
A New Convergent Hybrid Learning Algorithm for Two-Stage Stochastic
Programs

Shaorui Zhoua,∗, Hui Zhangb, Ning Shia, Zhou Xuc, Fan Wanga

aSchool of Business, Sun Yat-sen University, Guangzhou, China

bSchool of Public Health, Sun Yat-sen University, Guangzhou, China

cDepartment of Logistics & Maritime Studies, The Hong Kong Polytechnic University, Hung Hom, Hong Kong

Abstract

This study proposes a new hybrid learning algorithm to approximate the expected recourse

function for two-stage stochastic programs. The proposed algorithm, which is called projected

stochastic hybrid learning algorithm, is a hybrid of piecewise linear approximation and stochastic

subgradient methods. Piecewise linear approximations are updated adaptively by using stochastic

subgradient and sample information on the objective function itself. In order to achieve a global

optimum, a projection step that implements the stochastic subgradient method is performed

to jump out from a local optimum. For general two-stage stochastic programs, we prove

the convergence of the algorithm. Furthermore, the algorithm can drop the projection steps

for two-stage stochastic programs with network recourse. Therefore, the pure piecewise linear

approximation method is convergent when the initial piecewise linear functions are properly

constructed. Computational results indicate that the algorithm exhibits rapid convergence.

Keywords: stochastic programming, piecewise linear approximation, network, optimization.

1. Introduction

A common challenge in operations research is making a decision in the present such that it

minimizes the expectation of costs in the future with uncertainty. For example, several large

∗Corresponding author
Email address: zshaorui@gmail.com (Shaorui Zhou)

Preprint submitted to European Journal of Operational Research March 30, 2021

https://doi.org/10.1016/j.ejor.2019.11.001 This is the Pre-Published Version.

© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.

shippers, such as Walmart, Amazon, and IKEA, need to decide on the amount of products to

ship from plants to warehouses through which they can satisfy the demands of various retailers.

Typically, they must make a decision before they know the retail demands. When the retail

demands are known, they optimize the shipping schedules between warehouses and retailers. The

aforementioned problem can be formulated as a two-stage stochastic program. The decision made

in the present (Stage 1) determines the state to begin with while solving the problem in Stage

2. Thus, if the expected cost function (recourse function) for Stage 2 can be computed, then an

optimal decision can be made in Stage 1.

1.1. Motivation

A two-stage stochastic program is a practically important problem. Problems of this type arise

in several areas in operational management, in which the decision maker must allocate several

resources in time and space dimensions prior to realizing events that will affect the outcome of the

decisions. For example, in empty container repositioning problems (Cheung and Chen, 1998; Long

et al., 2012), shipping companies need to reposition empty containers prior to realizing the demand.

In locomotive planning problems (Bouzaiene-Ayari et al., 2016; Cordeau et al., 2000), railroads

have to determine the sequence of trains to which each locomotive is assigned before disruptions

occur across the network. In job scheduling problems (Kim and Mehrotra, 2015; Restrepo et

al., 2017), the manager must determine initial staffing levels and schedules before the actual date

of demand realization. In relief distribution problems (Alem et al., 2016; Moreno et al., 2018),

humanitarian decision makers must distribute emergency aid to disaster victims when resources are

scarce amidst great uncertainty. Most of the above applications are fully sequential problems, and

they are modeled as two-stage stochastic programming problems in these papers. Thus, the research

into two-stage stochastic optimization is an important foundation. The main difficulty is that in

most practical cases of two-stage stochastic programs, the expected recourse function is excessively

complex due to uncertainty. In this study, we propose a hybrid learning algorithm called projected

stochastic hybrid learning algorithm (ProSHLA) to approximate the expected recourse function for

two-stage stochastic programs. Furthermore, we theoretically demonstrate the convergence of the

algorithm.

2

Essentially, ProSHLA is a hybrid of piecewise linear approximation and stochastic subgradient

methods. The core of ProSHLA involves learning steps that provide information for updating

the expected recourse function through a sequence of piecewise linear separable approximations,

and the projection steps that guarantee convergence by implementing the stochastic subgradient

method. The findings reveal that when initial piecewise linear approximation functions are properly

constructed for two-stage stochastic programs with network recourse, the algorithm can drop the

projection step without sacrificing convergence. This interesting finding answers the following

question that has puzzled researchers for more than a decade: Why does the piecewise linear

approximation method work well for stochastic programs with network recourse? Our analytical

results provide the first theoretical support for the use of the piecewise linear approximation method

in two-stage stochastic programs.

1.2. Related literature

We consider the following two-stage stochastic programming problem:

min
x∈X

cT0 x+ Eω[Q(x, ω)], (1)

subject to

Ax = b,

x ≥ 0,

where X ⊂ Rn denotes a convex compact set and the recourse function Q(x, ω) denotes the optimal

value of the second stage problem.

Q(x, ω) = min
y(ω)

cT1 y(ω), (2)

subject to

W (ω)y = h(ω)− T (ω)x,

y(ω) ≥ 0(ω).

In the above model, the variables x and y denote the decision variables of Stage 1 and Stage 2

problems, respectively. Parameters c0 and c1 denote the first and second stage vectors of cost

coefficients, respectively, and A, W (ω) are constraint matrices.

3

Several studies have examined stochastic programming models and solution methods. Compre-

hensive reviews and discussions were performed by Shapiro et al. (2014) and Wallace and Ziemba

(2005). Except for a few special cases, the expected recourse function is extremely difficult to

evaluate. Studies have proposed various approximation schemes that can be categorized into four

groups. Let Q̂(x) denote the approximate function. The first group comprises scenario methods

that approximate the expected recourse function by the sample average of Q(x, ωi) for several

samples: ω1, ω2, ..., ωN (Kleywegt et al., 2001; Long et al., 2012). The approximation function is

successively updated as follows:

Q̂(x) =

∑N
i=1Q(x, ωi)

N
.

Generally, the method is very efficient, but the solution might not always converge to the optimal

solution.

The second group includes stochastic gradient techniques (Ermoliev, 1988; Guigues, 2017b;

Nemirovski et al., 2009; Polyak and Juditsky, 1992; Robbins and Monro, 1951). This type of

method updates solutions by using stochastic subgradients as directions. The approximate function

is successively updated as follows:

Q̂(x) = (ḡk)Tx, (3)

where ḡk denotes a smoothed estimate of the gradient of the expected recourse function at x for

iteration k. Despite being inefficient, this method has been proven to be convergent by projection

(Rockafellar and Wets, 1988) or recursive linearization (Ruszczyński, 1987).

The third group mainly consists of primal and dual decomposition methods. The use of primal

and dual decomposition methods dates back to Benders decomposition (Benders, 1962). Van Slyke

and Wets (1969) first described the application of Benders decomposition to two-stage stochastic

programs with the L-shaped algorithm, followed by Higle and Sen (1991) with their stochastic

decomposition method. Furthermore, one algorithm that has been widely applied is the stochastic

dual dynamic programming (SDDP) by Pereira and Pinto (1991). This algorithm constructs feasible

dynamic programming policies by using an outer approximation of a (convex) recourse function

computed using Benders cuts. The SDDP algorithm has led to a number of related methods that

4

are based on the same essential idea but seek to improve the method by exploiting the structure of

particular applications. These methods include risk-averse variants (Guigues and Römisch, 2012;

Philpott and de Matos, 2012; Shapiro, 2011; Shapiro et al., 2013), adaptation of SDDP for problems

with interstage dependent processes (Guigues, 2014; Infanger and Morton, 1996; Lohmann et al.,

2016), use of inexact cuts (Guigues, 2017a; Guigues, 2018; Zakeri et al., 2000), embedding of SDDP

in the scenario tree framework (Rebennack, 2016), combination of SDDP and Lagrangian relaxation

(Steeger et al., 2018), and approximate dual dynamic programming (Löhndorf et al., 2013). The

convergence of SDDP and related methods was proven by Philpott and Guan (2008) for linear

programs, by Girardeau et al. (2015) for risk-neutral nonlinear problems, and by Guigues (2016)

for risk-averse nonlinear problems.

