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Data-Driven Look-Ahead Unit Commitment
Considering Forbidden Zones and Dynamic

Ramping Rates
Ziliang Jin, Kai Pan, Member, IEEE, Lei Fan, Member, IEEE, and Tao Ding, Member, IEEE,

Abstract—Look-ahead unit commitment (LAUC) is recently
introduced among Independent System Operators (ISOs) in
the U.S. to increase generation capacity by committing more
generators after day-ahead unit commitment (UC) when facing
various uncertainties in the power system operations. However, as
the share of intermittent renewable energy increases significantly
in the power generation portfolio, the load continues to fluctuate,
and unexpected events and market behaviors happen nowadays,
the ISOs are facing new critical challenges to maintain the
reliability of power system. To systematically manage these uncer-
tainties and corresponding challenges, new advanced approaches
are urgently required to improve current LAUC models and
solution methods. Therefore, in this paper, we first propose
a new formulation to represent forbidden zones and dynamic
ramping rate limits, which help capture the system operation
status more accurately and hedge against the uncertainties more
effectively, and then correspondingly propose a data-driven risk-
averse LAUC model. Our computational experiments show how
the size of data influence operational decisions and how the
inclusion of forbidden zones and dynamic ramping provides
better decisions.

Index Terms—Unit Commitment, Data-Driven, Forbidden
Zones, Dynamic Ramping Rates.

I. NOMENCLATURE

A. Sets
A Distributional ambiguity set.
B Set of buses.
G Set of generators.
Gb Set of generators at bus b.
E Set of transmission lines linking two buses.
R Set of the indices of supporting nodes on R-piece

piecewise linear approximation.
Zk Set of all zones of generator k.
Fk Set of forbidden zones of generator k.
Nk Set of normal zones of generator k.

B. Parameters
T Number of time intervals for the planning horizon.
SUk Start-up cost of generator k.
SDk Shut-down cost of generator k.
RUk

i Ramp-up rate of generator k in zone i.
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RDk
i Ramp-down rate of generator k in zone i.

RUk
max The largest ramp-up rate of generator k among all

zones.
RDk

max The largest ramp-down rate of generator k among
all zones.

Ck Minimal generation output if generator k is on.
C

k
Maximal generation output if generator k is on.

V
k

Start-up/shut-down ramp rate of generator k.
δ Length of each time interval (e.g., 15 min).
rt System reserve factor at time interval t.
P i,k
min Minimal generation output of generator k in zone

i.
P i,k
max Maximal generation output of generator k in zone

i.
Kb

m Line flow distribution factor for transmission line
m due to the net injection at bus b.

Cm Transmission capacity of transmission line m.
αk
n The n-th break point in the operation range be-

tween the minimum and maximum generation
amounts of generator k.

db,t Load at bus b at time interval t.
Wt(ξ) Generation amount of wind and solar generators

at time t corresponding to scenario ξ.

C. Decision Variables
1) First-Stage Decision Variables
ukt 1 if generator k starts up at time interval t, and 0

otherwise.
ykt 1 if generator k is online at time interval t, and 0

otherwise.
xin,int,k 1 if there is a transition at time interval t from

normal zone in to normal zone in, and 0 otherwise.
x
(if ,if ),u
t,k 1 if there is a transition at time interval t from

forbidden zone if to forbidden zone if ramping
up, and 0 otherwise.

x
(if ,if ),d
t,k 1 if there is a transition at time interval t from

forbidden zone if to forbidden zone if ramping
down, and 0 otherwise.

xi,i+1
t,k 1 if generator k is in zone i+ 1 at time interval t

and in zone i at time interval t−1, and 0 otherwise.
xi,i−1t,k 1 if generator k is in zone i− 1 at time interval t

and in zone i at time interval t−1, and 0 otherwise.
2) Second-Stage Decision Variables
gkt (ξ) Generation amount of generator k at time interval

t corresponding to scenario ξ.
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fkt (ξ) Auxiliary variable representing cost corresponding
to scenario ξ.

II. INTRODUCTION

As the costs of wind turbines and solar panels decrease,
the share of renewable energy is continuously increasing.
For instance, more than 30% of the total electricity demand
covered by California Independent Operation System (CAISO)
is served by the renewable energy resources. Nevertheless,
the high penetration of intermittent renewable energy brings
new system operation challenges. For example, the duck
curve [1], which is famous as new pattern of the demand
curve of CAISO, significantly complicates the power system
operations. This curve decreases sharply when the sun rises
in the daytime but increases dramatically during the sunset
time. Such changes increase the difficulty of operating the
system to schedule the generation resources and accordingly
advanced modeling and solutions approaches are called for. To
this end, we aim to improve the reliability and flexibility of the
system operations under this new trend from two perspectives:
accurate modeling and data-driven solution approach.

To begin with, to tackle the fluctuation of the renewable
clean energy such as wind and solar, LAUC runs, with shorter
planning horizon than day-ahead UC and each time interval
being 15 minutes in general, are introduced among ISOs to
help improve the economic dispatch as the new uncertain
information is updated [2] and [3]. For example, CAISO has
the short term UC which has 18 intervals with each interval
being 15 minutes. In Midcontinent ISO (MISO), the LAUC
covers three hours in which the first hour has four intervals
with each interval being 15 minutes and the last two hours have
another four intervals with each being 30 minutes. In order to
reflect the generating resources’ capability of satisfying the
load curve, dynamic ramping rate limits and forbidden zones
are needed to be described accurately in the LAUC model.

