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ABSTRACT 37 

This study develops a Bayesian spatial generalized ordered logit model with conditional 38 

autoregressive priors to examine severity of freeway crashes. Our model can 39 

simultaneously account for the ordered nature in discrete crash severity levels and the 40 

spatial correlation among adjacent crashes without fixing the thresholds between crash 41 

severity levels. The crash data from Kaiyang Freeway, China in 2014 are collected for 42 

the analysis, where crash severity levels are defined considering the combination of 43 

injury severity, financial loss, and numbers of injuries and deaths. We calibrate the 44 

proposed spatial model and compare it with a traditional generalized ordered logit 45 

model via Bayesian inference. The superiority of the spatial model is indicated by its 46 

better model fit and the statistical significance of the spatial term. Estimation results 47 

show that driver type, season, traffic volume and composition, response time for 48 

emergency medical services, and crash type have significant effects on crash severity 49 

propensity. In addition, vehicle type, season, time of day, weather condition, vertical 50 

grade, bridge, traffic volume and composition, and crash type have significant impacts 51 

on the threshold between median and severe crash levels. The average marginal effects 52 

of the contributing factors on each crash severity level are also calculated. Based on the 53 

estimation results, several countermeasures regarding driver education, traffic rule 54 

enforcement, vehicle and roadway engineering, and emergency services are proposed 55 

to mitigate freeway crash severity. 56 

Keywords: Freeway safety; Crash severity; Spatial correlation; Bayesian spatial 57 



generalized ordered logit model; Conditional autoregressive prior. 58 
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1. INTRODUCTION 59 

Roadway traffic crashes result in over 1.2 million fatalities and up to 50 million non-60 

fatal injuries annually in the world, as well as an average global GDP loss of 3% (World 61 

Health Organization, 2015). To mitigate the enormous economic and emotional burden 62 

imposed on society by traffic crashes, a great number of efforts have been devoted to 63 

reducing the frequency of traffic crashes and alleviating their severity levels 64 

(Mannering and Bhat, 2014). Developing effective countermeasures for these purposes 65 

requires a comprehensive understanding of the factors contributing to the risk and 66 

severity of potential crashes. To this end, statistical models are often developed using 67 

historical crash data to establish an explicit relationship between crash frequency or 68 

severity and the factors pertaining to road users, vehicles, roadway infrastructure, traffic 69 

and weather conditions, level of emergency medical services (EMS), etc. 70 

Traffic safety issues have long been a primary concern for freeway management 71 

agencies and researchers (Ahmed et al., 2011; Ma et al., 2015, 2017; Wen et al., 2018; 72 

Yu and Abdel-Aty, 2014; Yu et al., 2013; Zeng et al., 2017a). Most studies in this realm 73 

have focused on analyzing freeway crash frequencies, while crash severity has not 74 

received due attention to our best knowledge. Compared with other types of roadways 75 

(such as urban roads), crash rate in freeways may be lower due to the high-standard 76 

design, construction and maintenance of freeway infrastructures, and the simpler traffic 77 

environment (for example, no junction is present in freeway systems; see Milton and 78 

Mannering, 1998, and Zeng et al., 2018a). On the other hand, freeway crashes tend to 79 
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have more severe outcomes, probably because of the higher vehicle speeds and the 80 

greater proportion of heavy vehicles. Freeway usually ranks the first among all roadway 81 

types in terms of the fatality rate. According to the statistics from the Traffic 82 

Management Bureau of Public Security Ministry in China, freeway crashes account for 83 

only 5% of roadway crashes, while the fatalities resulting from freeway crashes account 84 

for about 10% of the total deaths in roadway crashes. In 2015, about one-third of the 85 

major roadway crashes involving ten or more fatalities in China have occurred on 86 

freeways. Therefore, a crash severity analysis is fully merited, which may suggest 87 

proper countermeasures for reducing the number of fatalities, degree of injuries, and 88 

amount of property loss in freeway crashes. 89 

In previous studies on crash severity analysis, crash severity is usually measured by 90 

the most severe injury sustained by all the crash-involved road users (Mannering and 91 

Bhat, 2014). Despite its popularity, the most severe injury cannot represent all the 92 

adverse outcomes of traffic crashes. In China, police administration categorizes 93 

roadway crashes into four severity levels, namely the light crashes, medium crashes, 94 

severe crashes, and very severe crashes. These levels are defined by taking into account 95 

not only the injury severity, but also the amount of property damage and the number of 96 

people injured or killed. These levels construct a more comprehensive metric for crash 97 

severity. However, studies that use such metrics of crash severity are rare. 98 

Due to the discrete nature of crash severity metric, discrete outcome models (such 99 

as logit and probit models) are usually developed to link crash severity to the observed 100 
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risk factors. When the number of crash severity levels is greater than two, the ordered 101 

nature between these levels is a most important inherent characteristic. Ordered 102 

outcome models have a potential advantage over unordered outcome models (e.g., 103 

multinomial logit or probit models), because they can account for the correlation among 104 

neighboring severity levels by recognizing the ordered nature (Savolainen et al., 2011). 105 

In standard ordered logit and probit models, the latent propensity is specified as a linear 106 

function of the observed risk factors and is mapped to the observed severity levels 107 

defined by a set of fixed thresholds (Abdel-Aty, 2003). As illustrated by Eluru et al. 108 

(2008), however, the fixed thresholds may result in biased estimates for the factors’ 109 

effects on the likelihood of certain severity levels. To address this issue, generalized 110 

ordered response models have been proposed, which allow the thresholds to vary with 111 

the observed explanatory variables.  112 

Unobserved heterogeneity is another significant issue that is often associated with 113 

crash severity analysis (Mannering et al., 2016). This issue is often addressed using 114 

random-parameters models (Chen et al., 2018; Ma et al., 2018; Milton et al., 2008), 115 

Markov switching approaches (Malyshkina and Mannering, 2009), latent class/finite 116 

mixture methods (Yasmin et al., 2014) and combinations of the above methods (Xiong 117 

and Mannering, 2013; Xiong et al., 2014). Under the ordered response model 118 

framework, mixed (random-parameters) generalized ordered response model and its 119 

variants are developed to handle the ordered nature and unobserved heterogeneity 120 

simultaneously (Balusu et al., 2018; Eluru et al., 2008; Fountas and Anastasopoulos, 121 
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2017; Fountas et al., 2018; Xin et al., 2017; Yasmin et al., 2015a). To be sure, 122 

sometimes no explanatory variables were found to have significant heterogeneous 123 

effects, and thus the estimated mixed generalized ordered response model becomes a 124 

(fixed-parameters) generalized ordered response model (Castro et al., 2013; Eluru et al., 125 

