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Abstract

Due to increased utilization of gas-fired combined-cycle units for electric power generation in

the U.S., accurate and computationally efficient models for operating these units are crucial to

keep an electricity system reliable. The recently proposed edge-based formulation for combined-

cycle units helps accurately describe the operations of combined-cycle units by capturing the

state transition processes and physical constraints for each turbine. In this paper, we derive

tighter constraints and several families of strong valid inequalities to strengthen the edge-based

model and improve its computational efficiency by exploring the physical characteristics of

combined-cycle units and utilizing the edge-based modeling framework. Meanwhile, we provide

the validity and facet-defining proofs for certain inequalities. Finally, the computational results

indicate that our derived formulation significantly reduces the computational time, which verifies

the effectiveness of proposed tighter constraints and strong valid inequalities.
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1 Introduction

Several factors such as fuel prices, environmental regulations, flexibility, and energy policies increase

the dependence of U.S. power generation on electricity generators using natural gas. For instance,

in Midcontinent ISO1 (MISO), natural gas combined-cycle units are planned for its future electric

generation capacity expansions [19]. As the share of combined-cycle units in ISOs’ generation

portfolio (including thermal, hydro, pumped-storage hydro generators, etc.) increases, U.S. ISOs

have started to improve the mathematical model of combined-cycle units in their unit commitment

(UC) models [31] so that the new model can better take advantage of the capability of the combined-

cycle units.

Figure 1: Combined-Cycle Unit

A combined-cycle unit usually consists of one or more combustion turbines (CTs) using natural

gas, each linked to a heat recovery steam generator (HRSG), and one or more steam turbines (STs)

driven by the steam produced from HRSG(s) (and possibly one more boiler) [4]. For example, Fig.

1 shows a combined-cycle unit with two CTs, two HRSGs, one ST, and one boiler that improves

the steam pressure. Each combustion and steam turbine connects to an electrical generator so

that a turbine can drive a generator to produce electricity. In terms of how many turbines (and

thereby electrical generators) are committed (or called “online”) to produce electricity, the whole

combined-cycle unit can be operated at different modes (or called “configurations” or “states”),

with each mode corresponding to committing a subset of CTs and STs online. Note that we

1An ISO, i.e., Independent System Operator, in the U.S. is an electric power transmission system operator which
coordinates, controls, and monitors the electric grid in a certain region.
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interchangeably use “mode”, “configuration”, and “state” in this paper. Accordingly, a state

transition (i.e., from one mode to another mode) can be performed by starting up or shutting down

a turbine. This basic infrastructure makes the combined-cycle unit very popular because of its high

efficiency, fast response, shorter installation time, and environmental friendliness. For instance,

it enables the combined-cycle unit to hedge against the uncertainty cuased mainly by renewable

generations, while in both the U.S. and Europe [3], the proportion of renewables in their generation

portfolios has increased significantly in the past years. In spite of such increasing popularity and

importance, the intrinsically complex physical characteristics of each individual turbine and the

whole combined-cycle unit create a difficult task when operating the combined-cycle unit. When

further incorporating the combined-cycle units into traditional thermal unit commitment problems

(e.g., [10, 16, 28, 29]), U.S. ISOs face two significant challenges: (1) deriving an accurate model to

guarantee the feasibility of combined-cycle unit operations and (2) improving the computational

efficiency so that the unit commitment solutions can be obtained within a given timeline. A

good mathematical model for operating combined-cycle units is expected to accurately describe

the operations of the whole combined-cycle unit. However, a more accurate model is usually

more complicated, meaning heavier computational burden. Accordingly, it is very challenging to

achieve a satisfactory computational performance when the accurate model of combined-cycle units

is included in the traditional thermal unit commitment model.

Figure 2: Aggregated model Figure 3: Pseudo unit model

To solve this problem, in most circumstances of current practices, U.S. ISOs reduce the compu-

tational burden by sacrificing the accuracy of the combined-cycle unit model. For instance, there

are two modeling approaches initially used in practice: 1) aggregated model and 2) pseudo unit

model. An aggregated model simply uses a single traditional thermal unit to represent the whole
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combined-cycle unit by ignoring the relationships among CTs and STs. A pseudo unit model asso-

ciates each CT with a portion of ST by dividing the whole combined-cycle unit into several small

units. By taking the combined-cycle unit in Fig. 1 as an example, its corresponding aggregated

model representing a single aggregated unit is shown in Fig. 2 and the pseudo unit model repre-

senting two small pseudo units is shown in Fig. 3. Each pseudo unit in Fig. 3 associates one CT

together with a half of ST. As a result, these less accurate models bring challenges to the feasibility

of operations, leading to the so-called feasibility issue in practice. For example, prohibited com-

binations of CTs and STs may appear in the optimal solutions obtained by the aggregated model

and pseudo unit model approaches. Therefore, some ISOs developed the third modeling approach,

i.e., configuration-based model (see, e.g., the early work in [18] for the corresponding mixed-integer

linear programming [MILP] formulation), which considers each configuration as an independent

unit. For instance, five possible configurations for a combined-cycle unit with 2CTs and 1ST are

shown in Fig. 4.

Config 0
All Off

Config 1
CT

Config 2
CT + ST

Config 3
2CTs

Config 4
2CTs + ST

Figure 4: Configuration-based Model

The configuration-based model can clearly describe the transition process of a combined-cycle

unit among different modes (i.e., configurations or states). California ISO and ERCOT2 have im-

plemented the configuration-based model in their markets (see, e.g., [25] and [14]). As compared

to the aggregated model and pseudo unit model approaches, the configuration-based model signif-

icantly increases the computational time to solve the UC problem including both combined-cycle

and traditional thermal units [8]. Recently, research progress has been made in providing tighter

MILP formulations of configuration-based combined-cycle units (see [25] and [20]). However, the

2Electric Reliability Council of Texas, an ISO managing the electric power transmission network mainly in Texas,
USA.
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configuration-based model still faces challenges in terms of accuracy because this approach cannot

capture the operating constraints and costs for each individual turbine, as indicated in [17]. More

specifically, the configuration-based model is still an “aggregated” model that does not track the

start-up/shut-down process of each individual turbine, and thus cannot capture the min-up/-down

time requirement for each turbine, nor can it capture the time-dependent start-up cost for each

CT. As a result, it may lead to infeasibility issue by providing the ISOs a practically infeasible

solution. The market participants may also face such an infeasibility issue since when they submit

bidding offers to the ISOs based on the min-up/-down time requirements of each turbine, it may

turn out that these offers are infeasible for the configuration-based model that will be run by the

ISOs. As the electricity market develops, more accurate and efficient combined-cycle unit models

are required so that a lower operation cost can be achieved and more accurate offline simulations

can be conducted. For instance, CAISO is recently working on a new project named Commit-

ment Cost Enhancements Phase 3 [6] and requires a combined-cycle unit model that can capture

the accurate transition costs, which generally refer to the time-dependent start-up costs of CTs.

Unfortunately, the configuration-based model is unable to achieve this.

In order to improve the computational performance and accuracy of the combined-cycle unit

model, the fourth modeling approach, i.e., the edge-based model, is proposed in [12] to provide

an accurate model for operating the combined-cycle units. This model first constructs the state

transitions of the combined-cycle unit in a graph, then tracks the operating status of each individ-

ual turbine by using each arc in the transition graph to define a corresponding decision variable

indicating the status of this arc, and finally builds the MILP formulation. These arcs can also

represent the transition relationships among CTs and STs. As compared to the previous three

models, this new modeling framework can exactly describe the operating physical constraints in-

cluding the min-up/-down time requirements and time-dependent start-up costs of each CT and ST

in the whole combined-cycle unit by tracking its start-up and shut-down processes. Nevertheless,

the edge-based model is still challenged in the computational performance when the number of

CTs and STs increases and the number of combined-cycle units increases in the unit commitment

model. In fact, the number of combined-cycle units is increasing significantly in the U.S. ISOs’

generation portfolio [6], which calls for more advanced approaches to improve the efficiency.

In this paper, therefore, we focus on improving the computational efficiency based on the most

updated combined-cycle unit model (i.e., the edge-based formulation), which has the advantage

of exactly tracking the operating physical constraints over other existing models. More specifi-

4



cally, we improve the computational performance by deriving better constraints for the edge-based

formulation and strong valid inequalities as cutting planes to strengthen the formulation. Both

of them take advantage of the physical characteristics of each individual turbine and the special

structure of the state transition graph for the problem. Nowadays, commercial MILP solvers such

as CPLEX have been used to solve UC problems by most ISOs in the U.S. [15]. The ISOs are

continually seeking improved methods to better schedule the combined-cycle units, because a small

improvement, even 1% in the cost of a final generation schedule, will result in huge savings in total

due to the large total generation amount involved (e.g., result in $0.2 billion annually for MISO

[8]). Thus, it is crucial to derive strong formulations that can solve the problem in a short time.

Most MILP solvers implement the branch-and-bound algorithm associated with the linear pro-

gramming (LP) relaxation at each branching node, including the root node. A strong formulation

is able to provide a better LP relaxation bound (e.g., a better lower bound for a minimization

MILP problem), which further helps obtain a better solution in a short time during the branch-

and-bound process. Research progress has been made on how to strengthen the traditional thermal

unit commitment formulation (e.g., [26, 30, 32, 24]). For instance, in [5] and [21], a classic MILP

formulation is developed with three binary variables (i.e., start-up, shut-down, and the unit on-

line/offline status). In [27], the min-up/-down time polytope based on two binary variables is

strengthened. In [7], a computationally efficient MILP formulation with a single binary variable

for each unit status is proposed. Recently, in [15], a tight unit commitment formulation is studied

by the polyhedral approximation of the perspective reformulation. In addition, several families of

strong valid ramping-rate inequalities are derived to tighten the formulation in [22] and [9] and

strong valid inequalities for the polytope including all of the min-up/-down time, ramping rate,

and capacity constraints are derived in [23].

However, the study of deriving the strong valid inequalities for combined-cycle units is limited.

In this paper, we strengthen the edge-based formulation for a combined-cycle unit to improve its

computational performance, thereby helping the industry benefit from the exact combined-cycle

unit model and large savings. We summarize our contributions as follows:

1. We derive tighter min-up/-down time and ramping rate constraints for the edge-based model

of combined-cycle units.

2. We provide several families of strong valid inequalities in terms of ramping rates for the

combined-cycle unit by exploring the special structure of the state transition graph of a

combined-cycle unit. We show that the inequalities are valid for the original formulation and
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facet-defining under mild conditions.