Currently, most studies ([4], [5] and [6]) focus on the
formulation of traditional thermal unit commitment without
considering the dynamic ramming rates and forbidden zones.
In fact, if these two important features are not captured in

the LAUC model, the final solution might be impractical for
the system operations (see [7] and [8]). In practice, the power
generation ramps continuously, which inevitably engenders the
generation within forbidden zones for some very short time
intervals. The generator may be scheduled within forbidden
zones but has to quickly leave there at the highest possible
ramping rate in order to reduce the damage to the mechanical
system [8] and [7]. Due to the possible generation within the
forbidden zones, dynamic ramping rates become a pivotal role
in affecting the corresponding decision. As a consequence,
an accurate dynamic ramping limit within the formulation is
crucial to ensure the reliability of the system. Thus, in practical
applications among ISOs, e.g., MISO and CAISO, ramping
rate limits are dynamic according to different generation
zones. That means ramping rate is essentially a function of
the unit’s generation amount [9]. In particular, [9] proposes
stepwise and piecewise linear function models to capture the
dynamic ramping rates, leading to two mixed-integer linear
programming (MILP) models for UC.

These models have limitations in monitoring the transition
of ramping rates when the generation ramps across different
zones (such as from normal generation zones to forbidden
zones). In addition, [10] further improves the models based
on [9] by incorporating more realistic cases.

Nevertheless, the model in [10] cannot capture dynamic
ramping rate limits when forbidden zones are considered
because of the special requirements of forbidden zones [11]. In
order to overcome the aforementioned drawbacks of nowadays
UC models, we proposed an LAUC model with dynamic
ramping rate limits and forbidden zones considered practically.
In this paper, we capture the forbidden zones and dynamic
ramping rates at the same time by using status transition
modeling approach. In particular, we use a transition graph
to represent all possible status transitions among normal and
forbidden zones and define binary variables corresponding to
arcs in the graph to indicate in which status the generator
should be. This modeling approach has advantages in terms
of formulation tightness and computational performance. As
shown in [12], the status-transition-based model leads to
network flow formulations which enable commercial mixed-
integer linear programming (MILP) solvers such as CPLEX
and GUROBI to speed up the solving process.

Next, to better manage the uncertainties due to the pen-
etration of renewable energy, optimization-under-uncertainty
techniques are critically important to help improve the decision
making. Robust optimization [13] as one of the important
tools to hedge uncertainty has been applied in many areas of
power system such as unit commitment (e.g., [14] and [15]),
self-scheduling generation (e.g., [16]), offering strategy (e.g.,
[17]), and the planning of plug-in hybrid electric vehicles (e.g.,
[18]). In particular, for the LAUC model, robust optimization
has been applied in MISO and PJM by [19] and [20], re-
spectively, to handle the uncertainties. In addition, stochastic
programming has been extensively studied to help make better
decision under uncertainty. For instance, [21] and [22] build
a two-stage stochastic programming framework for unit com-
mitment problems, [23] and [24] use the two-stage stochastic
programming approach to handle the uncertainty in the optimal
schedule of micro-grid system. However, robust optimization
leads to conservative dispatch results since it considers the
worst case [25] and stochastic programming provides a large-
sized and computationally difficult model with many possible
scenarios, which may generate a suboptimal solution due to
limited scenarios. Therefore, in this paper, as indicated in
[26] and [27], we propose a data-driven risk-averse two-stage
stochastic model to hedge against the uncertainty in the LAUC
problem with dynamic ramping rate limits and forbidden
zones. In particular, we utilize the historical data of renewable
generation outputs to derive a distributional ambiguity set for
the uncertain parameters and optimize the total cost against the
worst-case distribution in this set, leading to a data-driven risk-
averse model. In addition, the risk-averse level can be reduced
by increasing more data samples and when the data sample
goes to infinity, the data-driven risk-averse model converges
to the risk-neutral model. Furthermore, we summarize the
differences of our proposed model with traditional approaches
as follows:

This is the Pre-Published Version.



3

• Unlike the traditional stochastic programming model, our
model does not require a pre-determined distribution of
random parameters and can be established and solved
directly based on the data.

• Unlike the traditional robust optimization model, the con-
servativeness of our model can be adjusted based on the
number of available data samples, since the confidence
set (e.g., A1 and A∞ in the following part) of true
distribution is adjustable as the amount of data changes.
In particular, the conservativeness of our model goes to
zero as the number of available data samples goes to
infinity since empirical distribution converges to the true
distribution.

The main contributions of our proposed formulation can be
summarized as follows:
• We propose an innovative look-ahead unit commitment

(LAUC) formulation by simultaneously capturing the
dynamic ramping rates and forbidden zones of each gen-
erator through the status transition modeling approach.
This formulation can readily help improve the reliability
and feasibility of system operations.

• We establish a data-driven risk-averse LAUC model with
dynamic ramping rate limits and forbidden zones by
utilizing the historical available data, leading to more
cost-effective and reliable solutions. Meanwhile, the risk-
averse level of our proposed model can be simply ad-
justed based on the amount of available data, which
further provides power system operators (e.g., ISOs who
are responsible for LAUC runs) an easily implementable
solution.