2008). Therefore, the latter has been employed in a number of recent studies under such 126 

conditions (Abegaz et al., 2014; Eluru, 2013; Eluru and Yasmin, 2015; Kaplan and 127 

Prato, 2012; Yasmin et al., 2015b). Please refer to Savolainen et al. (2011) and 128 

Mannering and Bhat (2014) for more detailed description and assessments on the 129 

methodological alternatives.  130 

While the continual advances in analytical methods have enabled us to more 131 

precisely assess the impacts of observed factors on crash severity, some critical issues 132 

still remain unsolved in the present crash severity prediction models. As a result, the 133 

validity of inference results may be significantly undermined. Typically, the spatial 134 

correlation (also termed “spatial dependency” and “spatial effect”) among adjacent 135 

crashes, which has been commonly recognized in the analysis of crash frequencies and 136 

rates (Huang et al., 2016b; Ma et al., 2017; Quddus, 2008; Zeng and Huang, 2014a; 137 

Zeng et al., 2017b; Zeng et al., 2018b), is by-and-large overlooked when modeling crash 138 

severity. In the few studies that modeled spatial correlations between crash severities, 139 

some researchers have formulated the spatial correlation using the spatial lag structure 140 

or a mixed structure of spatial lags and spatial errors (Bhat et al., 2017; Castro et al., 141 

2013; Prato et al., 2018; Zou et al., 2017), while others have employed a conditional 142 
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autoregressive (CAR) prior to capture the spatial correlation between the injury 143 

severities of crashes occurring at adjacent locations (Meng et al. 2017; Xu et al., 2016). 144 

Quddus (2008) compared these two methods in the context of Bayesian inference and 145 

found that the CAR prior models yielded more trustworthy estimation results than the 146 

models using spatial lag or spatial error structure. The multivariate CAR model is also 147 

a state-of-the-art method for multivariate spatial modeling in traffic safety analysis 148 

(Barua et al., 2014, 2016; Cai et al., 2018; Huang et al., 2017; Liu and Sharma, 2018; 149 

Ma et al., 2017; Osama and Sayed, 2017). The empirical analyses conducted by Meng 150 

et al. (2017) and Xu et al., (2016) have further demonstrated the strength of CAR prior 151 

method used in the spatial models of crash severity. However, the binary logistic 152 

regression models proposed in the above-cited works cannot capture the ordered nature 153 

in crash data. 154 

In light of the above, this paper examines the freeway crash severity in China using 155 

a Bayesian spatial generalized ordered logit model with CAR priors, which can account 156 

for the ordered nature of crash severity levels and the spatial correlation among crashes 157 

simultaneously, without being limited by fixed thresholds. A one-year crash dataset 158 

from the Kaiyang Freeway in Guangdong Province, China is used for the empirical 159 

investigation. To demonstrate the advantage of the proposed model, we compare the 160 

estimation results against those of a traditional generalized ordered logit model. 161 

The rest of the article is structured as follows. Section 2 describes the freeway crash 162 

dataset. Section 3 furnishes the formulations of the traditional generalized ordered logit 163 
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model and the proposed model. In Section 4, we present the Bayesian estimation 164 

processes for the two generalized ordered logit models, compare their estimation results, 165 

and examine the marginal effects of significant factors. Conclusions and directions for 166 

future research are discussed in Section 5. 167 

 168 

2. DATA PREPARATION 169 

We use the crash data from the Kaiyang Freeway in 2014, which was extracted from 170 

the Highway Maintenance and Administration Management System maintained by 171 

Guangdong Transportation Group. The four crash severity levels used in the data are 172 

defined by the Ministry of Public Security in China as follows: 173 

(1) a light crash refers to one resulting in no more than two people slightly injured, 174 

or a property damage value of no more than 1,000 CNY;  175 

(2) a medium crash refers to one resulting in one or two people severely injured, or 176 

more than two people slightly injured, or a property damage value between 1,000 and 177 

30,000 CNY;  178 

(3) a severe crash refers to one resulting in one or two fatalities, or three to ten 179 

people severely injured, or a property damage value between 30,000 and 60,000 CNY; 180 

and 181 

(4) a very severe crash refers to one resulting in three or more fatalities, or over ten 182 

people severely injured, or one fatality plus over eight people severely injured, or two 183 

fatalities plus over five people severely injured, or a property damage value of over 184 
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60,000 CNY. 185 

Among all the 691 freeway crashes reported in 2014, there are 355 light crashes 186 

(51.4%), 307 medium crashes (44.4%), 28 severe crashes (4.1%), and only one very 187 

severe crash (0.1%). We thus combine the severe and very severe crashes into one level 188 

in this paper because the latter is rare in reality. In the rest of this paper, this combined 189 

level will be termed as “severe crash”. 190 

The crash data recorded in the system also include: whether the involved driver(s) 191 

are professional or not, the involved vehicles’ types and license numbers, weather 192 

condition, the EMS response time, and the crash type, time and location. Some of these 193 

variables are explained next. The binary driver type variable, Professional driver, is 194 

equal to 1 if at least one driver involved is professional, and 0 otherwise. Four additional 195 

binary variables are used to represent vehicle types: (1) Passenger car indicates 196 

whether all the vehicle(s) involved in a crash are passenger car(s); (2) Coach indicates 197 

whether at least one coach was involved; (3) Truck indicates whether at least one truck 198 

was involved; and (4) Other vehicle indicates whether at least a vehicle of other types 199 

(e.g., a vehicle with trailer) was involved. The binary variable Non-local vehicle 200 

indicates whether there is a non-local vehicle (i.e. not registered in Guangdong Province) 201 

involved in a crash. The EMS response time is defined as the duration between the crash 202 

reporting and the arrival of EMS at the crash site.  203 

More details on the freeway design features at crash locations are extracted from 204 

the freeway’s geometric profile. These include: horizontal curvature, vertical grade, and 205 
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whether the crash location is on a bridge or near a ramp. To examine the spatial 206 

correlation in the crashes, we further divide the Kaiyang Freeway into 154 segments in 207 

a way such that each segment is approximately linear both horizontally and vertically. 208 

The same segmentation of this freeway has also been used in previous studies on crash 209 

frequency analysis (Wen et al., 2018; Zeng et al., 2017a). 210 

Regarding traffic data, we use the five vehicle classes defined by the Guangdong 211 

Freeway Network Toll System with respect to vehicles’ head height, axis number, wheel 212 

number, and wheelbase; see Table 1 for the details. We calculate the normalized daily 213 

traffic volumes of each vehicle class as its daily traffic volumes (which are collected 214 

from the system) multiplied by a specific weight. The weights for classes 1 to 5 are set 215 

to 1, 1.5, 2, 3 and 3.5, respectively, as recommended by the Guangdong Transportation 216 