3. We conduct computational experiments on different data sets, which verify the effectiveness

of our proposed formulation in solving large-scale unit commitment problems with combined-

cycle units included.

Note here that since we focus on the edge-based combined-cycle unit model, which is different

from other alternatives, the proposed strong formulation is also different from that for other ap-

proaches, such as [25] and [20] based on configuration-based model. The remaining part of this

paper is organized as follows. In Section 2, we describe the original edge-based formulation. In

Section 3, we describe our innovative tighter constraints and strong valid inequalities for combined-

cycle units. In Section 4, we report and analyze our computational results. Finally, we conclude

this study in Section 5.

2 The Edge-Based Formulation of a Combined-Cycle Unit

In this section, we first introduce the basic principle of the edge-based formulation for a combined-

cycle unit as described in [12]. Then we characterize the relationships among the statuses of a

combined-cycle unit. Finally we describe the mathematical formulation.

The edge-based formulation relies on the state transition graph of a combined-cycle unit with

multiple CTs and STs, where a node represents a configuration (i.e., committing a subset of CTs and

STs online) and an arc (denoted by a(n,m)) represents a possible transition from configurations

n to m. For example, we use Fig. 5 to display all possible configurations and corresponding

transitions for a combined-cycle unit with 2 CTs and 1 ST. The whole combined-cycle unit works

on one of the configurations at each time period. In the edge-based formulation, each configuration

is considered as a pseudo thermal unit, and a decision variable is designed for each transition arc

in the graph to track the transition process within the whole combined-cycle unit.

To mathematically describe the edge-based formulation, in the state transition graph, we let A

represent the set of all the arcs, Aall
k represent the set of arcs linked to configuration k, Ain

k represent

the set of incoming arcs of configuration k, Aout
k represent the set of outgoing arcs of configuration

k, Asl
k represent the set of self-loop arcs of configuration k, Asd

i represent the set of arcs indicating

turbine i shuts down, Asu
i represent the set of arcs indicating turbine i starts up, Aon

i represent the

set of arcs indicating turbine i keeps online, and Aoff
i represent the set of arcs indicating turbine i

keeps offline. Note here that neither Ain
k nor Aout

k includes the self-loop arcs, i.e., the arcs in Asl
k . In
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Config 0
All Off

Config 1
CT1

Config 2
CT2

Config 3
CT1 + ST

Config 4
CT2 + ST

Config 5
CT1 + CT2

Config 6
CT1 +CT2 + ST

a(0, 0)

a(0, 2)a(0, 1)

a(0, 5)a(1, 5)

a(1, 3)

a(1, 0)
a(1, 1)

a(2, 0)

a(2, 5)

a(2, 2)

a(2, 4)

a(3, 3)

a(3, 1)

a(3, 6)
a(4, 4)

a(4, 2)

a(4, 6)

a(5, 5)

a(5, 0)
a(5, 2)a(5, 1)

a(5, 6)

a(6, 6)

a(6, 3) a(6, 4)

a(6, 5)

Figure 5: State Transition Graph

addition, we let C represent the set of all the configurations, Coff
i represent the set of configurations

indicating that turbine i is offline, and Con
i represent the set of configurations indicating that turbine

i is online.

In addition, for the combined-cycle unit, we let UCT represent the set of its CTs and UST

represent the set of its STs. We also let T represent the set of scheduling time periods and Tend

represent the last time period. For the parameter settings of the combined-cycle unit, we let P k

represent the minimal power output of configuration k, P̄k represent the maximal power output of

configuration k, and P̄ c represent its total capacity. For each turbine i ∈ UCT ∪ UST, we let T imu

represent its min-up time once it starts up, T imd represent its min-down time once it shuts down.

The start-up cost of a turbine depends on how long this turbine has been offline right before the

start-up and approximately it is a step function of the offline time length, with three steps (called

“hot”, “warm”, and “cold”). Thus, for turbine i, we use V̄ i
1 to represent its hot start-up cost

(representing the start-up cost if the offline time length is short), δi1,2 to represent the difference

between the warm and hot start-up costs, δi2,3 to represent the difference between the cold and warm

start-up costs, V i represent its shut-down cost, T ic represent its cold start time, and T iw represent

its warm start time. In the state transition graph, we let RDa represent the ramping down limit of

arc a and RUa represent the ramping up limit of arc a. Note that all the parameters are positive.

The decision variables of the edge-based formulation mainly include the status of each arc in

the state transition graph. That is, we let binary variable zat represent the online/offline status of

arc a at time period t. In addition, for the continuous variables of a combined-cycle unit, we let Θ

represent its operating cost. Also, for the combined-cycle unit, we let pt represent its generation

amount, pkt represent the generation amount of configuration k, φkt represent the generation cost of
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configuration k, and ϕit represent the start-up cost of turbine i at each time period t.

Furthermore, we characterize the relationships among different groups of transition arcs of the

state transition graph, which will be used for later theoretical proofs in the remaining part of this

paper. In the edge-based formulation, we use the decision variables corresponding to all the arcs to

track the status of each turbine, which has four possible transition statuses in total, i.e., start-up,

shut-down, keeping online, and keeping offline. Accordingly, all these arcs can be divided into four

corresponding groups. For instance, we use CT1 as an example to explain these four groups as

shown in Fig. 5. The dash dotted arcs represent the shut-down process of turbine CT1. The dash

arcs represent the start-up process of turbine CT1. The solid arcs represent CT1 keeps online. The

dotted arcs represent CT1 keeps offline. Finally, we can summarize the relationships among these

four groups as indicated in the following (1) - (4) and these relationships can be easily verified

based on the state transition graph. Meanwhile, we summarize all the notations described above

in Appendix B for reference.

∅ = Aκi ∩ Aτi , ∀κ, τ ∈ {su, sd, on, off}, κ 6= τ,∀i ∈ UCT ∪ UST. (1)

A = Asu
i ∪ Asd

i ∪ Aon
i ∪ Aoff

i , ∀i ∈ UCT ∪ UST. (2)⋃
k∈Coff

i

Aall
k = Asu

i ∪ Asd
i ∪ Aoff

i , ∀i ∈ UCT ∪ UST. (3)

⋃
k∈Con

i

Aall
k = Asu

i ∪ Asd
i ∪ Aon

i , ∀i ∈ UCT ∪ UST. (4)

Accordingly, the edge-based formulation for a combined-cycle unit can be summarized as follows:

∑
a∈A

zat = 1, ∀t, (5)∑
a∈(Ain

k

⋃
Asl
k )

zat =
∑

a∈(Aout
k

⋃
Asl
k )

zat+1, ∀k ∈ C,∀t, (6)

∑
a∈

⋃
k∈Coff

i
Aall
k

zaτ ≤ 1−
∑
a∈Asu

i

zat , ∀i ∈ UCT ∪ UST, ∀τ ∈ {t+ 1, · · · ,min{Tend, T
i
mu + t− 1}}, ∀t, (7)

∑
a∈

⋃
k∈Con

i
Aall
k

zaτ ≤ 1−
∑
a∈Asd

i

zat , ∀i ∈ UCT ∪ UST, ∀τ ∈ {t+ 1, · · · ,min{Tend, T
i
md + t− 1}}, ∀t, (8)

pt =
∑
k∈C

pkt , ∀t, (9)

P k

( ∑
a∈(Ain

k

⋃
Asl
k )

zat

)
≤ pkt ≤ P̄k

( ∑
a∈(Ain

k

⋃
Asl
k )

zat

)
, ∀k ∈ C,∀t, (10)

pt+1 − pt ≤ RUazat+1 + P̄ c(1− zat+1), ∀a ∈ A, ∀t, (11)

8



pt − pt+1 ≤ RDazat+1 + P̄ c(1− zat+1), ∀a ∈ A,∀t, (12)

Θ =
∑
t∈T

(∑
k∈C

φkt (p
k
t ) +

∑
i∈UCT

(
ϕit + V i

∑
a∈Asd

i

zat

))
, (13)

ϕit ≥ V̄ i
1

∑
a∈Asu

i

zat , ∀i ∈ UCT, ∀t, (14)

ϕit ≥
(
V̄ i

1 + δi1,2
)( ∑

a∈Asu
i

zat −
T iw∑

τ=T imd+1

∑
a∈Asd

i

zat−τ

)
, ∀i ∈ UCT, ∀t, (15)

ϕit ≥
(
V̄ i

1 + δi1,2 + δi2,3
)( ∑

a∈Asu
i

zat −
T ic∑

τ=T imd+1

∑
a∈Asd

i

zat−τ

)
, ∀i ∈ UCT,∀t. (16)

In the above formulation, constraints (5) indicate that only one of the arcs in A can be active

at each time period since the combined-cycle unit moves along exactly one arc at each time pe-

riod. Constraints (6) keep tracking the transition process corresponding to each time period t and

configuration k, indicating that if a mode is online at the current period, then in the next time

period it can either stay in the current mode or move to another mode. Constraints (7) and (8)

enforce the min-up/-down time requirements for each turbine, respectively. Since each configura-

tion is a pseudo thermal unit, the generation capacity restrictions of these pseudo thermal units

are represented in constraints (9) - (10). Equations (9) provide the representation of the genera-

tion amount of the whole combined-cycle unit. Constraints (10) restrict the generation amount of

each configuration from below and above respectively. Constraints (11) and (12) describe ramping

up/down rate restrictions, respectively. Constraint (13) explicitly describes the total operating cost

that includes generation cost (i.e.,
∑

t∈T
∑

k∈C φ
k
t (p

k
t )), start-up cost (i.e.,

∑
t∈T

∑
i∈UCT ϕit), and

shut-down cost (i.e.,
∑

t∈T
∑

i∈UCT

(
V i∑

a∈Asd
i
zat
)
). More specifically, φkt (p

k
t ) is a nondecreasing

quadratic function of pkt , which can be approximated by a piecewise linear function. The detailed

time-dependent start-up costs are described in constraints (14) - (16). In particular, considering

turbine i starting up at time t, the start-up cost will be (1) V̄ i
1 (i.e., hot start-up cost) if turbine i

has been offline between t− T iw and t− T imd − 1; (2) V̄ i
1 + δi1,2 (i.e., warm start-up cost) if turbine i

has been offline between t−T ic and t−T iw−1; (3) V̄ i
1 +δi1,2 +δi2,3 (i.e., cold start-up cost) otherwise.

Finally, we define the integer feasible region with constraints (5) - (16) as Q and the convex hull of

Q is denoted by conv(Q).

