−z)1{z<0} and reformulate the problem as

f(x) = min
y,z
{g(y) +h(z) : y+ z = x, z ≤ 0} .

For each i = 0,1, suppose (yi, zi) solves the above problem related to parameter xi, i.e., f(xi) =

g(yi) + h(zi), yi + zi = xi and zi ≤ 0. Observe that if c(z) is convex and z0, z1 < 0, then at x= x0

and x= x1, we can express

f(x) = max
z≤0
{g(x− z) +h(z)}= max

z≤0
{g(x− z) + c(−z)} .

Because this is a special case of the problem studied in Proposition 5 corresponding to ξ = 1 and

ε= 0, the desired inequality has been verified. Thus, in the following, we only focus on the case

where either c(z) is convex with z0z1 = 0 or c(z) is concave.

Let x∆ = x1 − x0 and z∆ = z1 − z0, where note that y1 − y0 = x∆ − z∆. Furthermore, consider

λ= 0∨ z∆ ∧ a and µ∈ {0, b}, where observe that (z0 +λ)∨ (z1−µ)≤ z0 ∨ z1. Hence, by zi ≤ 0 and

definition of f(x), we know that

f(x0 + a) ≤ g(y0 + a−λ) +h(z0 +λ),

f(x1− b) ≤ g(y1− b+µ) +h(z1−µ).

Because f(xi) = g(yi) +h(zi), we know from the above inequalities that

b[f(x0 + a)− f(x0)] + a[f(x1− b)− f(x1)]≤F(λ,µ),

where function F(λ,µ) on the right side is given by

F(λ,µ) = b[g(y0 + a−λ)− g(y0)] + b[h(z0 +λ)−h(z0)]

+ a[g(y1− b+µ)− g(y1)] + a[h(z1−µ)−h(z1)].

Thus, to complete this proof, it suffices to prove F(λ,µ) ≤ θ(a, b) if either c(z) is convex with

z0z1 = 0 or c(z) is concave. We consider three cases as below.
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(a) When z∆ ≤ 0, λ= 0 and consider µ= 0 only,

F(0,0) = b[g(y0 + a)− g(y0)] + a[g(y1− b)− g(y1)].

Because g(y) is (sym-)κ-convex and y1− y0 = x∆− z∆ ≥ a+ b, we conclude F(0,0)≤ θ(a, b).
(b) When z∆ ≥ a, λ= a and consider µ= b only,

F(a, b) = b[h(z0 + a)−h(z0)] + a[h(z1− b)−h(z1)].

(i) If c(z) is convex with z0z1 = 0, then z0 =−z∆ < 0 = z1. By h(z) = c(−z)1{z<0},

F(a, b) = b[h(−z∆ + a)−h(−z∆)] + a[h(−b)−h(0)]

≤ b[c(z∆− a)− c(z∆)] + ac(b).

Because c(z− a)− c(z) is decreasing in z by convexity of c(z), we know that

F(a, b)≤ b[c(0)− c(a)] + ac(b) = bK1 + ac(b)− bc(a). (A.35)

If g(x) is κ-convex or sym-κ-convex with κ(z) = c(z)−c1z, then θ(a, b) = aκ(b) or θ(a, b) =

[aκ(b)]∨ [bκ(a)] by definition of θ(a, b). In each case, inequality (A.35) ensures

F(a, b)≤ ac(b)− bc(a) = aκ(b)− bκ(a)≤ θ(a, b).

If Kn ≥ 0 and g(x) is sym-κ-convex with κ(z) =K1, then θ(a, b) = (a∨ b)K1 by definition

of θ(a, b). In this case, we can verify F(a, b)≤ θ(a, b) as below:

• When a≤ b, because Ki ≥Kn ≥ 0 for any 1≤ i≤ n by convexity of c(z),

z−1c(z) =
∑n

i=1
(z−1Ki + ci)1{qi−1<z≤qi}

is decreasing in z when z > 0. Thus, by inequality (A.35) and b≥ a, we conclude

F(a, b)≤ bK1 + ab
[
b−1c(b)− a−1c(a)

]
≤ bK1.

• When a > b, notice that ac(b)≤ (a− b)c(0) + bc(a) = (a− b)K1 + bc(a) by convexity

of c(z). Hence, inequality (A.35) ensures that

F(a, b)≤ bK1 + [(a− b)K1 + bc(a)]− bc(a) = aK1.