Department. The percentage of each vehicle class is then calculated using the 217 

normalized traffic volumes. Note that traffic data in finer scales (e.g., hourly volumes) 218 

are unavailable. However, we believe the daily volume data serve as a fairly good proxy 219 

for the real-time traffic characteristics when and where crashes occurred. 220 

 221 

Table 1 Vehicle classification 222 

Class 

Criteria 

Representative vehicle types Head 

height 

Axis 

number 

Wheel 

number 
Wheelbase 

1 <1.3m 2 2-4 <3.2m Passenger car, jeep, pickup truck 

2 ≥1.3m 2 4 ≥3.2m Minibus, minivan, light truck 

3 ≥1.3m 2 6 ≥3.2m Medium-sized bus, large ordinary 
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bus, medium-sized truck 

4 ≥1.3m 3 6-10 ≥3.2m 
Large luxury bus, large truck, large 

trailer, 20-foot container truck 

5 ≥1.3m >3 >10 ≥3.2m 
Heavy truck, heavy trailer, 40-foot 

container truck 

 223 

Table 2 presents the definitions of the covariates used for analyzing freeway crash 224 

severity and their descriptive statistics. The Pearson correlation test results calculated 225 

by Statistical Package for the Social Sciences (SPSS) (IBM, 2017) suggest that Veh_4 226 

and Veh_5, i.e., the proportions of vehicles in classes 4 and 5 as defined in Table 1, are 227 

significantly correlated with a correlation coefficient greater than 0.6. With two highly-228 

correlated risk factors, estimates of their effects may be biased. Hence, we remove 229 

Veh_5 from the set of risk factors to eliminate the significant correlation between factors. 230 

 231 

Table 2 Descriptive statistics of covariates for analyzing freeway crash severity 232 

Covariates Description Mean S.D. 

Professional driver All drivers involved are non-professional = 0; otherwise = 1 0.025 0.155 

Traffic volume The normalized daily traffic volume in the day of crash (103 pcu
‡
) 5.655 1.071 

EMS response time Duration between crash reporting and the arrival of EMS (min) 20.7 18.0 

TRAFFIC COMPOSITION 

Veh_1* The percentage of vehicles in class 1 42.2 12.2 

Veh_2 The percentage of vehicles in class 2 2.5 0.7 

Veh_3 The percentage of vehicles in class 3 21.3 3.3 

Veh_4 The percentage of vehicles in class 4 6.1 2.1 

Veh_5 The percentage of vehicles in class 5 27.9 9.7 

VEHICLE TYPE    

Passenger car* All vehicles involved are passenger cars = 1; otherwise = 0 0.571 0.495 

Coach At least one coach was involved = 1; otherwise = 0 0.072 0.259 

Truck At least one truck was involved = 1; otherwise = 0 0.324 0.468 

Other vehicle At least one other vehicle (e.g., a vehicle with trailer) was 

involved = 1; otherwise = 0 

0.077 0.266 
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Non-local vehicle All vehicles involved were registered in Guangdong Province 

(local vehicles) = 0; otherwise (at least one non-local vehicle was 

involved) = 1 

0.27 0.443 

WEATHER CONDITION   

Sunny* Crash occurred in a sunny day = 1; otherwise = 0 0.707 0.456 

Overcast Crash occurred in an overcast day = 1; otherwise = 0 0.111 0.315 

Rainy/Foggy Crash occurred in a rainy or foggy day = 1; otherwise = 0 0.182 0.386 

CRASH TYPE    

Single-vehicle crash* The crash involved only one vehicle = 1; otherwise = 0 0.444 0.497 

Rear-end crash The crash is a rear-end one = 1; otherwise = 0 0.259 0.438 

Angle crash The crash is an angle one = 1; otherwise = 0 0.298 0.458 

SEASON    

Spring Crash occurred in February to April = 1; otherwise = 0 0.250 0.434 

Summer Crash occurred in May to July = 1; otherwise = 0 0.263 0.441 

Autumn Crash occurred in August to October = 1; otherwise = 0 0.284 0.451 

Winter* Crash occurred in November, December or January = 1; otherwise 

= 0 

0.203 0.402 

Day of week Crash occurred on a weekend = 1; otherwise = 0 0.331 0.471 

TIME OF DAY    

Before dawn* Crash occurred during 0 to 6 a.m. = 1; otherwise = 0 0.224 0.417 

Morning Crash occurred during 6 a.m. to 12 p.m. = 1; otherwise = 0 0.392 0.489 

Afternoon Crash occurred during 12 to 6 p.m. = 1; otherwise = 0 0.207 0.405 

Evening Crash occurred during 6 p.m. to 12 a.m. = 1; otherwise = 0 0.178 0.383 

ROADWAY GEOMETRY   

Horizontal curvature The horizontal curvature of the freeway segment where the crash 

occurred (0.1 km-1) 

1.888 1.222 

Vertical grade The grade of the freeway segment where the crash occurred (%) 0.768 0.664 

Bridge Crash occurred on a bridge = 1; otherwise = 0 0.570 0.495 

Ramp Crash occurred in the proximity of a ramp = 1; otherwise = 0 0.236 0.425 

‡ 
pcu: passenger car unit. 233 

* The reference category. 234 

 235 

3. MODEL FORMULATION 236 

The crash severity levels are ordered by nature. For discrete outcome models with more 237 

than two outcomes, the ordered nature of the outcomes is often incorporated in the 238 

model to identify the correlation between adjacent outcomes (Savolainen et al., 2011). 239 

In this section, we present the traditional generalized ordered logit model and a new 240 
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statistical model, termed “the spatial generalized ordered logit model”, that can capture 241 

the spatial correlation among the crashes (Section 3.1). We then describe the method 242 

for calculating the effects of contributing factors on the probability of each crash 243 

severity level (Section 3.2).  244 

 245 

3.1. Model Specification 246 

3.1.1. The traditional generalized ordered logit model  247 

Generalized ordered logit models are often used for capturing the ordered nature in 248 

crash severity without suffering from the biases resulting from fixed thresholds (Eluru, 249 

2013). Specifically, a latent propensity variable 𝑧𝑖 is used as a basis for modeling the 250 

ordered ranking of severity levels for crash 𝑖, and is assumed to be a linear function of 251 

the covariates 𝐗𝑖: 252 

𝑧𝑖 = 𝛃𝐗𝑖 + 𝜀𝑖.                          (1) 253 

where 𝛃  is a vector of estimable parameters associated with the covariate vector 254 

(including a constant element), 𝐗𝑖 ; and 𝜀𝑖  is a residual term following a logistic 255 

distribution. 256 

The severity level 𝑦𝑖 of crash 𝑖 is defined as follows: 257 

𝑦𝑖 =

{
 
 

 
 