Remark 1. In formulation (5) - (16), we present all the constraints to capture the physical char-

acteristics of a combined-cycle unit, rather than solving an optimization problem. Based on (5)

- (16), we provide our strengthened formulation in Section 3. Thus, network constraints (e.g.,
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demand balance and transmission line constraints) appearing in a network-constrained UC model

are not provided here. Instead a complete UC model considering both traditional thermal units and

combined-cycle units is provided in Appendix B.1, where the objective is to minimize the total oper-

ating cost (including Θ for each combined-cycle unit) while satisfying all the physical and network

constraints. The computational experiments to solve the complete UC model will be performed in

Section 4.

Remark 2. The edge-based formulation above, i.e., (5) - (16), provides a different modeling frame-

work from other formulations for the operations of combined-cycle units, e.g., the configuration-

based formulation. It follows that our proposed tighter constraints and strong valid inequalities in

Section 3 are new and different from the existing studies since our results are specified for the

edge-based formulation.

3 Strengthened Formulation

In this section, we derive tighter constraints for the edge-based formulation and several families of

strong valid inequalities to strengthen the formulation, which eventually improve the computational

efficiency significantly to solve the UC problem with combined-cycle units embedded.

3.1 Tighter Constraints

In this subsection, we propose three sets of constraints to replace the corresponding original ones,

namely the min-up time, min-down time, and ramping rate constraints, i.e., (7) - (8) and (11)

- (12). We show that our proposed constraints are tighter than the original ones by providing

theoretical proofs.

3.1.1 Min-up Time Constraints

We propose a set of tighter min-up time constraints in the following proposition.

Proposition 1. The inequalities

T imu−1∑
κ=1

∑
a∈Asu

i

zat−κ ≤ 1−
∑

a∈
⋃
k∈Coff

i

Aall
k

zat , ∀i ∈ UCT ∪ UST,∀t ∈ {T imu, · · · , Tend}, (17)

are tighter than constraints (7).
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Motivated by the logic developed by [27] for the traditional thermal units, we develop tighter

min-up time constraints for each turbine in a combined-cycle unit as shown in (17). The basic logic

of (17) can be described as: if turbine i is online at time period t, then this turbine starts up at

most once during time interval [t−T imu + 1, t− 1]. Thus, in the transition graph, if one of the arcs in

Asu
i , representing the start-up process of turbine i, is active during time interval [t−T imu + 1, t− 1],

then arcs connected to the configurations without turbine i (i.e.,
⋃
k∈Coff

i
Aall
k ) cannot be active at

t. In the following part, we show that constraints (17) are tighter than constraints (7).

Proof. To begin with, we rewrite constraints (7) as follows:∑
a∈Asu

i

zas ≤ 1−
∑

a∈
⋃
k∈Coff

i
Aall
k

zaτ , ∀i ∈ UCT ∪ UST, (18)

∀τ ∈ {s+ 1, · · · ,min{Tend, T
i
mu + s− 1}},∀s ∈ T .

By introducing κ ∈ {1, · · · , T imu − 1}, we reformulate constraints (18) as (19).∑
a∈Asu

i

zas ≤ 1−
∑

a∈
⋃
k∈Coff

i
Aall
k

zas+κ, ∀i ∈ UCT ∪ UST, (19)

∀κ ∈ {1, · · · , T imu − 1}, s+ κ ≤ Tend, ∀s ∈ T .

Then, we replace s+ κ with t to obtain (20).∑
a∈Asu

i

zat−κ ≤ 1−
∑

a∈
⋃
k∈Coff

i
Aall
k

zat , ∀i ∈ UCT ∪ UST, (20)

∀κ ∈ {1, · · · , T imu − 1}, t− κ ≥ 1, ∀t ∈ {2, · · · , Tend}.

Therefore, we only need to show inequalities (17) are tighter than inequalities (20). We finish

it by considering the following two cases.

First, we consider t ∈ {T imu, · · · , Tend}. Then we can remove the condition t− κ ≥ 1 and obtain

(21) from (20) as follows. ∑
a∈Asu

i

zat−κ ≤ 1−
∑

a∈
⋃
k∈Coff

i
Aall
k

zat , ∀i ∈ UCT ∪ UST, (21)

∀κ ∈ {1, · · · , T imu − 1}, ∀t ∈ {T imu, · · · , Tend}.

It is easy to observe that constraints (21) are dominated by constraints (17).

Next, we consider t ∈ {2, · · · , T imu − 1}. Note here that (20) can be rewritten as follows.∑
a∈Asu

i

zat−κ ≤ 1−
∑

a∈
⋃
k∈Coff

i
Aall
k

zat , ∀i ∈ UCT ∪ UST, (22)

11



∀κ ∈ {1, · · · , t− 1}, ∀t ∈ {2, · · · , T imu − 1}.

In constraints (22), we have κ ∈ {1, · · · , t − 1} due to t − 1 < T imu − 1 and κ ≤ t − 1. Then, it is

easy to check that constraints (22) are dominated by (23), which are equivalent to (24).

t−1∑
κ=1

∑
a∈Asu

i

zat−κ ≤ 1−
∑

a∈
⋃
k∈Coff

i
Aall
k

zat , ∀i ∈ UCT ∪ UST,∀t ∈ {2, · · · , T imu − 1}. (23)

t−1∑
ω=1

∑
a∈Asu

i

zaω ≤ 1−
∑

a∈
⋃
k∈Coff

i
Aall
k

zat , ∀i ∈ UCT ∪ UST, ∀t ∈ {2, · · · , T imu − 1}. (24)

Now we show an equivalent formulation of constraints (24) is dominated by (17). To that end, we

first rewrite the left hand side (LHS) of constraints (24) by using the following logic relationship as

shown in constraints (25), which are further equivalent to (26) by taking summation over ω ∈ [2, t].∑
a∈Asu

i ∪Aon
i

zat+1 −
∑

e∈Asu
i ∪Aon

i

zat +
∑
a∈Asd

i

zat+1 =
∑
a∈Asu

i

zat+1, ∀t ∈ T ,∀i ∈ UCT ∪ UST. (25)

t∑
ω=2

∑
a∈Asu

i

zaω =
∑

a∈Asu
i ∪Aon

i

zat −
∑

a∈Asu
i ∪Aon

i

za1 +

t∑
ω=2

∑
a∈Asd

i

zaω, ∀t ∈ T , ∀i ∈ UCT ∪ UST. (26)

t∑
ω=1

∑
a∈Asu

i

zaω =
∑

e∈Asu
i ∪Aon

i

zat −
∑
a∈Aon

i

za1 +
t∑

ω=2

∑
a∈Asd

i

zaω, ∀t ∈ T ,∀i ∈ UCT ∪ UST. (27)

By moving the item
∑

a∈Asu
i
za1 to the LHS of constraints (26), we obtain (27). Therefore, we

can reformulate constraints (24) as constraints (28) at given time period t by moving the item∑
a∈Asu

i
zat in (24) to the LHS based on the relationships indicated by constraints (3). Furthermore,

we can rewrite constraints (28) as (29) by using constraints (27).

t∑
ω=1

∑
a∈Asu

i

zaω ≤ 1−
∑

a∈Asd
i ∪Aoff

i

zat , ∀t ∈ {2, · · · , T imu − 1}, ∀i ∈ UCT ∪ UST, (28)

∑
a∈Asu

i ∪Aon
i

zat −
∑

a∈Asu
i ∪Aon

i

za1 +

t∑
ω=2

∑
a∈Asd

i

zaω ≤ 1−
∑

a∈Asd
i ∪Aoff

i

zat , ∀t ∈ {2, · · · , T imu − 1},∀i ∈ UCT ∪ UST.

(29)

Based on (5) and (2), we can observe that constraints (29) are equivalent to constraints (30).

t∑
ω=2

∑
a∈Asd

i

zaω ≤
∑

e∈Asu
i ∪Aon

i

za1 , ∀t ∈ {2, · · · , T imu − 1},∀i ∈ UCT ∪ UST. (30)

By following the similar process to obtain constraints (30), we get an equivalent formulation

(31) of constraints (17) when t = T imu. Obviously, the constraints in (30) at given time periods

12



t ∈ {2, · · · , T imu − 1} are dominated by constraints (31).

T imu∑
ω=2

∑
a∈Asd

i

zaω ≤
∑

e∈Asu
i ∪Aon

i

za1 , ∀i ∈ UCT ∪ UST. (31)

The proof is done.

3.1.2 Min-down Time Constraints

By following the similar idea as the reformulation of min-up time constraints, we derive tighter

constraints for min-down time requirements in (32).

Proposition 2. The inequalities

T imd−1∑
κ=1

∑
a∈Asd

i

zat−κ ≤ 1−
∑

a∈
⋃
k∈Con

i
Aall
k

zat , ∀i ∈ UCT ∪ UST,∀t ∈ {T imd, · · · , Tend}, (32)

are tighter than constraints (8).

Constraints (32) indicate that if one of the arcs in Aisd, representing the shut-down process of

turbine i, is active during time interval [t−T imd + 1, t− 1], then arcs connected to the configurations

with turbine i (i.e.,
⋃
k∈Con

i
Aall
k ) cannot be active. This means the configurations with turbine i

must be offline at time period t, when turbine i shuts down at time interval [t − T imd + 1, t− 1].

Due to the similar logic with the tighter min-up constraints (17), we can show that constraints (32)

are tighter than constraints (8) by similarly following the proof for Proposition 1 in two steps: 1)

rewrite (8) into ∑
a∈Asd

i

zat−κ ≤ 1−
∑

a∈
⋃
k∈Con

i
Aall
k

zat , ∀i ∈ UCT ∪ UST, (33)

∀κ ∈ {1, · · · , T imd − 1}, t− κ ≥ 1, ∀t ∈ {2, · · · , Tend};

and 2) show constraints (32) are tighter than (33). Thus we omit the detailed proof here.

3.1.3 Ramping Rate Constraints

As mentioned previously, the edge-based formulation tracks the transition process of a combined-

cycle unit by recording the status of each arc. The status of each arc indicates the operating status

of the combined-cycle unit, which further determines which ramping rate limit (corresponding to

each arc) affects the change of the generation amount at each time period. Hence, ramping rate

constraints (11) and (12) use the arc decision variables to make the choice of ramping rate limits.

13



Instead of using big-M method (i.e., P̄ c) as shown in (11) and (12), we propose two other tighter

ramping rate constraints.

Proposition 3. The inequalities

pt+1 − pt ≤
∑
a∈A

RUazat+1, ∀t ∈ T , (34)

pt − pt+1 ≤
∑
a∈A

RDazat+1, ∀t ∈ T , (35)

represent tighter ramping up/down rate constraints than (11) and (12), respectively.

