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Abstract1

We develop analytical approximations for the bus-carrying capacities at near- and far-side stops2

with one or multiple curbside berths where buses operate in a dedicated bus lane. The approx-3

imations are derived using time-space diagrams of bus trajectories and probabilistic methods.4

They correctly account for the effects of key operating factors that were ignored or incorrectly5

addressed by previous methods. These factors include the signal timing and the distance be-6

tween stop and signal. Comparison against computer simulation shows that our models furnish7

much more accurate estimates for near- and far-side stop capacities than previous methods in8

the literature. Numerical case studies are performed to examine how the stop capacity is af-9

fected by various operating factors. New findings and their practical implications are discussed.10

11

Keywords: bus-stop capacity; near-side bus stops; far-side bus stops; bus queues; tandem12

queues13

1 Introduction14

Transit management agencies often place bus stops near signalized intersections to facilitate15

passengers’ access via protected street crossings (Fitzpatrick et al., 1996). Figures 1a and b16

illustrate the two types of these stops, which are termed according to whether the stop is placed17

at the near-side (i.e. upstream side) or far-side (i.e. downstream side) of the intersection. On18

the other hand, the bus-carrying capacities of these stops will be curbed by the neighboring19

traffic signal. As a result, long bus queues often form at busy stops of this kind during rush20

hours (Gibson, 1996; Tan and Yang, 2014). The bus queues will cause multifarious negative21

impacts, including large delays to bus passengers, poor bus schedule reliability, and blockage22

of the adjacent traffic.23
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Figure 1: Curbside bus stops near signalized intersections.

To avoid the ever-expanding bus queues, the transit agency needs to properly determine a24

stop’s layout (including the number of berths) and location such that the maximum estimated25

bus arrival rate does not exceed the stop’s bus-carrying capacity. To this end, formulas and26

methods for estimating the capacities for near- and far-side stops have been furnished in the27

literature. The best-known capacity formula was first presented by the Highway Capacity28

Manual (HCM: TRB, 2000), and was later inherited by the Transit Capacity and Quality of29

Service Manual (TCQSM: Kittelson & Associates, Inc., 2013). The latest version of this formula30

(Equation 6-18 of TCQSM) is:31

Bs = Nelftb
3600(G/C)

tc + td(G/C) + Zcvtd
, (1)

where Bs denotes the stop capacity; Nel the effective number of berths, which accounts for32

the mutual blockage between the buses dwelling in multiple, tandemly deployed berths; ftb33

the traffic blockage adjustment factor to account for the impacts of competing (right- or left-34

turning) traffic in the travel lane of buses; G/C the green ratio of the neighboring traffic signal35

with G being the green period and C the cycle length; tc is the clearance time, which includes36

a bus’s movement time in and out of a berth and its “re-entry delay” for merging back to the37

general traffic from a bus bay; td a bus’s dwell time for loading and unloading passengers; and38

Zcvtd the so-called “operating margin” that accounts for the randomness in bus dwell time.39

This formula is known to have a number of serious flaws, including the abuse of the empirical,40

site-specific values for Nel (see Exhibit 6-63 in TCQSM), and the fallacious derivation regarding41

the operating margin term. Those problems have been reported by Gu et al. (2011, 2015) and42

Gu (2012), and the details are omitted here in the interest of brevity. Moreover, the way for43
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modeling the effect of the neighboring traffic signal in equation (1) is also questionable. First,44

the equation simply discounts both the numerator and the bus dwell time td in the denominator45

by the signal’s green ratio. This oversimplified the effect of signal timing on the stop capacity,46

and ignored the effect of signal cycle length on the capacity given a fixed green ratio. (We will47

see momentarily in this paper that cycle length has a significant impact on the stop capacity48

even when green ratio is fixed.) Second, the equation presumes that the effect of multiple berths49

on the stop capacity, represented by the coefficient Nel, is multiplicative and independent of50

the effect of signal. And lastly, the equation totally overlooked how the stop capacity would be51

affected by the distance between the stop and its neighboring signal. A recent modification of52

(1) was reported by Hisham et al. (2018), which still did not solve any of the above problems.53

Other studies also reported some of these problems (Gibson, 1996; Fernández et al., 2007;54

Fernández, 2010; Cortés et al., 2010; Tan and Yang, 2014). Some of those works proposed55

hypothetical models as replacement of (1). These models were calibrated by site-specific data,56

and thus they are only applicable to a narrow range of sites. Other studies relied on simu-57

lations that can capture more realistic features of bus stop operations. However, simulations58

are “blackboxes” that cannot readily reveal general insights on cause-and-effect relationship59

between key operating parameters and stop capacity. Many simulations are also computation-60

ally more demanding, and thus may not be suitable for investigating a large number of cases61

under various operating environments. In addition, practitioners always desire to have a simple62

formula, or recipe to be used conveniently. Such a formula or recipe cannot be obtained by63

regressing empirical or simulated data to some hypothetical function forms, because the stop64

capacity is a complicated function of several key input parameters, including the number of65

berths, the distance between stop and signal, the signal timing (cycle length and green ratio),66

and the distribution of bus dwell times.67

Analytical queuing models, on the other hand, are capable of describing the causal rela-68

tionships between the stop capacity and key input parameters. These models are also more69

computationally efficient, and are often used to unveil general insights by examining large70

batches of numerical instances. For example, Markovian methods were often used to develop71

exact solutions to queuing models with tandemly-deployed servers, e.g. a multi-berth stop that72

is isolated from the influence of nearby signals (Gu et al., 2012, 2015; Gu and Cassidy, 2013;73

Bian et al., 2019). Unfortunately, the above methods cannot be extended to solve the near-74

and far-side stop queuing models, because these queuing models integrate two types of servers:75

tandemly-deployed berths and the traffic signal, and the latter is not Markovian (Newell, 1965).76

Hence exact solutions to these queuing models are difficult to obtain. When exact analytical so-77

lution is unavailable, approximations are often sought instead (e.g., Newell, 1965, 1982; Whitt,78

1993; Gross et al., 2008).79

In light of the above, we develop parsimonious approximations for near- and far-side stops’80

capacities under various operating conditions. For simplicity, we consider only curbside stops81

where: i) bus maneuvers are restricted within the curbside travel lane, which is dedicated to bus82
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use only1; ii) buses are not allowed to overtake each other at the stop or the intersection, or in83

any queue that forms upstream of the stop or intersection2; iii) for a near-side stop, buses that84

are ready to depart the stop but are blocked by the red signal are all able to discharge during the85

following green phase; and iv) for a far-side stop, the empty berths and the buffer space between86

stop and signal (see Figure 1b) can all be filled up by buses discharging through the intersection87

in a green phase, should a bus queue be always present upstream of the intersection3.88

Our approximations correct the flaws of the TCQSM formula by properly accounting for89

the effects on stop capacity from all the key operating factors mentioned above. Validations90

via computer simulation show that the approximations exhibit quite good accuracy. A number91

of managerial insights are also unveiled from extensive numerical case studies.92

The approximation models are presented in Section 2. Validation tests are furnished in93

Section 3, together with a comparison against the TCQSM formula. Numerical examples are94

discussed in Section 4. Insights stemming from our models and their practical implications are95

described in Section 5.96

2 Approximations for near- and far-side stop capacities97

We consider near- and far-side bus stops like those shown in Figures 1a and b, where the number98

of berths is denoted by c. The land area between the stop and the intersection is termed as99

“buffer area”, whose size is denoted by the (integer) number of buses that can reside within,100

d, as illustrated in the figures. If the buffer size is not an integer multiple of berth length,101

it will be rounded down to the nearest smaller integer since only an integer number of buses102

can be stored in the buffer. We further write d as the sum of an integer multiple of c and a103

non-negative residual: d = nc+ d0, where n = 0, 1, 2, ..., and 0 ≤ d0 ≤ c− 1. We define a bus’s104

dwell time, S, as the sum of: i) the time for loading and unloading passengers in a berth; ii) the105

time lost due to bus deceleration and acceleration; and iii) the time lost due to door opening106

and closing. We assume that dwell times of different buses are independent and identically107

1At some busy stops not residing in a bus lane, bus operations may still enjoy a “de facto” exclusive right-
of-way since other traffic often stay away from the neighborhood of those busy stops to avoid being blocked by
the slow-moving and large-sized buses (Gibson et al., 1989; Fernandez and Planzer, 2002). The models to be
presented in this paper can still be applied to those stops with caution.

2This assumption represents a common type of bus-stop operation rules (St. Jacques and Levinson, 1997;
Kittelson & Associates, Inc., 2013). The same assumption was also made in other studies in this realm (Gu
et al., 2011, 2015; Bian et al., 2015).

3Assumptions iii) and iv) are practically valid in general as explained below. For near- and far-side stops
in the real world, the distance between the stop and the intersection is usually less than 100 meters and so
can store at most 8 buses (suppose bus jam spacing is 12 meters). A stop located 100 meters away from the
intersection can be regarded as a mid-block stop (Kittelson & Associates, Inc., 2013), on which the signal has
a small impact. Moreover, stops with more than 4 berths are rare. Even for the extreme case of a 4-berth stop
located 100 meters from the nearby intersection, to satisfy assumptions iii) and iv), the green period only needs
to be long enough to discharge 12 buses consecutively. This requires a 42-second green period given a saturation
headway of 3.5 seconds for discharging buses (Nguyen, 2013). A signal timing plan with more than 42 seconds
green time is commonly used, especially at major intersections where neighboring stops are often congested.
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distributed (i.i.d.) with mean µS and coefficient of variation CS.4 The signal cycle length and108

effective green period are denoted as C and G, respectively. Without loss of generality, we109

normalize all the time variables, unless otherwise specified, by setting the mean bus dwell time110

as the unit time, i.e., µS = 1. We also normalized all the distance variables by setting the berth111

length (or equivalently, the bus jam spacing) as the unit distance. These normalizations will112

largely simplify the derivation of approximations.113

To derive the bus stop capacity (i.e., the maximum bus discharging rate from a stop), we114

specify that a bus queue is always present upstream of a near-side stop, or upstream of the115

intersection for the far-side stop case. Under this condition, assumptions iii) and iv) in the116

previous section mean that the green period is long enough for at least d+ c buses to discharge117

consecutively into the intersection, given that they are ready to discharge at the start of the118

green signal.119

The approximation models for near-side stops are developed in Section 2.1. Those for far-120

side stops are developed in Section 2.2. The notations used in this paper are summarized in121