1, 𝑧𝑖 ≤ 𝜇𝑖,0
2, 𝜇𝑖,0 < 𝑧𝑖 ≤ 𝜇𝑖,1
⋮  
𝑗 𝜇𝑖,𝑗−2 < 𝑧𝑖 ≤ 𝜇𝑖,𝑗−1
⋮  
𝐽 𝑧𝑖 > 𝜇𝑖,𝐽−2

,      (2) 258 

where 𝑗 ∈ {1, 2, … , 𝐽} represents an ordered severity level, numbered from the lowest 259 
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(i.e., light crashes in the present paper) to the highest (i.e., severe crashes). The 260 

thresholds 𝜇𝑖,0, 𝜇𝑖,1, … , 𝜇𝑖,𝐽−2 denote the boundaries between these severity levels for 261 

crash 𝑖. To increase flexibility in assessing the covariates’ effects, these thresholds are 262 

written in the following parametric form as proposed by Eluru et al. (2008): 263 

𝜇𝑖,𝑘 = 𝜇𝑖,𝑘−1 + exp(𝛂𝑘𝐙𝑖,𝑘) , ∀𝑘 ∈ {1, … , 𝐽 − 2},               (3) 264 

where 𝐙𝑖,𝑘 is a vector of explanatory variables associated with the 𝑘th threshold (also 265 

including a constant element) and 𝛂𝑘 is a parameter vector to be estimated. For the 266 

uniqueness of identification, either the constant term in the latent propensity function 267 

or the first threshold 𝜇𝑖,0  must be fixed to zero. Here we specify 𝜇𝑖,0  (i.e. the 268 

threshold between light and medium crash levels) as 0 for all crashes and keep the 269 

constant term in the latent propensity function. Hence, in this paper only one threshold 270 

parameter vector 𝛂1 (for the threshold between medium and severe crash levels, 𝜇𝑖,1) 271 

needs to be estimated. 272 

Since the residual term 𝜀𝑖 is logistically distributed, the cumulative probability for 273 

crash 𝑖 to exhibit a severity level up to 𝑗, 𝑃𝑖,𝑗, can be calculated as: 274 

𝑃𝑖,1 =
exp (𝜇0−𝛃𝐗𝑖)

1+exp (𝜇0−𝛃𝐗𝑖)
=

exp (−𝛃𝐗𝑖)

1+exp (−𝛃𝐗𝑖)
,                    (4) 275 

𝑃𝑖,𝑗 =
exp (𝜇𝑗−1−𝛃𝐗𝑖)

1+exp (𝜇𝑗−1−𝛃𝐗𝑖)
=

exp[∑ exp(𝛂𝑘𝐙𝑖,𝑘)
𝑗−1
𝑘=1 −𝛃𝐗𝑖]

1+exp[∑ exp(𝛂𝑘𝐙𝑖,𝑘)
𝑗−1
𝑘=1 −𝛃𝐗𝑖] 

, ∀𝑗 ∈ {2,… , 𝐽 − 1},    (5) 276 

𝑃𝑖,𝐽 = 1.                           (6) 277 

Thus, the probability for crash 𝑖 to exhibit a severity level 𝑗, 𝑝𝑖,𝑗, is calculated as: 278 

𝑝𝑖,1 = 𝑃𝑖,1 =
exp (𝜇0−𝛃𝐗𝑖)

1+exp (𝜇0−𝛃𝐗𝑖)
=

exp (−𝛃𝐗𝑖)

1+exp (−𝛃𝐗𝑖)
,                    (7) 279 

𝑝𝑖,𝑗 = 𝑃𝑖,𝑗 − 𝑃𝑖,𝑗−1 =
exp(−𝛃𝐗𝑖)[exp(𝜇𝑗−1)−exp(𝜇𝑗−2)]

[1+exp(𝜇𝑗−1−𝛃𝐗𝑖)][1+exp(𝜇𝑗−2−𝛃𝐗𝑖)]
=280 
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exp(−𝛃𝐗𝑖)exp[∑ exp(𝛂𝑘𝐙𝑖,𝑘)
𝑗−2
𝑘=1 ] {exp[exp(𝛂𝑗−1𝐙𝑖,𝑗−1)]−1}

{1+exp[∑ exp(𝛂𝑘𝐙𝑖,𝑘)
𝑗−1
𝑘=1 −𝛃𝐗𝑖]}{1+exp[∑ exp(𝛂𝑘𝐙𝑖,𝑘)

𝑗−2
𝑘=1 −𝛃𝐗𝑖] }

, ∀𝑗 ∈ {2,… , 𝐽 − 1},        (8) 281 

  𝑝𝑖,𝐽 = 1 − 𝑃𝑖,𝐽−1 =
1

1+exp[∑ exp(𝛂𝑘𝐙𝑖,𝑘)
𝐽−2
𝑘=1 −𝛃𝐗𝑖]

.                  (9) 282 

 283 

3.1.2. The spatial generalized ordered logit model 284 

As shown by Meng et al. (2017) and Xu et al. (2016), the spatial correlation among the 285 

severity levels of adjacent crashes can be captured by residual terms with Gaussian 286 

CAR prior. Specifically, for crash 𝑖  occurring on freeway segment 𝑚 , the latent 287 

variable 𝑧𝑖 in Eq. (1) is modified to: 288 

𝑧𝑖 = 𝛃𝐗𝑖 + 𝜙𝑚 + 𝜀𝑖,                         (10) 289 

where the residual term 𝜙𝑚 denotes the spatial correlation of each crash on freeway 290 

segment 𝑚, and is assumed to follow a CAR Gaussian distribution: 291 

𝜙𝑚~𝑁 (
∑ 𝜙𝑛𝜔𝑚𝑛𝑛≠𝑚

∑ 𝜔𝑚𝑛𝑛≠𝑚
,

𝜎𝜙

∑ 𝜔𝑚𝑛𝑛≠𝑚
 ),                    (11) 292 

where ω𝑚𝑛 is the proximity weight between freeway segments 𝑚 and 𝑛. The binary 293 

first-order proximity structure, which has been extensively used in previous studies 294 

(Meng et al. 2017; Xu et al., 2016; Zeng and Huang, 2014a), is employed to define 295 

these proximity weights. Specifically, if segments 𝑚 and 𝑛 are connected, ω𝑚𝑛 =296 

1 ; otherwise, ω𝑚𝑛 = 0 . The 𝜎𝜙(> 0)  is the variance parameter of the spatial 297 

correlation term. 298 

Consequently, the probability for crash 𝑖 to exhibit a severity level 𝑗 is calculated 299 

as: 300 

𝑝𝑖,1 = 𝑃𝑖,1 =
exp (𝜇0−𝛃𝐗𝑖)