Because only one of the arcs in the transition graph can be active at each time period t as

shown in (5), only one item in the right-hand side of (34) can be positive and all others would be

zero. This positive item represents the active arc that provides the ramping up rate limit. The

same analysis can be applied to ramping down constraints (35).

Proof. By considering constraints (5) and the fact that P̄ c ≥ max{RUa,RDa},∀a, it is easy to

check that constraints (34) and (35) dominate constraints (11) and (12), respectively.

Next, we further show the strength of our proposed tighter ramping rate constraints (34) and

(35) by proving that they are facet-defining under certain conditions.

Proposition 4. Inequalities (34) and (35) are facet-defining for the projection of polytope conv(Q)

onto set S = {zat+1, pt+1, pt ∀a ∈ A} when Pn ≤ Pm + RUa(m,n) ≤ P̄n for all a(m,n) ∈ A, where S

consists of all the variables describing inequalities (34) and (35).

Proof. As there are |A|+ 2 variables and
∑

a∈A z
a
t+1 = 1, the dimension of S is |A|+ 1. In order to

prove that each inequality (34) is facet-defining for S, we need |A|+ 1 affinely independent points

which satisfy pt+1 − pt =
∑

a∈ARUazat+1 at time period t + 1 as shown in Table 1. Similarly, we

can show that inequality (35) is facet-defining for the space S under mild conditions and thus we

omit the corresponding details here.

3.2 Strong Valid Inequalities

In this section, we derive several families of strong valid inequalities to further strengthen the

edge-based formulation in multiple settings.
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Table 1: |A|+ 1 Affinely Independent Points

Points

zat+1 pt+1 pt

a(m1, n1) a(m2, n2)
. . . a(m|A|−1, n|A|−1) a(m|A|, nA|)

1 1 0 0 0 0 Pm1
+ RUa(m1,n1) Pm1

2 0 1 0 0 0 Pm2
+ RUa(m2,n2) Pm2

. . . 0 0
. . . 0 0

. . .
. . .

|A| − 1 0 0 0 1 0
Pm|A|−1

+

RUa(m|A|−1,n|A|−1)

Pm|A|−1

|A| 0 0 0 0 1
Pm|A|+

RUa(m|A|,n|A|)

Pm|A|

|A|+ 1 1 0 0 0 0
Pm1

+

RUa(m1,n1) + ε

Pm1
+ ε

3.2.1 Single-Arc Ramping Rate Inequalities

In Subsection 3.1.3, inequalities (34) and (35) focus on the change of generation amount pt for the

whole combined-cycle unit. Note that equations (9) indicate that only the online configuration of

the combined-cycle unit provides the generation amount. Now, we focus on the change of generation

amount pkt at each configuration of the combined-cycle unit. Given a specific arc a(n,m), the whole

combined-cycle unit transits from Configurations n to m. Accordingly, we focus on ramping rates

and propose strong valid inequalities corresponding to this arc a(n,m), named single-arc ramping

rate inequalities.

Proposition 5. The inequalities

pmt+1 − pnt ≤ RUa(n,m)z
a(n,m)
t+1 + P̄m

( ∑
a∈(Ain

m

⋃
Asl
m)

zat+1

)
− Pn

( ∑
a∈(Ain

n

⋃
Asl
n)

zat

)
+

(
Pn − P̄m

)
z
a(n,m)
t+1 ,

∀a(n,m) ∈ A,∀t ∈ T , (36)

pnt − pmt+1 ≤ RDa(n,m)z
a(n,m)
t+1 + P̄n

( ∑
a∈(Ain

n

⋃
Asl
n)

zat

)
− Pm

( ∑
a∈(Ain

m

⋃
Asl
m)

zat+1

)
+

(
Pm − P̄n

)
z
a(n,m)
t+1 ,

∀a(n,m) ∈ A,∀t ∈ T , (37)

are valid for conv(Q). Furthermore, inequality (36) (resp. (37)) is facet-defining for the projection

of polytope conv(Q) onto S = {zat , zat+1, p
n
t , p

n
t+1, ∀a ∈ A} when Pm ≤ Pn + RUa(n,m) < P̄m and

P̄m − P̄n < RUa(n,m) (resp. Pn ≤ Pm + RDa(n,m) < P̄n and P̄n − P̄m < RDa(n,m)), ∀a(n,m) ∈ A,

where S consists of all the variables describing (36) (resp. (37)).
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Note here that it is not necessary to distinguish Configuration n from Configuration m in

both inequalities (36) and (37). When n = m, it means the combined-cycle unit keeps working

on one configuration between two consecutive time periods, where the ramping rate is from the

corresponding configuration. When n 6= m, it means the combined-cycle unit transits from one

configuration to another. In this case, the ramping rate is between these two configurations.

Proof. First, we show the validity of ramping up inequalities (36) for a given arc a(n,m) by dis-

cussing four possible cases as follows.

Case 1: the combined-cycle unit works on Configuration n at time period t and works on

Configuration m at t+ 1. It follows that arc a(n,m) is active at t+ 1 in this case, and the ramping

rate limit corresponding to arc a(n,m) is selected to limit the generation amount change of the

combined-cycle unit from t to t + 1. Accordingly, we have z
a(n,m)
t+1 = 1,

∑
a∈(Ain

n

⋃
Asl
n) z

a
t = 1, and∑

a∈(Ain
m

⋃
Asl
m) z

a
t+1 = 1. Then inequalities (36) convert to pmt+1 − pnt ≤ RUa(n,m), which is valid due

to constraints (11).

Case 2: the combined-cycle unit works on Configuration n at time period t and does not work

on Configuration m at t + 1. It follows that arc a(n,m) is not active at time period t + 1 in

this case, and the ramping rate limit corresponding to arc a(n,m) will not be selected to limit

the change of generation amount of the combined-cycle unit. Accordingly, we have z
a(n,m)
t+1 = 0,∑

a∈(Ain
n

⋃
Asl
n) z

a
t = 1, and

∑
a∈(Ain

m

⋃
Asl
m) z

a
t+1 = 0. Then inequalities (36) convert to −pnt ≤ −Pn

which is valid due to constraints (10).

Case 3: the combined-cycle unit does not work on Configuration n at time period t. How-

ever, it works on Configuration m at time period t + 1. Similar to Case 2, we have z
a(n,m)
t+1 = 0,∑

a∈(Ain
n

⋃
Asl
n) z

a
t = 0, and

∑
a∈(Ain

m

⋃
Asl
m) z

a
t+1 = 1 in this case. Then inequalities (36) become

pmt+1 ≤ P̄m, which is valid due to constraints (10).

Case 4: the combined-cycle unit neither works on Configuration n at time period t nor works

on Configuration m at time period t+ 1. It follows that we have z
a(n,m)
t+1 = 0,

∑
a∈(Ain

n

⋃
Asl
n) z

a
t = 0,

and
∑

a∈(Ain
m

⋃
Asl
m) z

a
t+1 = 0. Inequalities (36) become 0 ≤ 0, which is trivial.

These four cases cover all possible scenarios of inequalities (36) for a given arc a(n,m). Similar

analyses can be applied to inequalities (37) and thus are omitted here.

Next, we show inequalities (36) and (37) are facet-defining in Appendix A.1.
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3.2.2 Multi-Configuration Ramping Rate Inequalities

In Subsection 3.2.1, inequalities (36) and (37) study the ramping rate limits for a given arc. In this

subsection, we extend the study to develop the ramping rate inequalities by considering a given

configuration and its relationships with other configurations, named multi-configuration ramping

rate inequalities.

Suppose that the whole combined-cycle unit works on Configuration m at time period t + 1.

As shown in Fig. 6, we know one of the incoming arcs, i.e., a(n1,m), a(n2,m), and a(n3,m), or

the self-loop arc a(m,m) must be active at time period t+ 1. On the other hand, suppose that the

combined-cycle unit works on Configuration n at time period t in Fig. 7. Then, one of the outgoing

arcs, i.e., a(n,m1), a(n,m2), and a(n,m3), or the self-loop arc a(n, n) must be active at time period

t + 1. We develop ramping rate inequalities for these two scenarios separately. Before that, we

introduce two definitions for ease of exposition later. First, we define C→m to represent the set of

configurations which can transit to Configuration m. For instance, in Fig. 6, C→m = {n1, n2, n3,m}.

Second, we define Cn→ to represent the set of configurations to which Configuration n can transit.

For instance, in Fig. 7, Cn→ = {m1,m2,m3, n}.

Config mConfig n1 Config n2

Config n3

a(m,m)

a(n1,m) a(n2,m)

a(n3,m)

Figure 6: State Transition Graph for Configuration m

Config nConfig m1 Config m2

Config m3

a(n, n)

a(n,m1) a(n,m2)

a(n,m3)

Figure 7: State Transition Graph for Configuration n

For the first scenario as shown in Fig. 6, we propose the following two strong valid inequalities.
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Proposition 6. The inequalities

pmt+1 −
∑

n∈C→m

pnt ≤
∑

n∈C→m

RUa(n,m)z
a(n,m)
t+1 −

∑
n∈C→m

Pn

(( ∑
a∈(Ain

n

⋃
Asl
n)

zat

)
− za(n,m)

t+1

)
, ∀m ∈ C, ∀t,

(38)∑
n∈C→m

pnt − pmt+1 ≤
∑

n∈C→m

RDa(n,m)z
a(n,m)
t+1 +

∑
n∈C→m

P̄n

(( ∑
a∈(Ain

n

⋃
Asl
n)

zat

)
− za(n,m)

t+1

)
,∀m ∈ C,∀t,

(39)

are valid for conv(Q). Furthermore, inequality (38) (resp. (39)) is facet-defining for the projection

of polytope conv(Q) onto S = {zat , zat+1, p
n
t , p

n
t+1, ∀a ∈ A,∀n ∈ C} when Pm ≤ Pn+ RUa(n,m) < P̄m

(resp. Pn ≤ Pm + RDa(n,m) < P̄n), ∀n ∈ C→m, where S consists of all the variables describing

inequality (38) (resp. (39)).

Proof. First, we show the validity of ramping up inequalities (38) by discussing three possible cases

as follows:

Case 1: the combined-cycle unit works on Configuration m at time period t + 1. In this case

one of the incoming arcs or the self-loop arc of Configuration m is active at time period t + 1.