The fourth group consists of separable approximation methods (Cheung and Powell, 2000;

Powell et al., 2004; Nascimento and Powell, 2013). These methods replace the expected recourse

function in Equation (1) with the following separable approximation functions:

Q̂(x) =
I∑

i=1

Q̂i(x). (4)

If the separable functions Q̂i(x) are linear or piecewise linear, then the expected recourse function

can be replaced in Equation (1) with Q̂(x), and the problem can be solved as a pure network

flow problem for network recourse problems, which is a well-known polynomial solvable problem.

For example, Godfrey and Powell (2002) proposed the adaptive piecewise concave approximation

(CAVE) algorithm, which demonstrated exceptionally good experimental performance, but they did

not provide any provable convergent results. To achieve convergence to optimal solutions, Cheung

and Powell (2000) proposed an approximation algorithm (SHAPE) by using a sequence of strongly

convex approximation functions. Strong convexity requires a nonlinear term in the approximation

functions that destroys the pure network structure and demands additional computational effort.

In this study, we attempt to combine our ability to construct accurate and efficient approximations

with the convergence property.

5

1.3. Contributions

We aim to develop a convergent method that can efficiently approximate the expected recourse

function for two-stage stochastic programs. The main objectives of this study are as follows:

1. We propose a new convergent hybrid learning algorithm to approximate the expected recourse

function for two-stage stochastic programs.

2. We theoretically prove the convergence of the algorithm for general two-stage stochastic

programs. The results indicate that when initial piecewise linear approximation functions

are properly constructed, the algorithm can drop the projection step without sacrificing the

convergence for two-stage stochastic programs with network recourse. Therefore, a pure

piecewise linear approximation method is indeed convergent. This interesting finding answers

the following question that has puzzled researchers for more than a decade: Why does

piecewise linear approximation work well for two-stage stochastic programs? Our analytical

results provide the first theoretical support for the use of the piecewise linear approximation

method in two-stage stochastic programs.

3. We conduct a performance analysis. The computation results reveal the efficiency of the

proposed algorithms, which are distribution-free. In this study, the initial function we use

for piecewise linear approximation has an equal difference between every two consecutive

breakpoints, and we refer to this difference as its granularity. Our computational results also

show that the granularity of the initial approximation function (δ) affects the convergence

rate. A small granularity of the initial function leads to a high convergence rate. Finally, the

proposed algorithm is competitive for high-dimensional problems.

The rest of this paper is organized as follows. Section 2 shows the description and convergence

analysis of the algorithm for general two-stage stochastic programs. Section 3 presents the algorithm

(without projection steps) for two-stage stochastic programs with network recourse. Section 4

reports numerical experiments of performance analysis. Finally, we present the conclusions and

outline directions for future research in Section 5.

6

2. Description and convergence analysis of ProSHLA for general two-stage stochastic
programs

We introduce ProSHLA and then conduct a convergence analysis of ProSHLA for general two-

stage stochastic programs in this section.

2.1. Description of ProSHLA

To present ProSHLA mathematically, at each iteration k, we let

ak = (possibly random) positive step size;

Q̄(x) = expected recourse function, that is, Eω[Q(x, ω)];

Q̂k(x) = convex differentiable approximation of Q̄(x);

gk = stochastic subgradient of Q̄(x) at xk, that is, gk ∈ ∂Q(xk, ωk+1);

ḡk = smoothed estimate of the gradient of Q̄(x) at iteration k;

q̂k(x) = subgradient of Q̂k(x) at x, that is, q̂k(x) ∈ ∂Q̂k(x); and

Hk = {ω0, ω1, ..., ωk} = the history up to (and including) iteration k.

For a general non-smooth convex function Q̂(x), we define its sub-differential as follows:

∂Q̂(x) = {q̂(x) ∈ Rn : Q̂(y)− Q̂(x) ≥ q̂(x)T (y − x)}.

In this study, we combine Equations (1), (3), and (4) to form an approximation at iteration k

as follows:

min
x∈X

cT0 x+ Q̂0(x) + (ḡk)Tx. (5)

We approximate the expected recourse function at iteration k through a convex, differentiable

approximation Q̂0(x) with a linear correction term (ḡk)Tx. At each iteration, we use the linear

correction term (ḡk)Tx to improve the initial approximation Q̂0(x). Note that we use a convex

initial approximation function Q̂0(x) here, whereas SHAPE uses strongly convex approximation

functions. Strong convexity requires a nonlinear term in the approximation function that may

destroy the pure network flow problem structure and demands additional computational effort.

7

However, we do not calculate ḡk in the usual manner to obtain stochastic subgradients in this

study. Instead, our model uses the following form:

min
x∈X

cT0 x+ Q̂k(x) + ak(gk − q̂k(xk))Tx, (6)

where Q̂k(x) is updated as follows:

Q̂k+1(x) = Q̂k(x) + ak(gk − q̂k(xk))Tx. (7)

The advantage of updating Q̂k+1(x) is that the stochastic subgradients used in the previous

iterations, namely, (q̂k(xk), q̂k−1(xk−1), ..., q̂0(x0)), can be retained. Thus, the objective function in

iteration k involves a weighted average of stochastic subgradients in previous (k− 1) iterations. As

shown later in Lemma 2, ḡk in Equation (5) is a linear combination of g1, g2, ..., gk−1.

Let PX : Rn → X be the orthogonal projection onto X (Rockafellar and Wets, 1988).

Subsequently, we generate a sequence of solutions {xk} through the following steps:

ProSHLA

Step 1. Set iteration counter k = 0 and pass counter m = 0. Construct an initial convex function
Q̂0(x). Maintain a sequence of points: {xk}. Let m be the number of the first iteration of
the m pass.

Step 2. Obtain x0 = arg min
x∈X

Q̂0(x).

Step 3. Obtain q̂k(xk) and gk. Let m = k, xm = xk, and q̂m(xm) = q̂k(xk). Update Q̂k+1(x) by

Q̂k+1(x) = Q̂k(x) + ak(gk − q̂k(xk))Tx.

Step 4. Obtain xk+1 by
xk+1 = arg min

x∈X
Q̂k+1(x). (8)

Step 5. If |q̂m(xk+1)− q̂m(xm)| > 0 or xk+1 = xm, then update the pass counter m = m+ 1 and
go to step 7; otherwise, go to Step 6.

Step 6. Obtain xk+1 by
xk+1 = PX(xk − akgk). (9)

Thereafter, go to Step 5.

Step 7. Check for convergence (e.g., an improvement in Q̂k(x) in the last K iterations). If the
check fails, then set k = k + 1, and go to Step 3; otherwise, terminate.

Figure 1: Description of ProSHLA.

8

Specifically, ProSHLA maintains two-level loops. The first-level loop has a series of passes.

The second-level loop has a series of projection steps, which consist of Steps 5 and 6. In the

first pass, given an initial bounded and piecewise linear convex approximation function Q̂0(x),

ProSHLA begins by solving problem (1) and obtains the initial solution x0. Subsequently, we

draw a realization of the random quantity ω ∈ Ω, solve the resulting deterministic problem and

obtain a stochastic subgradient of Q̄(x). We compare the stochastic subgradient with the slope

of Q̂0(x) at x = x0. The difference of the slopes is used as a linear term to update Q̂0(x). The

updated approximation is used to obtain a new solution xk+1. When the newly obtained solution

xk+1 exhibits exactly identical subgradient vectors q̂m(xk+1) as solution xm, the piecewise linear

approximation method may jump into a local optimum. Then, from iteration k + 1, ProSHLA

enters the second-level loop and implements projection steps, in which a stochastic subgradient

method is applied to jump out from the local optimum. When a new solution xk+1 is obtained such

that q̂m(xk+1) is different from q̂m(xm), ProSHLA jumps out of the projection step and proceeds

to the next pass, and the entire process is repeated. Finally, we terminate the algorithm when the

total absolute change in Q̂l(x) over a certain number of iterations is low (e.g.,
∑k

l=k−M+1,k>M ‖

Q̂l(x)− Q̂l−1(x) ‖< δ). Note that k represents the iteration number, and it updates when ProSHLA

starts a new iteration to obtain a new solution xk+1 (in Steps 4 and 6); m represents the number

of ProSHLA crossing the projection steps, and it updates when ProSHLA satisfies the condition in

Step 5; m represents the number of the first iteration of the m pass, and it updates when ProSHLA

enters a new pass in Step 3.

