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ABSTRACT Smart manufacturing is the core of the modern production and manufacturing industry as
it moves towards digitalization. The successful implementation of smart manufacturing needs the support
of information technology, data technology, and operational technology, among which edge computing,
blockchain technology and artificial intelligence can play significant roles facilitating the development of
smart manufacturing. In this research, a smart manufacturing system is proposed considering the integration
of edge computing and blockchain technology. The introduction of edge computing can balance the
computational workload and provide a more timely response for terminal devices. Blockchain technology
can be utilized to promote both the device-level data transmission and the manufacturing service transaction.
Moreover, regarding the computational task assignment in smart manufacturing systems, a mathematical
model is proposed, and further solved using a swarm intelligence-based approach. Numerical experiments
show that the introduction of the edge computing mechanism in smart manufacturing can significantly
improve the processing time, especially with a large number of tasks.

INDEX TERMS Blockchain technology, edge computing, smart manufacturing, swarm intelligence.

I. INTRODUCTION

The evolution of industrialization has changed from automa-
tion to digitalization. Ever since the introduction of Indus-
try 4.0 in Germany, various similar concepts or projects
have been initiated in different countries or regions, such
as the Industrial Internet from the US, Made in China
2025, Industry 4.1J from Japan, and Manufacturing Indus-
try Innovation 3.0 from South Korea. Two intrinsic fea-
tures of digitalization are the identification and connection
of entities. On the one hand, the concept of internet of
things (IoT) was initially introduced to manage the identi-
fication issue, which further derives the industrial internet
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of things (IloT) with industrial specialization. On the other
hand, the cyber-physical system (CPS) is introduced to solve
the connection among various physical entities.

Smart manufacturing is the core of the modern production
and manufacturing industry in regard to digitalization, which
is also the foundation of the smart factory [1]. In the smart
manufacturing process, massive terminal devices and facili-
ties are digitalized and connected through information tech-
nologies (IT), such as radio frequency identification (RFID),
WiFi, ZigBee, and 5G [2]. The interaction and interoperation
among these devices create huge data stream continuously,
which contains multifarious data processing requirements,
e.g, large data volume, unstructured data type, and low time-
delay. In order to streamline and expedite the data pro-
cessing, data technologies (DT) are introduced, such as big
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data analytics (BDA), industrial cloud computing (ICC), and
artificial intelligence (AI). Moreover, the incorporation of
detailed control of machines into the data computation by the
server is achieved using operational technologies (OT), such
as the supervisory control and data acquisition (SCADA)
system, distributed control system (DCS), and programmable
logic controllers (PLC). In addition to the inner operation
of smart manufacturing, the manufacturing process or the
assembly line capability can be further digitalized as cloud
manufacturing services

The integration of IT, DT, and OT underpins the develop-
ment of smart manufacturing. However, the ever-increasing
connected devices and facilities lead to high data process-
ing requirements, and challenge the application of existing
technologies. In order to alleviate this problem, multi-access
edge computing (MEC) technology, derived from 5G tech-
nology, becomes a promising solution, and has the capa-
bility to facilitate the data processing between IloT and
ICC, and can also support the interaction and interoperabil-
ity between IIoT devices [3]. Another problem beyond the
technical application of smart manufacturing is the trust-
worthiness of the data transmission at the device level and
the business transaction in the corporate level. Blockchain
technology is the most favorable solution to solve this
trust problem, which can strengthen the data transmis-
sion and business transaction using a distributed control
mechanism [4].

Therefore, in this research, we investigate and analyze the
potential issues of applying MEC and blockchain technology
into smart manufacturing. A conceptual framework design
for a smart manufacturing system is proposed, integrating
both the MEC and blockchain technology. Moreover, with
the application of MEC, the architecture of smart manufac-
turing is changed from centralized management to a dis-
tributed form, which leads to a task assignment problem
from terminal devices [5] and the corresponding computing
resource allocation problem among the edge servers [6].
Thus, we further introduce an optimization model to for-
mulate the task assignment and resource allocation in the
proposed smart manufacturing system. After that, we design
a swarm intelligence-based approach to solve the mathemat-
ical model. Numerical experiments show that the designed
algorithm can find near optimal solutions within a reasonable
time, and the introduction of MEC to smart manufacturing
can significantly improve the system performance.