1+exp (𝜇0−𝛃𝐗𝑖)
=

exp (−𝛃𝐗𝑖−𝜙𝑚)

1+exp (−𝛃𝐗𝑖−𝜙𝑚)
,                    (12) 301 
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𝑝𝑖,𝑗 = 𝑃𝑖,𝑗 − 𝑃𝑖,𝑗−1 =
exp(−𝛃𝐗𝑖−𝜙𝑚)[exp(𝜇𝑗−1)−exp(𝜇𝑗−2)]

[1+exp(𝜇𝑗−1−𝛃𝐗𝑖−𝜙𝑚)][1+exp(𝜇𝑗−2−𝛃𝐗𝑖−𝜙𝑚)]
=302 

exp(−𝛃𝐗𝑖−𝜙𝑚)exp[∑ exp(𝛂𝑘𝐙𝑖,𝑘)
𝑗−2
𝑘=1 ]{exp[exp(𝛂𝑗−1𝐙𝑖,𝑗−1)]−1}

{1+exp [∑ exp(𝛂𝑘𝐙𝑖,𝑘)
𝑗−1
𝑘=1 −𝛃𝐗𝑖−𝜙𝑚]}{1+exp [∑ exp(𝛂𝑘𝐙𝑖,𝑘)

𝑗−2
𝑘=1 −𝛃𝐗𝑖−𝜙𝑚]}

, ∀𝑗 ∈ {2,… , 𝐽 − 1},(13) 303 

  𝑝𝑖,𝐽 = 1 − 𝑃𝑖,𝐽−1 =
1

1+exp [∑ exp(𝛂𝑘𝐙𝑖,𝑘)
𝐽−2
𝑘=1 −𝛃𝐗𝑖−𝜙𝑚]

.                  (14) 304 

3.2. Marginal Effects of the Contributing Factors 305 

Practitioners often express great interest in understanding the marginal effects of a 306 

certain contributing factor on the probabilities of various crash severity levels. 307 

Unfortunately, these effects cannot be directly seen from the model coefficients 𝛃 and  308 

𝛂𝑘, because the probabilities 𝑝𝑖,𝑗 are not linear functions of the factors. Hence, we 309 

derive the marginal effects of contributing factors analytically. Specifically, for the case 310 

discussed in this paper (i.e. 𝐽 = 3), the marginal effect of a continuous contributing 311 

factor 𝑥  on 𝑝𝑖,𝑗  is calculated by taking its first-order derivative with respect to 𝑥 312 

(Jalayer et al., 2018): 313 

𝜕𝑝𝑖,1

𝜕𝑥
= 𝛽𝑥𝑝𝑖,1(𝑝𝑖,1 − 1),                     (15) 314 

𝜕𝑝𝑖,2

𝜕𝑥
= 𝛼𝑥𝜇𝑖,1𝑝𝑖,3(1 − 𝑝𝑖,3) + 𝛽

𝑥𝑝𝑖,2(𝑝𝑖,1 − 𝑝𝑖,3),              (16) 315 

𝜕𝑝𝑖,3

𝜕𝑥
= (𝛽𝑥 − 𝛼𝑥𝜇𝑖,1)𝑝𝑖,3(1 − 𝑝𝑖,3),                (17) 316 

where 𝛽𝑥  and 𝛼𝑥  are the coefficient estimates associated with variable 𝑥  in the 317 

expressions of latent propensity 𝑧𝑖 and threshold 𝜇𝑖,1, respectively. 318 

In addition, the marginal effect of an indicator (binary) contributing factor 𝑥 on 319 

𝑝𝑖,𝑗 is calculated by taking its first-order difference with respect to 𝑥 and with ∆𝑥 =320 

1. They are respectively: 321 

∆𝑝𝑖,1

∆𝑥
=

exp(−�̃��̃�𝑖−𝜙𝑚)[exp(−𝛽
𝑥)−1]

[1+exp(−�̃��̃�𝑖−𝜙𝑚) ][1+exp(−�̃��̃�𝑖−𝛽
𝑥−𝜙𝑚) ]

,   (18) 322 
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∆𝑝𝑖,𝑗

∆𝑥
=

exp(−�̃��̃�𝑖−𝛽
𝑥−𝜙𝑚){exp[exp(�̃�1�̃�𝑖,1+𝛼

𝑥)]−1}

{1+exp[exp(�̃�1�̃�𝑖,1+𝛼
𝑥)−�̃��̃�𝑖−𝛽

𝑥−𝜙𝑚]}{1+exp[−�̃��̃�𝑖−𝛽
𝑥−𝜙𝑚]}

−     323 

exp(−�̃��̃�𝑖−𝜙𝑚) {exp[exp(�̃�1�̃�𝑖,1)]−1}

{1+exp[exp(�̃�1�̃�𝑖,1)−�̃��̃�𝑖−𝜙𝑚]}{1+exp[−�̃��̃�𝑖−𝜙𝑚] }
,               (19) 324 

∆𝑝𝑖,3

∆𝑥
=

exp(−�̃��̃�𝑖−𝜙𝑚){exp[exp(�̃�1�̃�𝑖,1)]−exp[exp (�̃�1�̃�𝑖,1+𝛼
𝑥)−𝛽𝑥]}

{1+exp[exp (�̃�1�̃�𝑖,1)−�̃��̃�𝑖−𝜙𝑚]}{1+exp[exp (�̃�1�̃�𝑖,1+𝛼
𝑥)−�̃��̃�𝑖−𝛽

𝑥−𝜙𝑚]}
,  (20) 325 

where �̃�𝑖 and �̃�𝑖,1 denote the vectors 𝐗𝑖 and 𝐙𝑖,1 less element 𝑥, respectively, and 326 

�̃� and �̃�1 denote the corresponding coefficient vectors (i.e., 𝛃 less 𝛽𝑥 and 𝛂1 less 327 

𝛼𝑥, respectively). Note that (18-20) are applicable to the spatial generalized ordered 328 

logit model only. For the traditional generalized ordered logit model, the CAR prior 329 

term 𝜙𝑚 should be removed from these equations. 330 

The marginal effects are calculated for each individual crash. The average marginal 331 

effects of all the observations in the dataset are then reported in the following section. 332 

 333 

4. MODEL ESTIMATION, COMPARISON, AND DISCUSSIONS 334 

In Section 4.1, we describe the Bayesian estimation processes of the two models and 335 

two comparison methods built upon two metrics, respectively: the “deviance 336 

information criterion” (DIC) and the classification accuracy. The comparison results 337 

are presented and discussed in Section 4.2. The marginal effects of some significant 338 

contributing factors are examined in Section 4.3. 339 

 340 

4.1 Model Estimation and Comparison Method 341 

Since the traditional maximum likelihood estimation cannot be applied to models with 342 