• Extensive computational experiments are performed to
show the benefits of considering dynamic ramping rates
and forbidden zones and to show the effects of available
data on the unit commitment decisions and model con-
servativeness. In overall, our approach enables a more
reliable and stable generation schedule.

We organize the remaining parts of this paper as follows.
We first describe the deterministic LAUC model with both
dynamic ramping rate limits and forbidden zones in Section
III. Then, in Section IV, we derive the data-driven risk-averse
two-stage LAUC model by introducing the confidence set con-
struction with L1 and L∞ norms, respectively. Furthermore,
we develop Benders’ decomposition algorithm to solve the
corresponding model in Section IV-C. In Section V, we report
computational results. Finally, we summarize this paper in
Section VI.

III. DETERMINISTIC LAUC MODEL

In this section, we describe the deterministic LAUC problem
with dynamic ramping rate limits and forbidden zones as
follows:

min
∑
k∈G

T∑
t=1

(
SUkukt + SDk

(
ykt−1 − ykt + ukt

)
+ F k

t (·)
)

(1)

s.t.
t∑

i=t−Lk+1

uki ≤ ykt , ∀t ∈ [Lk, T ],∀k ∈ G, (2)

t∑
i=t−`k+1

uki ≤ 1− ykt−`k , ∀t ∈ [`k, T ],∀k ∈ G, (3)

− ykt−1 + ykt − ukt ≤ 0, ∀t ∈ [1, T ],∀k ∈ G, (4)

xin,int,k + xin−1,int,k + xin+1,in
t,k = xin,in+1

t+1,k

+ xin,int+1,k + xin,in−1t+1,k , ∀in ∈ Nk,∀k ∈ G, (5)

x
(if ,if ),u
t,k + x

(if ,if ),d
t,k + x

if−1,if
t,k + x

if+1,if
t,k

= x
if ,if+1
t+1,k + x

(if ,if ),u
t+1,k + x

(if ,if ),d
t+1,k + x

if ,if−1
t+1,k ,

∀if ∈ Fk,∀k ∈ G, (6)∑
in∈Nk

(
xin,int,k + xin−1,int,k + xin+1,in

t,k

)
+
∑

if∈Fk

(
x
(if ,if ),u
t,k + x

(if ,if ),d
t,k + x

if−1,if
t,k + x

if+1,if
t,k

)
= ykt , ∀t ∈ [1, T ],∀k ∈ G, (7)

x
(if ,if ),u
t+1,k + x

if ,if+1
t+1,k ≥ xif−1,ift,k + x

(if ,if ),u
t,k ,

∀t ∈ [1, T ],∀if ∈ Fk,∀k ∈ G, (8)

x
(if ,if ),d
t+1,k + x

if ,if−1
t+1,k ≥ xif+1,if

t,k + x
(if ,if ),d
t,k ,

∀t ∈ [1, T ],∀if ∈ Fk,∀k ∈ G, (9)∑
k∈G

C
k
ykt ≥ (1 + rt)

∑
b∈B

db,t, ∀t ∈ [1, T ], (10)

gkt,j ≤
∑
i∈Nk

(
xin,int,k + xin−1,int,k + xin+1,in

t,k

)
P in,k
max+∑

i∈Fk

(
x
(if ,if ),u
t,k + x

(if ,if ),d
t,k + x

if−1,if
t,k + x

if+1,if
t,k

)
P

if ,k
max,

∀t ∈ [1, T ],∀k ∈ G, (11)

gkt,j ≥
∑
i∈Nk

(
xin,int,k + xin−1,int,k + xin+1,in

t,k

)
P in,k
min+∑

i∈Fk

(
x
(if ,if ),u
t,k + x

(if ,if ),d
t,k + x

if−1,if
t,k + x

if+1,if
t,k

)
P

if ,k
min ,

∀t ∈ [1, T ],∀k ∈ G, (12)

gkt+1 − gkt ≤ RUk
inδx

in,in
t+1,k +max

{
RUk

maxδ, V
k
}

(
1− xin,int+1,k

)
, ∀in ∈ Nk,∀t ∈ [1, T ],∀k ∈ G, (13)

gkt − gkt+1 ≤ RDk
inδx

in,in
t+1,k +max

{
RDk

maxδ, V
k
}

(
1− xin,int+1,k

)
, ∀in ∈ Nk,∀t ∈ [1, T ],∀k ∈ G, (14)

(gkt+1 − P
i+1,k
min )/RUk

i+1 + (P i,k
max − gkt )/RUk

i ≤ x
i,i+1
t+1,kδ

+max
{

RUk
maxδ, V

k
}
/min

{
RUk

i+1,RUk
i

}(
1− xi,i+1

t+1,k

)
∀i ∈ Zk, ∀t ∈ [1, T ],∀k ∈ G, (15)

(gkt − P
i,k
min)/RDk

i + (P i−1,k
max − gkt+1)/RDk

i−1 ≤ x
i,i−1
t+1,kδ

+max
{

RDk
maxδ, V

k
}
/min

{
RDk

i−1,RDk
i

}(
1− xi,i−1t+1,k

)
∀i ∈ Zk,∀t ∈ [1, T ],∀k ∈ G, (16)