Appendix A.122

2.1 Near-side stop models123

We first develop the capacity approximations for a single-berth near-side stop (Section 2.1.1)124

since in this simple case our key idea for constructing the approximation can be presented more125

clearly. The single-berth stop approximation is then built upon to develop the approximation126

for multi-berth stops in Section 2.1.2.127

2.1.1 Capacity approximation for a single-berth near-side stop (c = 1 and d = n)128

The downstream signal affects the stop’s capacity only when a queue of buses formed at the129

intersection during a red period spills back to the berth, so that the berth cannot serve new130

buses. We denote TB as the time during which the berth is blocked in a cycle. The single-berth131

near-side stop’s capacity, QS, can then be written as:132

QS =
1

1 + τm

(
1− E[TB]

C

)
, (2)

where τm is a bus’s movement time in and out of a berth (i.e., the clearance time tc in equation133

(1) for curbside stops). The 1
1+τm

is the capacity of an isolated single-berth stop (i.e., a stop134

without neighboring signals), since the denominator is the sum of average dwell time (note135

µS = 1) and the average time a bus takes to move forward and fill the berth after the previous136

bus has left. The remaining work is on how to approximate E[TB].137

4One may also find more complicated bus dwell time models, which account for how passengers are loaded to
and unloaded from a bus in, e.g., Jaiswal et al. (2010) and Fernández et al. (2008). However, for the simplicity
of our modeling work, we adopt the present assumption that the bus dwell times are i.i.d. The same assumption
has also been commonly used in the literature; see TCQSM (2013) and Gu et al. (2011, 2015).
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To find E[TB], we first define the “extended red period” at the berth’s location, during which138

buses can be served, but cannot discharge into the intersection. This extended red period is139

illustrated in the time-space diagrams of bus trajectories at a single-berth near-side stop; see140

Figure 2 for the case of d = n = 3. The solid lines with arrowheads in the figures represent141

trajectories of the front of buses, and the thicker, horizontal segments (labeled as S1, S2, S3 and142

S4) of these trajectories represent bus dwell times. In the interest of brevity, these trajectories143

are plotted as piecewise linear curves; see, e.g., Gu et al. (2013, 2014) for studies that also use144

piece-wise linear vehicle trajectories for analysis.
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Figure 2: Time-space diagram of bus operations at a single-berth near-side stop (d = n = 3).

145

As illustrated in Figure 2, the extended red period starts n
vm

earlier than a red period, and146

ends n+1
w

later than the same red period, where vm is the bus’s move-up speed when traveling147

through the queue, the berth and the buffer, and w is the backward wave speed of bus traffic.5148

For the convenience of description, we denote τ = 1
w

(which is termed the “reaction time” in149

some literature; see for example Menendez, 2006) and tm = 1
vm

. (Note that τm = τ + tm.)150

Hence, the duration of extended red period is R̄ ≡ C −G+ntm + (n+ 1)τ , as shown in Figure151

2. Note that assumption iii) ensures that G ≥ (c + d)τm, hence the extended red period will152

never exceed the cycle length.153

The start time of extended red period is determined such that any bus that finishes service154

before this start time will be able to discharge into the intersection immediately. On the other155

hand, the dwelling bus at this start time and all the following buses served during this extended156

red period will have to wait until the next green period to discharge; see Figure 2. The number157

of these trapped buses is no greater than the storage capacity of the berth and the buffer, i.e.,158

n + 1 (= 4 in Figure 2). The last trapped bus (regardless of the number of trapped buses)159

will depart the berth no earlier than (n + 1)τ after the green start, and this time defines the160

end of the extended red period, as illustrated again in Figure 2. If n + 1 buses are served161

5The backward wave speed is the speed at which the disturbances (in our case, the change of bus speed)
propagate backwardly across the buses (Newell, 1993; Daganzo, 1994).
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in an extended red period, a blocked duration TB > 0 may exist at the end of extended red162

period (see again the case of Figure 2); otherwise, the berth is busy throughout the extended163

red period and TB = 0.164

Figure 2 also shows that TB can be calculated by:165

TB = max{R̄− TU , 0}, (3)

where TU denotes the sum of dwell times of the n+ 1 consecutive buses served in the extended166

red period plus their reaction and move-up times. It can be written as follows:167

TU = U
′

1 +
n+1∑
j=2

Uj, (4)

where U
′
1 denotes the portion of the first trapped bus’s dwell time that is contained in the168

extended red period; and Uj = Sj + τm (j = 2, 3..., n+ 1) (see again Figure 2).169

We can derive from equation (3) that:170

E [TB] =

∫ R̄

t=0

(R̄− t)fTU (t)dt, (5)

where fTU (t) =

fU ′1 ∗ fU ∗ ... ∗ fU︸ ︷︷ ︸
n times

 (t) is the probability density function (PDF) of TU ; fU ′1
171

and fU are the PDFs of U
′
1 and Uj respectively, and the “∗” is the convolution operator.172

We now approximate TU by a normal random variable with the same mean µT and variance173

σ2
T . For large n’s, this normal approximation is quite accurate thanks to the central limit174

theorem (CLT). But even for a relatively small n, the approximation can be fairly good. This is175

because: i) most of the components in the right hand side of (4), i.e. the Uj’s (j = 2, 3, ..., n+1)176

are i.i.d and usually exhibit a bell-shaped PDF in the real world; and ii) although U
′
1 has a177

different distribution from Uj, it is statistically smaller than Uj and thus has a small share in178

TU if n is not too small. On the other hand, this CLT approximation may be less accurate if179

n = 0 or 1.180

Applying the properties of normal distribution, we have:181

E [TB] = R̄FTU (R̄)−
∫ R̄

t=0

tfTU (t)dt

= R̄FTU (R̄)−
∫ R̄

t=−∞
tfTU (t)dt

≈ R̄Φ

(
R̄− µT
σT

)
−
(
µTΦ

(
R̄− µT
σT

)
− σTφ

(
R̄− µT
σT

))
= σT (rΦ(r) + φ(r)), (6)
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where FTU (·) denotes the cumulative distribution function (CDF) of TU ; Φ(·) and φ(·) the CDF182

and PDF of a standard normal distribution, respectively; and r = R̄−µT
σT

. The second equality183

in (6) holds because TU is non-negative. The approximation step in (6) is obtained as follows:184

first approximate fTU (t) by the PDF of a normal distribution with mean µT and variance σ2
T185

(the CLT approximation), and then apply the mean formula of a truncated normal distribution186

whose lower and upper truncated bounds are −∞ and R̄, respectively (see e.g., Greene, 2003).187

Combining equations (2) and (6) furnishes an approximation of the single-berth stop’s188

capacity, denoted as QSA:189

QSA =
1

1 + τm

(
1− σT (rΦ(r) + φ(r))

C

)
. (7)

Finally, when Sj follows a gamma distribution6, the mean µT and variance σ2
T of TU are190

approximated as follows:191 
µT ≈ n(1 + τm) +

C2
S + (1 + τm)2

2(1 + τm)
;

σ2
T ≈

5 + 8τm
12(1 + τm)2

C4
S + (

1

2
+ n)C2

S +
(1 + τm)2

12
.

(8)

The derivation of (8) is relegated to Appendix B.192

Approximation (7) exhibits high accuracy when n is large. But moderate errors may occur193

when n is rather small. Fortunately, our numerical results manifest that the accuracy of (7) is194

fairly good even when d = 0; see Section 3.1 for more details.195

Significant errors may also occur when CS is small, since (8) is derived using an assumption196

that U
′
1 is independent of signal phases (see Appendix B), which becomes invalid for small197

CS. An extreme example where CS = 0 (deterministic bus dwell time) is briefly discussed in198

Appendix B. More details regarding the accuracy of (7) are furnished in Section 3.199

2.1.2 Capacity approximation for a multi-berth near-side stop (c ≥ 2 and d =200

nc+ d0)201

Since bus overtaking maneuvers are prohibited, the bus dwelling at the upstream-most berth202

of a multi-berth stop can depart only when all the downstream berths are vacated. Thus, in203

the absence of the traffic signal, queued buses will enter a c-berth curbside stop in convoys of204

size c (Gu et al., 2011), should a sufficiently long bus queue be present all the time. We denote205

Up as the general service time of a c-bus convoy, which is defined as the total time the convoy206

spends at the c-berth stop for all of its buses to finish dwelling. Then a c-bus convoy served at207

a c-berth stop can be viewed as a hypothetical “bus” that spends a random “dwell time”, Up,208

6Gamma distribution fits the real-world bus dwell times well (see, e.g., Ge, 2006), and was often used to
model bus dwell times in the literature due to its non-negativity, parsimony and flexibility (Gu et al., 2011; Gu
and Cassidy, 2013). However, our method can still be used if the bus dwell time is assumed to follow other
commonly used distributions, e.g. the log-normal distribution (Wang et al., 2016, 2018).
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at a “single-berth” stop. The distribution of Up can be developed using the probability theory.209

Specifically, we find that the mean and variance of Up can be approximated by the following210

functions (assuming S follows gamma distribution):211 {
E[Up] ≈ h(c, CS) ≡ 0.7931CS log(c) + 0.9911 + cτm;

V ar(Up) ≈ q(c, CS) ≡ 0.6819C3
S arctan(c) + 0.5102C2

S.
(9)

The derivation of (9) is relegated to Appendix C. The appendix also includes a test of the212

accuracy of (9).213

We now follow the logic in Section 2.1.1 to develop the approximate capacity; i.e., we214

consider that a c-berth stop’s capacity (c ≥ 2) is equal to the capacity of an isolated c-berth215

stop, multiplied by the fraction of time when the stop is not blocked by the queue arising from216

the signal. The blockage of the stop is again determined with the assistance of an extended217

red period, which is now defined at the location of the upstream-most berth with a duration of218

R̄p ≡ C−G+ (c+ d− 1)tm + (c+ d)τ ; see Figure 3 for a 2-berth, 2-buffer stop as an example.

space

time
stop line
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upstream 
bus queue

bus trajectories
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buffer-2
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extended red period,

red period,
reaction time

TU TBTP

⌧
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2Up0

1

w

vm

C �G

R̄p = C �G + (c + d� 1)tm + (c + d)⌧

Figure 3: Time-space diagram of bus operations at a 2-berth, 2-buffer near-side stop.