CAR Gaussian priors (Meng et al., 2017), in this paper we use the Bayesian method to 343 
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estimate the model parameters. The method is built upon Markov chain Monte Carlo 344 

(MCMC) simulation with Gibbs sampling algorithm, which can be easily implemented 345 

via the freeware WinBUGS (Lunn et al., 2000). To apply the Bayesian method, we first 346 

specify the prior distribution of each (hyper-)parameter in the models. Without 347 

additional knowledge, noninformative (vague) prior distributions are used for these 348 

(hyper-)parameters. Specifically, we use a diffused normal distribution denoted by 349 

N(0, 104) as the priors of the coefficients in 𝛃 and 𝛂1. The CAR priors are specified 350 

by the function car.normal in WinBUGS (Zeng and Huang, 2014a). A diffused gamma 351 

distribution, gamma(0.01, 0.01), is used as the prior of the precision parameter (i.e., 352 

the reciprocal of the variance parameter, 1 𝜎𝜙⁄ ). For each model, we run a chain of 353 

150,000 MCMC simulation iterations, where the first 100,000 iterations act as a burn-354 

in. The MCMC trace plots for the model parameters are inspected visually to ensure the 355 

simulations converge. In addition, we monitor the ratios between the Monte Carlo 356 

simulation errors and the respective estimates’ standard deviations to ensure that they 357 

are less than 0.05 (a rule-of-thumb threshold). 358 

We compare the models via DIC and the classification accuracies for each severity 359 

level and for the entire dataset. DIC is deemed as a Bayesian equivalent of Akaike’s 360 

information criterion (Akaike, 1974) that takes model complexity into consideration. 361 

According to Spiegelhalter et al. (2002), DIC is defined as: 362 

DIC = �̅� + 𝑝𝐷,                           (21) 363 

where �̅�  is the posterior mean deviance that can be used as a fitness or adequacy 364 
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measure of the model, and 𝑝𝐷 is the effective number of parameters used to measure 365 

model complexity (this term is added to penalize models with more parameters). 366 

Generally, a model with a lower DIC value is preferred. DIC can be directly obtained 367 

from WinBUGS. 368 

The classification accuracy for severity level 𝑗  is defined as the proportion of 369 

accurate prediction in the set of data instances with observed severity level 𝑗 (Zeng 370 

and Huang, 2014b), that is,  371 

CA𝑗 =
∑ 𝑌𝑖�̅�𝑖=𝑌𝑖=𝑗

∑ 𝑌𝑖𝑌𝑖=𝑗
× 100%, ∀𝑗 ∈ {1,2, … , 𝐽},                  (22) 372 

where �̅�𝑖 represents the predicted crash severity level. 373 

Similarly, the classification accuracy for the entire dataset is calculated as: 374 

CA_t =
∑ 𝑌𝑖 𝑌𝑖⁄�̅�𝑖=𝑌𝑖

∑ 𝑌𝑖 𝑌𝑖⁄𝑖
× 100%.                        (23) 375 

 376 

4.2. Model Comparison Results 377 

The results of parameter estimation and model comparison are summarized in Table 3, 378 

where only the factors that have statistically significant (at 90% credibility level or 379 

above) effects on crash severity are included. The tabulated values outside the 380 

parentheses are the posterior means of parameters, and those inside the parentheses are 381 

their posterior standard deviations. 382 

First note that �̅� of the spatial generalized ordered logit model (873) is lower than 383 

that of the traditional generalized ordered logit model (888), which indicates that the 384 

spatial model fits better with the data. This finding is consistent with previous studies 385 
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on traffic safety analysis (Xu et al., 2016; Zeng and Huang, 2014a); i.e., explicitly 386 

accounting for the spatial correlation using CAR priors can improve the model’s 387 

estimation power. Although the traditional model has fewer effective parameters (50 388 

versus 60 for the spatial model; see Table 3), the spatial model still exhibits a lower 389 

DIC value (933 versus 938 for the traditional model). The difference in DIC is 390 

considered substantial (see Spiegelhalter et al., 2005), which suggests that the spatial 391 

model is preferred to the traditional one. The former’s superiority in goodness-of-fit is 392 

further confirmed by its higher classification accuracies for each crash severity levels 393 

and the entire dataset, as revealed by the last four rows of Table 3. Note in particular 394 

the large difference between CA3 of the two models (7% versus 10%), which indicates 395 

the prediction accuracy for severe crashes. Given the great loss caused by severe 396 

crashes, we reckon that the spatial model is more suitable to be used in traffic safety 397 

analysis. 398 

The significance of spatial correlation is also verified by the estimated standard 399 

deviation of the spatial term 𝜙𝑚 (0.17), which is moderately significant as compared 400 

to the values found in previous studies (Xu et al., 2016; Zeng and Huang, 2014a). The 401 

significant spatial correlation is as expected and can be explained by some unobserved 402 

factors shared by the crashes occurring at neighboring locations. Examples of these 403 

unobserved factors may include the terrain feature, lighting condition, and traffic sign 404 

layouts. The spatial correlation unveiled from the data can also be used to suggest High 405 

Collisions Concentration Locations (Chung and Ragland, 2018). 406 
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 407 

Table 3 Parameter estimation and model comparison results 408 

 Generalized ordered logit model Spatial generalized ordered logit model 

 
Latent 

propensity 

Threshold between median 

and severe crash levels 

Latent 

propensity 

Threshold between median 

and severe crash levels 

Professional 

driver 
1.70 (0.77)** — 1.68 (0.78)** — 

Truck — -0.44 (0.22)** — -0.45 (0.21)** 

Other vehicle — -0.76 (0.30)** — -0.79 (0.30)** 

Summer 0.72 (0.28)** — 0.72 (0.30)** — 

Autumn — 0.67 (0.31) ** — 0.64 (0.30) ** 

Afternoon — 0.67 (0.27) ** — 0.64 (0.27)** 

Overcast — 0.60 (0.32) ** — 0.57 (0.32) * 

Vertical grade — -0.47 (0.13)** — -0.46 (0.13)** 

Bridge — 0.37 (0.19)** — 0.35 (0.20) ** 

Traffic 

volume 
-0.24 (0.12)** 0.31 (0.11)** -0.30 (0.11)** 0.31 (0.11)** 

Veh_2 0.56 (0.17)** — 0.50 (0.18)** — 

Veh_4 — 0.12 (0.06)** 0.08 (0.05)* 0.12 (0.06)** 

EMS response 

time 
0.02 (0.01)** — 0.03 (0.01)** — 

Rear-end 

crash 
-2.12 (0.25)** -0.60 (0.27) ** -2.29 (0.27)** -0.59 (0.27) ** 

Angle crash -2.23 (0.25)** -1.10 (0.24) ** -2.00 (0.28)** -1.09 (0.25) ** 

𝜙𝑚 — — 0.48 (0.17)** — 

�̅� 888  873  

𝑝𝐷 50  60  

DIC 938  933  

CA1 78%  79%  

CA2 76%  77%  

CA3 7%  10%  

CA_t 74%  75%  

* Significant at the 90% credibility level. 409 

** Significant at the 95% credibility level. 410 

 411 

Further comparison between the two models unveils that the significant factors 412 