For instance, in Fig. 6, one of the arcs in {a(n1,m), a(n2,m), a(n3,m), a(m,m)} is active at time

period t + 1. Suppose the combined-cycle unit works on Configuration n̄ at time period t, where

n̄ ∈ C→m. Consequently, arc a(n̄,m) is active at time period t+1. In this case, we have z
a(n̄,m)
t+1 = 1,

z
a(n̂,m)
t+1 = 0,

∑
a∈(Ain

n̄

⋃
Asl
n̄) z

a
t = 1, and

∑
a∈(Ain

n̂

⋃
Asl
n̂) z

a
t = 0, for any n̂ ∈ C→m \ {n̄}. It follows that

inequalities (38) convert to pmt+1 − pn̄t ≤ RUa(n̄,m), which is valid due to constraints (11).

Case 2: the combined-cycle unit does not work on Configuration m at time period t + 1.

However, the combined-cycle unit works on Configuration n̄ at time period t, where n̄ ∈ C→m. In

this case, all of the incoming arcs and the self-loop arc of Configuration m are not active at time

period t + 1, which means z
a(n,m)
t+1 = 0,∀n ∈ C→m. In addition, we have

∑
a∈(Ain

n̄

⋃
Asl
n̄) z

a
t = 1 and∑

a∈(Ain
n̂

⋃
Asl
n̂) z

a
t = 0, for any n̂ ∈ C→m \ {n̄}. Then, inequalities (38) reduce to −pn̄t ≤ −P n̄, which

is valid because of constraints (10).

Case 3: the combined-cycle unit does not work on Configuration m at time period t + 1.

Meanwhile, it does not work on any configuration in set C→m at time period t. In this case, all

decision variables become zero in inequalities (38). Both the left and right sides of (38) will be

equal to zero.

Similar analyses can be applied to inequalities (39) and thus are omitted here. Next, we show

inequalities (38) and (39) are facet-defining in Appendix A.2.
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For the scenario captured in Fig. 7, we develop strong valid inequalities (40) and (41) as follows.

Proposition 7. The inequalities

∑
m∈Cn→

pmt+1 − pnt ≤
∑

m∈Cn→

RUa(n,m)z
a(n,m)
t+1 +

∑
m∈Cn→

P̄m

(( ∑
a∈(Ain

m

⋃
Asl
m)

zat+1

)
− za(n,m)

t+1

)
, ∀n ∈ C,∀t,

(40)

pnt −
∑

m∈Cn→

pmt+1 ≤
∑

m∈Cn→

RDa(n,m)z
a(n,m)
t+1 −

∑
m∈Cn→

Pm

(( ∑
a∈(Ain

m

⋃
Asl
m)

zat+1

)
− za(n,m)

t+1

)
, ∀n ∈ C, ∀t,

(41)

are valid for conv(Q). Furthermore, inequality (40) (resp. (41)) is facet-defining for the projection

of polytope conv(Q) onto set S = {zat , zat+1, p
n
t , p

n
t+1, ∀a ∈ A,∀n ∈ C} when Pm ≤ Pn + RUa(n,m) <

P̄m (resp. Pn ≤ Pm + RDa(n,m) < P̄n), ∀m ∈ Cn→, where S consists of all the variables describing

inequality (40) (resp. (41)).

Proof. In order to verify the validity of inequalities (40), we analyze the following three possible

cases, while a similar procedure can be applied to verify the validity of inequalities (41).

Case 1: the combined-cycle unit works on Configuration n at time period t and on one of

the configurations (denoted by m̄) in Cn→ at time period t + 1. In this case, we have z
a(n,m̄)
t+1 =

1, z
a(n,m̂)
t+1 = 0,

∑
a∈(Ain

m̄

⋃
Asl
m̄) z

a
t+1 = 1, and

∑
a∈(Ain

m̂

⋃
Asl
m̂) z

a
t+1 = 0, for any m̂ ∈ Cn→ \ {m̄}. Then

inequalities (40) convert to pm̄t+1 − pnt ≤ RUa(n,m̄), which is valid due to constraints (11).

Case 2: the combined-cycle unit does not work on Configuration n at time period t. However,

it works on one of the configurations (denoted by m̄) in Cn→ at time period t + 1. In this case,

we have z
a(n,m̄)
t+1 = 0, z

a(n,m̂)
t+1 = 0,

∑
a∈(Ain

m̄

⋃
Asl
m̄) z

a
t+1 = 1, and

∑
a∈(Ain

m̂

⋃
Asl
m̂) z

a
t+1 = 0, for any

m̂ ∈ Cn→ \ {m̄}. Then inequalities (40) convert to pm̄t+1 ≤ P̄m̄, which is valid due to constraints

(10).

Case 3: the combined-cycle unit neither works on Configuration n at time period t nor works

on any configuration in Cn→ at time period t+ 1. In this case, all decision variables in inequalities

(40) take zeros.

Finally, since the facet-defining proofs are similar with those in Appendices A.1 and A.2, we

omitted them here.

4 Computational Results

In this section, we test the performance of our strengthened edge-based formulation on a modified

IEEE 118-bus power system [1] by solving unit commitment (UC) problems with both traditional

19



thermal units and combined-cycle units. The complete UC formulation is provided in Appendix B.1,

where the objective is to minimize the total cost including the start-up/shut-down and generation

costs for operating both traditional thermal units and combined-cycle units. We first introduce the

basic settings in Subsection 4.1, and then provide the computational results in solving two groups

of instances in Subsections 4.2 and 4.3, respectively.

4.1 Basic Settings

We study two UC problems, i.e., one-day and two-day UC problems, with each time interval being

half an hour, thereby leading to 48 and 96 time intervals in each problem, respectively. For each

problem, we generate a set of instances with different load profiles based on the nominal load profile

in [1]. For each instance, we compare the following five formulations:

1) “EBF”, the edge-based formulation (EBF) proposed in [12];

2) “TEBF”, the edge-based formulation with min-up/-down time constraints (7) and (8) replaced

by tighter min-up/-down time constraints (17) and (32), respectively;

3) “REBF”, the edge-based formulation with the ramping constraints (11) and (12) replaced by

tighter ramping constraints (34) - (41);

4) “SEBF”, our strengthened edge-based formulation in which both min-up/-down time and

ramping constraints are replaced [i.e., (7) and (8) are replaced by (17) and (32), and (11) and

(12) are replaced by (34) - (41)] and this is the final formulation we proposed in this paper;

5) “TCBF”, the tight and compact configuration-based formulation proposed in [20], which is a

strengthened configuration-based formulation in the literature.

Note here that the EBF, TEBF, and REBF models are considered benchmarks so as to show the

strength of our proposed tighter constraints and strong valid inequalities in the SEBF model, and

the TCBF model is considered the benchmark from the literature.

In the test system, there are 54 traditional thermal units and 12 combined-cycle units. We test

this system in Subsection 4.2, and then increase the number of combined-cycle units and report

the corresponding results in Subsection 4.3. All instances are solved by CPLEX 12.8 at Intel(R)

Core(TM) i7-4500U 1.8GHz with 8G memory. The time limit was set at 3600 seconds per run and

default CPLEX settings are applied. Note that the default optimality gap is 0.01%.

4.2 Standard Instances

For each problem, i.e., one-day and two-day UC problems, we randomly generate ten instances by

following the method described in [12].
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Table 2: Integrality Gap (×10−4)
Case EBF TEBF REBF SEBF TCBF

One-day

1 7.1 7.0 6.7 4.2 3.9
2 7.1 7.1 6.7 4.1 4.5
3 6.7 6.7 6.5 3.8 3.7
4 7.0 7.0 6.4 3.9 3.9
5 7.1 6.9 6.6 4.1 4.0
6 7.3 7.2 6.8 4.3 4.0
7 7.1 7.1 6.9 4.2 4.1
8 7.1 7.0 6.5 4.0 3.8
9 6.8 6.8 6.7 3.9 3.8
10 7.0 6.9 6.7 4.0 4.4

Two-day

1 5.9 5.9 5.8 3.9 4.6
2 6.3 6.2 5.9 4.3 4.5
3 5.1 5.1 4.8 3.0 3.6
4 5.6 5.6 5.1 3.6 3.8
5 5.7 5.6 5.3 3.7 3.7
6 4.9 4.8 4.7 2.9 3.4
7 5.2 5.1 5.1 3.2 3.5
8 5.5 5.5 5.2 3.5 3.6
9 5.4 5.3 4.8 3.3 3.9
10 6.2 6.1 5.7 4.1 4.5

We first show the effectiveness of our proposed strengthened formulation in tightening the LP

relaxation of the original formulation by reporting the integrality gap information in Table 2. The

integrality gap is defined as

Integrality Gap =
CMILP − CLP

CMILP

,

where CMILP represents the objective value corresponding to the best integer solution obtained from

all models and CLP represents the LP relaxation objective value. Note here that when measuring

the objective value of the LP relaxation of a mixed-integer linear program (i.e., the LP relaxation

objective value), we first relax all the integer variables to be continuous and then solve the relaxed

model using CPLEX as an LP solver. From Table 2, we can observe that for each instance the

SEBF model provides the smallest integrality gap as compared to the EBF, TEBF, and REBF

models, which means the SEBF model is tighter than them and accordingly verifies the theoretical

results in Section 3. In addition, we can observe that the SEBF model induces similar integrality

gaps with that of the TCBF model. Note here that as described in Section 1, TCBF is different

from SEBF and it does not capture the min-up/-down time requirements of each turbine.