219

For a multi-berth stop, the number of available buffer spaces near the end of an extended red220

period may be greater than 0 but less than c. In this case, only part of the c-bus convoy that is221

currently under service can proceed to the buffer after completing the services. The remaining222

buses in the convoy have to stay at the downstream berths of the stop. Consequently, the next223

bus convoy to be served by the stop would contain fewer than c buses. In the example shown224

in Figure 3, the last “convoy” served in the extended red period has only one bus. With a225

slight abuse of notation, we use the same symbol TU (as in the single-berth case) to denote the226

part of extended red period for serving part of the first trapped convoy and all the full -size227

convoys. We denote TP as the time for serving the last small convoy if any, and TB as the time228
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interval when all the berths are occupied by buses waiting for departure (i.e., when the stop229

is effectively idle). The TU , TP and TB are illustrated in Figure 3. The stop’s service rate is230

0 during TB, and is discounted by 1 − NP

c
during TP , where NP is the number of buses in the231

small convoy. For simplicity, we further define the “effective service time of full-size convoys”232

as T
′
U = TU + NP

c
TP , and the “effective blockage time” as T

′
B = max{R̄p − T ′U , 0}. We then233

write the approximate stop capacity as:234

QMA ≈
(

c

E[Up]

)(
1− E[T

′
B]

C

)
. (10)

Note that (10) is an analog of (2) in the single-berth case. Following a derivation similar to the235

CLT approximation in Section 2.1.1, we have the approximate stop capacity:236

QMA =

(
1−

σT ′U
(rΦ(r) + φ(r))

C

)(
c

h(c, CS)

)
, (11)

where r =
R̄p−µT ′U
σT ′U

, µT ′U
and σT ′U

are mean and standard deviation of T
′
U .237

Finally, µT ′U
and σ2

T
′
U

are approximated by (again, assuming S follows gamma distribution):238



µT ′U
≈ (n+

1

2
)h(c, CS) +

q(c, CS)

2h(c, CS)
+
c+ d0 − E[M ]

c
h(c+ d0 − E[M ], CS);

σ2
T
′
U

≈ 1

12
h2(c, CS) + (n+

1

2
)q(c, CS) +

5h(c, CS) + 3τm
12h2(c, CS)(h(c, CS)− cτm)

q2(c, CS)

+

(
c+ d0 − E[M ]

c

)2

q(c+ d0 − E[M ], CS).

(12)

Derivation of (12) is relegated to Appendix D.239

2.2 Far-side stop models240

The approximations for far-side stops are derived in similar ways as for near-side stops. The241

major difference lies in the calculation of the idle time period: a far-side stop becomes idle242

when the stop is starved by the upstream red signal, which cuts off the bus inflow. We again243

present the approximation for single-berth stops first (in Section 2.2.1) to smooth the reading244

experience, and then for the more complicated multi-berth stops in Section 2.2.2. In both245

sections, we denote D as the length of intersection, i.e., the distance between stop line and the246

start of buffer; see Figures 1b, 4a and 4b.247

2.2.1 Capacity approximation for a single-berth far-side stop (c = 1 and d = n)248

We first define the extended red period, again at the berth’s location, as shown by the example249

of a far-side single-berth stop with d = 2 (Figure 4a). It starts from the black dot on the left,250

which is (n + 1)τ ahead of the red start, and ends at the grey point on the right, which is251

(D+n)tm later than the following green start. The two dots are determined using the following252
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(a) d = 2

(b) d = 0

Figure 4: Time-space diagrams of bus operations at a single-berth far-side stop.

logic. First, a bus whose dwell time extends from the green period to beyond the black dot is253

the first bus trapped in the extended red period. Figure 4a reveals that whenever a bus finishes254

its service and departs the stop on or before the black dot, another bus queued upstream of255

the signal can always cross the intersection and fill up the buffer before the signal turns red.256

On the other hand, the first queued bus that can cross the intersection in the following green257

period will arrive at the berth no earlier than τm after the grey dot. If (n+ 1) buses finish their258

services before the grey dot, the berth will be idle until the end of extended red period.259

Hence, the duration of the extended red period for a single-berth far-side stop is R̄F ≡260

(n + 1)τ + C − G + (D + n)tm, where the superscript F denotes the far-side stop case. Note261

11



that this is Dtm longer than the extended red period for a single-berth near-side stop, and the262

difference is exactly the time needed for a bus to travel through the intersection.263

Now we denote the period during which the berth is vacant as T FB , which can be calculated264

by:265

T FB = max{R̄F − T FU , 0}, (13)

where T FU = U
′
1 +

∑n+1
j=2 Uj denotes the sum of dwell times, reaction times and move-up times266

of n + 1 consecutive buses served in the extended red period; U
′
1 and Uj(j = 2, 3, ..., n +267

1) are defined in similar ways as for near-side stops. The T FU is again approximated by a268

normal random variable with mean and variance given by equation (8). Consequently, the269

approximation of a single-berth far-side stop’s capacity is calculated by (7) in which r = R̄−µT
σT

270

is replaced by r = R̄F−µT
σT

.271

A special case arises when d = n = 0 (i.e., when the stop is placed immediately downstream272

of the intersection); see Figure 4b. In this case, a queued bus can discharge into the intersection273

only after seeing the berth becomes empty. Hence, the time gap between two consecutive buses’274

dwelling activities at the berth is now τm +Dtm instead of τm in the case of d > 0. As a result,275

the duration of extended red period in this special case becomes R̄F,d=0 ≡ C −G+ τ , because276

the first bus that crosses the intersection in the following green period should arrive at the277

berth no earlier than τm + Dtm after the end of extended red period; see Figure 4b for the278

illustration. Under this special case, the approximate capacity is:279

QF,d=0
SA =

1

1 + τm +Dtm

(
1− σF,d=0

T

(
rF,d=0Φ(rF,d=0) + φ(rF,d=0)

)
C

)
, (14)

where rF,d=0 =
R̄F,d=0−µF,d=0

T

σF,d=0
T

and280


µF,d=0
T ≈ C2

S + (1 + τm +Dtm)2

2(1 + τm +Dtm)
;(

σF,d=0
T

)2

≈ 5 + 8(τm +Dtm)

12(1 + τm +Dtm)2
C4
S +

1

2
C2
S +

(1 + τm +Dtm)2

12
.

(15)

The increased time gap τm +Dtm would render the single-berth far-side stop with d = 0 a281

very bad design, as we shall see in Section 4.2.282

2.2.2 Capacity approximation for a multi-berth far-side stop (c ≥ 2 and d = nc+d0)283

Again, we first define the extended red period. As illustrated in Figure 5 for a 2-berth, 3-284

buffer far-side stop, the extended red period is again defined at the location of the upstream-285

most berth (berth-2 in the figure). A black dot is marked on the timeline of that location at286

δL1 ≡ (d + 1)τ + (c − 1)τm earlier than the red start. If a c-bus convoy completes service by287

the black dot, another c-bus convoy will discharge through the intersection to fill up the buffer288

before the present green period ends (which is the case shown in the figure). On the other289

hand, if the c-bus convoy completes service after δL2 ≡ (d + 1)τ ahead of the red start (not290
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shown in the figure), then no additional bus is able to fill up the vacant space in the buffer291

before the green end. When the c-bus convoy completes service after δL1 , but before δL2 ahead292

of the red start, a small convoy of less than c buses will proceed to fill part of the vacancies293

in buffer. To simplify the modeling work, however, we ignore the possibility of having small294

convoys and define the extended red period’s start time from an expectation perspective, i.e.,295

at δL ≡ 1
2
(δL1 + δL2 ) = (d+ 1)τ + 1

2
(c− 1)τm before the red start.

space

time

buffer-1

stop line

buffer-2

berth-2

berth-1

buffer-3

bus trajectories

reaction time

red period,

end of intersection

reaction time

vm

w

D

⌧ ⌧�R

�L
1

C �G

Figure 5: Time-space diagram of bus operations at a 2-berth, 3-buffer far-side stop.

296

The gray dot in Figure 5, which is located δR ≡ (D + d)tm after the following green297

start, marks the end of extended red period. This is because the gray dot is τm ahead of298

the earliest time that a bus from the upstream queue can arrive at the upstream-most berth in299

the following green period. Hence, the length of extended red period is R̄Fp ≡ C−G+δL+δR =300

C −G+ (d+ c+1
2

)τ + (D + d+ c−1
2

)tm.301

We denote T FU as the total time for serving all the convoys but the last smaller one (if any)302

in the extended red period; T FP as the time for serving that last small convoy, during which303

the service rate is discounted by c−d0
c

(if this small convoy does not exist, T FP = 0); and T FB as304

the time when all the berths are vacant. These three variables are illustrated in Figure 6 for305

a 2-berth, 3-buffer far-side stop. For simplicity, we define the effective service time of full-size306

convoys as T F
′

U ≡ T FU + d0
c
T FP and the effective idle time as T F

′
B ≡ max{R̄Fp−T F ′U , 0}. The T F

′
U307

can be expressed by:308

T F
′

U = Up′

1 +
n+1∑
j=2

Up
j +

d0

c
Up,d0 . (16)

Similar to the near-side stop case, the mean E[Up] and variance V ar(Up) of Up
j are given309

by (9). The E[Up′

1 ] and V ar(Up′

1 ) can be found in (D.6) of Appendix D as functions of E[Up]310

and V ar(Up). When d0 6= 0, the E[Up,d0 ] and V ar(Up,d0) are obtained by substituting d0 for311
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Figure 6: Time-space diagram of bus operations at a 2-berth, 3-buffer far-side stop where all
the buffered buses are served within the extended red period.

some c in (9):312 {
E[Up,d0 ] ≈ 0.7931CS log(d0) + 0.9911 + cτm;

V ar(Up,d0) ≈ 0.6819C3
S arctan(d0) + 0.5102C2

S.
(17)

Hence, µTF ′
U

and σ2
TF ′
U

can be determined as follows:313


µTF ′

U
≈ E[Up′

1 ] + nE[Up] +
d0

c
E[Up,d0 ];

σ2
TF ′
U

≈ V ar(T p
′

1 ) + nV ar(Up′) +

(
d0

c

)2

V ar(Up,d0).