RUk
if
δx

(if ,if ),u
t+1,k −max

{
RUk

maxδ, V
k
}(

1− x(if ,if ),ut+1,k

)
≤ gkt+1 − gkt ≤ RUk

i δx
if ,if ,u
t+1,k +max

{
RUk

maxδ, V
k
}

(
1− x(if ,if ),ut+1,k

)
, ∀if ∈ Fk,∀t ∈ [1, T ],∀k ∈ G, (17)
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RDk
i δx

if ,if ,d
t+1,k −max

{
RDk

maxδ, V
k
}(

1− x(if ,if ),dt+1,k

)
≤ gkt − gkt+1 ≤ RDk

i δx
(if ,if ),d
t+1,k +max

{
RDk

maxδ, V
k
}

(
1− x(if ,if ),dt+1,k

)
, ∀if ∈ Fk,∀t ∈ [1, T ],∀k ∈ G, (18)∑

k∈G g
k
t =

∑
b∈B db,t −

∑
b∈BW

b
t , ∀t ∈ [1, T ], (19)

− Cm ≤ Kb
m

(∑
k∈Gb g

k
t − dtb

)
≤ Cm,

∀t ∈ [1, T ],∀m, ∀b, (20)

In the above formulation, the objective function (1) in-
cludes the start-up/shut-down and the operation costs. More
specifically,

∑
k∈G

∑T
t=1

(
SUkukt + SDk

(
ykt−1 − ykt + ukt

))
represents the total start-up and shut-down costs and∑

k∈G
∑T

t=1 F
k
t (·) represents the operation cost. Note that

the generation cost is a quadratic function, i.e., F k
t (g

k
t ) =

ak(gkt )
2+bgkt +cy

k
t , which can be approximated by a piecewise

linear function with R-pieces. For instance, by following the
process described in [28], F k

t (g
k
t ) can be replaced by an

auxiliary variable fkt with following additional constraints:

fkt ≥ (2akαk
n + bk)gkt + (ck − akαk

n)y
k
t ,

∀t,∀k,∀n ∈ [1, R]. (21)

Notice that in constraints (21) αk
n represents the n-th break

point in the operation range between the minimum (i.e., Ck)
and maximum (i.e., Ck) generation amounts of generator k.
The feasible region of the deterministic LAUC problem above
is described by (2) - (21). Constraints (2) and (3) describe
the minimum-up and minimum-down time limits, respectively.
Constraints (2) indicate that if generator k starts up at t−Lk+1
(i.e., ykt−Lk+1 = ukt−Lk+1 = 1), then it has to stay online for
at least Lk time periods until t. Constraints (3) indicate that if
generator k shuts down at t−`k+1 (i.e., ykt−`k = 1, ykt−`k+1 =

0), then it has to stay offline for at least `k time periods until
t. Constraints (4) describe the relationship between y and u.
They represent that if generator k is online (ykt = 1) at time
period t and offline (ykt−1 = 0) at t − 1, then it means that
generator k starts up (ukt = 1) at t. Constraints (19) enforce
the load balance constraints, and transmission constraints (20)
denote the capacity limits of each transmission line (m,n) to
ensure network security. Note here that failure rate of network
components and investment costs are generally not considered
in the LAUC model since it runs for a short planning horizon.

For the remaining constraints describing forbidden zones
and dynamic ramping rates, we first introduce the transition
graph to represent all possible status transitions (represented
by arcs) among normal and forbidden zones, as shown in
Fig.1. We define a binary variable corresponding to each
arc in the graph to indicate whether this arc is active or
not. If yes, it indicates that the generator changes the status
following that arc. More specifically, given zone i at time t,
unit k can have three possible transitions including self-loop
arcs (e.g., corresponding to binary variable xin,int,k ), outgoing
arcs (e.g., corresponding to binary variables xi,i+1

t,k , xi,i−1t,k ),
and incoming arcs (e.g., corresponding to binary variables
xi+1,i
t,k , xi−1,it,k ). Among the arcs in a transition graph, we call

one arc an up-transition one if through this transition the
generation amount increases and call it a down-transition

Fig. 1. Transitions Graph

one vice versa. For example, in Fig.1, up-transition arcs
(e.g., corresponding to binary variables xi−1,it,k , xi,i+1

t,k , and
xi+1,i+2
t,k ) across two adjoint zones are represented in black

dash-dotted lines. Down-transition arcs (e.g., corresponding
to binary variables xi,i−1t,k , xi+1,i

t,k , and xi+2,i+1
t,k ) across two

adjoint zones are represented in green dashed lines. Note here
that a forbidden zone has two self-loop transition arcs, i.e.,
up-transition and down-transition arcs (e.g., corresponding to
binary variables x

(if ,if ),u
t,k and x

(if ,if ),d
t,k ), respectively. The

reason that we distinguish the self-loop up-transition from self-
loop down-transition for a forbidden zone is that a forbidden
zone is not a stable generation area which requires that the
generator must leave the forbidden zone as soon as possible
once that generator goes into this forbidden zone.