(ii) When c(z) is concave, recall that either θ(a, b) = aκ(b) or θ(a, b) = [aκ(b)]∨ [bκ(a)] with

κ(z) = c(z)− cnz. Observe that h(z) = c(−z)1{z<0} is concave over <− by c(0) =K1 ≥ 0

and concavity of c(z) over <+. Moreover, h(z) + cnz = [c(−z) + cnz]1{z<0} is decreasing

over <− by monotonicity of c(z)− cnz over <+.
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• When z∆ > b, by concavity of h(z) and monotonicity of h(z) + cnz,

F(a, b) = b[h(z0 + a)−h(z0)] + a[h(z1− b)−h(z1)]

≤ b(−cna) + a[h(−b)−h(0)]

= −abcn + a[c(b)− 0] = aκ(b)≤ θ(a, b).

• When z∆ ≤ b, by definition of F(a, b), concavity of h(z) and z1− b≤ z1− z∆ = z0,

F(a, b) = [(b− z∆)h(z0 + a)− (a+ b− z∆)h(z0) + ah(z1− b)]

+ [z∆h(z0 + a)− (z∆− a)h(z0)− ah(z1)]

≤ z∆h(z0 + a)− (z∆− a)h(z0)− ah(z1)

= (z∆− a)[h(z0 + a)−h(z0)] + a[h(z0 + a)−h(z1)].

Furthermore, by a≤ z∆ ≤ b, monotonicity of h(z) + cnz and concavity of h(z),

F(a, b) ≤ (z∆− a)(−cna) + a[h(z1− z∆ + a)−h(z1)]

≤ (z∆− a)(−cna) + a[h(0− z∆ + a)−h(0)]

= (z∆− a)(−cna) + ac(z∆− a)

= aκ(z∆− a)≤ aκ(b)≤ θ(a, b).

(c) When 0 < z∆ < a, λ = z∆ and consider both candidates µ ∈ {0, b}. Instead of showing either

F(z∆,0) or F(z∆, b) is no more than θ(a, b), we only need to prove that their convex combination

G = (1− z∆/a)F(z∆,0)+(z∆/a)F(z∆, b) is no more than θ(a, b). In fact, by definition of F(λ,µ)

and z∆ = z1− z0, we can express G by

G = b[g(y0 + a− z∆)− g(y0)] + b[h(z0 + z∆)−h(z0)]

+ (a− z∆)[g(y1− b)− g(y1)] + z∆[h(z1− b)−h(z1)]

= b[g(y0 + a− z∆)− g(y0)] + (a− z∆)[g(y1− b)− g(y1)]

+ (b− z∆)h(z1)− bh(z0) + z∆h(z1− b).

By y1− y0 = x∆− z∆ ≥ (a− z∆) + b and (sym-)κ-convexity of g(y),

G ≤ θ(a− z∆, b) + (b− z∆)h(z1)− bh(z0) + z∆h(z1− b).

Therefore, to see G ≤ θ(a, b), it suffices to prove

θ(a− z∆, b) + (b− z∆)h(z1)− bh(z0) + z∆h(z1− b)≤ θ(a, b). (A.36)

(i) When c(z) is convex with z0z1 = 0, we have z0 =−z∆ < 0 = z1 by z∆ > 0. In addition, by

h(z) = c(z)1{z<0}, the desired inequality (A.36) is equivalent to

θ(a− z∆, b) + z∆c(b)− bc(z∆)≤ θ(a, b). (A.37)
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• If g(x) is κ-convex with κ(x) = c(x)−c1x, then θ(a, b) = aκ(b) by definition of θ(a, b).

In this case, inequality (A.37) is obviously.

• If g(x) is sym-κ-convex with κ(x) = c(x)− c1x, then θ(a, b) = [aκ(b)]∨ [bκ(a)]. In this

case, inequality (A.37) further reduces to

[ac(b)− bc(z∆)]∨ [bc(a− z∆) + z∆c(b)− bc(z∆)]≤ [ac(b)]∨ [bc(a)].

Because [ac(b)− bc(z∆)]≤ ac(b), inequality (A.37) is equivalent to

b[c(a− z∆)− c(z∆)] + z∆c(b)≤ [ac(b)]∨ [bc(a)].

Furthermore, by 0< z∆ <a, a sufficient condition to the desired inequality (A.37) is

b[c(a− z∆)− c(z∆)] + z∆c(b) ≤ (a−1z∆)[ac(b)] +
(
1− a−1z∆

)
[bc(a)]

= z∆c(b) + a−1b [(a− z∆) c(a)] ,

i.e., c(a−z∆)−c(z∆)

a−z∆
≤ c(a)

a
, which is true because monotonicity and convexity of c(z) imply

that
c(a− z∆)− c(z∆)

a− z∆

≤ c(a− z∆)− c(0)

(a− z∆)− 0
≤ c(a)− c(0)

a− 0
=
c(a)−K1

a
≤ c(a)

a
.