Next, we report the computational performances for all five models in Table 3. The column

labelled “Computational Time (secs)” indicates how much time CPLEX takes to solve each instance.
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Table 3: Computational Performance

Case
Computational Time (secs) (Terminal Gap(×10−4)) Number of Nodes
EBF TEBF REBF SEBF TCBF EBF TEBF REBF SEBF TCBF

One-
day

1 764.7 521.8 272.6 188.9 119.9 2811 1351 28 45 0
2 447.1 561.2 306.0 303.9 125.0 1284 3059 0 26 21
3 642 671.0 247.7 329.7 112.0 2446 3743 50 190 0
4 602.9 989.7 342.5 238.9 128.0 1662 4870 0 45 35
5 867.4 735.7 550.1 263.4 131.9 2633 3407 255 0 0
6 2007.4 1678.6 295.6 313.1 104.4 11680 10126 107 107 0
7 473.3 599.1 286.4 286.5 131.8 1497 2399 34 53 40
8 669.1 580.9 286.9 190.3 89.9 3169 2832 0 0 0
9 816.8 1397.9 374.0 271.1 144.9 4666 8020 196 38 46
10 543.4 918.2 311.2 256.8 132.3 2081 3073 0 318 28

Two-
day

1 *** (2.6) *** (2.5) *** (1.6) 1692.0 3182.2 4457 3970 1291 581 4003
2 *** (2.5) *** (2.8) *** (2.6) *** (1.4) *** (1.1) 3434 2801 1645 2406 3232
3 1995.2 *** (1.5) 2329.9 1650.7 2152.1 2052 3236 1031 1059 2467
4 *** (2.0) *** (1.9) 1919.2 1376.0 1381.3 5026 5316 745 531 1886
5 *** (2.1) *** (2.2) 2751.4 2572.1 3010.3 2895 3204 1785 1067 2428
6 2782.9 2611.2 946.1 1189.9 1691.6 3368 2870 176 15 1904
7 *** (1.4) *** (1.4) *** (1.1) 1924.0 1964.2 5775 4543 2425 662 1816
8 *** (1.8) *** (1.7) *** (1.3) 1790.6 2158.2 3891 3323 1301 927 2376
9 *** (2.4) *** (2.4) *** (1.3) 2377.9 2516.7 3316 4503 2588 3452 2391
10 *** (2.8) *** (2.4) *** (2.2) *** (2.0) *** (1.5) 3327 5184 1444 1796 3160

When the CPLEX cannot solve the instance to optimality (i.e., reaching the optimality gap 0.01%)

within the time limit (i.e., 3600 seconds), we indicate it by the label “***” and accordingly report

the terminating gap, labelled “Terminal Gap(×10−4)”. The column labelled “Number of Nodes”

reports how many branch-and-bound nodes are explored before reaching the optimality or time

limit. Note here that for each instance, the computational time includes the time within all the

processes (such as root node preprocessing and heuristics) enforced by CPLEX. From Table 3,

we can observe that our proposed tighter constraints and strong valid inequalities help reduce the

computational time significantly. Meanwhile, as compared to the EBF, TEBF, and REBF models,

the SEBF model leads to a much smaller number of branch-and-bound nodes for most instances.

In addition, we can observe that solving the problem becomes more difficult as the size of the

instance increases (e.g., the size increases from one-day to two-day UC problems). For example,

the EBF and TEBF models cannot solve most of the instances of the two-day UC problem to

optimality within the time limit. By contrast, the SEBF model can solve most of the instances

under the same setting. Furthermore, we notice that it is not needed to do branching in Cases 5

and 8 of the one-day UC problem for the SEBF model because CPLEX uses heuristic strategies and

the cutting plane approach to find an optimal solution at the root node due to the small integrality

gap. In addition, we can observe that the configuration-based formulation (i.e., TCBF) has a better
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performance in solving one-day UC instances by relaxing the min-up/-down time restrictions of each

turbine. However, in solving two-day UC instances, which are in larger sizes, the performance of

TCBF is not as good as that of SEBF. In particular, SEBF takes less time and explores a smaller

number of branch-and-bound nodes to solve most instances than TCBF does. In view of this, our

proposed formulation SEBF is expected to perform better in solving the UC problems with a larger

number of time intervals in practices, such as residual (or reliability) UC [13] and UC with small

time granularity [2], than the TCBF model does.
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Figure 8: Convergence illustration of Case 1 in one-day UC

Finally, we report the convergence performance of the solution process to show the advantage of

our strengthened edge-based formulation in accelerating the convergence process. First, we define

the upper bound gap (denoted by “UBG”) as the difference between the upper bound (denoted

by “UB”) of the model at each iteration and the optimal objective value (denoted by “OBJ”)

of the model, and the lower bound gap (denoted by “LBG”) as the difference between the lower

bound (denoted by “LB”) of the model at each iteration and OBJ. Therefore, we have the following

relationships:

UBG = UB−OBJ,

LBG = LB−OBJ.

Then we show the convergence process in Figs. 8 and 9, where the solid (resp. dashed, dotted,

and dashdotted, wide dotted) line represents the convergence of the upper bound and lower bound
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Figure 9: Convergence illustration of Case 1 in two-day UC

gaps of the SEBF (resp. EBF, TEBF, REBF, and TCBF) model. From these figures, we can

observe that the SEBF model converges faster than the EBF, TEBF, and REBF models do for

both one-day and two-day UC problems, and faster than the TCBF model does for two-day UC

problems.

4.3 Instances with More Combined-Cycle Units

In this subsection, we increase the number of combined-cycle units to further investigate the ben-

efits of our strengthened formulation in solving large instances with more combined-cycle units.

In particular, with the number of traditional thermal units fixed at 54, we increase the number

of combined-cycle units from 15 to 27, as shown in Tables 4 and 5. For each fixed number of

combined-cycle units, we solve two randomly generated instances (denoted by “1” and “2” in the

column labelled “Case”) of a two-day UC problem with each instance corresponding to different

load profiles. Similar to the results in Subsection 4.2, we provide the integrality gap information in

Table 4 and the computational performance in Table 5. From the tables, we can observe that the

computational performance of SEBF is better than that of any other models for most instances.

In addition, the computational performance of SEBF has a very good scalability because its com-

putational time does not increase much when the number of combined-cycle units increases in

the system. Meanwhile, the SEBF model explores much less branch-and-bound nodes than other

models do.
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Table 4: Integrality Gap (×10−4) for More Combined-Cycle Units
# CCU Case EBF TEBF REBF SEBF TCBF

15
1 6.3 6.3 6.1 4.3 4.5
2 5.1 5.0 4.8 3.0 3.6

18
1 5.9 5.8 5.6 3.9 4.6
2 5.6 5.6 5.5 3.6 3.8

21
1 5.7 5.7 5.3 3.7 3.7
2 4.9 4.8 4.7 2.9 3.4

24
1 5.2 5.2 5.1 3.2 3.5
2 5.5 5.4 5.4 3.5 3.6

27
1 5.4 5.4 5.9 3.3 3.9
2 6.2 6.1 6.1 4.1 4.5

Table 5: Computational Performance for More Combined-Cycle Units
#

CCU
Case

Computational Time(secs) (Terminal Gap(×10−4)) Number of Nodes
EBF TEBF REBF SEBF TCBF EBF TEBF REBF SEBF TCBF

15
1 *** (1.8) *** (1.1) 2032.2 997.4 1139.7 4974 7506 452 98 733
2 *** (2.7) *** (2.0) *** (1.5) 1342.6 764 4996 2318 1192 21 315

18
1 *** (2.2) *** (1.5) *** (1.3) 1514.7 740.8 5836 5490 1350 293 835
2 *** (2.1) *** (1.9) *** (1.9) 1563.6 3214.2 4635 2554 989 1475 2545

21
1 *** (2.3) *** (2.0) 2828.7 1844.7 2767.9 3317 6069 1077 519 2504
2 *** (1.8) *** (1.6) 1462.9 1099.9 2012.3 6037 4324 577 0 1981

24
1 *** (3.3) *** (3.2) *** (1.3) 1836.8 2264.8 2019 2516 1331 1266 1536
2 *** (3.1) *** (2.6) 1899 1204.4 1537.3 2460 5651 631 13 1223

27
1 *** (3.4) *** (3.0) 2266.8 1420.3 2813.9 2266 4190 0 0 2624
2 *** (3.4) *** (3.2) 1961.6 1647.2 2227.1 2033 1623 0 0 1472

5 Conclusions

In this paper, we focused on improving the computational performance to solve the unit commit-

ment problems with combined-cycle units using the edge-based model, which has the advantage

of exactly tracking the physical constraints over other existing models. We first derived tighter

min-up/-down time and ramping rate constraints for the edge-based formulation and proved that

they are tighter than the ones in the original formulation. Then, we developed several families

of strong valid inequalities to further reduce the solution searching space by utilizing the physi-

cal characteristics of each individual turbine in the combined-cycle unit and the structure of its

state transition graph. In addition, these strong valid inequalities can be theoretically shown to be

facet-defining for the original formulation under certain mild conditions. Finally, the case studies

demonstrated the effectiveness of our proposed strengthened edge-based formulation in reducing

the computational time and accelerating the convergence of the solution process when solving the

corresponding problems.
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Appendix A Proofs for Strong Valid Inequalities

A.1 Facet-defining Proofs for Inequalities (36) and (37)

Proof. For each a(n,m) ∈ A at t + 1, we show inequality (36) is facet-defining for the projection

of polytope conv(Q) onto S = {zat , zat+1, p
n
t , p

n
t+1, ∀a ∈ A} when Pm ≤ Pn + RUa(n,m) < P̄m and

P̄m − P̄n < RUa(n,m), ∀a(n,m) ∈ A, where S consists of all the variables describing (36). As

there are 2(|A|+ |C|) variables in S and two equations in Q, i.e., (5) and (6), the dimension of the

projection of Q onto S is 2|A| + |C| − 1. Thus, we generate 2|A| + |C| − 1 affinely independent

points as follows that satisfy (36) at equation to prove the facet-defining property. Meanwhile, we

let ε be an arbitrarily small positive number in the following part of this paper.

As shown in Table 6, we divide these 2|A|+ |C|−1 points into 14 separated groups. Each row in

this table represents a point satisfying (36) at equality and each column represents a variable. To

better construct points regarding variable zat+1, we divide the arc set A into 6 separated sets with

a given arc a(n,m) as shown in (42). Similarly, we divide the arc set A for variable zat as shown in

(43).

A = Ā1 ∪ Ā2 ∪ Ā3 ∪ Ā4 ∪ Ā5 ∪ Ā6, where Ā1 = {a(n,m)}, Ā2 = {a(k,m), k ∈ C→m, k 6= n},
(42)

Ā3 = {a(n, s), s ∈ Cn→, s 6= m}, Ā4 = {a(k, r),∀k ∈ C→m, k 6= n, ∀r ∈ Ck→, r 6= m},

Ā5 = {a(x, x), x ∈ C, x 6= n, x 6= k}, and Ā6 = {a(x, y), ∀y ∈ Cx→, x 6= n, x 6= k, y 6= x}.

A = Ã1 ∪ Ã2 ∪ Ã3 ∪ Ã4 ∪ Ã5 ∪ Ã6, where Ã1 = {a(n, n)}, Ã2 = {a(u, n), u ∈ C→n, u 6= n} (43)

Ã3 = {a(k, k), k ∈ C→m, k 6= n}, Ã4 = {a(v, k), k ∈ C→m, k 6= n, v 6= k, v ∈ C→k},

Ã5 = {a(x, x), x ∈ C, x 6= n, x 6= k}, and Ã6 = {a(w, x), w ∈ C→x, w 6= x, x 6= n, x 6= k}.

In Table 6, I represents the identity matrix and E represents the vector with 1 at each component.

In addition, E1 represents the vector with 1 at the first component and 0 at others. For a given

arc a(n,m), we construct these 2|A|+ |C| − 1 points as follows.