The most significant difference between SHAPE and ProSHLA is that SHAPE uses strongly

convex approximation functions, whereas ProSHLA uses convex approximation functions. Strong

convexity requires a nonlinear term in the approximation function that may destroy the pure

network flow problem structure and demands additional computational effort. To overcome the

limitation of the SHAPE algorithm, the ProSHLA algorithm introduces the projection step to help

construct approximation functions, which are not strictly convex. Without this step, the ProSHLA

algorithm might become stuck in the corner solution for stochastic linear programs. Thus, ProSHLA

is designed to work with the piecewise convex problem that arises in stochastic linear programs.

9

2.2. Convergence analysis of ProSHLA

In this subsection, we state the convergence theorem of ProSHLA. Subsequently, we list several

properties of the approximation that are used to prove the convergence of ProSHLA. Finally, we

present the proof for our theorem.

Without loss of generality, we make the following assumptions.

(A.1) X ⊂ Rn is convex and compact.

(A.2) EωQ(x, ω) is convex, finite and continuous on X.

(A.3) gk is bounded such that ||gk|| ≤ C1 for each ω ∈ Ω; q̂k is bounded such that ||q̂k|| ≤ C2

for each ω ∈ Ω.

(A.4) Piecewise linear functions Q̂k(x) are convex, implying that Q̂k(x)−Q̂k(y) ≤ q̂k(x)T (x−y).

(A.5) The stepsizes ak are Hk-measurable and satisfy

0 < ak < 1,

∞∑
k=0

E{a2k} ≤ ∞.

We note that assumption (A.1) holds if Q(x, ω) denotes a convex hull of a finite number of

points. Generally, given that Q(x, ω) is real-valued and convex over the entire space Rn, the sub-

differential ∂Q̂k(x) is nonempty and compact for all x. Specifically, assumption (A.3) is satisfied if

each Q(x, ω) is polyhedral (i.e., it is the point-wise maximum of a finite number of affine functions).

In addition to the assumptions from (A.1) to (A.5), the following assumption is required to

characterize the piecewise linear convex approximation functions.

(A.6) There exists a constant δ and a positive b > 0, such that for any two points x, y ∈ X, if

|x − y| > δ, then |q̂(x) − q̂(y)| ≥ b|x − y|. If there exists q̂(x) and q̂(y) such that q̂(x) − q̂(y) = 0,

then |x − y| ≤ δ. If δ → ∞, then the function becomes purely linear; if δ → 0, then the function

corresponds to a strongly convex function.

Given assumptions (A.1) to (A.6), we obtain the following preliminary result of ProSHLA.

10

Theorem 1. If assumptions (A.1)-(A.6) are satisfied, then the sequence of {xk} generated by

ProSHLA converges almost surely to the optimal solution x∗ ∈ X∗ of problem (1).

2.2.1. Properties of approximations

We state the Martingale convergence theorem that is used to prove the convergence of some

stochastic subgradient methods (Taylor, 1990).

MARTINGALE CONVERGENCE THEOREM. A sequence of random variables {W k},

which are Hk-measurable, is said to be a supermartingale if the sequence of conditional expectations

E{W k+1|Hk} exists and satisfies E{W k+1|Hk} ≤W k.

Theorem 2. (From Neveu, 1975, p.26) Let W k be a positive supermartingale. Then, W k converges

to a finite random variable a.s.

The above definition indicates that W k is essentially the stochastic analogue of a decreasing

sequence.

Notably, our algorithm adjusts the approximations by a linear term at each iteration. Thus, in

conjunction with assumption (A.6), the following property is obtained:

Proposition 1. For any two points x1 and x2, if q̂0(x1) = q̂0(x2), then q̂k(x1) = q̂k(x2) for any

k > 1.

The proposition holds because the approximation functions are updated by linear terms.

Proposition 2. For any two iterations in the mth pass, say xj and xj
′
, q̂k(xj) = q̂k(xj

′
) = q̂m(xj)

for any m ≤ k < m+ 1.

The proposition holds because the approximation functions are not updated when the algorithm

performs the projection steps.

On the basis of the convexity property, the optimal solution for problem (8) at iteration m is

characterized by the following variational inequality:

(q̂m(xm))T (x− xm) ≥ 0, ∀x ∈ X. (10)

11

To obtain Theorem 1, we require the following three lemmas. The first lemma indicates that the

difference between the solutions of two consecutive passes is bounded by the stepsize and magnitude

of the stochastic gradient. The second lemma shows that the approximation Q̂k(x) is finite, and

the third lemma indicates that T k (which is explained later) is bounded.

Lemma 1. For any two iterations i ∈ [m,m+ 1) and j ∈ [m+ 1,m+ 2), solutions xi and xj

produced by ProSHLA satisfy the following:

amg
m(xi − xj) ≤ (amC1)

2/(b). (11)

Proof. Consider a special case, where i and j correspond to two consecutive iterations. Let

i = m+ 1− 1 and j = m+ 1. On the basis of (10), we know that,

(q̂m+1(xm+1))T (x− xm+1) ≥ 0, ∀x ∈ X. (12)

On the basis of the updating rule of the approximation function, we obtain

(q̂m+1−1(xm+1) + am+1−1(g
m+1−1 − q̂m+1−1(xm+1−1)))T (x− xm+1) ≥ 0, ∀x ∈ X. (13)

We substitute x with xm+1−1 in (13) and obtain

am+1−1(g
m+1−1 − q̂m+1−1(xm+1−1))T (xm+1−1 − xm+1) ≥ q̂m+1−1(xm+1)T (xm+1 − xm+1−1). (14)

We rearrange the terms to obtain the following expression:

am+1−1(g
m+1−1)T (xm+1−1 − xm+1) ≥ q̂m+1−1(xm+1)T (xm+1 − xm+1−1) (15)

− am+1−1 · (q̂
m+1−1(xm+1−1)T (xm+1 − xm+1−1))

= (q̂m+1−1(xm+1)− q̂m+1−1(xm+1−1))T (xm+1 − xm+1−1)

+ (1− am+1−1)q̂
m+1−1(xm+1−1)T (xm+1 − xm+1−1).

If iterationsm+ 1−1 andm+ 1 are not in the same pass, and this implies that q̂m+1−1(xm+1−1) 6=

q̂m+1−1(xm+1). Based on assumption (A.6), we known that |q̂m+1−1(xm+1−1)− q̂m+1−1(xm+1)| ≥

b|xm+1−1 − xm+1|.

12

On the basis of Equation (10), Equation (13), and 0 < am+1−1 < 1, we obtain

am+1−1(g
m+1−1)T (xm+1−1 − xm+1) ≥ b||xm+1−1 − xm+1||2

+ (1− am+1−1)q̂
m+1−1(xm+1−1)T (xm+1 − xm+1−1)

≥ b||xm+1−1 − xm+1||2.

We apply Schwartz’s inequality to obtain the following expression:

am+1−1||g
m+1−1|| · ||xm+1−1 − xm+1|| ≥ am+1−1(g

m+1−1)T (xm+1−1 − xm+1)

≥ b||xm+1−1 − xm+1||2.