Therefore, we have constraints (5) (resp. (6)) ensure that
if the generator enters normal zone in (resp. normal zone
if ) from somewhere at t and then it will definitely stay
within normal zone in (resp. normal zone if ) or leave there
to somewhere else at t + 1. Constraints (7) build up the
relationships among online/offline status and transition status.
That means none of the transitions for generator k will occur
once the generator k is offline at time period t (ykt = 0).
Constraints (8) and (9) restrict the operations within forbidden
zones. For instance, constraints (8) illustrate an up-transition
process that at time t if the generator is ramping up at
forbidden zone if or just enters this zone if from zone
if − 1, then at t + 1 it has to either keep ramping up at
zone if or go to zone if + 1. Correspondingly, a down-
transition process is described by constraints (9). Constraints
(10) describe the system reserve requirements. Constraints (11)
and (12) indicate the generation lower/upper bounds at each
time interval, respectively. Constraints (13) - (16) describe the
dynamic ramping limits, where (13) and (14) describe the
ramping limits in the normal zones and (15) - (16) illustrate
the ramping limits across different zones. Constraints (13)
enforce the ramping up limits (RUk

in ) if generator k works
in normal zone in (i.e., x(in,in),ut+1,k = 1) and otherwise these

constraints will be relaxed since max{RUk
maxδ, V

k} is large
enough. Constraints (15) represent that if generator k ramps
up and crosses over different zones (i.e., xi,i+1

t+1,k = 1), the
ramping rate RUkδ enforced. Otherwise, these constraints will
be relaxed too. Similar analysis can be applied to ramping
down constraints (14) and (16). Constraints (17) - (18) enforce
that once the generator enters the forbidden zone, it has to
leave there as quickly as possible and thus its generation ramp-
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up/down rates have to take the limits.

IV. DATA-DRIVEN RISK-AVERSE MODEL

In this section, we propose a data-driven risk-averse two-
stage stochastic programming formulation for LAUC Problem
(1) with dynamic ramping rates and forbidden zones incorpo-
rated and explain how to construct the distributional ambiguity
set.

A. Risk-Averse Two-Stage Stochastic Model

In the traditional two-stage stochastic programming frame-
work, the distribution of random parameters is known, e.g.,
a set of scenarios with each one corresponding to the given
probability. In this paper, we assume the net load (i. e., the
power load minus renewable generation outputs) is uncertain
and thus consider the net load distribution (denoted by P ) is
unknown and ambiguous. Instead, P can be predefined within
a confidence set A based on the available historical data. The
detailed description of the construction of A is illustrated in
Section IV-B. In addition, in our proposed model, we provide
optimal decisions on unit commitment and state transitions
between different generation zones in the first stage against
the worst-case distribution of random parameters in the second
stage, where the detailed generation amounts of each generator
are decided as recourse. Thus, the corresponding data-driven
risk-averse two-stage stochastic LAUC model can be described
as follows:

min
∑
∀k,t

(
SUkukt + SDk(ykt−1 − ykt + ukt )

)
+maxP∈A EP [Q(y, u, ξ)] (22)

s.t. (2)− (10), ∀t, k,

where EP [Q(y, u, ξ)] represents the expectation under P and
Q(y, u, ξ) is equivalent to

min
∑

k∈G
∑T

t=1 f
k
t (ξ) (23)

s.t. (11)− (20), given ξ.

Without loss of generality, we use finite possible scenarios, i.e.,
ξ1, ξ2, · · · , ξJ , with (unknown) probability pj corresponding
to each scenario, respectively, to represent the realization of
random parameters and thus the expectation can be represented
as follows:

EP [Q(y, u, ξ)] =
J∑

j=1

pjQ(y, u, ξj). (24)

Note here that, each probability pj , j = 1, · · · , J is random
and constrained by the confidence set A.

B. Confidence Set Construction

In this subsection, we introduce the approarch to build
the confidence set by following reference [26]. To construct
set A with a given a set of the historical data, we first
obtain the empirical distribution through the histogram. In
particular, we divide S samples into J bins to fit the historical
data. Accordingly, each bin consists of S1, S2, · · · , and SJ

samples, respectively. In this way, a histogram with S =

∑J
j=1 Sj is constructed and the empirical distribution for

the uncertain electricity demand can be described as P0 =
(p01, p

0
2, · · · , p0J)>, with p01 = S1/S, p

0
2 = S2/S, · · · , p0J =

SJ/S. Since the real distribution may be different from the
empirical distribution, we define the confidence set for the true
distribution by using statistical inference. More specifically,
we design two types of confidence sets by using L1 and
L∞ norms, respectively. When these two norms are used,
the empirical distribution can converge to the true distribution
as the amount of the historical data (i.e. S) goes to infinity.
In addition, another advantage of the utilization of these two
norms is that the model can be reformulated as an MILP, which
can be solved by commercial solvers. Confidence sets, A1 and
A∞ corresponding to L1 and L∞ norms, respectively, can be
defined as (25) and (26).

A1 = {P ∈ R+|‖P − P0‖1 ≤ θ}
= {P ∈ R+|

∑J
j=1 |pj − p0j | ≤ θ} (25)

and A∞ = {P ∈ R+|‖P − P0‖∞ ≤ θ}
= {P ∈ R+| max

1≤j≤J
|pj − p0j | ≤ θ}. (26)

The value of θ in these two norms is defined by the amount
of the historical data and the given confidence level. For
instance, if the confidence sets are derived by setting the
confidence level as 99%, then it means 99% chance is ensured
that derived true distribution is within the the given confidence
set. Intuitively, the more historical data are used, the closer the
distance between the derived empirical distribution and the
true distribution is. Therefore, with a fixed confidence level
(e.g. 99%), the value θ will decrease if more historical data
are available, and as a result of this, the confidence set will
shrink. For further description of the relationship between the
value θ and historical samples, please refer to the studies in
[27] for detailed convergence rates.