(18)

The approximation of a multi-berth far-side stop’s capacity is calculated by (11) where σTF ′
U

314

substitutes for σT ′U
and r =

R̄Fp−µT F ′U
σT F ′U

. Note that this approximation only applies for the case of315

d ≥ 1.316

For the special case of d = 0, the time gap between two consecutive convoys becomes317

cτm + Dtm, and the extended red period becomes R̄Fp,d=0 ≡ C − G + ( c+1
2

)τ + ( c−1
2

)tm. Thus318

the approximate capacity becomes:319

QF,d=0
MA =

(
1−

σ
F,d=0
T
′
U

(rF,d=0
p Φ(rF,d=0

p ) + φ(rF,d=0
p ))

C

)(
c

h(c, CS) +Dtm

)
, (19)
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where rF,d=0
p =

R̄Fp,d=0−µF,d=0

T
′
U

σF,d=0

T
′
U

and320


µF,d=0

T
′
U

≈ (h(c, CS) +Dtm)2 + V ar(Up)

2(h(c, CS) +Dtm)
;(

σF,d=0

T
′
U

)2

≈ (5h(c, CS) + 8Dtm + 3τm)q2(c, CS)

12(h(c, CS) +Dtm)2(h(c, CS)− cτm)
+
q(c, CS)

2
+

(h(c, CS) +Dtm)2

12
.

(20)

The q(c, CS) and h(c, CS) are given by (9).321

3 Model validation via simulation322

In this section, we use computer simulation to examine the accuracy of the proposed approx-323

imations for near- and far-side stops. We develop event-based simulation programs for near-324

and far-side stops under the assumption that a bus queue is always present upstream of both325

the stop and the intersection. The pseudocode is furnished in Appendix E, and the detailed326

program code can be downloaded from: https://github.com/Minyu-Shen/Simulation-for-bus-327

stops-near-signalized-intersection. We also develop a program to visualize bus motions in the328

simulation. This program is used to validate the simulation. The visualization code is also329

provided in the above web link.330

The parameter values used in the simulation are listed in Table 1. Stops with less-varied

Table 1: Parameter values for simulation validation and numerical analysis.

Category Parameter Physical value Normalized value
Bus stop design c 1∼4 –

d 0∼4 –
Bus operations µS 25 s 1

CS 0.3∼1 –
Bus traffic characteristics sj 12 m 1

w 25 km/h 14.47
vm 20 km/h 11.57

Signalized intersection C 80∼240 s 3.2∼9.6
D 24∼48 m 2∼4
G/C 0.3∼0.7 –

331

dwell times, i.e., those with CS ∈ [0, 0.3), are not examined here since they are rare in reality.332

For each instance with specific values for CS, c, d, C, G/C and D, 300,000 buses are simu-333

lated to ensure that the average bus discharge rate converges to the steady-state capacity. To334

facilitate the readers’ understanding of the numerical cases discussed in the following sections,335

the normalized capacity values obtained from our models were converted back to the actual336

physical values in the unit of “buses per hour”.337

Select validation results of the approximations are furnished in Section 3.1. Section 3.2338

compares the simulated and approximate capacities against the TCQSM capacity formula (1).339
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3.1 Validation of the approximations340

We first plot the approximate capacity and the simulated capacity against C as dashed and341

solid curves, respectively, in Figures 7a-d. The four figures illustrate the results for four near-342

side stops with c ∈ {1, 2} and CS ∈ {0.3, 0.8}, respectively. We assume G/C = 0.5 in all the343

figures, and examine three values of d in each figure: d = 0, 2, and 4. Stops with 3 or more344

berths exhibit similar results, which are omitted here in the interest of brevity.345

Comparison between approximation and simulation results unveils that the approximation346

is quite accurate for most of the cases illustrated by the figures. The error is almost negligible347

for single-berth stops, and is consistently small for various values of C and d. It grows as c348

increases since great error is brought by the various approximation steps used in the multi-349

berth model (see Section 2.1.2). Moreover, for 2-berth near-side stops with large CS (Figure350

7d), the approximation consistently underestimates the capacity. This is partly due to the351

overestimation of the intermediate variable M in Appendix D. Finally, the error is larger for352

2-berth stops with small CS (Figure 7c), because the approximation model fails to capture the353

high sensitivity of capacity to C when CS is small. A brief explanation of this large error is that354

when CS is small, the service time of the first trapped convoy (or bus) is highly correlated with355

the signal timing (see the end of Section 2.1.1 and Appendix B). A more detailed explanation356

of the high sensitivity of capacity to C is furnished below by using an extreme example of a 2-357

berth near-side stop with no buffer (d = 0), G/C = 0.5, and deterministic dwell time (CS = 0).358

This stop’s simulated capacity is plotted as the solid curve in Figure 8.359

Note the first declining segment on the solid capacity curve for 80 s ≤ C < 134.6 s. For any C360

in this range, only 4 buses are served per cycle (one 2-bus convoy in the red period and another361

convoy in the green). This is because G = C
2
< 67.3 s = (τ +2τm)+µS +2τm+µS. The validity362

of the above inequality can be verified using the following parameter values: τ = sj/w = 1.73 s,363

tm = sj/vm = 2.16 s, τm = τ + tm = 3.89 s, and µS = 25 s (see Table 1). The reader can also364

verify by drawing a simple time-space diagram that (τ + 2τm) +µS + 2τm +µS is the minimum365

time needed for a 5th bus to discharge in a green period. Thus, as C > 134.6 s, the stop366

capacity jumps to a higher value. (i.e., now 5 buses are served per cycle; see the small solid367

declining segment for 134.6 s ≤ C ≤ 142.4 s in Figure 8.) The 6th bus (which is in the same368

convoy as the 5th bus when entering the berths) will still be blocked by the red signal until369

C > 142.4 s (i.e., G = C
2
> 71.2 s = (τ + 2τm) +µS + 2τm +µS + τm). Hence we observe another370

capacity jump at C = 142.4 s, beyond which 6 buses will be served per cycle. Consequently,371

the capacity curve exhibits a “sawtooth” shape, which is an intuitive result since when the bus372

dwell time is deterministic, the number of buses that can be served in a green period “jumps”373

as the green duration exceeds certain thresholds.374

The “sawteeth” in the curve would be gradually smoothed as CS increases, as illustrated by375

the dotted, dashed, and dash-dot curves in Figure 8, which represent the cases of CS = 0.1, 0.2,376

and 0.3, respectively. The fluctuations also diminish as C or d increases, because a larger C377

(and thus a larger G when G/C is fixed) means more buses will be served in each green period,378

and a larger d means more buses can potentially be served in each red period. In both cases,379
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the “capacity jumps” created by serving one additional bus per cycle will be diluted. We also380

see by comparing Figures 7a and c that the capacity fluctuations are larger for a large c. This381

is because a larger convoy size c will render the convoy dwell time Up (see equation (C.1) in382

Appendix C) less varied; i.e., the coefficient of variation

√
V ar(Up)

E[Up]
will decrease with c.383

Finally, the above capacity fluctuations are not captured by our models, which rely on the384

CLT approximation. Hence the approximations would be inaccurate when CS is very small.385

Fortunately, this issue is of lesser practical concern since in the real world CS is usually no less386

than 0.4 (St. Jacques and Levinson, 1997; Levinson and St. Jacques, 1998; Bian et al., 2015).387

The accuracy of our approximation is further examined by box plots of the percentage388

approximation error, |Qappx−Qsim

Qsim
|, where Qappx is the approximate capacity and Qsim is the389

simulation result. These box plots are shown in Figures 9a-c for near-side stops with c = 1, 2, 3,390

respectively; each figure displays the results for CS ∈ {0.3, 0.55, 0.8} and d ∈ {0, 1, 2, 3, 4}.391

Each error box represents the distribution of the percentage errors for a set of C values ranging392

from 80 s to 240 s and a fixed G/C = 0.5. Specifically, each box spans the range from the393

first quartile to the third quartile of the error distribution; the band inside each box indicates394

the median; and the whiskers above and below each box indicate the maximum and minimum395

errors (save for the outliers if any), respectively.396

First note that most errors are less than 1% for single-berth stops (Figure 9a), 3% for 2-berth397

stops (Figure 9b), and 5% for 3-berth stops (Figure 9c). The errors increase with c because:398

i) the multi-berth model incorporates more approximation steps than the single-berth model;399

and ii) for a fixed d and C, a larger c means fewer convoys will be served in an extended red400

period, which will render the CLT approximation less accurate.401

For a given c, the largest error always occurs with the smallest CS and d = 0 (see the402

outliers on top of the left-most box plot in each figure). This is mainly due to the uncaptured403

high sensitivity of capacity to C when CS is small (see the explanation above).404

It is also observed in Figures 9b and c that for a fixed CS and c, the error generally diminishes405

with d. The reason is simple: a larger d means more convoys can potentially be served in an406

extended red period, thus rendering a more accurate CLT approximation. This effect is not407

observed in Figure 9a since for single-berth stops the error is already very small regardless408

of the value of d, and other factors may be dominating as d grows. Nevertheless, in all the409

cases examined here, the CLT approximation is quite good even when d = 0, which is a little410

surprising to us. This maybe partly due to the bell-shaped distributions used for bus dwell411

times, which are similar to the shape of normal PDFs.412

Similar findings are obtained when comparing the approximation against simulation results413

for far-side stops; see Figures 7e and f for a 2-berth far-side stop with D = 3 and CS = 0.3414

and 0.8, respectively, and Figures 10a-c for box plots of approximation errors for far-side stops415

with D = 3, CS ∈ {0.3, 0.55, 0.8}, d ∈ {0, 1, 2, 3, 4}, and c = 1, 2, 3, respectively. Comparisons416

between Figures 7c and e and between Figures 9a-c and Figures 10a-c unveil that the far-side417

stop models have larger errors when CS is small, due to the greater sensitivity of far-side stop418

capacity to C. When CS is large and c = 2 and 3, however, the far-side stop models exhibit419
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Figure 7: Validation of the approximations.

smaller errors than the near-side ones. This is mainly due to the larger error that occurs when420

estimating M in the multi-berth near-side stop model (see Appendix D).421
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Figure 8: Sensitivity of capacity to C when CS ≤ 0.3 (c = 2, d = 0, near-side stop).