Thus, ||xm+1−1 − xm+1|| ≤ am+1−1C1/b. The following expression is applicable:

am+1−1(g
m+1−1)T (xm+1−1 − xm+1) ≤ (am+1−1C1)

2/b. (16)

For any i ∈ [m,m+ 1− 1], gi = gm = gm+1−1 and q̂i(x) = q̂m(x) = q̂m+1−1(x). Therefore,

am(gm)T (xi − xm+1) ≤ (amC1)
2/b. (17)

For any i ∈ [m,m+ 1 − 1] and j ∈ [m+ 1,m+ 1 − 1], q̂j(x) = q̂m+1(x) = q̂m+1−1(x) for any

x ∈ X. Therefore,

am(gm)T (xi − xj) ≤ (amC1)
2/b. (18)

Lemma 2. The approximation function Q̂k(x) in iteration k can be written as Q̂k(x) = Q̂0(x) +

(ḡk)Tx, where ḡk is a finite vector.

Proof. According to Equation (5), the approximation in iteration k is the initial approximation

Q̂0(x) plus a linear term as follows:

Q̂k(x) = Q̂0(x) + (ḡk)Tx. (19)

Here, (ḡk)Tx shows the cumulative change of Q̂0 up to iteration k. We will demonstrate below that

ḡk is a finite vector for any k.

13

Taking the first derivative of Q̂k(x) in Equation (19), we have

q̂k(x) = q̂0(x) + ḡk. (20)

On the basis of Equations (7) and (20), we can obtain Q̂k+1(x) as follows:

Q̂k+1(x) = Q̂k(x) + ak(gk − q̂k(x))Tx

= Q̂0(x) + (ḡk)Tx+ ak(gk − q̂k(x))Tx

= Q̂0(x) + (ḡk)Tx+ ak(gk − q̂0(x) + ḡk)Tx.

Thus, we can obtain the relationship between ḡk+1 and ḡk as follows:

ḡk+1 = ak(gk − q̂0(xk)) + (1− ak)ḡk. (21)

From the Equation (21), we conclude that ḡk+1 is a linear combination of g1, g2, ..., gk. Since

gk and q̂0(xk) are finite, there exists a finite and positive vector d̂ such that

d̂ ≥ max
k
|gk − q̂0(xk)|, (22)

where the inequality is applied componentwise.

According to Lemma 2 in Cheung and Powell (2000), we can conclude that ḡk+1 ≤ d̂.

Let T k = Q̂k(x∗) − Q̂k(xk), where x∗ denotes the optimal solution. The following lemma

characterizes the difference between T k+1 and T k.

Lemma 3. For any two iterations i ∈ [m− 1,m− 1] and j ∈ [m,m+ 1− 1], T i and T j satisfy

T j − T i ≤ am(gm)T (xi − xj) + am(gm)(x∗ − xi). (23)

Proof. We consider a special case. Let i = m and j = m+ 1. By re-writing x∗ − xm+1 as

x∗ − xm + xm − xm+1, we obtain

Q̂m+1(x) = Q̂m+1−1(x) + am+1−1(g
m+1−1 − q̂m+1−1(xm+1−1))Tx

= Q̂m(x) + am(gm − q̂m(xm))Tx.

14

Subsequently,

Tm+1 − Tm = Q̂m(x∗) + am(gm − q̂m(xm))Tx∗ −

(Q̂m(xm+1) + am(gm − q̂m(xm)Txm+1))− (Q̂m(x∗)− Q̂m(xm))

= am(gm − q̂m)T (x∗ − xm + xm − xm+1) + Q̂m(xm)− Q̂m(xm+1)

= (Q̂m(xm)− Q̂m(xm+1)− am(q̂m)T (xm − xm+1))︸ ︷︷ ︸
I

− am(q̂m)T (x∗ − xm)︸ ︷︷ ︸
II

+ am(gm)T (xm − xm+1)︸ ︷︷ ︸
III

+ am(gm)T (x∗ − xm)︸ ︷︷ ︸
IV

.

We consider each part individually. Given that q̂m ∈ ∂Q̂m(xm), by convexity of Q̂m(x), we

obtain

Q̂m(xm)− Q̂m(xm+1) ≤ (q̂m)T (xm − xm+1). (24)

Hence, the following expression is applicable.

Q̂m(xm)− Q̂m(xm+1) ≤ (q̂m)T (xm − xm+1) (25)

= (1− am)(q̂m)T (xm − xm+1) + am(q̂m)T (xm − xm+1). (26)

Given Equation (10) and 0 < am < 1, we know that (I) ≤ 0. Additionally, from Equation (10)

and 0 < am < 1, we know that (II) ≥ 0. Thus, Tm+1−Tm ≤ am(gm)T (xm−xm+1)+am(gm)(x∗−

xm).

For any i ∈ [m,m+ 1− 1], gi = gm = gm+1−1 and q̂i(x) = q̂m(x) = q̂m+1−1(x) for any x ∈ X.

Therefore,

Tm+1 − T i ≤ am(gm)T (xi − xm+1) + am(gm)(x∗ − xi). (27)

For any i ∈ [m,m+ 1− 1] and j ∈ [m+ 1,m+ 2− 1], Q̂j(x) = Q̂m+1(x) = Q̂m+2−1(x) for any

x ∈ X. Therefore,

T j − T i ≤ am(gm)T (xi − xj) + am(gm)(x∗ − xi). (28)

15

2.2.2. Proof of Theorem 1

With regard to our main result, we consider two cases. In the first case, the algorithm does

not terminate in a given pass. Therefore, any pass before the algorithm terminates exhibits finite

iterations, that is, m+ 1 −m < M for any m, where M denotes a large number. In the second

case, the algorithm may halt in a given pass. We prove Theorem 1 in each case.

Case 1: The algorithm does not terminate in a given pass.

In this case, we consider a subsequence of {xk}, {xm}. We prove that the subsequence {xm}

converges to the true optimal x∗.

By the definition of gk ∈ ∂Q(xk, wk+1),

(gk)T (x∗ − xk) ≤ Q(x∗, wk+1)−Q(xk, wk+1), (29)

where Q(x,wk+1) denotes the recourse function given the outcome wk+1.

Lemma 1 implies the following:

amg
m(x∗ − xm) ≤ (amC1)

2/(b). (30)

Based on Lemma 3, the difference Tm+1 − Tm is as follows:

Tm+1 − Tm = am(gm)T (xm − xm+1) + am(gm)T (x∗ − xm) (31)

≤ −am(Q(xm, wm+1)−Q(x∗, wm+1)) + am(gm)T (x∗ − xm) (32)

≤ −am(Q(xm, wm+1)−Q(x∗, wm+1)) + (amC1)
2/(b). (33)

We take conditional expectation with respect to Hk on both sides and obtain

E{Tm+1|Hm} ≤ Tm − am(Q̄(xm)− Q̄(x∗)) + (C1am)2/(b), (34)

where Tm, am and xm on the right-hand side are deterministic given the conditioning on Hk. The

conditioning on Hk does not provide any information on wk+1. Thus, we replace Q(x,wm+1) (for

16

x = xk and x = x∗) with its expectation Q̄(x). Given that am(Q̄(xm)− Q̄(x∗)) ≥ 0, the sequence

Wm = Tm + (C2
1/b)

∞∑
i=m

a2i (35)

is a positive supermartingale. Theorem 2 implies the almost sure convergence of Wm. Thus,

Tm → T ∗ a.s. (36)

We perform the summation of (33) from 0 to M and obtain the following expression:

TM+1 − T 0 ≤ −
M∑

m=0

am(Q(xm, wm+1)−Q(x∗, wm+1)) +

M∑
m=0

(amC1)
2/b. (37)

We take the expectations of both sides. For the first term on the right-hand side, we take the

conditional expectation with respect to Hm and then over all Hm.