C. Benders’ Decomposition Algorithm

In this subsection, we reformulate the original model by
interchanging the outer summation and inter minimization
due to the independence of scenarios ξ1, ξ2, · · · , ξJ , for
equation (24). From there, we obtain a max-min problem in the
second stage of Problem (22), as shown in the following (27).
Furthermore, the inner minization problem can be dualized and
integrated with the outer maximization problem, leading to a
single maximization problem. Then, Benders’ decomposition
algorithm can be employed to solve (27) by iteratively solving
the mater problem including the first-stage decisions and
the sub-problem including the second-stage decisions, where
feasibility and optimality cuts are added to the master problem
after solving the sub-problem. Since Benders’ decomposition
framework has been applied for solving many problems in
power system operations (e.g., [29], [30], and [31]), we omit
the detailed description of Benders’ Decomposition algorithm
in this paper due to the space limitation.

min
∑

k∈G
∑T

t=1

(
SUkukt + SDk(ykt−1 − ykt + ukt )

)
+maxP∈Aming

∑J
j=1 pj

(∑
k∈G

∑T
t=1 f

k
t (ξj)

)
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s.t. (2)− (10), (11)− (20), ∀ξ,

ykt , x
(in,in)
t,k , x

(if ,if ),u
t,k , x

(if ,if ),d
t,k , xi,i+1

t,k , xi,i−1t,k ∈ {0, 1},
fkt (ξ) free, g

k
t (ξ) ≥ 0,∀ξ, ∀k, t. (27)

V. CASE STUDIES

In this section, we perform case studies on various data
sets. All the computational experiments (with the optimility
gap as 0.01%) are solved by CPLEX 12.7.1 on an Intel-i5
2.3GHz personal computer with 4GB memory. In particular,
we first show the effectiveness of our deterministic model with
dynamic ramping rates and forbidden zones by comparing it
with other existing models in Section V-A. We then extend
the experiments to our proposed data-driven model and show
how the data impacts the final solutions in Section V-B.

A. Deterministic LAUC

We test our deterministic LAUC model proposed in Section
III over the modified IEEE 118-bus system. In particular, we
consider six hours in the planning horizon and each time
interval corresponds to fifteen minutes, leading to 24 time
intervals in total. In addition, we compare four models as
follows: 1) “O”: our proposed model; 2) “L”: the piecewise
linear dynamic ramping model presented in [7]; 3) “N”: the
nominal model without dynamic ramping rates and forbidden
zones; 4) “D”: the model with forbidden zone presented in
[9].

First, the objective costs ($) for Models “O”, “L”, “N”,
and “D” are 1130360, 1129820, 1094290, and 1055010 re-
spectively, as “D” achieves the lowest cost since it does not
consider ramp rates and “O” has the highest cost since it takes
care of more constraints. Next, to prove the effectiveness of
our model, we report the generation amounts of Generator 24
over different time periods for illustration in Figure 2. This
generator’s dynamic ramping rates (MW/min) corresponding
to generation ranges (MW) 50 - 70, 70 - 110, 110 - 130, 130 -
167, and 167 - 200 are 1.9, 1.8, 1.7, 1.6, and 1.5, respectively.
In addition, the forbidden zones are generation ranges (MW)
70 - 110 and 130 - 167.

Fig. 2. Dispatch Results of Generator 24 under Different Models

From Figure 2, we can observe that the generator in Model
“D” never enters forbidden zones since Model “D” restricts
the generation from such zones, while other three models
provide possible generation dispatches within forbidden zones.
Moreover, between time 9 to time 11, Model “N” keeps
ramping up with a fixed ramp rate (i.e., 1.9MW/min), leading
to 28.5MW difference between each two time periods. In
addition, dispatch results from model “L” show that when
the generator enters forbidden zones, generation fluctuates
with a low ramping rates (during periods 4 to 6 and 17 to
18), which causes relatively long-time generation in forbidden
zones. Technically, it may lead to damages on machines.

In order to better illustrate the advantages of our model, we
analyze the generation amounts under different models within
the first five time periods, as shown in Table I and Figure 3.

Table I and Figure 3 indicate that the generation amount
under Model “O” is in the forbidden zone between time 1
and 2, when it ramps up from 78.5MW to 105.5MW with
ramp rate 1.8MW/min. It is the highest possible ramp rate
the generator can get in the corresponding forbidden zone.
After that, the generator keeps this ramp rate until leaving the
forbidden zones and ends up with 130MW at time 3. Model
“O” enforces that once the generator enters the forbidden zone,
it has to leave there within the least number of intervals.
In contrast, during these time periods, Model “N” provides
dispatch results where the generator ramps up and down and
thus stays in the forbidden zones for longer time with various
ramp rates. Similarly, from times 3 to 5, the generation under
Model “L” ramps down and up and thus enters and stays in
the forbidden zone for a relatively long time.

TABLE I
GENERATION IN THE FIRST FIVE TIME PERIODS

Peirods 1 2 3 4 5

Gen(MW)

O 78.50 105.50 130.00 110.00 130.00
L 78.50 105.50 116.67 95.65 105.12
N 78.50 107.00 78.50 50.00 78.50
D 200.00 200.00 200.00 172.63 200.00

Fig. 3. Generation in First Five Time Periods

Based on the analyses above, it can be verified that our
model is able to lead to a more reliable and stable genera-
tion operation by better considering the forbidden zones and
dynamic ramping rates, as compared with other models, even
though the cost from our model is more conservative.