In Group 1, we construct one point based on the arc a(n,m) by letting z
a(n,m)
t+1 = 1, z

a(n,n)
t =

1, pmt+1 = Pn + RUa(n,m), pt = Pn. In Group 2, we construct |C→m| − 1 points based on the

incoming arcs of Configuration m except the arc a(n,m) (i.e. Ā2) by letting z
a(k,m)
t+1 = 1, z

a(k,k)
t =

1, pmt+1 = P̄m, pkt = P̄m − RUa(k,m) for each k ∈ C→m, k 6= m. In Group 3, we let z
a(n,s)
t+1 =
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1, z
a(n,n)
t = 1, pst+1 = Pn + RUa(n,s), pnt = Pn for each outgoing arc of Configuration n except arc

a(n,m)(i.e. {∀a ∈ Ā3}), where |Cn→| − 1 points are generated. In Group 4, we study the outgoing

arcs of Configuration k, which can transit to Configuration m except configuration n as shown in

Ā4. Notice that arcs a(k,m) are not in the set Ā4. Then, we generate
∑

k∈C→m,k 6=n (|Ck→| − 1)

(i.e. |Ā4|) points by letting z
a(k,r)
t+1 = 1, z

a(k,k)
t = 1, prt+1 = P k + RUa(k,r), pkt = P k. In Group

5, we focus on the self-looping arcs for each configuration except the configurations which can

transit to Configuration m (i.e. Ā5). Accordingly, |C| − |C→m| points are constructed by letting

z
a(x,x)
t+1 = 1, z

a(x,x)
t = 1, pxt+1 = P x + RUa(x,x), pxt = P x. In Group 6, we study the arcs in Ā6.

|A|− |C|+ 1−
∑

k∈C→m,k 6=n (|Ck→| − 1)− |Cn→| points are generated by letting z
a(x,y)
t+1 = 1, z

a(x,x)
t =

1, pyt+1 = P x + RUa(x,y), pxt = P x. From Group 1 to Group 6, we generated |A| points in total.

In Group 7, we construct one point similar to the point in Group 1 by letting z
a(n,m)
t+1 =

1, z
a(n,n)
t = 1, pmt+1 = Pn + RUa(n,m) + ε, pt = Pn + ε. In Group 8, we study the incoming arcs

of Configuration n except the arc a(n, n). |C→n| − 1 points are constructed by letting z
a(n,m)
t+1 =

1, z
a(u,n)
t = 1, pmt+1 = Pn + RUa(n,m), pt = Pn. In Group 9, we construct |C→m| − 1 points by

using the points in Group 2 as z
a(k,m)
t+1 = 1, z

a(k,k)
t = 1, pmt+1 = P̄m, pkt = P̄m − RUa(k,m) + ε.

In Group 10, we continue to study some configuration k which can transit to Configuration

m. Here, we don’t include Configuration n and the self-looping arcs for Configuration k. We

construct
∑

k∈C→m,k 6=n (|C→k| − 1) points by letting z
a(k,m)
t+1 = 1, z

a(v,k)
t = 1, pmt+1 = P̄m, p

k
t =

P̄m − RUa(k,m). In Group 11, we construct |C| − |C→m| points similar to those in Group 5 by

letting z
a(x,x)
t+1 = 1, z

a(x,x)
t = 1, pxt+1 = P x + RUa(x,x) + ε, pxt = P x + ε. In Group 12, we study

the arcs in Ã6. We construct |A| − |C| + 1 −
∑

k∈C→m,k 6=n (|C→k| − 1) − |C→n| points by letting

z
a(x,x)
t+1 = 1, z

a(x,x)
t = 1, pxt+1 = P x + RUa(x,x), pxt = P x. From Group 7 - 12, we generate |A| points

in total.

Now, we construct the last two group of points. In Group 13, we construct |C| − |C→m| points

by letting z
a(x,x)
t+1 = 1, z

a(m0,x)
t = 1, pxt+1 = P x+RUa(x,x) +ε, pxt = P x+ε. In Group 14, we construct

|C→m| − 1 points by letting z
a(k,m)
t+1 = 1, z

a(v,k)
t = 1, pmt+1 = P̄m, p

k
t = P̄m − RUa(k,m) + ε.

In summary, we have 2|A| + |C| − 1 affinely independent points satisfying (36) at equality.

Similar process can be applied to show that for each a(n,m) ∈ A at t + 1, inequality (37) is

facet-defining for the projection of polytope conv(Q) onto set S = {zat , zat+1, p
n
t , p

n
t+1, ∀a ∈ A},
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which consists of all the variables describing inequality (37), when Pn ≤ Pm + RDa(n,m) < P̄n and

P̄n − P̄m < RDa(n,m), ∀a(n,m) ∈ A for (37). Thus the details are omitted here.

A.2 Facet-defining Proof for Inequality (38)

Proof. For each m ∈ C and t, we show inequality (38) is facet-defining for the projection of polytope

conv(Q) onto S = {zat , zat+1, p
n
t , p

n
t+1, ∀a ∈ A, ∀n ∈ C} when Pm ≤ Pn+RUa(n,m) < P̄m, ∀n ∈ C→m,

where S consists of all the variables describing inequality (38). As there are 2(|A|+ |C|) variables

in S,
∑

a∈(Ain
k

⋃
Asl
k ) z

a
t =

∑
a∈(Aout

k

⋃
Asl
k ) z

a
t+1,∀k ∈ C, and

∑
a∈A z

a
t = 1, the dimension of the

projection of Q onto S is 2|A| + |C| − 1. In the following, we provide 2|A| + |C| − 1 affinely

independent points that satisfy (38) at equality to show the property of facet-defining [33], see

Table 7.

In Table 7, there are 11 groups of points in total, with each row representing one point satisfying

(38) at equality and each column representing the value of each variable. Meanwhile, we let I

represent an identity matrix and 0 represent a zero matrix. Note here that in order to save space,

we use (m,n) to represent arc a(m,n) in the header of Table 7. We generate these points in the

following ways:

1. In Groups 1 - 3, we construct a lower matrix in terms of the value of zat , ∀a ∈ A. In particular,

in Group 1, for each k ∈ C→m (totally |C→m| points), we let z
a(k,m)
t = 1, z

a(m,m)
t+1 = 1, pmt = Pm,

and pmt+1 = Pm + RUa(m,m); in Group 2, for each s ∈ Cm→, s 6= m (totally |Cm→| − 1 points,

note that we rule out s = m to avoid duplication), we let z
a(m,s)
t = 1, z

a(s,s)
t+1 = 1, and

pst = pst+1 = P s; in Group 3, for each remaining arcs of A (totally |A| − |C→m| − (|Cm→| − 1)

points), i.e., a(x, y), we let z
a(x,y)
t = 1, z

a(y,y)
t+1 = 1, pyt = P y, and pyt+1 = P y. Therefore, in

total we generate |A| points here.

2. In Groups 4 - 6, we continue to construct a lower matrix in terms of the value of zat+1, ∀a ∈ A,

which together with the lower matrix generated in Groups 1 - 3 can be easily transformed

to a large lower matrix through Gaussian elimination. In particular, in Group 4, for each

k ∈ C→m, k 6= m (totally |C→m| − 1 points, note that we rule out k = m to avoid duplicating

one point in group 1), we let z
a(k,k)
t = 1, z

a(k,m)
t+1 = 1, pkt = P k, and pmt+1 = P k + RUa(k,m); in

Group 5, for each s ∈ Cm→, s 6= m (totally |Cm→|− 1 points), we let z
a(m,m)
t = 1, z

a(m,s)
t+1 = 1,

pmt = Pm, and pst+1 = P s; in Group 6, for each remaining arcs of A\{(n, n),∀n ∈ C} (totally

31



|A| − |C| − (|C→m| − 1) − (|Cm→| − 1) points, note that we rule out a(n, n), ∀n ∈ C to avoid

duplication with Groups 1 - 3), i.e., a(x, y) with x 6= y, we let z
a(x,x)
t = 1, z

a(x,y)
t+1 = 1, pxt = P x,

and pyt+1 = P y. Therefore, in total we generate |A| − |C| points here.

3. In Groups 7 - 9, we generate |C| points by utilizing the points in Groups 1 - 3 so that

the points in these groups together with the points above can be easily transformed to a

lower matrix. In particular, in Group 7 (totally one point), we choose one k̄ ∈ C→m (e.g.,

k̄ = m) and let z
a(k̄,m)
t = 1, z

a(m,m)
t+1 = 1, pmt = Pm + ε, and pmt+1 = Pm + RUa(m,m) + ε;

in Group 8, for each s ∈ Cm→, s 6= m (totally |Cm→| − 1 points), we let z
a(m,s)
t = 1,

z
a(s,s)
t+1 = 1, and pst = pst+1 = P s + ε; in Group 9, for each remaining configuration of C (totally

|C| − 1− (|Cm→| − 1) points), i.e., a(x, y) with y ∈ C \ {Cm→} for some x, we let z
a(x,y)
t = 1,

z
a(y,y)
t+1 = 1, pyt = P y + ε, and pyt+1 = P y + ε. Therefore, in total we generate |C| points here.

We can easily observe that the points in Groups 7-9 together with the points in Groups 1-3

can be transformed to a lower matrix in terms of the values of zat , ∀a ∈ A and pnt+1, ∀n ∈ C.

4. In Groups 10 - 11, we generate |C| − 1 points by utilizing the points in Groups 4 - 6 so that

the points in these groups together with the points above can be easily transformed to a lower

matrix. In particular, in Group 10, for each k ∈ C→m, k 6= m (totally |C→m| − 1 points), we

let z
a(k,k)
t = 1, z

a(k,m)
t+1 = 1, pkt = P k + ε, and pmt+1 = P k + RUa(k,m) + ε; in Group 11, for each

remaining configuration of C \ C→m (totally |C| − (|C→m| − 1) − 1 points), i.e., a(x, y) with

x ∈ C \ C→m for some y and x ∈ {m, y}, we let z
a(x,x)
t = 1, z

a(x,y)
t+1 = 1, pxt = P x + ε, and

pyt+1 = P y + ε. Thus, in total we generate |C| − 1 points here. We can easily observe that the

points in Groups 10-11 together with the points in Groups 4-6 can be transformed to a lower

matrix in terms of the values of zat+1, ∀a ∈ A and pnt , ∀n ∈ C \ {m}.

In summary, it is clear that 2|A| + |C| − 1 points generated above satisfy (38) at equality and

can easily be transformed to a lower matrix with dimension at least 2|A| + |C| − 2, which means

that these points are affinely independent. Similar process can be applied to show that for each

m ∈ C and t, inequality (39) is facet-defining for the projection of polytope conv(Q) onto set

S = {zat , zat+1, p
n
t , p

n
t+1, ∀a ∈ A, ∀n ∈ C}, which consists of all the variables describing inequality

(39), when Pn ≤ Pm + RDa(n,m) < P̄n, ∀n ∈ C→m for (39). Thus the details are omitted here.