E{TM+1 − T 0} ≤ −
M∑

m=0

E{E{am(Q(xm, ωm+1)−Q(x∗, ωm+1))|Hm}}+ E{
M∑

m=0

(C1am)2/(b)}

≤ −
M∑

m=0

E{am(Q̄(xm)− Q̄(x∗))|Hm}+ C2
1/b

M∑
m=0

E{a2m}. (38)

We take the limit as M →∞ and use the finiteness of Tm and
∑∞

m=0E{a2m} to obtain

M∑
m=0

E{am(Q̄(xm)− Q̄(x∗))|Hm} <∞. (39)

Given thatQ(xm, ωm+1)−Q(x∗, ωm+1) ≥ 0 and
∑∞

m=0 am =∞ (a.s.), there exists a subsequence

{m} such that

Q̄(xm)→ Q̄(x∗) a.s.

By continuity of Q, the sequence converges. Thus,

xm → x∗ a.s. (40)

Then, we construct another subsequence {xm−1}. Based on (33),

Tm+2−1 − Tm+1−1 ≤ −am(Q(xm+1−1, wm+2−1)−Q(x∗, wm+2−1)) + (C1am)2/(b). (41)

17

Similarly, we can prove the following:

xm−1 → x∗ a.s.

By similar logic, we can show that a very general subsequence {xi}, i ∈ [m,m+ 1−1] converges

to x∗ almost surely. We call the class of subsequence Xs.

All passes include finite iterations. Therefore, given any subsequence of xk, we can extract a

subsequence that belongs to Xs. Subsequently, we reach the following conclusion:

xk → x∗ a.s.

Case 2: The algorithm terminates in a given pass.

In this case, the algorithm terminates at a purely projected stochastic gradient procedure that

produces a convergent sequence.

Therefore, we reach the conclusion. �

The results indicate that ProSHLA is convergent. As indicated in the analysis above, the

approximation function Q̂(x) is required to be piecewise linear convex. We are interested in a

special case in which separable functions are used to approximate the expected recourse function for

two-stage stochastic programs with network recourse. According to Equation (4), if the separable

functions are linear or piecewise linear, then problem (1) can be solved as a pure network flow

problem for the network recourse problem, which is a well-known polynomial solvable problem.

3. ProSHLA using separable piecewise linear functions for two-stage stochastic
programs with network recourse

If Q̂(x) is separable for two-stage stochastic programs with network recourse, then we can further

simplify ProSHLA by dropping the projection steps. The stochastic hybrid learning algorithm

(SHLA) is the simplified version of ProSHLA and is described as follows.

Generally, SHLA is not convergent. However, when it is applied to two-stage stochastic

programs with network recourse, it enjoys several advantages as follows: (1) at each iteration,

18

SHLA

Step 1. Set the iteration counter k = 0. Construct an initial piecewise linear convex function
Q̂0(x). Maintain a sequence of points {xk}.

Step 2. Solve the problem xk = arg min
x∈X

Q̂k(x) and obtain q̂k(xk).

Step 3. Obtain gk. Update Q̂k(x) by

Q̂k+1(x) = Q̂k(x) + ak(gk − q̂k(xk))Tx. (42)

Step 4. Check for termination (e.g., an improvement in Q̂k(x) in the last K iterations). If the
check fails, then set k = k + 1 and go to Step 2; otherwise, terminate.

Figure 2: Description of SHLA.

problem Q(x, ω) is a simple network flow problem that can be solved by polynomial algorithms,

and (2) the solution of Q(x, ω) is naturally integer.

When separable functions are used, assumption (A.6) is easily satisfied by artificially setting

the expression, as follows:

q̂0i (xi) < q̂0i (xi + δ).

Notably, our algorithmic strategy allows flexibility in choosing initial approximation functions

with different values of δ. Assuming that we set δ = 1 for i = 1, .., n, we can guarantee

(A.7) q̂0i (xi) < q̂0i (xi + 1).

Subsequently, we can reach the following theorem:

Theorem 3. Given the additional assumption (A.7), SHLA is convergent for problems with network

recourses.

Proof. Based on assumption (A.7), with respect to any two different x, y ∈ X,

q̂k(x) 6= q̂k(y).

Therefore,

|q̂k(x)− q̂k(y)| > 0.

19

If we apply ProSHLA (δ = 1) with such separable piecewise linear functions to two-stage

stochastic programs with network recourse, then it never proceeds to the projection steps. In this

case, ProSHLA is equivalent to SHLA. Thus, SHLA is convergent. �

The analysis provides theoretical support for SHLA-type algorithms that are applied to

operational management applications. Compared with SHAPE, SHLA does not require nonlinear

functions and can thus solve each subproblem efficiently. Furthermore, SHLA does not require

maintaining the convexity of the approximation functions because convexity is automatically

maintained when the initial piecewise linear functions are properly constructed.

4. Experimental results of performance analysis

To evaluate the performance of the algorithms, two experimental designs are investigated: (1) an

empty container repositioning problem that arises in the context of two-stage stochastic programs

with network recourse, and (2) a high-dimensional resource allocation problem. All experiments

are implemented on a PC with an Intel Core i7 CPU at 3.5 GHZ and 16 GB of RAM and ILOG

CPLEX 12.6. Through the numerical experiments on the empty container repositioning problem,

we demonstrate the effectiveness and efficiency of ProSHLA and SHLA, study the convergence

performance of ProSHLA and SHLA, as well as examine how δ affects the convergence performance,

and how robust ProSHLA and SHLA perform under different distributions of random demands.

According to the setting of the empty container repositioning problem in actual practice, the

number of ports in the container network can only be set to 40 in maximum. Therefore, in order

to examine the performance of ProSHLA for larger sized instances, we have further conducted

numerical experiments on a high-dimensional resource allocation problem for a warehouse-retailer

network with 100 locations.

4.1. Problem generator for empty container repositioning problem

We consider the application motivated by the empty container repositioning problem faced by

a major Chinese freight forwarder. The forwarder needs to manage several empty containers in a

port network that is physically located in the Pearl River Delta (PRD) region of Southern China.

20

In contrast to the empty container repositioning problem of a shipping liner in which the containers

are repositioned in a set of ports on a fixed route (Song and Dong, 2008), in our application, the

empty containers are actually repositioned in a port network that consists of several hubs (large

terminals) and spokes (small ports). The demand for the empty containers is uncertain. Therefore,

the problem belongs to a class of dynamic fleet management problems that is formulated as two-

stage stochastic programs with network recourse. To formally describe the problem, we define the

following notations:

L = set of ports,

si = initial number of empty containers at Port i,

Si = number of empty containers at Port i in Stage 2,

rij = profit for moving a laden container from Port i to Port j,

cij = cost for moving an empty container from Port i to Port j,

dij = demand from Port i to Port j in Stage 1,

Dij = demand from Port i to Port j in Stage 2,

xij = number of laden containers shipped from Port i to Port j in Stage 1,

yij = number of empty containers shipped from Port i to Port j in Stage 1,

xij(ω) = number of laden containers shipped from Port i to Port j for sample ω in Stage 2,

yij(ω) = number of empty containers shipped from Port i to Port j for sample ω in Stage 2.

Subsequently, we formulate the problem as follows:

min
x,y

∑
i∈L

∑
j∈L
{−rijxij + cijyij}+ Eω[Q(x, ω)], (43)

21

subject to

∑
j

(xij + yij) = si, ∀i ∈ L (44)

∑
i

(xij + yij) = Sj , ∀j ∈ L (45)

0 ≤ xij ≤ dij ,∀i, j ∈ L (46)

yij ≥ 0,∀i, j ∈ L, (47)

where the recourse function Q(x, ω) is given as follows:

Q(x, ω) = min
x(ω),y(ω)

∑
i∈L

∑
j∈L
{−rijxij(ω) + cijyij(ω)}, (48)

subject to

∑
j∈L

(xij(ω) + yij(ω)) = Si, ∀i ∈ L (49)

0 ≤ xij(ω) ≤ Dij(ω), ∀i, j ∈ L (50)

yij(ω) ≥ 0.∀i, j ∈ L. (51)

We create a set of problem instances to evaluate the algorithm. The problem generator creates

ports in L in a 100 mile by 100 mile rectangle. We simply use the Euclidean distance between each

pair of ports as the corresponding travel distance. The net profit for a demand is set to 500 cents

per mile. The empty cost is set to 40 cents per mile. The holding cost for a demand is set to 15

cents per time instance. The demand Dij between locations i and j is set as follows:

Dij = ini · outj · v,

where

ini = inbound potential for Port i;

outj = outbound potential for Port j;

v = random variable.