This is the Pre-Published Version.



7

B. Data-Driven LAUC

In this section, we test the proposed data-driven risk-averse
two-stage stochastic programming model over the modified
IEEE 6-bus and 118-bus systems. We assume the generation
from wind farms and solar generator varies and contributes to
approximately 15% of the total demand. Thus, for simplicity,
we consider the renewable generation as negative demand,
leading to more fiercely fluctuated net demand. In addition,
we choose 6 hours as the total time length and each time
interval has 15 minutes, indicating 24 time intervals here.
We compare our two models with risk-neutral stochastic pro-
gramming and robust optimization model. Those four models
are denoted as follows: (1) data-driven two-stage stochastic
programming model with L1 norm (DD-1), (2) data-driven
two-stage stochastic programming model with L∞ norm (DD-
Inf), (3) traditional two-stage stochastic programming model
(TSP), and (4) robust optimization model (RO).

1) Data Setting: Based on the forecast demand from histor-
ical data with given mean and variance, we use Monte Carlo
sampling method to generate each individual data and set the
number of bins as 5 (i.e., J = 5).

2) Effects of Historical Data on Unit Commitment: This
experiment aims to test the effects of the historical data on
the UC decisions (i.e., online/offline statuses) of the proposed
model. In the traditional two-stage stochastic problem, the
probability of each scenario is given, leading to risk-neutral
decisions. In contrast, the data-driven model provides deci-
sions against the worst-case distribution, leading to risk-averse
decisions. In addition, with the amount of samples increases,
the risk-averse level of data-driven model decreases, which
will have effects on the corresponding decisions of the unit
commitment. To further investigate these impacts, we report
UC decisions of Generator 3 from 6-bus system and Generator
34 from 118-bus system as shown in Tables II - V.

TABLE II
ONLINE/OFFLINE STATUSES OF GENERATOR 3 FROM 6-BUS SYSTEM

UNDER L1 AND L∞ NORMS

# of samples
period 1 2 3 4 5 6

5 1 1 1 1 1 1
50 1 1 1 1 1 1

100 1 1 1 1 1 1
500 1 1 1 1 1 1
1000 0 0 0 0 0 0
2000 0 0 0 0 0 0
5000 0 0 0 0 0 0

Risk-neutral 0 0 0 0 0 0

From Tables II - III, we can observe that given more
historical data, the generator keeps online in less time and
when the amount of data is large enough, the online/offline
statuses will be the same with those obtained from risk-
neutral two-stage stochastic model as shown in the last row
denoted as Risk-neutral. The reason is that when given few
historical data, the risk-averse level is so high that the unit
should be online to hedge against the possible uncertainty in
the future. Conversely, when given a significant amount of
data, operators can make more precise decisions on whether
or not it is necessary to start up in advance to prepare for

TABLE III
ONLINE/OFFLINE STATUSES OF GENERATOR 34 FROM 118-BUS SYSTEM

UNDER L1 AND L∞ NORMS

# of samples
period 1 2 3 4 5 6

5 1 1 1 1 1 1
50 1 1 1 1 1 1

100 1 1 1 1 1 1
500 0 0 0 0 0 0
1000 0 0 0 0 0 0
2000 0 0 0 0 0 0
5000 0 0 0 0 0 0

Risk-neutral 0 0 0 0 0 0

TABLE IV
ONLINE/OFFLINE STATUSES OF GENERATOR 3 FROM 6-BUS SYSTEM IN

ROBUST OPTIMIZATION MODEL

# of samples
period 1 2 3 4 5 6

5 1 1 1 1 1 1
50 1 1 1 1 1 1

100 1 1 1 1 1 1
500 1 1 1 1 1 1
1000 1 1 1 1 1 1
2000 1 1 1 1 1 1
5000 1 1 1 1 1 1

the uncertainty in the future. In other words, the generator
can start up for providing energy instead of providing reserve
for uncertainty, with given a large amount of historical data.
In addition, different from the results in Table II provided by
our data-drive model, the robust optimization model always
enforces generator 3 to be online at all time periods as shown
in Table IV, in order to go against the worst-case data samples.
Similar results can be observed from Table V.

3) Effects of Historical Data on Conservativeness: We
further investigate the effects of the historical data on the
conservativeness of our proposed model. More specifically, we
report the changes of the objective value (labelled as “OV” in
Table VI) and θ as the amount of historical data increases. We
set the confidence level γ as 99% and the number of samples
increases from 5 to 5000.