The remainder of this paper is organized as follows.
Section II briefly reviews the industrial evolution and recent
emerging technologies. Section III introduces a conceptual
framework for smart manufacturing systems considering the
application of edge computing and blockchain technology.
In section IV, a resource control mechanism concerning
the task assignment from terminal devices is introduced.
Section V introduces a swarm intelligence-based approach
for solving the optimization model. In section VI, numeri-
cal experiments are conducted to examine and validate the
performance of the proposed model and the effects of the
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proposed algorithm. Finally, some conclusions are drawn in
section VII.

Il. RELATED WORK

A. IloT, lloT, INDUSTRY 4.0, AND CPS

The development of the IoT is the fundamental support
for any digitalization. On the one hand, the application of
IoT covers various aspects, such as smart cities, intelligent
transportation, traffic monitoring, and wearable healthcare
devices, while the IIoT covers the domain of machine-to-
machine communication and interaction, which paves the
way towards the digitalization of manufacturing processes,
thereby enabling efficient production [7]. On the other hand,
the CPS addresses the connection and interaction between the
physical world and its digital counterpart, thus improving
the production performance by visualizing and optimizing
the manufacturing processes [8]. The concept of Industry 4.0
arises when the IIoT paradigm encounters the CPS, which is
the most universally adopted solution to address the use of
internet communication technologies (ICT) to improve the
production efficiency by means of smart manufacturing in
smart factories.

As shown in Figurel, Sisinni ef al. [9] adopted a Venn
diagram to illustrate the intersections of IoT, IIoT, CPS, and
Industry 4.0. Yang et al. [10] identified the key issues and
potential applications of the IoT in manufacturing area, and
concluded that the IoT envisioned the seamless interconnec-
tion of the physical world and cyberspace and their pervasive
presence. Apart from that, Wan et al. [6] introduced a cyber-
physical production system (CPPS) that enabled efficient data
transmission with intelligent network management tools, and
reliable communication technology, which were the typical
features of CPPS information interaction.

B. EDGE COMPUTING

The successful operation of a smart factory requires ultralow
communication latency and a reliable working environment
to achieve precise control over smart manufacturing pro-
cesses. Aiming for that, the emerging MEC technology
can satisfy these requirements. The European Telecommu-
nications Standards Institute (ETSI) showed that MEC can
provide cloud computing capabilities and an IT service
environment at the edge of the network, despite the access
technologies [11].

FIGURE 1. loT, CPS, lloT, and Industry 4.0 in Venn diagram [9].
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Towards the application of MEC technology in IoT appli-
cations, Chen et al. [12] designed a multi-microcontroller
structure as the edge gateway for the industrial internet, which
combines the field programmable gate array-based hardware
bridge and multiple scalable microcontrollers. Li et al. [13]
proposed an adaptive transmission architecture with the sup-
port of global centralized software and defined network and
edge computing for IIoT. Moreover, Yu et al. [14] surveyed
the performance of edge computing architecture for IoT
applications, like smart city, smart grid, and smart trans-
portation. Porambage et al. [15] provided an overview on
the exploitation of MEC technology for the realization of
IoT applications and their synergies as well.

C. BLOCKCHAIN TECHNOLOGY

Blockchain technology can be viewed as a novel decen-
tralized architecture and distributed computing paradigm,
which stores data with encrypted chained blocks, and
manipulates data with self-executed program scripts [16].
Yuan and Wang [17] summarized the key features of
blockchain technology as decentralization, trust, security,
chronological data, collective maintenance and programma-
bility. It is acknowledged that three types of blockchain
exist, i.e., public blockchain, consortium blockchain, and
private blockchain, with different application background.
Public blockchain is known as the foundation of various
digital currencies. A promising application of the consortium
blockchain is to ally multiple stakeholder entities and conduct
business or service trading. For example, Li et al. [18]
proposed an energy trading system using the consortium
blockchain technology. Min [19] discussed the ways to lever-
age blockchain technology to enhance supply chain resilience
in terms of the increased risks and uncertainty.

In addition to business trading, blockchain technology can
also be adopted to facilitate IoT applications, which can be
regarded as the implementation of the private blockchain.
For instance, Yang et al. [20] designed IoT-oriented data
exchange prototype system using Hyperledger Fabric in
order to solve the issue of automatic maintenance of a
tamper-resistant, reliable and distributed management sys-
tem. Caramés and Lamas [21] conducted a review on
blockchain application for the IoT and identified the chal-
lenges and optimization issues related to the deployment of
a blockchain based IoT application. Moreover, Scriber [22]
designed a framework for determining blockchain applica-
bility through an analysis of more than twenty blockchain
implementation projects.