22

The inbound and outbound potentials for each location capture the capability of the port

to attract inbound flows or generate outbound flows. The inbound potential for Port i, ini, is

drawn uniformly between 0.2 and 1.8. The corresponding outbound potential outi is obtained by

outi = 2 − ini. Therefore, these two potentials are negatively correlated. The motivation for the

setting is partly because real-world application regions with large inbound flows typically exhibit

small outbound flows. To capture the randomness in demand, we also include a random number

v with mean 30, that is, the typical daily demand between each pair of locations. To evaluate the

effects of different distributions of the random demand, we consider three types of distributions:

normal, exponential, and uniform. The step-sizes ak are set to 1/k.

To construct initial piecewise linear functions, we solve a deterministic network flow problem

in which random demands are replaced by their mean values. Subsequently, we obtain S̄ =

{S̄1, S̄2, ..., S̄n}. For each i ∈ L, we generate the initial approximation function Q̂0
i (x) by

Q̂0
i (x) = c(x− S̄i)2, x = 0, δ,, kδ, ...,Kδ,

where c is a positive parameter and x ∈ [0,Kδ]. In the projection step, we solve a least-squares

problem as follows:

xk+1 = arg min(xk+1 − (xk + akg
k(xk)))2, xk+1 ∈ X.

4.2. Effectiveness and efficiency performance

We use the posterior bound (PB), a myopic algorithm, the L-shaped algorithm (Van Slyke

and Wets, 1969), and the inexact cut algorithm (Zakeri et al., 2000) as benchmarks to test the

effectiveness and efficiency of the algorithms. We need to solve a deterministic network flow problem

with all realized demands to obtain the PB. Such a posterior optimization involves no uncertainty

because decisions with anticipation of future demands are allowed. Therefore, the cost of PB is

low and normally unreachable, and it is used as the lower bound (Cheung and Powell, 1996). The

myopic algorithm simply solves a static deterministic assignment problem at the current stage while

ignoring uncertainties in the second stage. For the L-shaped and inexact cut algorithms, a group

of linear programming problems with a series of cutting planes must be solved.

23

In the experiment, we consider eight instances, in which the number of ports is increased from

5 to 40 and the number of empty containers is increased from 400 to 3200. In each instance, we

run 2000 samples and obtain the sample means of PB. We also obtain the solutions of the myopic,

L-shaped, inexact cut algorithms, as well as SHLA and ProSHLA. For SHLA, we select two classes

of initial functions with δ = 1 and δ = 2. For ProSHLA, we select δ = 2.

Table 1: Total cost for SHLA and ProSHLA.

Total cost (dollars)

|L| NR PB Myopic L-shaped Inexact cut SHLA-1 SHLA-2 ProSHLA

5 400 -28551302 -27761331 -28551274 -28551027 -28464248 -28463941 -28464002

10 800 -59397423 -58432159 -59396702 -59396219 -59338653 -59338190 -59338341

15 1200 -98451193 -93188576 -98449868 -98449027 -98257484 -98257244 -98257395

20 1600 -147390005 -141062187 -147388360 -147386932 -147269239 -147269212 -147269213

25 2000 -185223883 -180875614 -185220423 -185218963 -185092289 -185092113 -185092143

30 2400 -234005740 -226978090 -234004427 -234002713 -233401849 -233401516 -233401658

35 2800 -266375728 -260966356 -266375468 -266373497 -266337862 -266337649 -266337660

40 3200 -304910355 -293882881 -304908597 -304907329 -304907153 -304906829 -304906962

The experiment results on total cost are shown in Table 1. Column 1 of Table 1 shows the

number of ports while Column 2 presents the number of empty containers. Column 3 contains

the PB. Columns 4 to 9 contain the solutions achieved by the myopic, L-shaped, and inexact cut

algorithms, as well as SHLA-1, SHLA-2, and ProSHLA. The results demonstrate that the solutions

of the L-shaped algorithm can achieve optimal solutions, which are very close to the PB (within

0.002% gap from PB). The solutions of the inexact cut algorithm, SHLA, and ProSHLA are better

than those of the myopic algorithm. Furthermore, SHLA (δ = 1) produces better results than

SHLA (δ = 2) and ProSHLA (δ = 2) because a small δ leads to good solutions. We will have

a special discussion with the impact of δ later in the following subsection. Meanwhile, ProSHLA

(δ = 2) slightly outperforms SHLA (δ = 2). The reason is that the projection steps in ProSHLA

improve the solution. As the speed of convergence is quite important in practical problems, our

focus is on the computation time for different algorithms (Table 2).

As shown in Table 2, SHLA and ProSHLA are more efficient than the L-shaped and inexact

cut algorithms because SHLA and ProSHLA utilize the network structure while approximating the

objective function. The L-shaped and inexact cut algorithms are time consuming because 2000

samples are used in this experiment, corresponding to a large number of cuts for the L-shaped and

24

Table 2: Computational time for SHLA and ProSHLA.

Computation time (s)

|L| NR L-shaped Inexact cut SHLA-1 SHLA-2 ProSHLA

5 400 153 76 28 28 43

10 800 535 382 90 95 148

15 1200 1140 598 224 217 332

20 1600 2277 1084 417 420 628

25 2000 4190 1843 676 790 1107

30 2400 5491 2338 1112 1066 1559

35 2800 8075 4249 1539 1531 2341

40 3200 18636 8154 3010 3428 5307

inexact cut algorithms. The experiment results also demonstrate that the inexact cut algorithm

requires less computation time than the L-shaped algorithm because there exist fewer valid cuts

in the inexact cut algorithm than the optimality cuts in the L-shaped algorithm. Furthermore,

the computation time of SHLA (δ = 1) is nearly the same as that of SHLA (δ = 2). This finding

indicates that the choice of δ does not affect the computation time. However, ProSHLA (δ = 2)

requires more computation time than SHLA (δ = 2) because the projection steps in ProSHLA are

time consuming. In the following subsections, we focus on the convergence performance of SHLA

and ProSHLA. According to the results in Table 1, the solutions of the L-shaped algorithm are

very close to those of PB. Thus, we only demonstrate the results of PB, the myopic algorithm,

SHLA, and ProSHLA. Here, the solutions for PB and the myopic algorithm are used as the lower

and upper bounds, respectively.

4.3. Convergence performance

We conduct a set of experiments to examine the convergence rate of ProSHLA and SHLA. In

this part, we select the second instance (NL = 10 and NR = 800) for the purpose of illustration.

The number of samples is set from 20 to 640, and the results of each iteration are recorded. As

shown in Figure 3, ProSHLA and SHLA-1 exhibit a remarkably high convergence rate.

To further examine the manner in which δ affects the convergence performance, we conduct

a set of experiments in which we increase the number of samples from 20 to 640 and δ from 1

to 16. For each combination, we record the sample means of PB, the solutions of ProSHLA and

SHLA, and the myopic method. Figures 4 and 5 show the 3D plots of the results. In Figure 4, the

25

Figure 3: Convergence rate of ProSHLA and SHLA.

SHLA and ProSHLA layers are extremely close to the PB layer, implying that SHLA and ProSHLA

exhibit a rapid convergence rate for various δ. Furthermore, it demonstrates that the performance

of ProSHLA slightly exceeds that of SHLA. To further explore the difference between ProSHLA

and SHLA intuitively, we illustrate SHLA and ProSHLA separately (without PB and the myopic

algorithm) in Figure 5. As shown in the figure, the performance of SHLA and ProSHLA is affected

by δ, and a small δ leads to good solutions.