TABLE V
ONLINE/OFFLINE STATUSES OF GENERATOR 34 FROM 118-BUS SYSTEM

IN ROBUST OPTIMIZATION MODEL

# of samples
period 1 2 3 4 5 6

5 1 1 1 1 1 1
50 1 1 1 1 1 1

100 1 1 1 1 1 1
500 1 1 1 1 1 1
1000 1 1 1 1 1 1
2000 1 1 1 1 1 1
5000 1 1 1 1 1 1
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TABLE VI
EFFECTS OF HISTORICAL DATA IN 6-BUS SYSTEM

# of samples DD-1 DD-Inf TSP RO
OV($) θ OV($) θ OV($) OV($)

5 44042 3.4539 43855 0.6908 34202 44044
50 43575 0.3454 43313 0.0691 34202 54244

100 42815 0.1727 42598 0.0345 34202 54599
500 41763 0.0345 41324 0.0069 34202 56401
1000 36343 0.0173 36103 0.0035 34202 57402
2000 35586 0.0086 35173 0.0017 34202 57973
5000 34733 0.0035 34665 0.0007 34202 60506

Fig. 4. Effects of Historical Data on the Total Cost in 6-Bus System

TABLE VII
EFFECTS OF HISTORICAL DATA IN 118-BUS SYSTEM

# of sample DD-1 DD-Inf TSP RO
OV($) θ OV($) θ OV($) OV($)

5 1093240 3.4539 1082340 0.6908 947659 1196670
50 1023540 0.3454 1009440 0.0691 947659 1429540
100 999364 0.1727 990601 0.0345 947659 1430068
500 986844 0.0345 980936 0.0069 947659 1710142

1000 967394 0.0173 958087 0.0035 947659 1710661
2000 953374 0.0086 952603 0.0017 947659 1715156
5000 950666 0.0035 949852 0.0007 947659 1815523

Fig. 5. Effects of Historical Data on the Total Cost in 118-Bus System

Fig. 6. Effects of Historical Data on the Value of θ in 118-Bus System

From Tables VI - VII and Figures 4 - 6, we can observe that
as the amount of historical data increases, both the objective

values reported by both data-driven models decrease in both
test systems. The reason is that the increase of the amount
of historical data leads to a smaller confidence set of the
true distribution. Thus, when the amount of historical data
is large enough, the data-driven model converges to the risk-
neutral stochastic programming model. Furthermore, we find
that the robust optimization model always has the highest cost.
Furthermore, Figures 4 to 6 show that the convergence rate
is fast. As the number of data samples reaches to 1000, the
objective values almost converges. In addition, the model DD-
1 is more conservative than DD-Inf, because the L1 norm leads
to a larger confidence set compared with L∞ with the same
amount of data samples.

To further understand the value of the extra data samples,
we investigate the evolving process of the conservativeness of
our models. Gap1(s) (resp. Gap∞(s)) is defined to represent
the objective value difference between data-driven two-stage
stochastic model with L1 (resp. L∞) norm and traditional two-
stage stochastic model.

Gap1(s) = OBJ1(s)−OBJ0, (28)
Gap∞(s) = OBJ∞(s)−OBJ0, (29)

where OBJ0, OBJ1(s), and OBJ∞(s) are the objective
values obtained from models TSP, DD-1, and DD-Inf, respec-
tively. Based on the above definitions, we define the value of
data as shown in (30) and (31).

V od1(s, s) =
Gap1(s)−Gap1(s)

s− s
, for s > s, (30)

V od∞(s, s) =
Gap∞(s)−Gap∞(s)

s− s
, for s > s, (31)

TABLE VIII
VALUE OF EXTRA DATA IN 6-BUS SYSTEM

# of sample DD-1 DD-Inf
Gap1 V od1 Gap∞ V od∞

5 9840 N/A 9653 N/A
50 9373 10.38 9111 12.04
100 8613 15.60 8396 14.30
500 7561 2.63 7122 3.19

1000 2141 10.84 1901 10.44
2000 1384 0.76 971 0.93
5000 531 0.28 463 0.17

TABLE IX
VALUE OF EXTRA DATA IN 118-BUS SYSTEM

# of sample DD-1 DD-Inf
Gap1 V od1 Gap∞ V od∞

5 145581 N/A 134681 N/A
50 75881 1548.88 61781 1620.00
100 51705 483.52 42942 376.78
500 39185 31.30 33277 24.16

1000 19735 38.90 10428 45.69
2000 5715 14.02 4944 5.48
5000 3007 0.90 2193 0.91

From Tables VIII and IX, we can observe that both “Gap”
and “Vod” decrease as the data sample increases. When the
size of the data sample reaches to 2000, the value of the data is
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less than 1 for both data-driven models. That means our data-
driven model converges to risk-neutral model quickly so that
not too much data are needed to obtain relative true solutions.

VI. CONCLUSIONS

In this paper, we proposed a data-driven risk-averse two-
stage stochastic programming model for the LAUC problem,
in which better representations of forbidden zones and of
dynamic ramping rates are incorporated. We first presented the
deterministic formulation with more accurate physical mod-
eling, with extensive numerical experiments also conducted
to verify the advantages of this model as compared to other
existing ones. Our model showed that unlike the dispatch from
other models, a generator is allowed to dispatch within forbid-
den zones but has to quickly leave there at the highest possible
ramping rate, which proves that our approach enhances the
reliability and feasibility of the problem. Next, we provided
the corresponding data-driven risk-averse model to hedge
against the significant uncertainty in the LAUC runs. Our
model utilizes the historical data to construct a distributional
confidence set based on the empirical distribution of uncertain
parameters, where the true distribution is guaranteed within the
set with high confidence level. The impact of the historical data
on schedule results was explored and when the data increases
to infinity, the decisions converge to those from risk-neutral
model. In the future, we would like to explore more physical
conditions such as the frequency response capability of the
system resource under high penetration of renewable energy
resources in the data-driven LAUC model.
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