Though only the results for c = 1∼3 are shown here, our approximation also performs fairly422

good for c = 4, where the errors in most cases are far below 10%. For c = 5 and 6, however,423

errors between 10% and 20% appear more frequently, mainly because the convoy dwell time Up
424

has a very small coefficient of variation.425

3.2 Comparison against the TCQSM capacity formula426

We now use the same simulation results to validate the TCQSM formula (1), and compare its427

accuracy with our approximation. The capacity calculated from (1) is plotted as the dash-dot428

line in each of Figures 7a-f. The parameters in (1) take the following values: the effective429

berth number Nel is set to 1 and 1.75 for single and double-berth stops, respectively, according430

to Exhibit 6-63 in TCQSM (Kittelson & Associates, Inc., 2013); ftb = 1 since we assume the431

bus operations are not affected by other traffic; the clearance time tc is equal to τm since the432

re-entry delay is zero for bus stops located in dedicated lanes; the operating margin coefficient,433

Z, is set to 0.675 since TCQSM claims that this value would yield the maximum capacity of434

the stop; the mean dwell time td = µS; and the coefficient of variation in dwell time cv = CS.435

The TCQSM formula is independent of the buffer size d and the cycle length C (given a fixed436

green ratio G/C). Hence, only one horizontal line is plotted in each of Figures 7a-f.437

Comparison between the dash-dot curve and the solid curves unveils how far the TCQSM438

estimate is from the ground truth. Note first how the simulated capacity varies with C and d,439

and that these effects are totally ignored by the TCQSM formula. Even for the case of d = 0440

(under which it is believed that the TCQSM formula is developed), the TCQSM formula’s error441

is above 10% for most cases, and can be up to 50% (see Figure 7c). This is because the operating442

margin term in (1), Zcvtd, is too sensitive to cv. Closer examination of the solid curves in these443

figures unveils that the ratio between the capacities of a 2-berth stop and a single-berth stop444

(given other parameter values are equal), i.e., the “effective number of berths” for a 2-berth445
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curbside stop, is not a constant. In fact this ratio varies with all the relevant parameters446

examined here: C, d and CS. Finally, the TCQSM formula treats the near- and far-side stops447

in the same way, while in reality a near-side stop produces a higher capacity than its far-side448
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Figure 9: Box plots of percentage error between approximations and simulation results for
near-side bus stops.
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counterpart. (The reason of this and more comparisons between near- and far-side stops are449

furnished in Section 4.2.)450
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Figure 10: Box plots of percentage error between approximations and simulation results for
far-side bus stops.
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4 Numerical analysis451

We now examine broader ranges of numerical instances using the approximation models, i.e.,452

equations (7), (11), (14) and (19), and discuss their practical implications. Section 4.1 examines453

the discounting effect of the neighboring signal on the stop’s capacity, and how this effect454

depends on various operating factors, especially the buffer size d. Section 4.2 discusses which455

side of the intersection to better place a stop at, when the objective is to improve the bus-456

carrying capacity. We still use the parameter values in Table 1 in the following sections.457

4.1 Capacity discounting effect of the signal458

From equations (2) and (10), we see that the percentage capacity loss caused by the signal can459

be simply expressed by E[TB ]
C

for a single-berth stop and
E[T

′
B ]

C
for a multi-berth stop. Figures460

11a and b plot this percentage capacity loss against the red period duration for instances with461

CS = 0.4 and 0.8, respectively. Each figure contains 12 curves representing 12 scenarios with462

c ∈ {1, 2, 3} and d ∈ {0, 1, 2, 3}. We use different line types to mark curves with different c:463

solid for c = 1, dotted for c = 2, and dashed for c = 3; and different colors to mark curves with464

different d: black for d = 0, red for d = 1, blue for d = 2, and green for d = 3. We choose465

red period duration as the horizontal axis because the numerators of percentage capacity loss,466

E[TB] and E[T
′
B], are functions of red period duration only, and are independent of C. The467

scaling effect of C on the percentage capacity loss can thus be isolated from other factors, and468

be simply illustrated by using different vertical axes, one for each value of C. (Three vertical469

axes for C = 100 s, 130 s and 160 s, respectively, are used in the figures.)470

In each figure, comparing the curves of the same line type unveils that the capacity loss471

drops rapidly as d grows. For example, note how the capacity loss drops from 55% to 3% when472

d increases from 0 to 3 for a single-berth stop with C = 100 s and a red period of 70 s, as marked473

by the four black dots in Figure 11a. For a larger c, the capacity loss drops with the increase474

of d at a slower speed. This is intuitive because more buffer spaces are needed to mitigate the475

signal’s negative impacts on the capacity of a large stop. Similar results are also observed for476

far-side stops, which are omitted here in the interest of brevity.477

The above results can be used to determine how far from the intersection a stop should478

be placed to achieve a certain percentage, θ, of an isolated stop’s capacity. This is useful in479

practice because transit agencies often prefer to place a stop in the proximity of the intersection480

to facilitate passengers’ access and transfers, and to reduce the number of unprotected street481

crossings (Fitzpatrick et al., 1996). The buffer size d required to achieve a target percentage482

θ is a function of c, CS, C, and G/C, which can be calculated numerically from (7) and (14)483

for single-berth stops, and (11) and (19) for multi-berth stops. Some tabulated values of the484

critical d for near-side stops when θ = 95% are furnished in Appendix F.485

The effect of c on the capacity loss is a little more complicated. When d = 0, the capacity486

loss decreases as c grows. This is because only one convoy is served in an extended red period,487

and a larger convoy will increase the utilization of the red period. On the other hand, the488
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Figure 11: Percentage capacity loss resulting from the signal for near-side stops.

capacity loss increases with c for any d > 0, since in this case the number of convoys that can489

be served in an extended red period drops as c grows. Lastly, comparison between Figures490

11a and b unveils that for multi-berth stops, the damage done by the signal is smaller for a491

larger CS. This is because a larger CS renders a longer convoy service time, and thus more of492

an extended red period will be utilized for serving the convoys. However, this is not true for493

single-berth stops.494
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4.2 Comparison between near- and far-side stops495

There has been a long debate on which side of the intersection is better for the placement of a bus496

stop (Terry and Thomas, 1971; Fitzpatrick et al., 1996). Factors that may affect this decision497

include safety reasons, potential conflicts between dwelling buses and turning traffic, passenger498

accessibility, etc. (Fitzpatrick et al., 1996). There exist a number of studies that quantified and499

compared the benefits and costs of near- and far-side stops. But most of them have significant500

limitations because they relied on simulation of specific stop layouts or empirical data collected501

from specific sites (Zhao et al., 2007; Li et al., 2012; Diab and El-Geneidy, 2015; Cvitanić,502

2017). On the other hand, computationally efficient analytical models that can be used to503

examine the general cases are rare. The latter kind of models include Furth and SanClemente504

(2006) and Gu et al. (2014). However, these two works focused on comparing the bus and car505

delays at near- and far-side stops where at most one bus would arrive in each signal cycle. Thus506

they said nothing about busy bus stops where bus queues are often present.507
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Figure 12: Capacity comparison between near- and far-side stops with G/C = 0.5 and CS = 0.5.

Using our approximation models, we plot in Figure 12a the percentage of difference in508
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capacity between near- and far-side stops, Qns−Qfs

Qns
, where Qns and Qfs denote the capacities of509

near-side and far-side stops, respectively. Four curves are plotted in the figure for D = 2, 3, 4, 5510

(normalized), respectively, and for c = 2, d = 2, G/C = 0.5 and CS = 0.5. All the four511

curves are above 0, which indicates that a near-side stop always produces a higher bus-carrying512

capacity than its far-side counterpart, should other conditions be the same. This is mainly513

because a far-side stop’s extended red period is longer than that of a near-side stop due to the514

extra term of Dtm; see the equations of R̄ in Section 2.1.1, R̄p in Section 2.1.2, R̄F in Section515

2.2.1, and R̄Fp in Section 2.2.2. The term Dtm is added because at a far-side stop buses queued516

upstream have to travel across the intersection to reach the stop. This also explains why the517

capacity difference diminishes as D decreases, as shown in the figure. Hence, a bus stop should518

be placed at the near side of an intersection, if the bus-carrying capacity is the major concern.519

Interestingly, this is on the contrary to the finding in Gu et al. (2014), which states that far-side520

stops are more favorable since they produce less bus delay than near-side ones. Note again that521

the above-cited work applies only to stops with low to medium bus traffic.522

We further plot the percentage capacity differences against C for c = 1, 2, 3 in Figures523

12b-d, respectively, where D is assumed to be 3. Each figure contains four curves representing524

the cases of d = 0, 1, 2, 3, respectively. The figures show that the advantage of near-side stops525

by-and-large diminishes as d increases. This is also intuitive because when d is sufficiently large,526

the capacities of near- and far-side stops both approach that of an isolated stop. Figure 12b527

also shows that a single-berth far-side stop is particularly unproductive when d = 0 (over 15%528

capacity difference for d = 0 versus less than 6% for d = 1). This can also be explained using529

our models: note in this case that the time gap between two consecutive buses increases from530

τm to τm+Dtm (see Section 2.2.1). In Figures 12c and d, however, the gap between the capacity531

differences for d = 0 and d = 1 becomes smaller. This is because, for far-side stops with c > 1,532

a convoy will discharge through the intersection together, which dilutes the negative effect of533

the extra term Dtm.534

5 Conclusions535

We develop analytical approximations for single- and multi-berth curbside stops located in536

dedicated bus lanes and near signalized intersections. Our approximations have closed-form537

formulas, except for the standard normal CDF (i.e. Φ(r)), which itself has several good closed-538

form approximations in the literature (e.g. Vazquez-Leal et al., 2012). Our models are more539

accurate and general than the methods in previous studies and professional handbooks, because540

they explicitly account for the effects of key operating factors that were overlooked in the541

literature (e.g., the signal cycle length and the buffer size) and the characteristics of bus traffic542