Figure 4: Gaps to PB for various δ. Figure 5: Comparison of ProSHLA and SHLA for
various δ.

Table 3 below provides further details of the convergence performance of SHLA and ProSHLA

26

for various δ. It also clearly demonstrates that in conjunction with the small δ, the performance of

SHLA and ProSHLA is close to that of PB.

Table 3: Performance under various δ (number of samples is 2000).

Total cost - % gap to PB (computation time in seconds)

δ PB Myopic SHLA ProSHLA

1 -59397423 1.6251% 0.0989%(909.5) 0.0989%(1441.5)

2 -59397423 1.6251% 0.0997%(907.9) 0.0995%(1506.5)

4 -59397423 1.6251% 0.1001%(901.8) 0.0997%(1503.6)

6 -59397423 1.6251% 0.1005%(911.5) 0.1004%(1553.5)

8 -59397423 1.6251% 0.1028%(901.7) 0.1024%(1535.6)

16 -59397423 1.6251% 0.1189%(920.3) 0.1150%(1565.4)

4.4. Performance under various distributions

We attempt to examine whether or not the distribution of random demands affects the

performance. As the exponential distribution has been examined in Subsections 4.2 and 4.3, we

consider another two distributions in this subsection: the normal and uniform distributions. The

results are presented in Tables 4 and 5.

Table 4: Performance under uniform distributions.

Total cost - % from optimal (CPU time in seconds)

No.Samples PB Myopic SHLA-1 SHLA-2 ProSHLA

20 -47033196 7.0596% 0.6400%(10.1) 0.6411%(12.0) 0.6410%(14.5)

40 -46953805 7.2430% 0.5728%(18.7) 0.5737%(20.5) 0.5733%(26.9)

80 -46924799 7.1129% 0.5377%(37.2) 0.5388%(40.4) 0.5382%(54.8)

120 -46838644 7.1220% 0.4179%(56.1) 0.4186%(61.6) 0.4184%(83.0)

160 -46855277 7.1063% 0.4318%(74.9) 0.4327%(87.8) 0.4326%(110.3)

200 -46854227 7.1248% 0.4129%(93.0) 0.4140%(114.0) 0.4131%(138.8)

240 -46833626 7.1516% 0.4118%(112.4) 0.4130%(123.2) 0.4120%(167.1)

280 -46823765 7.1447% 0.3846%(131.3) 0.3866%(151.3) 0.3851%(195.2)

320 -46833694 7.1192% 0.4010%(149.0) 0.4026%(170.7) 0.4012%(221.8)

360 -46814211 7.1201% 0.3901%(163.8) 0.3908%(190.7) 0.3901%(260.2)

400 -46817694 7.1171% 0.3823%(183.5) 0.3829%(214.0) 0.3824%(280.4)

440 -46810860 7.1177% 0.3826%(200.8) 0.3831%(237.8) 0.3826%(309.8)

480 -46804103 7.1203% 0.3742%(220.6) 0.3749%(254.0) 0.3744%(338.6)

520 -46803204 7.1232% 0.3718%(238.2) 0.3732%(279.4) 0.3719%(370.3)

560 -46802228 7.1154% 0.3766%(257.6) 0.3787%(296.4) 0.3766%(399.8)

600 -46805244 7.1204% 0.3783%(276.6) 0.3799%(331.6) 0.3783%(431.9)

640 -46800538 7.1302% 0.3792%(298.0) 0.3807%(342.6) 0.3796%(462.2)

As shown in Tables 4 and 5, the results of normal and uniform distributions are consistent

with those of exponential distribution. In addition, ProSHLA and SHLA achieve near-optimal

27

Table 5: Performance under normal distributions.

Total cost - % from optimal (CPU time in seconds)

No.Samples PB Myopic SHLA-1 SHLA-2 ProSHLA

20 -47033196 6.5779% 0.0458%(10.4) 0.0473%(10.6) 0.0473%(14.3)

40 -46953805 6.6132% 0.0314%(18.4) 0.0349%(18.0) 0.0349%(27.1)

80 -46924799 6.6001% 0.0225%(36.6) 0.0259%(36.1) 0.0256%(54.4)

120 -46838644 6.6022% 0.0106%(54.9) 0.0149%(54.3) 0.0140%(83.1)

160 -46855277 6.6072% 0.0184%(73.7) 0.0222%(72.1) 0.0216%(114.0)

200 -46854227 6.6138% 0.0165%(92.4) 0.0201%(89.8) 0.0196%(137.2)

240 -46833626 6.6135% 0.0152%(111.0) 0.0189%(107.3) 0.0186%(165.1)

280 -46823765 6.6125% 0.0161%(127.8) 0.0199%(126.7) 0.0200%(193.2)

320 -46833694 6.6075% 0.0178%(146.4) 0.0214%(144.7) 0.0218%(218.5)

360 -46814211 6.6074% 0.0171%(163.8) 0.0209%(160.9) 0.0206%(246.7)

400 -46817694 6.6078% 0.0173%(182.9) 0.0208%(179.5) 0.0209%(276.7)

440 -46810860 6.6084% 0.0177%(204.3) 0.0215%(198.5) 0.0213%(302.7)

480 -46804103 6.6083% 0.0173%(223.2) 0.0210%(217.1) 0.0208%(332.9)

520 -46803204 6.6093% 0.0186%(239.5) 0.0221%(233.6) 0.0219%(362.2)

560 -46802228 6.6091% 0.0187%(264.4) 0.0219%(251.5) 0.0221%(390.4)

600 -46805244 6.6092% 0.0177%(286.8) 0.0210%(271.2) 0.0209%(421.2)

640 -46800538 6.6101% 0.0175%(309.8) 0.0207%(291.2) 0.0208%(488.3)

solutions and exhibit rapid convergence rate. The results are consistent with the fact that the

algorithms provided do not require any information on the demand distribution, that is, they are

distribution-free.

4.5. Performance on a high-dimensional resource allocation problem

In this subsection, we evaluate the performance of ProSHLA on a high-dimensional resource

allocation problem. The problem can be illustrated as follows. There is a set of production facilities

(with warehouses) L and a set of retailers R. First, an amount xij is transported from the

production facility i to a warehouse or retailer location j prior to retail demand realization in

Stage 1. When the retail demands are known, we then move yij products from location i to retailer

location j. In addition, there exist various types of demands at each retailer location j, indexed by

t ∈ T : Dt
j is the demand of type t at retailer location j. We provide pti units of demand of type t

at retailer location i, and the production capacity of facility i is denoted as capi.

Subsequently, we can formulate the problem as follows:

28

min
∑
i∈L

∑
j∈L∪R

c1ijxij + Eω[Q(x, ω)], (52)

subject to

∑
j∈L∪R

xij ≤ capi, ∀i ∈ L, (53)

∑
i∈L

xij = sj , ∀j ∈ L ∪R, (54)

xij , sj ≥ 0, ∀i ∈ L, ∀j ∈ L ∪R, (55)

where the recourse function Q(x, ω) is given as follows:

Q(x, ω) = min
∑

i∈L∪R

∑
j∈R

c2ijyij −
∑
i∈R

∑
t∈T

rtip
t
i, (56)

subject to

∑
j∈R

yij = si, ∀i ∈ L ∪R, (57)

∑
i∈L∪R

yij =
∑
t∈T

ptj , ∀j ∈ R, (58)

ptj ≤ Dt
j(ω), ∀t ∈ T , j ∈ R, (59)

yij , p
t
j ≥ 0, ∀i ∈ L ∪R, j ∈ R, t ∈ T . (60)

In the first stage, we set c1ij = c10 + c11dij , where dij is the Euclidean distance between locations

i and j, c10 is the production cost for each product, and c11 is the transportation cost per mile. For

the second-stage costs, we set

c2ij =


c21dij if i ∈ L or i = j,

c20 + c21dij if i ∈ R and i 6= j.

c20 to represent the fixed charge for moving each product from one retailer location to another, and

c21 is the transportation cost per mile in the second-stage. We associate revenue rti with one unit of

the demand type t that occurs in retailer location i. Our problem instances differ in the number

of products and |L ∪ R|, which determines the dimensionality of the recourse function. Note that

the recourse function Q(x, ω) for this resource allocation problem is nonseparable.