Although there is some research related to applying edge
computing for smart manufacturing, the incorporation of
blockchain technology for data captured by production IoT
devices has not been fully investigated. In addition, the issue
of task allocation for multi-access edge computing needs to
be addressed.

Ill. SYSTEM ARCHITECTURE

The incorporation of edge computing and blockchain tech-
nology can substantially facilitate data processing and data
transaction in smart manufacturing systems, which are elab-
orated in the following subsections.

A. EDGE COMPUTING-BASED PROTOTYPE SYSTEM

The edge computing-based smart manufacturing system can
be categorized as a three-tier system architecture, as shown
in Figure 2. The first tier is composed of various heteroge-
neous terminal devices in terms of different kinds of sensors,
actuators, machines, robots and so on, which constitute the

( [T Cloud Server Service and Application Layer
Massive d L r EIS QOS Smart contract
assive data ong-term ong-term ;
analytics data analytics data storage B Ll STS Collaboration
L MES SCM Co-design
Il Il Il > =
( N Network Layer Data Layer
IIoT Edge Server Layer
: : : ‘ P2P Network ‘ ‘ Data identifer
Data Real-time data Real-time action
preprocessing analytics response — ‘ Data verify ‘ ‘ Data block
l H 1 ‘ Data forward ‘ ‘ Time stamp
e N [ N [ N ‘ ‘ ‘ o
IIoT device IIoT device IIoT device Data consensus Encryption
Device API Device API Device API - —
Micro- Micro- Micro- Physical Layer
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FIGURE 2. Edge computing-based smart manufacturing system architecture.
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major component of the physical layer. The second tier is
the deployment of multiple edge servers, which can either
process the computational tasks from terminal devices, or for-
ward these tasks to the third tier, i.e., the industrial cloud
server. In contrast to the huge amount of storage and process-
ing resources of the industrial cloud, edge servers have only
limited capacity and resources to provide computational ser-
vices. Therefore, as shown in Fig. 2, a cloud server commonly
processes the tasks requiring massive and long-term data sup-
port, such as product design, customer analysis, and quality
management. The data processing in IIoT cloud server is
the foundation for various enterprise-level applications, like
enterprise information system (EIS), enterprise asset manage-
ment (EAM), service transaction system (STS), supply chain
management (SCM), and so on. Comparatively, edge servers
are more in charge of shop floor and machine level tasks
featured with low-latency or nearly real-time management,
e.g., the fine-tuning of control parameters for machines and
assembly lines, and the adjustment of working environmental
factors. The data transmission among IIoT devices, IIoT edge
servers, and IIoT cloud server involves a number of func-
tional requirements, such as data verification, data identifier,
data encryption, etc., which paves the way for blockchain
application.

The introduction of edge computing in smart manufac-
turing is much more than the complementary resources to
cloud computing. It is necessary for the development of
smart manufacturing due to its inherent easy connectivity
and high scalability. The successful operation of edge com-
puting relies on virtualization technologies, including virtual
machines and virtual containers, which allows the parallel
processing of multiple independent tasks simultaneously. The
major difference between the virtual machine and virtual
container lies in the isolation level and implementation mech-
anism, where the virtual machine involves a heavy-weight
implementation requiring a full virtualized hardware, and the
virtual container is light-weight implementation, in which
all virtual instances share a single operating system kernel.
Both the virtual machine and the virtual container technolo-
gies are incorporated to improve the resource utilization of
edge servers. Moreover, because of the limited resources and
capacities, it is of great necessity to assign the incoming
tasks and allocate available resources in an optimal manner,
as addressed in the following sections.

B. BLOCKCHAIN TECHNOLOGY-BASED DATA AND
SERVICE VALIDATION

The application of blockchain technology in smart manu-
facturing makes a two-fold contribution. On the one hand,
the introduction of edge servers and IIoT changes the man-
ufacturing paradigm from a cloud-centered mode to a dis-
tributed system architecture. Under these circumstances,
blockchain technology can be used to strengthen the data
integrity and reduce the data transmission risks by enabling
the identification, sharing and validation of key relevant data
in a distributed manner. Specifically, blockchain technology,
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which can be used to identify the origin and destination of a
specific data flow, examines and validates the completeness
of the data package, and guarantees the integrity of responsive
command data.

In order to track modifications and avoid faulty operation,
all data transactions have to be signed and time-stamped on
the blockchain, which can be implemented through the hash
coding of the previous timestamp so as to maintain the order
of data transaction and avoid the insertion of fake transac-
tional data in a linked chain. Apart from the data validation
mechanism, the consensus mechanism is another key for
which the proper functioning of a blockchain determines the
conditions as to whether a validated block can be added to the
blockchain or not.