(e.g., the move-up time and reaction time). Extensive simulation tests manifest that in most543

cases the approximation error is within 5%. Larger approximation errors may arise when CS544

is small, c is large, and d is small.545
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Our accurate and computationally-efficient approximations can be conveniently used by546

practitioners to replace the flawed capacity formulas of curbside bus stops in the professional547

handbooks. They can be used, e.g., to determine the appropriate design and location of a new548

bus stop for serving a predicted peak-hour bus flow, or to assess the performance of measures549

for mitigating bus congestion at an existing stop. Measures to be considered would include550

adding berths and increasing the distance between stop and intersection (recall that our models551

can furnish critical distances needed to reduce or eliminate the capacity discounting effect of552

neighboring signals; see again Appendix F). Strategies that can reduce the mean and variance553

of bus dwell times (e.g., using wider bus doors, low-floor buses, and off-board fare collection)554

can also be assessed by our models for near- and far-side stops. In addition, practitioners555

may also consider to decrease the signal cycle length while keeping the green ratio unchanged.556

This would reduce the red period duration and thus significantly increase a near- or far-side557

stop’s capacity (see again Figures 7 and 11) without affecting the general-purpose (GP) traffic’s558

discharging capacity at the intersection by much. (Note that this measure would be deemed559

to have no effect if the TCQSM formula (1) is used.) Finally, a congested far-side stop can be560

relocated to the near-side of intersection to gain up to 15% of additional capacity (see again561

Figures 12a-d), although this capacity gain diminishes as d increases.562

Admittedly, many numerical results presented in this paper can also be generated through563

simulation. Still, our analytical approach is useful due to the following reasons:564

1. Some general insights can be immediately inferred from the capacity formulas or from565

our analytical derivation, but would be difficult to obtain directly from simulation. For566

example, equations (2) and (10) show that the percentage capacity loss due to the signal567

(E[TB ]
C

or
E[T

′
B ]

C
) is inversely proportional to cycle length; and the formulas for E[TB] and568

E[T
′
B] (e.g. equation (6)) reveal that this percentage capacity loss is a non-linear function569

of red period duration. Hence the effect of signal on bus-stop capacity is not as simple as570

described in the TCQSM formula (1). Built upon these insights, we further conclude that571

stop capacity can be increased by reducing red period duration (or cycle length) while572

keeping the green ratio unchanged. These insights also inspire us to create diagrams573

similar to Figures 11a and b, where the effects of cycle length and red period duration574

are clearly illustrated for stops with various sizes and locations. Note how these diagrams575

can be used by practitioners in the design of near- and far-side stops.576

As another example, note how the formulas of extended red periods reveal the significant577

differences between capacities of near-side and far-side stops, given that other conditions578

are equal. Capacity formulas for far-side stops with no buffer (d = 0) further unveil579

why this is a very bad design in terms of stop capacity. Note that it would be difficult580

to reveal and confirm these general findings using simulation results, since there are581

numerous scenarios to simulate under various operating parameters.582

2. The analytical approach can help us better understand the cause-and-effect relationships583

behind the key factors affecting bus-stop capacity. Many findings from the numerical584
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results can thus be explained; please refer to Section 4 for details. Understanding of these585

findings is very useful for practitioners to make appropriate design decisions under diverse586

operating environments. On the other hand, simulations are “black boxes” that usually587

cannot furnish straightforward explanations of those causal relations.588

3. Parsimonious analytical models are always desirable for their convenience in practical589

use. This is why simple formulas or procedures described in professional handbooks590

(e.g. TCQSM and HCM) are still embraced by practitioners despite their well-known591

flaws, and despite the fact that commercial simulation tools become more and more592

powerful today. In addition, simulation is often much more time-consuming than applying593

analytical formulas (even if the latter may require some numerical computation, like in594

our case). In practice, an accurate analytical model can be used in the initial stage of595

a design project to identify a few promising options, and the more detailed and realistic596

simulation can be employed to select from those few design options and fine-tune the final597

design.598

To be sure, our approximations are limited in that they apply only to scenarios where: i)599

an exclusive bus lane is present; ii) the green period is long enough to discharge all the queued600

buses for a near-side stop, or to fill up the vacant buffer and berths of a far-side stop; and iii)601

bus overtaking maneuvers are prohibited. Potential extensions of the present work to address602

some of the above limitations are discussed as follows.603

In reality, buses discharging from a near-side stop may compete against right-turning GP604

traffic for the buffer space. For this case, the distribution of buffer spaces occupied by right-605

turning vehicles can be approximated using right-turning vehicles’ arrival process and the bus606

discharge rate into the buffer. This distribution can then be incorporated into our stop capacity607

approximation to account for the impact of right-turning traffic. A similar approach can be608

used to account for the impact of (through-moving) GP vehicle queues on the capacity of a609

near-side bus bay stop, where exiting buses have to merge back to the GP traffic lanes. For610

far-side bus bay stops without bus lane, exiting buses may be blocked when they are waiting for611

a sufficient gap in the GP traffic to merge back. This effect can be estimated by incorporating612

a stochastic merge model into the approximation.613

For a near-side stop, if the green period is too short to discharge c+d queued buses, residual614

bus queues may exist in the buffer at the end of some green periods. This case is difficult to615

model since bus operations in neighboring cycles are highly correlated. One potential approach616

is to model the residual queue lengths by a Markov chain, but closed-form approximations of617

stop capacity would not be available. Fortunately, such a case is rare in reality (see Footnote618

3). On the other hand, a far-side stop with a short green period is equivalent to a far-side stop619

with a smaller buffer, for which our present approximations can be directly applied.620
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Appendix A List of notations625

Table A.1: List of notations

Notation Description
Input parameters

c Number of berths
C Cycle length
CS Coefficient of variation in bus dwell time
d Number of buffer spaces
D Length of signalized intersection
G Green period duration
n, d0 Parameters satisfying d = nc+ d0 when n = 0, 1, 2, ..., and 0 ≤ d0 < c
sj Jam spacing / berth length
tm Time for a bus to travel forward through one berth
τ Reaction time of a bus
µS Mean of bus dwell time
vm Bus’s move-up speed
w Backward wave speed of bus traffic

Other parameters and variables

δL, δR Start and end time of extended red period, respectively, for a multi-berth
far-side stop

M Number of buses in a multi-berth near-side stop at the start of an extended
red period

R̄, R̄F Extended red periods for single-berth near- and far-side stops, respectively
R̄p, R̄Fp Extended red periods for multi-berth near- and far-side stops, respectively
R̄F,d=0, R̄Fp,d=0 Extended red periods for single- and multi-berth far-side stops with d = 0,

respectively
TB, T

F
B Times during which the stop is fully blocked for near-side stops or vacant

for far-side stops, respectively

T
′
B, T

F ′
B Effective blockage time for a near-side stop and effective vacant time for a

far-side stop, respectively
TP , T

F
P Times of serving the last small convoy (if any) for multi-berth near- and

far-side stops, respectively
TU , T

F
U Total times for serving n + 1 consecutive buses in an extended red period

for single-berth near- and far-side stops, respectively; and total times for
serving all the full-size convoys in an extended red period for multi-berth
near- and far-side stops, respectively.

T
′
U , T

F ′
U Effective service time of full-size convoys for near- and far-side stops,

respectively

U
′
1, U

p′

1 Portions of times for serving the first trapped bus (for single-berth stops)
and convoy (for multi-berth stops) in the extended red period, respectively

Uj Sum of dwell time, reaction time and move-up time of j-th bus.
Up
j Total time for serving the j-th convoy

Up,x Time for serving the last small convoy of size x in the extended red period
µT , σ

2
T Mean and variance of TU , respectively

µT ′U
, σ2

T
′
U

Mean and variance of T
′
U , respectively

µTF ′
U
, σ2

TF ′
U

Mean and variance of T F
′

U , respectively
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Appendix B Derivation of approximations (8)626

First, we have E[Uj] = 1 + τm and V ar(Uj) = V ar(Sj) = C2
S. Due to the mutual independence627

between U
′
1 and Uj’s, µT and σ2

T can be obtained as follows:628 {
µT = n(1 + τm) + E[U

′

1];

σ2
T = nC2

S + V ar(U
′

1).
(B.1)

The E[U
′
1] and V ar(U

′
1) are derived by assuming that the start of the extended red period is629

a random incidence within a renewal process of consecutive bus departures from the stop. By630

the definition of random incidence (Larson and Odoni, 1981), the renewal interval that contains631

the random incidence, W , has the following PDF:632

fW (t) =
tfU(t)

E[U ]
=
tfS(t− τm)

1 + τm
, τm ≤ t ≤ ∞, (B.2)

where fU is the PDF of Uj = Sj + τm(j = 1, 2, ..., n+ 1), and fS is the PDF of Sj.633

Conditioning on W , U
′
1 is uniformly distributed in [0,W ]. Thus, we have:

E[U
′

1] = E
[
E[U

′

1 | W ]
]

= E

[
1

2
W

]
=

1

2

∫ ∞
τm

t · tfS(t− τm)

1 + τm
dt

=
1

2(1 + τm)

∫ ∞
0

(u+ τm)2 · fS(u)du =
E[S2] + 2τm + τ 2

m

2(1 + τm)
.

V ar(U
′

1) = E
[
U
′

1

2
]
− (E[U

′

1])2 = E
[
E[U

′

1

2 | W ]
]
− (E[U

′

1])2 = E

[
1

3
W 2

]
− (E[U

′

1])2

=
1

3(1 + τm)

∫ ∞
0

(u+ τm)3 · fS(u)du− (E[U
′

1])2

=
E[S3] + 3τmE[S2] + 3τ 2

m + τ 3
m

3(1 + τm)
− (E[U

′

1])2.

Since Sj follows a gamma distribution with mean 1, by using its moment generating function,634

we can calculate that E[S2] = C2
S + 1 and E[S3] = 2C4

S + 3C2
S + 1. Thus, we have:635

E[U
′

1] =
C2
S + (τm + 1)2

2(1 + τm)
; (B.3)

636

V ar(U
′

1) =
5 + 8τm

12(1 + τm)2
C4
S +

1

2
C2
S +

(1 + τm)2

12
. (B.4)

Plugging (B.3) and (B.4) into (B.1), we have:637 
µT ≈ n(1 + τm) +

C2
S + (1 + τm)2

2(1 + τm)
;

σ2
T ≈

5 + 8τm
12(1 + τm)2

C4
S + (

1

2
+ n)C2

S +
(1 + τm)2

12
.