contributing to the latent propensity and the threshold between median and severe crash 413 
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levels in the traditional model are still significant in the spatial model, and that they 414 

take similar values in the two models. This partly demonstrates the consistency between 415 

the two models. Note too for most significant factors in the latent propensity function 416 

that the standard deviation increases after accounting for spatial correlation. This 417 

finding is also consistent with the conclusions of previous studies, i.e., that omitting 418 

spatial correlation would result in underestimation of the parameters’ variances and 419 

potential misidentification of the contributing factors (Quddus, 2008). 420 

The marginal effects of significant factors on the probability of each crash severity 421 

level are calculated for the two models via the method described in Section 3.2. The 422 

results are shown in Tables 4 and 5, respectively. Comparing the marginal effects in the 423 

two models, we find that most factors exhibit similar impacts on the likelihoods of all 424 

severity levels. Exceptions arise for two factors whose impacts on the likelihoods of 425 

certain severity levels are considerably different between the two models: traffic volume 426 

and Veh_4. For example, the marginal effect of traffic volume on the probability of 427 

medium crashes is positive in Table 4, while it is negative in Table 5. These differences 428 

again show how incorporating the spatial correlation would change the model 429 

predictions. In addition, Table 5 shows that, for Veh_4 and angle crash, the marginal 430 

effects on the probabilities of light crashes and severe crashes exhibit the same sign.  431 

Note that these results cannot be obtained by standard ordered response models, 432 

because when the thresholds between ordered severity levels are fixed, changing a 433 

single factor will always cause the probabilities of the lowest and highest levels (i.e. 434 
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light and severe crashes) to vary in opposing directions (Eluru et al., 2008). This finding 435 

manifests the necessity of using a generalized ordered response framework instead of a 436 

standard one.  437 

 438 

Table 4 Marginal effects of significant covariates in the generalized ordered logit model 439 

 light crashes (%) medium crashes (%) severe crashes (%) 

Professional driver -25.4 15.2 10.2 

Truck 0 -3.7 3.7 

Other vehicle 0 -8.2 8.2 

Summer -11.6 8.9 2.7 

Autumn 0 5.0 -5.0 

Afternoon 0 4.5 -4.5 

Overcast 0 3.6 -3.6 

Vertical grade 0 -5.0 5.0 

Bridge 0 3.0 -3.0 

Traffic volume 3.8 0.4 -4.2 

Veh_2 -8.9 6.8 2.1 

Veh_4 0 1.3 -1.3 

EMS response time -0.38 0.29 0.09 

Rear-end crash 42.0 -39.4 -2.6 

Angle crash 43.8 -43.8 -0.0001 
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 440 

Table 5 Marginal effects of significant covariates in the spatial generalized ordered 441 

logit model 442 

 light crashes (%) medium crashes (%) severe crashes (%) 

Professional driver -24.7 14.7 10.0 

Truck 0 -3.7 3.7 

Other vehicle 0 -8.7 8.7 

Summer -11.3 8.6 2.7 

Autumn 0 4.8 -4.8 

Afternoon 0 4.3 -4.3 

Overcast 0 3.4 -3.4 

Vertical grade 0 -1.7 1.7 

Bridge 0 2.9 -2.9 

Traffic volume 4.6 -2.5 -2.1 

Veh_2 -7.8 6.0 1.8 

Veh_4 -1.3 1.4 -0.1 

EMS response time -0.47 0.36 0.11 

Rear-end crash 43.1 -40.2 -2.9 

Angle crash 38.4 -39.7 1.3 

 443 

4.3 Interpretation of the Parameter Estimates and Marginal Effects 444 
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The results show that professional drivers have a significant positive effect on the latent 445 

severity propensity, which indicates that they are more likely to encounter severe 446 

crashes than non-professional drivers. Specifically, when at least one professional 447 

driver is involved, the likelihoods that the crash is medium and severe will increase by 448 

14.7% and 10.0%, respectively, and the likelihood of a light crash will decrease by 449 

24.7%. This result is reasonable because most professional drivers recorded in the 450 

dataset are coach drivers operating intercity bus services. They are more likely to 451 

experience driver fatigue due to the long working hours, which may increase the 452 

possibility of severe crashes (Islam and Mannering, 2006). In addition, the large number 453 

of occupants in a coach means more casualties may occur in a crash. 454 

The negative signs of truck and other vehicle on the threshold between medium and 455 

severe crashes indicate that they are more likely to be involved in severe crashes: the 456 

probabilities of a severe crash will increase by 7.5% when a truck is involved, and by 457 

2.8% when an other vehicle is involved. This may be due to the stronger crash 458 

aggressivity of these vehicles (Huang et al., 2011; Zeng et al., 2016), which would 459 

impose greater hazards on the other vehicle(s) involved in the same crash. 460 

Regarding the seasonal effect, we find that summer is associated with a higher 461 

severity propensity as compared against winter. Specifically, in summer the 462 

probabilities of medium and severe crashes increase by 6.7% and 1.7%, respectively. 463 

These results are consistent with the findings of Jalayer et al. (2018). The reason is 464 

simple: the investigated freeway is near the South China Sea, where adverse weather 465 
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conditions (e.g., typhoons and rainstorms) typically occurred in summers can 466 

significantly deteriorate the driving environment. On the other hand, the weather is 467 

generally good in autumns with adequate sunlight, comfortable temperature, and low 468 

rainfall. This is a reason why severe crashes are 4.8% less likely to occur in autumns 469 

than in winters. 470 

The time of day has a significant influence on the threshold between medium and 471 

severe crashes. The results show that there are 4.3% fewer severe crashes in afternoons 472 

than before dawn (the reference category). This result is also as expected because 473 

drivers’ vision is better in afternoons (Christoforou et al., 2010), and thus they have 474 

more time to perceive the potential hazards and react properly to alleviate the impact of 475 

an incoming crash. Moreover, speeding and fatigue/drowsy driving are more likely to 476 

appear before dawn, which are major causes of severe crashes (Huang et al., 2008). 477 