On the other hand, the digitalization of the smart manufac-
turing advocates the virtualization of manufacturing process,
which leads to cloud manufacturing services. Blockchain
technology can be used to facilitate service validation and
transaction. As shown in Figure 3, the representation of
manufacturing service involves two fields, i.e., meta-data and
content, which provides a unique service identifier and a
detailed function and process description respectively. Once
a manufacturing service is well abstracted and character-
ized, a service block is created. Then the created service is
broadcasted in the distributed manufacturing service network,
which is further validated and approved by the majority of the
network entities. Finally, the validated service is added to the
service blockchain.

The transactional blockchain follows a similar pattern as
the service blockchain. Once a certain manufacturing service
is queried and purchased, a service transactional block will
be created. Such a transaction block will also be broadcast in
the same manufacturing service network and, further, be val-
idated by other peer-to-peer entities. After that, this transac-
tion block is added to the transaction blockchain. The above
operational procedures of the transaction blockchain con-
stitute smart contracts among multiple interactive business
partners, of which the inner protocols can facilitate, verify,
and enforce the performance or negotiation of a contract.

IV. COMPUTATIONAL TASK ASSIGNMENT

The edge computing-based smart manufacturing system is of
high scalability, which suits expansion potentiality and data
process requirements of massive IIoT devices [6]. As illus-
trated in Figure 4, the process of data transmission and anal-
ysis in this smart manufacturing system can be regarded as
computational tasks, which need to be assigned and processed
in the edge server or cloud, and the objective is to find
the proper task assignment scheme so as to minimize the
average processing time for the incoming tasks. In order to
model this task assignment problem, it is assumed that the
proposed smart manufacturing system consists of N terminal
devices, E edge server nodes, and one industrial cloud server.
During the manufacturing process, the terminal devices con-
tinue to request heterogeneous computational tasks, which
are handled by either the edge server or the cloud server.
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FIGURE 4. Computational task assignment in smart manufacturing.

Commonly, two popular technologies underpinning the appli-
cation of edge computing are virtual machine technology and
container technology, which possesses its own feature and
fits different application scenarios. However, in this research,
we treat them equally as the incoming computational tasks
are homogeneous and abstract. The industrial cloud server
has sufficient computational resources to process all types
of tasks, whereas an edge server has limited computational
resources allocated to process different tasks.

Let T be the set of tasks requested by all terminal devices,
and each task ¢ € T contains a certain amount of data and a
specified maximum time delay as t £< I;, v;, d; >, in which
the unit of task length /; is MI (million instructions), the unit
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of data volume v; is byte, and the unit of time delay d;
is second.

The processing time for task ¢ in edge server e € E involves
two components, i.e., the computation time puy ., and the
data transmission time ,ui data> which is expressed as follows.

)‘te = Mte,com + 'uf,data (H

Specifically, the computation time of task ¢ in edge server
e is calculated as

Pﬁnux
Mo =10l D" @

where r/, represents the allocated computational resources
by edge server node e for task ¢ during the period p, P!,
denotes the maximum number of period that the task can
maintain, and /; represents the length of task 7 as mentioned
previously. To satisfy the delay constraint, P!, ,. can be cal-
culated as

Pl = Ldi/pe] 3)

where p, is a time unit constant for edge server node e, which
is expressed as the time length of a processing period.

To ensure that the task is completed on time, the task must
be allocated with more resources than it needs, as

Pt
e
b= T “)
where P! is the actual number of periods consumed by task ¢.
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The data transmission time between terminal device n and
the edge server node e is calculated as

'u“f,data = VI/WZ (5)

where w¢, represents the radio bandwidth allocated by edge
server node e, of which the unit is MBPS (million bytes
per second).

Moreover, the allocated computational resource to tasks
cannot exceed the total resources of the edge server, as

e e
3 < ®

where R¢ denotes the available resource of edge server node
e, Tp" represents the task set running in the edge server node
e during the period p.

If a task needs to be processed in cloud server, the corre-
sponding processing time can be calculated as

e,c
)"f = H’?,com + I’Lf,data + M“t,data (7)

in which uf ., is the computational time, u7 ;. is the
data transmission time between terminal device n and its cor-
responding edge server, and M?ﬁam is the data transmission
time from edge server e to cloud server.