(8)
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The above approximations rely on the hypothetical uncorrelation between U
′
1 and signal638

timing. Their performance would be poor if CS is small. For example, in the deterministic case639

where CS = 0, τm = 0 and C − R̄ = 2.99, we have U
′
1 = 0.01, while (B.3) gives E[U

′
1] = 0.5.640

But if C − R̄ increases slightly from 2.99 to 3.01, we would have U
′
1 = 0.99 while (B.3) still641

gives E[U
′
1] = 0.5. Hence the distribution of U

′
1 and the stop capacity can be highly sensitive642

to signal timing when CS is small. Note that if CS > 0, the correlation between U
′
1 and signal643

phases diminishes as green duration increases, and so does the sensitivity of stop capacity to644

signal timing.645

Appendix C Derivation of approximation (9)646

Figure C.1 shows the bus trajectories of a 3-bus convoy dwelling at a 3-berth stop. From the647

figure, we have:648

Up = max{S1, S2, ..., Sc}+ cτm, (C.1)

where Sj(j = 1, 2, ..., c) denotes the dwell time of the j-th bus in the convoy.

time
space

stop line

berth-1

bus trajectories

berth-2
berth-3

upstream 
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vm
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S1

S2
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Figure C.1: Time-space diagram of bus operations at a 3-berth near-side stop.

649

From (C.1), we can obtain the CDF of Up as follows:650

FUp(t) = (FS(t− cτm))c for t ≥ cτm, (C.2)

where FS is the CDF of Sj. Since Sj is a non-negative continuous random variable, we have:651

E[Up] = cτm +

∫ ∞
0

(1− (FS(t))c) dt. (C.3)

Similarly,652

V ar(Up) = 2

∫ ∞
0

t (1− (FS(t))c) dt−
(∫ ∞

0

(1− (FS(t))c) dt

)2

. (C.4)
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The two integrals in equations (C.3) and (C.4) are the first and second raw moments of653

the order statistic max{S1, S2, ..., Sc}; see David and Nagaraja (2004) for the detailed deriva-654

tions. Unfortunately, there is neither closed-form expressions nor good approximations for these655

moments, save for a few very special cases (David and Nagaraja, 2004). In light of this, we656

here fit least squares models to tabulated values of these moments when Sj follows a gamma657

distribution with CS ∈ [0.2, 1] and 1 ≤ c ≤ 6. (Note that the above parameter ranges have658

covered most of the curbside stops in the real world; for example, Levinson and St. Jacques659

(1998) concluded from empirical data that CS ∈ [0.4, 0.8], and stops containing more than 6660

berths are also rare in the real world.) The tabulated values were furnished by Gupta (1960)661

and Prescott (1974). Our best-fitted models selected from numerous candidates with various662

mathematical forms are:663 {
E[Up] ≈ h(c, CS) ≡ 0.7931CS log(c) + 0.9911 + cτm;

V ar(Up) ≈ q(c, CS) ≡ 0.6819C3
S arctan(c) + 0.5102C2

S.
(9)

The goodness-of-fit of (9) is illustrated in Figure C.2a for E[Up] and Figure C.2b for V ar(Up)664

for the realistic ranges of c and CS, where the dashed curves represent the fitted models and the665

solid curves represent the tabulated values furnished by the literature. The root-mean-square666

error (RMSE) of the above models are 0.0125 and 0.0131, respectively; and the R-squared667

values are 0.9984 and 0.9992, respectively.
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Figure C.2: Goodness-of-fit for (9).

668

Appendix D Derivation of approximations (12)669

The T
′
U depends on TU , NP , and TP , which all depend upon the number of buses in the stop670

at the start of the extended red period. We denote this number as M (1 ≤ M ≤ c). (Note671

that some of these M buses may have completed their services, but they are blocked by buses672
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residing in the downstream berths.) Depending on the value of M , the following three cases673

may arise:674

1. If M < d0, (n+1) full-size convoys can be served following the first convoy in the extended675

red period. The (n + 3)-th convoy would be a small one with only d0 −M buses. Thus676

we have:677 
TU = Up′

1 +
n+2∑
j=2

Up
j ;

NP = d0 −M ;

TP = Up,d0−M ,

(D.1)

where Up′

1 denotes the portion of the first convoy’s service time that is contained in the678

extended red period; Up
j (j = 2, 3, ..., n+2) the time for serving the j-th (full-size) convoy;679

and Up,d0−M the time for serving the small convoy of d0 −M buses.680

2. If M = d0, we have:681 
TU = Up′

1 +
n+2∑
j=2

Up
j ;

NP = 0;

TP = 0.

(D.2)

3. If d0 < M ≤ c, only n full-size convoys can be served following the first one, and the682

(n+ 2)-th convoy would be a small one with c+ d0 −M buses. Thus,683 
TU = Up′

1 +
n+1∑
j=2

Up
j ;

NP = c+ d0 −M ;

TP = Up,c+d0−M .

(D.3)

The E[T
′
U ] and V ar(T

′
U) can be derived given the distribution of M , which depends upon684

c and the bus dwell time distribution. Unfortunately, the distribution of M is very difficult to685

derive analytically, even for special (e.g. gamma) distributions of bus dwell times. Hence we686

again seek an approximation to solve this issue.687

We find by extensive numerical experiments for bus stops with c ≤ 6 that, if the start of the688

extended red period is treated as a random incidence in the first convoy’s service time (similar689

to the assumption made in Appendix B for single-berth stops), and if the bus dwell times follow690

a gamma distribution with CS ∈ [0.1, 1], then M ≥ c − 1 ≥ d0 for 85.8% of the time. This is691

also intuitive: while some buses of the convoy may have completed their services earlier, they692

may not be able to depart the stop as long as there is one bus still dwelling at a downstream693

berth. We henceforth ignore the above case 1 and consider cases 2 and 3 only. Cases 2 and 3694
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can be further combined into one case described by the following equation:695

T
′

U ≈ Up′

1 +
n+1∑
j=2

Up
j +

c+ d0 −M
c

Up,c+d0−M . (D.4)

We further use the following approximations:696 

µT ′U
≡ E[T

′

U ] ≈ E[Up′

1 ] + nE[Up] + E[
c+ d0 −M

c
Up,c+d0−M ]

≈ E[Up′

1 ] + nE[Up] +
c+ d0 − E[M ]

c
E[Up,c+d0−E[M ]];

σ2
T
′
U

≡ V ar(T
′

U) ≈ V ar(Up′

1 ) + nV ar(Up) + V ar(
c+ d0 −M

c
Up,c+d0−M)

≈ V ar(Up′

1 ) + nV ar(Up) +

(
c+ d0 − E[M ]

c

)2

V ar(Up,c+d0−E[M ]).

(D.5)

The mean and variance of Up′

1 are obtained by the following approximations in which the697

start of the extended red period is treated as a random incidence:698 
E[Up′

1 ] ≈ E2[Up] + V ar(Up)

2E[Up]
;

V ar(Up′

1 ) ≈ 5E[Up] + 3τm
12E2[Up](E[Up]− cτm)

V ar2(Up) +
V ar(Up)

2
+
E2[Up]

12
.

(D.6)

Section D.1 presents the derivation of (D.6).699

We also have E[Up,c+d0−E[M ]] ≈ h(c + d0 − E[M ], CS) and V ar(Up,c+d0−E[M ]) ≈ q(c + d0 −700

E[M ], CS); see equations (9). Finally, the value of E[M ] is again approximated by a fitted701

least-square model as follows (with RMSE = 0.061 and R2 = 0.9974):702

E[M ] ≈ 0.9617c− 0.1899 · c · CS. (D.7)

Plugging (9), (D.6) and (D.7) into (D.5) and simplifying, we have (12).703

D.1 Derivation of (D.6)704

We again use the random incidence assumption adopted in Appendix B. In addition, we approx-705

imate Sp ≡ max{S1, S2, ..., Sc} as a gamma-distributed random variable with the same mean706

E[Sp] and variance V ar(Sp). Using the moment generating function of gamma distribution, we707

find that E[Sp2] = E2[Sp] + V ar(Sp) and E[Sp3] = E3[Sp] + 3E[Sp]V ar(Sp) + 2V ar2(Sp)
E[Sp]

. The708

renewal interval that contains the random incidence, W , has the following PDF:709

fW (t) =
tfUp(t)

E[Up]
=
tfSp(t− cτm)

E[Sp] + cτm
, cτm ≤ t ≤ ∞. (D.8)
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Conditioning on W , Up′

1 is uniformly distributed in [0,W ]. So,

E[Up′

1 ] = E

[
1

2
W

]
=

1

2(E[Sp] + cτm)

∫ ∞
0

(u+ cτm)2 · fSp(u)du

=
(E[Sp] + cτm)2 + V ar(Sp)

2(E[Sp] + cτm)
=
E[Up]

2
+
V ar(Up)

2E[Up]
. (D.9)

V ar(Up′

1 ) = E

[
1

3
W 2

]
− (E[Up′

1 ])2

=
1

3(E[Sp] + cτm)

∫ ∞
0

(u+ cτm)3 · fS(u)du− (E[Up′

1 ])2

=
E[Sp3] + 3cτmE[Sp2] + 3(cτm)2E[Sp] + (cτm)3)

3(E[Sp] + cτm)
− (E[Up′

1 ])2

=
5E[Up] + 3cτm

12E2[Up](E[Up]− cτm)
V ar2(Up) +

V ar(Up)

2
+
E2[Up]

12
. (D.10)

Appendix E Simulation algorithms710

The following notation is used in this simulation:711

Bi - The number of berth in which the i-th bus dwells, counting from the downstream-most712

berth, which is numbered berth 1;713

Fi - The number of buffer space at which the i-th bus waits, counting from the downstream-714

most buffer space, which is numbered buffer 1; Fi = 0 means that the bus is not in any buffer;715

Fi > d means that the bus is blocked immediately after service;716

LQi - Time when the i-th bus leaves the upstream queue;717

ESi - Time when the i-th bus finishes service;718

WBi - The i-th bus’s waiting time in the berth after service;719

LBi - The i-th bus’s departure time from the berth;720

WF i - The i-th bus’s waiting time in the buffer due to the red signal (for near-side stops only);721

FT i - The number of moves that the i-th bus makes in the buffer area before entering a berth722

(for far-side stops only);723

LFN i - The time when the i-th bus leaves the buffer and discharges into the intersection (for724

near-side stops only).725

LFF i,j - The time when the i-th bus makes the j-th move in the buffer area (for far-side stops726

only; j ∈ [1, 2, ..., FT i]).727
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Algorithm 1: Simulation of bus operations at a near-side bus stop.