• If Kn ≥ 0 and g(x) is sym-κ-convex with κ(x) =K1, then θ(a, b) = (a∨ b)K1. In this

case, inequality (A.37) further reduces to

[(a− z∆)∨ b]K1 + [z∆c(b)− bc(z∆)]≤ (a∨ b)K1.

Note that Kn ≥ 0 and (1) imply that z−1c(z) is decreasing in z when z > 0. Thus, when

z∆ ≤ b, inequality (A.37) holds because

z∆c(b)− bc(z∆) = z∆b
[
b−1c(b)− z−1

∆ c(z∆)
]
≤ 0.

When z∆ > b, because z−1[c(z)−K1] is increasing in z when z > 0 by convexity of c(z)

and c(0) =K1, we can verify that

z∆c(b)− bc(z∆) = (z∆− b)K1 + z∆b
{
b−1[c(b)−K1]− z−1

∆ [c(z∆)−K1]
}

≤ (z∆− b)K1.

Thus, a sufficient condition to the desired inequality is

[(a− z∆)∨ b]K1 + (z∆− b)K1 ≤ (a∨ b)K1,

i.e., [(a− b)∨ z∆]K1 ≤ (a∨ b)K1, which is true because z∆ <a in this case.

(ii) When c(z) is concave, if z∆ ≤ b, then by concavity of h(z) and z1− b≤ z0 < z1.

(b− z∆)h(z1)− bh(z0) + z∆h(z1− b)≤ 0.
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In this case, inequality (A.36) reduces to θ(a− z∆, b)≤ θ(a, b), which holds obviously for

both θ(a, b) = aκ(b) and θ(a, b) = [aκ(b)]∨ [bκ(a)] with κ(z) = c(z)− cnz. If z∆ > b, then

z0 < z1− b. Because h(z) is concave and h(z) + cnz is decreasing when z ≤ 0,

(b− z∆)h(z1)− bh(z0) + z∆h(z1− b) = (z∆− b)[h(z1− b)−h(z1)] + b[h(z1− b)−h(z0)]

≤ (z∆− b)[h(−b)−h(0)] + b[−cn(z1− b− z0)]

= (z∆− b)c(b)− bcn(z∆− b)

= (z∆− b)κ(b).

Thus, inequality (A.36) is satisfied if for any b < z∆ <a, the following inequality holds.

θ(a− z∆, b) + (z∆− b)κ(b)≤ θ(a, b).

When θ(a, b) = aκ(b), it is obviously true. When θ(a, b) = [aκ(b)]∨ [bκ(a)], it reduces to

[(a− b)κ(b)]∨ [bκ(a− z∆) + (z∆− b)κ(b)]≤ [aκ(b)]∨ [bκ(a)].

By [(a− b)κ(b)]≤ [aκ(b)], it holds if bκ(a− z∆) + (z∆− b)κ(b)≤ aκ(b), i.e.,

bc(a− z∆)≤ bc(b) + (a− z∆)c(b).

The above inequality is true because its left side is no more than bc(b) if a − z∆ ≤ b,
and no more than (a− z∆)c(b) if a− z∆ > b because by the concavity of c(z), z−1c(z) is

decreasing in z when z > 0. �

Proof of Theorem 8

First of all, observe that {x <Rt} ⊆ Ot immediately follows from the definition of Rt by (7). We

now characterize the produce up to level y∗t (x) = z∗t (x) + x for x ∈Ot. Note that y∗t (x) solves the

problem

v0
t (x) = max

y≥x
[ut(y)− c(y−x)].

(i) If c(z) is convex, then its objective function is supermodular in (x, y). Since its feasible set

forms a lattice, by Theorem 2.8.2 in Topkis (1998), we know that y∗t (x) is increasing in x∈Ot.
Moreover, for any 1≤ i≤ n, because c(z)≥Ki+ciz and St(ci) maximizes function ut(y)−ciy,

v0
t (x)≤max

y≥x
[ut(y)−Ki− ci(y−x)]≤ ut(St(ci))−Ki− ci [St(ci)−x] .

On the other hand, if St(ci)− qi <x≤ St(ci)− qi−1, then by definitions of c(z) and v0
t (x),

ut(St(ci))−Ki− ci [St(ci)−x] = ut(St(ci))− c (St(ci)−x)≤ v0
t (x).

Therefore z∗t (x) = St(ci)−x and y∗t (x) = St(ci) if X ∈Ot and St(ci)− qi <x≤ St(ci)− qi−1.

50



(ii) If c(z) is concave and x < Rt, because a production is always executed over the region

(−∞,Rt), then it leads no loss of optimality to ignore the constraint y ≥ x. In this case,

observe that y∗t (−x) solves the problem

v0
t (−x) = max

y
[ut(y)− c(y+x)].