The time delay constraint for each task is assumed to be a
hard constraint, which cannot be violated when processing in
either the edge server or the cloud server as

X0 + X6 < d, 8)
xit+xf =1 9

where x; and x{ are binary variables to indicate whether task
t is running in edge server node e or the cloud c, respectively.

The complete model is presented as follows, with which
the objective is to minimize the average processing time for
all tasks.

min ZIGT (xeAE 4+ xE18) /1T
s.t. (1) —(9) (10)

Task assignment problem is known to be a classical NP-hard
problem [23]. The proposed computational task assignment
problem is an extension of the conventional task assign-
ment problem due to the heterogeneous processing units and
the parallel processing mechanism. Therefore, Metaheuristic
approaches instead of exact methods are more suitable for
solving this problem. Therefore, an adaptive artificial bee
colony algorithm based on swarm intelligence is employed
in this research.

V. SWARM INTELLIGENCE APPROACH

Swarm intelligence (SI)-based approaches are becoming
increasing popular among various artificial intelligent algo-
rithms, which were originally inspired by the collective
behavior of natural species or animals, such as ant forag-
ing, bee foraging, and fish schooling. SI is a relatively new
branch of intelligent computation methods in contrast to
the evolutionary computational methods. SI approaches use
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approximate and non-deterministic strategies to effectively
and efficiently explore and exploit the search space in order
to find near-optimal solutions [24], 25].

Among the various SI-based approaches, the artificial bee
colony (ABC) algorithm exemplifies the classical features
of SI, as decentralization, self-organization and collective
behavior, which are necessary and sufficient to acquire intel-
ligent performance [26]. Decentralization means that no cen-
tral control mechanism exists. Self-organization of bees relies
upon four fundamental properties, i.e. positive feedback, neg-
ative feedback, fluctuations and multiple interactions. Collec-
tive behavior refers to a bee colony, in which the individual
behavior may be random, however the aggregation of indi-
vidual behavior turns to be globally intelligent. In addition
to the above three features, ABC algorithm has a simple
control mechanism, for which only two parameters need to
be tuned, which are the size of bee colony and a determi-
nant criterion concerning whether one solution should be
dropped or not.

As shown in Figure 5, the application of the ABC algorithm
for solving the computational task assignment problem com-
prises four phases, i.e., the initialization phase, the employed
bee phase, the onlooker bee phase, and the scout bee phase.
A task set T, an edge server Set E, and a cloud server C
are given in advance, with corresponding feature settings.
In the initialization phase, all the tasks are randomly assigned
to the edge servers or the cloud server. In the employed bee

Algorithm: ABC TA

Input: Task set T, Edge server set E, Cloud server €
Output: Allocation of tasks to edge server and cloud
// initialization phase

s = {xi1, %02, e, xLITI}

P = {s4,85, -, }

fit, =1/ +f)

//iterative search

While termination conditions not met do
// employed bee phase

Forall seP
s« N(s) [/ find proper reference
s" < s®s’ [/ interact with the chosen reference
s «sors” [/ update the new solution

T =T+ 1ls < 8"
End for
// onlooker bee phase
P = fity/ Xis fity
9o = Po
q; = qi—1 + ;i
If g; =7 then
Repeat the employed bee phase
End if
// scout bee phase
If 7; = a then
Reinitialize solution s;
End if
End while

FIGURE 5. Artificial bee colony algorithm.
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phase, one employed bee searches the neighborhood area of
a given solution for a better solution. If a better solution is
found, the given solution will be replaced by the better one.
In the onlooker bee phase, after acquiring the solution infor-
mation from the employed bees, the onlooker bees determine
to exploit some solutions probabilistically, which is realized
by comparing a random number r and the cumulative proba-
bility g. Such a chosen probability is determined by the fitness
of a solution. In the scout bee phase, if a solution cannot be
updated after a certain number of iterations, it is regarded as
exhausted, thus the scout bees abandon the exhausted solution
and find another alternative solution. The three types of bees
work collaboratively to find the optimal solution.

In accordance with the above workflow description of
ABC_TA, s; is a candidate solution comprising of a specific
task allocation scheme as {x; 1, X; 2, ..., Xj, 7|}, in which x; ;
indicates that task j is processed by server i. A number of
candidate solutions compose a solution population as P =
{s1, 52, ..., s,}. fi and fit; are the objective value and fitness
value of solution s; correspondingly. In the employed bee
phase, s’ is another solution found in the neighborhood area
of solution s. Solution s interacts with s’ so as to generate a
new solution s”, after that a solution selection mechanism is
applied between s and s”. If the initial solution s is updated, its
corresponding update times t; is set as 0, otherwise increase
by one as t; = 7; + 1. In the onlooker bee phase, the chosen
probability p; of solution s; depends on its fitness value.
The better fitness value, the higher chosen probability. Once
s; is chosen, it would go through employed bee operation
one more time. In the scout bee phase, if the update times
of solution s; is greater than a predetermined criterion o as
T; > «, solution s; would be abandoned and replaced by a
newly generated solution.