1 Generate the service times according to a given distribution with µS and CS;
2 Set states of the first bus: LQ1 ← 0, B1 ← 1, ES1 ← LQ1 + ctm + S1, LB1 ← ES1;
3 if mod(LB1 + dtm, C) ≤ G then
4 F1 ← 0, WF 1 ← 0;

5 else
6 F1 ← 1, WF 1 ← C −mod(LB1 + dtm, C) + τ , LFN1 ← WF 1 + LB1 + dtm;

7 foreach simulated bus i ≥ 2 do
8 if Bi−1 < c then
9 LQi ← LQi−1 + τm, Bi ← Bi−1 + 1;

10 else
11 if Fi−1 < d+ c then
12 if Fi−1 < d then
13 Bi ← 1;

14 else
15 Bi ← Fi−1 − d+ 1;

16 LQi = LQi−1 + (c−Bi−1 + 1)tm + Si−1 +WBi−1 + τ ;

17 else
18 Bi ← 1, LQi = LFNi−1 + τ ;

19 ESi ← LQi + (c−Bi + 1)tm + Si;
20 WBi ← max(0, LBi−1 + τ − ESi), LBi ← ESi +WBi;
21 if Fi−1 = 0 or Fi−1 = d+ c then
22 if RMi ← mod(LBi + (Bi + d− 1)tm, C) ≤ G then
23 Fi ← 0, WF i ← 0, LFN i ← LBi;

24 else
25 Fi ← 1, WF i ← C −RM i + τ , LFN i ← LBi + (Bi + d− 1)tm +WF i;

26 else
27 if LFN i−1 + τ ≤ LBi + (Bi + d− Fi−1 − 1)tm then
28 if RMi ← mod(LBi + (Bi + d− 1)tm, C) ≤ G then
29 Fi ← 0, WF i ← 0, LFN i ← LBi;

30 else
31 Fi ← 1, WF i ← C −RM i + τ , LFN i ← LBi + (Bi + d− 1)tm +WF i;

32 else
33 Fi ← Fi−1 + 1, WF i ← LFN i−1 + τ − LBi − (Bi + d− Fi)tm,

LFN i = LFN i−1 + τ ;
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Algorithm 2: Simulation of bus operations at a far-side bus stop.

1 Generate the service times according to a given distribution with µS and CS;
2 Set states of the first bus: LQ1 ← 0, F1 ← 0, FT 1 ← 0, B1 ← 1,
ES1 ← LQ1 + (c+ d+D)tm + S1, WB1 ← 0, LB1 ← ES1;

3 foreach simulated bus i ≥ 2 do
4 if Fi−1 = 0 then
5 if Bi−1 = c then
6 if d = 0 then
7 Bi ← 1, Fi ← 0; if temp← mod(LBi−1 + τ, C) ≤ G, then

LQi ← LBi−1 + τ , else, LQi ← C − temp+ LBi + τ ; endif
LBi = ESi ← LQi + (c+ d+D)tm + Si;

8 else
9 if mod(LQi−1 + τm, C) ≤ G then

10 LQi ← LQi−1 + τm, Fi = Bi = FT i ← 1, LFF i,1 ← LBi−1 + τ ,
LBi = ESi ← LFF i,1 + ctm + Si;

11 else if temp← C −mod(LQi−1, C) + LQi−1 + τ < LBi−1 + τ then
12 Fi = Bi = FT i ← 1, LFF i,1 ← LBi−1 + τ ,

LBi = ESi ← LFF i,1 + ctm + Si;

13 else
14 LQi = temp, FT i = Fi ← 0, Bi ← 1,

LBi = ESi ← LQi + (c+ d+D)tm + Si;

15 else
16 Fi ← 0; if mod(LQi−1 + τm, C) ≤ G then
17 LQi ← LQi−1 + τm, Bi ← Bi−1 + 1,

ESi ← LQi + (c+ d−Bi + 1 +D)tm + Si,
LBi ← ESi +max(0, LBi−1 + τ − ESi);

18 else if temp← C −mod(LQi−1 + τm, C) + LQi−1 + τm + τ < LBi−1 + τ then
19 LQi ← LBi−1 + τ , Bi ← Bi−1 + 1,

LBi = ESi ← LQi + (d+ c−Bi + 1 +D)tm + Si;

20 else
21 LQi ← temp, Bi ← 1, LBi = ESi ← LQi + (c+ d+D)tm + Si;

22 else if Fi−1 < d then
23 if mod(LQi−1 + τm, C) ≤ G then
24 LQi ← LQi−1 + τm, Fi ← Fi−1 + 1, Bi ← Berth(Fi);

25 else
26 LQi ← LQi−1 + C −mod(LQi−1, C) + τ , Which-buffer-berth();

27 When-leave-buffer-berth();

28 else
29 if mod(LFF i−1,1 + τ, C) ≤ G then
30 LQi ← LFF i−1,1 + τ , Which-buffer-berth();

31 else
32 LQi ← LFF i−1,1 + τ + C −mod(LFF i−1,1 + τ, C) + τ , Which-buffer-berth();

33 When-leave-buffer-berth();
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34

35 Function Berth(x):
36 if mod(x, c) = 0 then
37 return c;

38 else
39 return mod(x, c);

40 Function Which-buffer-berth():
41 flag ← 0;
42 for k = 1 : 1 : FT i−1 do
43 if LQi + (d− Fi−1 + (k − 1)c+ 1 +D)tm < LFF i−1,k + τ then
44 if Fi−1 < d then
45 Fi = Fi−1 − (k − 1)c+ 1;

46 else
47 if k = 1, then, Fi ← d− c+ 1, else, Fi ← Fi−1 − (k − 1)c+ 1, endif ;

48 Bi ← Berth(Fi), flag ← 1, break;

49 if flag = 0 then
50 if LQi + (d+ c−Bi−1 +D)tm < LBi−1 + τ then
51 if Bi−1 = c, then, Bi = Fi ← 1, else, Fi ← 0, Bi ← Bi−1 + 1, endif ;

52 else
53 Fi ← 0, Bi ← 1;

54 Function When-leave-buffer-berth():
55 FT i ← ceil(Fi/c);
56 if FT i = 0 then
57 ESi ← LQi + (c+ d−Bi + 1 +D)tm + Si,

LBi ← max(0, LBi−1 + τ − ESi) + ESi;

58 else if FT i = FT i−1 then
59 if (mod(Fi, c) = 1 and c 6= 1) or c = 1 then
60 For k = 1 : 1 : FT i − 1, do LFFi,k ← LFFi−1,k+1 + τ , endfor;
61 LFFi,FT i

← LBi−1 + τ ;

62 else
63 For k = 1 : 1 : FT i, do LFFi,k ← LFFi−1,k + τ , endfor;

64 else if FT i > FT i−1 then
65 For k = 1 : 1 : FT i−1, do LFFi,k ← LFFi−1,k + τ ,endfor;
66 LFF i,FT i

← LBi−1 + τ ;

67 else
68 if (mod(Fi, c) = 1 and c 6= 1) or c = 1 then
69 LFFi,FT i

← LBi−1 + τ ;
70 For k = FT i−1 : −1 : 1, do LFFi,k ← LFFi−1,FTi−1−FTi+k

+ τ , endfor;
71 LFFi,FT i

← LBi−1 + τ ;

72 else
73 For k = FT i : −1 : 1, do LFFi,k ← LFFi−1,FTi−1−FTi+k

+ τ , endfor;

74 ESi ← LFFi,FT i
+ ctm + Si, LBi ← max(0, LBi−1 + τ − ESi) + ESi;
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Appendix F Tables of critical d to eliminate the negative728

effect of the signal on a near-side stop’s ca-729

pacity730

Tables F.1a-d furnish the values of the critical d for various c, G/C, CS and C and θ =731

95%. Note that the values of C are normalized as multiples of µS. The practitioners can use732

interpolation between neighboring tabulated values to calculate the critical d if the relevant733

parameter values cannot be directly found in the tables.

Table F.1: Critical d to ensure a near-side stop’s capacity is no less than 95% of the capacity
of a corresponding isolated stop.

(a) c = 1

C
G/C CS 3 4 5 6 7
0.35 0.4 2 3 3 4 5

0.6 2 3 4 4 5
0.8 3 4 4 5 5

0.5 0.4 2 2 3 3 3
0.6 2 2 3 3 4
0.8 2 3 3 4 4

0.65 0.4 1 1 2 2 2
0.6 1 2 2 2 2
0.8 2 2 2 2 3

(b) c = 2

C
G/C CS 3 4 5 6 7
0.35 0.4 3 4 5 6 7

0.6 3 4 5 6 7
0.8 3 4 5 6 7

0.5 0.4 2 3 4 4 5
0.6 2 3 3 4 5
0.8 3 3 4 4 5

0.65 0.4 1 2 2 3 3
0.6 1 2 2 3 3
0.8 1 2 2 3 3

(c) c = 3

C
G/C CS 3 4 5 6 7
0.35 0.4 4 5 7 8 9

0.6 4 5 6 7 8
0.8 4 5 6 7 8

0.5 0.4 3 4 5 6 7
0.6 3 4 4 5 6
0.8 3 4 4 5 6

0.65 0.4 2 2 3 4 4
0.6 2 2 3 3 4
0.8 2 2 2 3 4

(d) c = 4

C
G/C CS 3 4 5 6 7
0.35 0.4 5 7 8 10 11

0.6 5 6 7 9 10
0.8 5 6 7 8 9

0.5 0.4 4 5 6 7 8
0.6 3 4 5 6 7
0.8 3 4 5 6 7

0.65 0.4 2 3 4 4 5
0.6 2 3 3 4 5
0.8 2 2 3 3 4

734
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