Another interesting finding from the results is the positive coefficient for overcast 478 

on the threshold, resulting in a 3.4% lower odds of severe crashes on overcast days than 479 

on sunny days. This finding can be counterintuitive. Nevertheless, similar results were 480 

reported by previous studies (Abdel-Aty, 2003; Xie et al., 2009), in which the authors 481 

argued that drivers tended to drive slowly and cautiously on overcast days. 482 

The results also show that for every 1% increase in the vertical grade, the 483 

probabilities of medium and severe crashes are expected to decrease and increase by 484 

1.7%, respectively. This is also in line with the findings of previous studies 485 

(Christoforou et al., 2010; Savolainen and Mannering, 2007; Yu and Abdel-Aty, 2014). 486 
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As pointed out by the above-cited works, a steeper grade renders a shorter sight distance, 487 

and thus less time for the drivers to take proper actions in response to upcoming crashes. 488 

The positive effect of bridge on the threshold indicates that bridge segments are less 489 

prone to cause severe crashes: the likelihood of severe crashes decreases by 2.9% on 490 

bridge segments. The result may be attributed to the lower posted speed limits on 491 

bridges (Renski et al., 1999). 492 

The negative and positive effects of traffic volume on the latent severity propensity 493 

and the threshold, respectively, suggest that the severity level increases as the traffic 494 

volume decreases. Specifically, a decrease of 1,000 passenger car units in daily traffic 495 

volume results in that the probabilities of medium and severe crashes increase by 2.5% 496 

and 2.1%, respectively. This may be due to the higher travel speeds associated with low 497 

traffic volumes (Christoforou et al., 2010; Zeng et al., 2017b). Note that a vehicle 498 

traveling at high speed will significantly increase the severity level of any crash that 499 

involves it (Zeng et al., 2016).  500 

Regarding the traffic composition, we find that a higher proportion of vehicles in 501 

Class 2 tends to result in more severe crashes. Specifically, the probabilities of medium 502 

and severe crashes increase by 6.0% and 1.8%, respectively, for a 1% increase of Class-503 

2 vehicles. A potential reason is that Class-2 vehicles have larger sizes than Class-1 504 

vehicles (the reference category), and thus they are more likely to obstruct the view of 505 

the following vehicle drivers. We also find that a higher proportion of Class-4 vehicles 506 

results in increases in both the severity propensity and the threshold. The combined 507 
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effects lead to a 1.3% decrease in the likelihood of light crashes, a 1.4% increase in the 508 

likelihood of medium crashes, and a 0.1% decrease in the likelihood of severe crashes, 509 

for a 1% increase of Class-4 vehicles. 510 

During the post-crash period, EMS plays a key role in reducing severe human 511 

injuries by providing first aid treatments and transportation to hospitals. As expected, 512 

the EMS response time is positively correlated with the crash severity level. Table 5 513 

shows that every additional minute taken by the EMS before arriving at the crash site 514 

will increase the probabilities of medium and severe crashes by 0.36% and 0.11%, 515 

respectively. Similar findings were reported by Gonzalez et al. (2009) and Lee et al. 516 

(2018). 517 

Finally, regarding crash type, rear-end crashes and angle crashes are associated with 518 

a lower severity propensity and a smaller threshold between medium and severe crashes 519 

as compared to single-vehicle crashes (the reference category). Specifically, rear-end 520 

and angle crashes are 43.1% and 38.4% more likely to be light crashes, respectively, 521 

and are about 40% less likely to be medium crashes. On the other hand, the probability 522 

of severe crashes decreases by 2.9% for rear-end crashes but increases by 1.3% for 523 

angle crashes. This is generally consistent with the findings in many previous studies 524 

(e.g., Huang et al., 2011, 2016a; Zeng et al., 2016), where rear-end crashes are found to 525 

impose the least adverse impacts on the involved road users and vehicles. 526 

 527 

5. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 528 
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This paper proposes a Bayesian spatial generalized ordered logit model with CAR 529 

priors for analyzing key factors that affect the severity level of freeway crashes. Instead 530 

of the commonly used metric in the literature, i.e., the most severe injury involved in a 531 

crash, we use the four crash severity levels defined by the Ministry of Public Security 532 

in China. The new metric is more comprehensive since it accounts for not only the 533 

severity level of a single injury but also the number of injuries and deaths and the 534 

financial loss in a crash.  535 

A one-year crash dataset collected from the Kaiyang Freeway in China is used to 536 

calibrate the model. The results suggest significant spatial correlations in the crash 537 

severity data. The superiority of our spatial model over a traditional generalized ordered 538 

logit model is manifested by the former’s improved model fit. In brief, severe crashes 539 

are more likely to occur: i) when professional drivers, trucks or other heavy vehicles 540 

(especially those with trailers) are involved; ii) in summers and sunny days; iii) before 541 

dawn; iv) for angle crashes; v) on steeper slopes; vi) at locations other than bridges; vii) 542 

with a greater share of Class-2 vehicles (e.g. minibuses, minivans or light trucks); viii) 543 

when the EMS response is slow; and iv) under light traffic conditions.  544 

The above findings have practical implications on the countermeasures for reducing 545 

severe crashes on freeways. For example, traffic management agencies and 546 

transportation companies should implement more measures (e.g., education programs) 547 

for ensuring safe driving of professional drivers. Traffic management agencies should 548 

also strengthen the enforcement against risky driving behavior (e.g., by increasing the 549 
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number of patrols) during 0-6 a.m. of every day. Regarding the designs of vehicles and 550 

freeway infrastructure, efforts can be made to reduce the crash aggressivity for trucks 551 

and other heavy vehicles, and to eliminate or reduce the use of steep slopes. Finally, 552 

better incident management measures are recommended to facilitate timely responses 553 

of EMS. These measures may include real-time incident detection and reporting, 554 

deployment of optimally located EMS facilities, and emergency vehicle preemption.  555 

The Bayesian spatial generalized ordered logit model can be applied to other 556 

datasets using different crash severity metrics, such as the KABCO scale used in the 557 

US, which consists of five levels: fatality, incapacitating injury, non-incapacitating 558 

injury, possible injury, and no injury/property damage only. Future research efforts will 559 

be steered toward this direction to examine the causal factors of severe crashes in 560 

different regions or countries of the world, and under different criteria for crash severity. 561 

While the strength of the CAR prior in capturing spatial correlation has been 562 

verified in this paper, in the future we will examine other spatial modeling methods 563 

(e.g., geographic weighted regression; see Chiou et al., 2014, and Li et al., 2013) and 564 

compare their performance against the CAR prior method.  565 

Lastly, although we did not identify any significant heterogeneity in the current 566 

dataset (results omitted for brevity), we plan to extend the current model to further 567 

account for the unobserved heterogeneity in crash severity pending the availability of 568 

more field data. This extension will also address the non-decreasing threshold variances 569 

problem that may arise in generalized ordered response models by carefully accounting 570 
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for the correlations between random parameters in the model (Balusu et al., 2018). 571 
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