VI. PERFORMANCE EVALUATION

The test instances are generated in the following pattern.
The length of tasks follows a uniform distribution within the
range [1, 10] million instructions. The data volume of a task is
assumed to be between 100 kilobyte and 10 megabytes. The
affordable time delay of a task is assumed to be within the
range between 100 milliseconds and 10 seconds. Concerning
the edge server configuration, it is assumed that the average
processing performance is 10 Million Instructions Per Second
(MIPS), whereas the capacity of the cloud server is assumed
to be 1000 MIPS. The connection between terminal devices
and the edge server is through wireless communication
methods, such as WiFi, Radio, and ZigBee. The connection
between the edge server and the cloud is through broadband.
The common mechanism is that tasks are assigned to a certain
edge server with high probability, and forwarded to the cloud
server if the edge server cannot provide sufficient resource
for the given task within its expected time delay.

The proposed swarm intelligent approach is coded using
Java with Eclipse IDE on a personal PC with a 3.6 GHz CPU
and 16 GB RAM. The popularity of the ABC algorithm is
partially due to its easy implementation and simple control
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mechanism, in which only two parameters need to be tuned,
i.e., the size of the bee colony and the solution abandonment
criterion. A large size bee colony indicates that a large number
of parallel solutions could be operated simultaneously, which
can increase the diversity of the search process. Compara-
tively, a large number for the abandonment criterion indicates
that the search engine can exploit the promising search area in
depth. Figure 6 and Figure 7 show the parameter analysis of
the solution number (SN) and abandonment criterion « using
a test instance with 200 incoming tasks. It is noted that the
combination of SN = 20 and o« = 100 works well in contrast
to other settings. Therefore, such a combination is employed
in this research.

In order to examine the effect of the edge computing in
the smart manufacturing system, more experiments were con-
ducted with different numbers of incoming tasks under three
different scenarios, i.e., cloud only, edge only, and mixed
mode, which means the computational tasks are processed by
the cloud server solely, the edge servers solely, and the mixed
cooperation of the cloud server and edge servers, respectively.
As shown in Fig. 8, the mixed mode outperforms the other
two modes significantly. Along with the increasing number
of tasks, the average processing time in cloud only mode
fluctuate when the number of tasks is relatively small due
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FIGURE 6. Performance measurement with different SN settings.
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FIGURE 7. Performance measurement with different « settings.
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FIGURE 8. Performance measurement in different scenarios.

to the feature of random task load settings, and decreases
gradually when the number of tasks increases to a certain
large level due to the fixed available capacity of the cloud
server. In contrast, the average processing time in the edge
only mode does not vary significantly due to the requirement
of the increasing number of edge servers along with the
increasing number of tasks. In contrast to the cloud only
mode and the edge server only mode, the mixed mode can
save an average processing time around 17.16% and 16.52%
respectively.

VII. CONCLUSION

Smart manufacturing is a promising future trend for the devel-
opment of the production and manufacturing industry, which
is the core of the new industrialization. The implementation
of smart manufacturing needs the holistic support of infor-
mation technology, data technology, and operational tech-
nology, among which the development of edge computing
and blockchain technology based on the industrial internet
can substantially facilitate the operational process of smart
manufacturing. In this research, a conceptual integration of
edge computing and blockchain technology is proposed to
underpin the design of a smart manufacturing system. More-
over, the task assignment problem in the smart manufacturing
system is formulated as an optimization model, and further
solved using a swarm intelligence-based approach. Numer-
ical experiments show that the introduction of edge servers
outperform the other two mechanisms.

For future research, the application of the proposed smart
manufacturing system needs to be further analyzed in-depth;
especially field experiments should be conducted to collect
on-site data, identify possible influencing factors, and adjust
the parameter configuration of the proposed system and
model. Moreover, the application of blockchain technology in
both enterprise level and device level requires the design and
development of an integrated transaction system, after that
its effect can be quantified and further analyzed. In addition,
more emerging technologies can be investigated to further
serve the development of smart manufacturing.
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