Since its objective function is supermodular in (x, y), we know that y∗t (−x) is increasing in

x, i.e., y∗t (x) is decreasing in x. Moreover, because c(z) = min
1≤i≤n

[Ki + ciz], we can express

v0
t (x) = max

1≤i≤n
cix+ max

y
[ut(y)− ciy].

Thus, we can choose y∗t (x)∈ St(ci) for some 1≤ i≤ n.

Next we characterize Oct . Because vT+1(x) = 0, by applying Proposition 5 to problem (3b) and

Proposition 6 to problem (3a) for all t= T, · · · ,1, we can inductively prove the following statements,

• When U =L, vt(x) and ut(x) are κ-concave with κ(z) = c(z)− (c1 ∧ cn)z;

• When U ≤ 2L, vt(x) and ut(y) are sym-κ-concave with κ(z) = c(z)− (c1 ∧ cn)z; and

• When c(z) is convex and Kn ≥ 0, vt(x) and ut(y) are sym-κ-concave with κ(z) =K1.

With results provided above, we are ready to show {x≥ St(c0)} ⊆ Oct for a constant c0 specified

in each case (e.g., c0 = c1 if c(z) is convex and either U = L or Kn ≥ 0). To unify the discussion,

introduce θ(a, b) = aκ(b) if U =L, θ(a, b) = [aκ(b)]∨ [bκ(a)] if U ≤ 2L, and θ(a, b) = (a∨ b)K1 if c(z)

is convex and Kn ≥ 0. For any x≥ St(c0) and b > 0, denote by a= x−St(c0)≥ 0. Because St(c0) is

a global maximizer of ut(y)− c0y, by the concave-like property of ut(y) and hence ut(y)− c0y, we

know that

(a+ b)[ut(x)− c0x] ≥ b [ut(St(c0))− c0St(c0)] + a [ut(x+ b)− c0(x+ b)]− θ(a, b)

≥ (a+ b)[ut(x+ b)− c0(x+ b)]− θ(a, b).

Reformulate the above inequality as ut(x)−ut(x+ b)+A≥ 0 for A= c0b+θ(a, b)/(a+ b). If we are

able to further prove A≤ c(b), then ut(x)≥ ut(x+ b)− c(b). That is, it is not optimal to produce

at x≥ St(c0), i.e., {x≥ St(c0)} ⊆Oct . Thus, we only need to verify A≤ c(b) in each case.

(i) When U = L, c0 = c1 if c(z) is convex, and c0 = cn if c(z) is concave. In both cases, we can

express θ(a, b) = aκ(b) = a[c(b)− c0b]. Therefore,

A= c0b+
a[c(b)− c0b]

a+ b
≤ ac(b)

a+ b
≤ c(b).

(ii) When U ≤ 2L and c(z) is convex, κ(z) = c(z)− c1z, c0 = c1− cn and

A= (c1− cn)b+
a[c(b)− c1b]

a+ b
∨ b[c(a)− c1a]

a+ b
.

By a
a+b
≤ 1 and c(b)− c1b≥ 0, as well as c(a)− c1a≤ c(a+ b)− c1(a+ b),

A≤ (c1− cn)b+ [c(b)− c1b]∨ sup
a≥0

b[c(a+ b)− c1(a+ b)]

a+ b
.
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Because z−1[c(z)− cnz] = max
1≤i≤n

[z−1Ki + ci− cn] is the maximum of n quasi-convex functions,

and c(z) =Kn + cnz when z is sufficiently large, we know that for any a≥ 0,

A≤ (c1− cn)b+ [c(b)− c1b]∨ [b(cn− c1)] = [c(b)− cnb]∨ 0≤ c(b).

(iii) When U ≤ 2L and c(z) is concave, κ(z) = c(z)− cnz, c0 = 0 and we can express

A= (ab)
[b−1c(b)]∨ [a−1c(a)]− cn

a+ b
.

Because z−1c(z) is decreasing in z (see Proof of Proposition 6), if a≥ b, then

A= (ab)
b−1c(b)− cn

a+ b
=
a[c(b)− cnb]

a+ b
≤ [c(b)− cnb]≤ c(b).

Moreover, if a< b, then by monotonicity of z−1c(z) again, we also have

A= (ab)
a−1c(a)− cn

a+ b
=
bc(a)− cnab

a+ b
≤ bc(a+ b)

a+ b
≤ c(b).

(iv) When c(z) is convex and Kn ≥ 0, then κ(z) = c(z)− c1z, c0 = c1 and obviously

A= c1b+
(a∨ b)K1

a+ b
≤ c1b+K1 ≤ c(b).

In summary, we verified that ut(x)−ut(x+ b) + c(b)≥ 0 for any x≥ St(c0) and b > 0. �
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