32



T
a
b

le
7:

2
|A
|+
|C
|−

1
affi

n
el

y
in

d
ep

en
d

en
t

p
oi

n
ts

fo
r

(3
8)

#
P

o
in

t

z
a t
,
∀a
∈
A

z
a t+

1
,
∀a
∈
A

p
n t
,
∀n
∈
C

p
n t+

1
,
∀n
∈
C

(k
,
m

),
∀
k

∈
C →

m

(m
,
s
),
∀
s

∈
C m

→
s
6=
m

(x
,
y
)

x
6=
m

y
6=
m

(k
,
m

),
∀
k

∈
C →

m

(m
,
s
),
∀
s

∈
C m

→
s
6=
m

(x
,
y
)

x
6=
m

y
6=
m

∀
k

∈
C →

m
m

(m
,
s
),
∀
s

∈
C m

→
s
6=
m

x
6=
m

y
6=
m

∀
k

∈
C →

m
m

(m
,
s
),
∀
s

∈
C m

→
s
6=
m

x
6=
m

y
6=
m

|C
→
m
|

I
0

0
z
a
(
k
,m

)
t
+

1
=

1
,

if
k

=
m

;
0
,
o
.w
.

0
0

0
P
m

0
0

0
0

P
m

+

R
U

a
(
m

,m
)

0
0

0
P
m

P
m

+

R
U

a
(
m

,m
)

P
m

P
m

+

R
U

a
(
m

,m
)

|C
m

→
|

−
1

0
I

0
0

0
z
a
(
s
,s

)
t
+

1
=

1
0

0
P
s

0

0
0

0
0

P
s

0

0
0

0
··
·

0
··
·

0
0

P
s

0
0

P
s

|A
|+

1
−

|C
→

m
|

−
|C

m
→
|

0
0

I
0

0
z
a
(
y
,y

)
t
+

1
=

1
0

0

0
0

P
y

0

0
0

0
0

P
y

0

0
··
·

0
··
·

0
0

P
y

0
0

P
y

|C
→

m
|

−
1

0
0

z
a
(
k
,k

)
t

=
1

I
0

0
P
k

0
0

0
0

0
0

P
k

+

R
U

a
(
k
,m

)

0
0

0
··
·

0
P

k
+

R
U

a
(
k
,m

)

(k
6=
m

)
0

P
k

0
P

k
+

R
U

a
(
k
,m

)

|C
m

→
|

−
1

z
a
(
m

,m
)

t
=

1
0

0
0

I
0

0
P
m

0
0

0
0

0
P
s

0

0
0

P
m

0
··
·

P
m

0
0

P
s

|A
|−
|C
|

+
2
−

|C
→

m
|

−
|C

m
→
|

0
0

z
a
(
x
,x

)
t

=
1

x
6=
y

0
0

I
0

0

0
P
x

0

0
0

0

0
0

P
y

0

0
··
·

0
··
·

0
0

P
x

0
0

P
y

1
1

0
··
·0

0
0
··
·0

0
0
··
·0

0
··
·0

1
0

0
0

0
0

0
0

0
P
m

+
ε

0
0

0
0

0
0

0
0

P
m

+
ε
+

R
U

a
(
m

,m
)

0
0

0
0

0
0

|C
m

→
|

−
1

0
I

0
0

0
z
a
(
s
,s

)
t
+

1
=

1
0

0
P
s

+
ε

0

0
0

0
0

P
s

+
ε

0

0
0

0
··
·

0
··
·

0
0

P
s

+
ε

0
0

P
s

+
ε

|C
|

|C
m

→
|

0
0

I
0

0
z
a
(
y
,y

)
t
+

1
=

1
0

0

0
0

P
y

+
ε

0

0
0

0
0

P
y

+
ε

0

0
··
·

0
··
·

0
0

P
y

+
ε

0
0

P
y

+
ε

|C
→

m
|

−
1

0
0

z
a
(
k
,k

)
t

=
1

I
0

0

P
k

+
ε

0
0

0
0

0
0

P
k

+
ε
+

R
U

a
(
k
,m

)

0
0

0
··
·

0
P

k
+
ε
+

R
U

a
(
k
,m

)

(k
6=
m

)
0

P
k

+
ε

0
P

k
+
ε
+

R
U

a
(
k
,m

)

|C
|
−

|C
→

m
|

0
0

z
a
(
x
,x

)
t

=
1

x
6=
y

0
0

I
0

0

0

P
x

+
ε

0

0
0

0

0
0

P
y

+
ε

0

0
··
·

0
··
·

0
0

P
x

+
ε

0
0

P
y

+
ε

33



Appendix B Notations and UC formulation

In this section, we first summarize all the notations (i.e., sets, parameters, and decision variables)

for combined-cycle units and traditional thermal units in Tables 8 and 9, respectively. Then we

describe the complete mathematical formulation of a unit commitment problem including both

traditional thermal units and combined-cycle units in Appendix B.1.

Table 8: Notations for Combined-Cycle Units
Sets Parameters

A set of all the arcs P k minimal power output of configuration k
Aall
k set of arcs linked to configuration k P̄k maximal power output of configuration k
Ain
k set of incoming arcs of configuration k P̄ c total capacity of a combined-cycle unit
Aout
k set of outgoing arcs of configuration k RUa ramping up limit of arc a
Aon
i set of arcs indicating turbine i keeps online RDa ramping down limit of arc a
Aoff
i set of arcs indicating turbine i keeps offline T imu min-up time requirement of turbine i
Asl
k set of self-loop arcs of configuration k T imd min-down time requirement of turbine i
Asd
i set of arcs indicating turbine i shuts down V̄ i

1 hot start-up cost for turbine i

Asu
i set of arcs indicating turbine i starts up δi1,2

the difference between the warm and
hot start-up costs for turbine i

C set of all the configurations δi2,3
the difference between the cold and
warm start-up costs for turbine i

UCT set of CTs in a combined-cycle unit V i shut-down cost for turbine i
UST set of STs in a combined-cycle unit T ic cold start time for turbine i
T set of scheduling time periods T iw warm start time for turbine i
Decision Variables T ih hot start time for turbine i
zat online/offline status of arc a at time t

pt
generation amount of the whole

combined-cycle unit at t
pkt generation amount of configuration k at t
φkt generation cost of configuration k at t
ϕit start-up cost of turbine i at t
Θ total operating cost

B.1 Complete UC Formulation

We let UCC represent the set of combined-cycle units that will be considered in the unit commitment

problem, and let UCC
b represent the set of combined-cycle units at each bus b ∈ B. We add

superscript n to all the notations in Table 8 to indicate the corresponding sets, parameters, and

decision variables for combined-cycle unit n ∈ UCC. Therefore, the complete unit commitment

formulation including both traditional thermal units and combined-cycle units can be described as
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Table 9: Notations for Traditional Thermal Units, Buses, and Transmission Lines
Sets Parameters

B set of buses CUn start-up cost of unit n
L set of transmission lines CDn shut-down cost of unit n
UT set of traditional thermal units Cb,l capacity limits of transmission line (b, l)
UT
b set of thermal units at bus b Xb,l Reactance of transmission line (b, l)

Decision Variables Db
t generation demand at bus b at time t

xnt start-up indicator for thermal unit n at time t Pn minimum generation output of unit n
ynt shut-down indicator for thermal unit n at t P̄n maximum generation output of unit n
wnt on/off status indicator for thermal unit n at t RDn ramping down limit of thermal unit n
pnt generation amount of thermal unit n at t RUn ramping up limit of thermal unit n
θbt phase angle of bus b at t Tnmd min-down time requirement for unit n

Tnmu min-up time requirement for unit n

follows.

min
∑

n∈UCC

Θn +
∑
n∈UT

∑
t∈T

(
CUnxnt + CDnynt + φnt (pnt )

)
(44)

s.t. xnt + ynt ≤ 1, ∀n ∈ UT,∀t ∈ T , (45)

wnt − wnt−1 = xnt − ynt , ∀n ∈ UT, ∀t ∈ T , (46)

t∑
τ=t−Tnmu+1

xnτ ≤ wnt , ∀n ∈ UT,∀t ∈ {Tnmu, · · · , Tend}, (47)

t∑
τ=t−Tnmd+1

ynτ ≤ 1− wnt , ∀n ∈ UT,∀t ∈ {Tnmd, · · · , Tend}, (48)

Pnwnt ≤ pnt ≤ P̄nwnt , ∀n ∈ GT,∀t ∈ T , (49)

pnt − pnt−1 ≤ RUnwnt−1 +RU
n
xnt , ∀n ∈ UT,∀t ∈ T , (50)

pnt−1 − pnt ≤ RDnwnt +RD
n
ynt , ∀n ∈ UT,∀t ∈ T , (51)

xnt , y
n
t , w

n
t ∈ {0, 1}, ∀n ∈ UT, ∀t ∈ T ,∑

n∈UT
b

pnt +
∑

k∈UCC
b

pkt −Db
t −

∑
(b,l)∈L

θbt − θlt
Xb,l

= 0, ∀b ∈ B, ∀t ∈ T , (52)

− Cb,l ≤
θbt − θlt
Xb,l

≤ Cb,l, ∀(b, l) ∈ L,∀t ∈ T , (53)

(5)− (16), ∀n ∈ UCC.

The objective function is to minimize the total cost including the operational cost of combined-cycle

units (i.e., Θ) and that of traditional thermal units [i.e.,
∑

t∈T
∑

n∈UT(CUnxnt + CDnynt +φnt (pnt ))],

where the first, second, and third terms in the inner bracket represent the start-up, shut-down,
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and production costs of thermal units, respectively. The production cost (φnt (pnt )) is a quadratic

polynomial function of the power output pnt . This quadratic function is normally approximated by

piecewise linear function in practice. Constraints (45) - (46) represent the relationship among the

start-up binary indicator (xnt ), shut-down binary indicator (ynt ) and on/off status binary indicator

(wnt ) for each traditional thermal unit. Constraints (47) and (48) represents the min-up/-down time

requirements for each traditional thermal unit. Constraints (49) describe the generation limits for

each traditional thermal unit. Constraints (50) and (51) enforce the ramping rate limits for each

traditional thermal unit. Constraints (52) represent the power balance requirement for each bus.

Constraints (53) represent the transmission line limits. Constraints (5) - (16) represent all the

operational constraints of the combined-cycle units, as we shown in Section 2.
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