29

Similarly, we use the L-shaped algorithm (Van Slyke and Wets, 1969) and the inexact cut

algorithm (Zakeri et al., 2000) as benchmarks; these two algorithms are Benders decomposition-

based stochastic programming methods. As the speed of convergence is quite important in practical

problems, our focus is on the convergence rate. To measure the convergence rate of different

methods, we implement each algorithm for 40, 160, 640, 4000, and 8000 iterations and make a

side-by-side comparison of the algorithms when the number of iterations increases. For ProSHLA

(δ = 2), the number of iterations refers to the number of demand samples used. For the L-

shaped and inexact cut algorithms, the number of iterations refers to the number of cuts used to

approximate the expected recourse function.

The experiment results are shown in Table 6. For all problem instances, we use the L-shaped

algorithm to find the optimal solution. The numbers in the table represent the percent deviation

between the optimal and objective values that correspond to the solution obtained after a certain

number of iterations. Table 6 also lists the computation time per iteration. We present the

experimental results on five problem instances, which vary in the dimensionality of the recourse

function.

Table 6: Percent deviation over optimal solution with different algorithm costs

Number of iterations

No. |L ∪ R| NP Algorithm 40 160 640 4000 8000 Sec./iter.

1

ProSHLA 13.26 8.61 2.93 2.73 0.47 0.01

6 10 L-shaped 1.17 0 0 0 0 0.07

Inexact cut 0.96 0 0 0 0 0.05

2

ProSHLA 10.58 3.01 0.61 0.12 0.06 0.07

10 200 L-shaped 1.85 0 0 0 0 0.26

Inexact cut 1.31 0 0 0 0 0.21

3

ProSHLA 7.22 1.22 0.42 0.05 0.03 0.30

20 400 L-shaped 10.46 1.16 0 0 0 1.13

Inexact cut 6.63 0.98 0 0 0 1.04

4

ProSHLA 6.03 0.82 0.34 0.02 0.01 0.83

40 800 L-shaped 23.57 3.23 0.31 0 0 9.53

Inexact cut 17.16 2.24 0.13 0 0 8.72

5

ProSHLA 5.68 0.78 0.15 0 0 2.68

100∗ 2000 L-shaped 44.84 14.51 1.38 0.03 0.02 36.53

Inexact cut 29.56 8.14 0.91 0.03 0.02 30.98

Note : Figures represent the deviation from the best objective value known. *Optimal solution not

found.

30

As shown in Table 6,Column 1 shows the index number for the problem instance. Column 2

shows the number of locations while Column 3 presents the number of products. Column 4 lists

the methods used in the experiment. Columns 5 to 9 provide the percentage deviation from the

optimal value. Column 10 presents the computation time per iteration. The results demonstrate

that ProSHLA can produce high quality solutions rather quickly for large problems and achieve

consistent performance under different problem instances (Instances 2-5). In particular, when the

dimensionality of the problem is increased, ProSHLA continues to provide consistent performance,

and its computation time per iteration is short. This feature makes ProSHLA appealing for large-

scale problems. Compared with the two Benders decomposition-based algorithms, ProSHLA is

more competitive for large problems because separable approximations scale much more readily

to high-dimensional problems. In the first problem instance, when the network flow values are

small and the network size is also small, due to approximation errors introduced by the separable

approximation, solutions produced by our method may have a slow rate of convergence to an

optimal solution (with a percent deviation gap around 2.73% after 4000 iterations, and requiring

8000 iterations to reach a percent deviation gap of 0.47%).

According to the above results, ProSHLA is a promising method for two-stage stochastic

programs, and solutions produced by ProSHLA always guarantee to converge to an optimal solution

even when approximating a nonseparable recourse function. Due to its simplicity and fast runtime,

ProSHLA is an attractive candidate for problems where the cost of one experiment is high, and

can be used as an initialization routine for two-stage stochastic programming methods to achieve

high-quality feasible solutions.

5. Conclusion

In this study, we propose a new learning algorithm that is a hybrid of piecewise linear

approximation and stochastic subgradient methods. The algorithm is proven as convergent for

general two-stage stochastic programs. Furthermore, the results of this work indicate that with

respect to two-stage stochastic network recourse problems, a pure piecewise linear approximation

algorithm is convergent when the initial piecewise linear functions are sufficiently fine. The

31

numerical experiments indicate that both algorithms are efficient and exhibit a fast convergence

rate. Furthermore, the computation time appears to be indifferent to various values of granularity

(δ), and a small δ of the initial function leads to a high convergence rate. Finally, we

also demonstrate that the algorithms are independent of the distributions of randomness and

competitive for high-dimensional problems. This study does not explore whether the method can

be extended to other applications, especially to general two-stage stochastic integer programs. This

topic should be investigated in the future, and we expect that numerous other applications can be

solved by this approach.

Acknowledgments

This research is partially supported by the National Nature Science Foundation of China

(Project No. 71701221 and No. 71431007), the MOE (Ministry of Education in China) Project of

Humanities and Social Sciences (Project No. 17YJ630235) and the Fundamental Research Funds

for the Central Universities (Project No. 17wkpy24). We would also like to thank two anonymous

referees for constructive comments which helped to improve the paper.

References

Alem, D., Clark, A., & Moreno, A. (2016). Stochastic network models for logistics planning in

disaster relief. European Journal of Operational Research, 255(1), 187–206.

Benders, J.F. (1962). Partitioning procedures for solving mixed-variables programming problems.

Numerische Mathematik, 4(1), 238–252.

Bouzaiene-Ayari, B., Cheng, C., Das, S., Fiorillo, R., & Powell, W.B. (2016). From single

commodity to multiattribute models for locomotive optimization: A comparison of optimal

integer programming and approximate dynamic programming.Transportation Science, 50, 366–

389.

Cheung, R.K., & Chen, C.Y. (1998). A two-stage stochastic network model and solution methods

for the dynamic empty container allocation problem. Transportation Science, 32(2), 142–162.

32

Cheung, R.K., & Powell, W.B. (1996). An algorithm for multistage dynamic networks with

random arc capacities, with an application to dynamic fleet management. Operations Research,

44(6),951-963.

Cheung, R.K., & Powell, W.B. (2000). SHAPE–a stochastic hybrid approximation procedure for

two-stage stochastic programs. Operations Research, 48(1), 73–79.

Cordeau, J-F., Soumis, F., & Desrosiers, J. (2000). A Benders decomposition approach for the

locomotive and car assignment problem. Transportation Science, 34(2), 133–149.

Ermoliev, Y. (1988). Stochastic quasigradient methods. In Numerical Techniques for Stochastic

Optimization, Springer-Verlag, New York.

Girardeau, P., Leclere, V., & Philpott, A. B. (2015). On the convergence of decomposition methods

for multistage stochastic convex programs. Mathematics of Operations Research, 40(1), 130–

145.

Godfrey, G.A., & Powell, W.B. (2002). An adaptive dynamic programming algorithm for dynamic

fleet management i: single period travel times. Transportation Science, 36(1), 21–39.

Guigues, V. (2014). SDDP for some interstage dependent risk-averse problems and application to

hydro-thermal planning. Computational Optimization and Applications, 57, 167–203.

Guigues, V. (2016). Convergence analysis of sampling-based decomposition methods for risk-averse

multistage stochastic convex programs. SIAM Journal on Optimization, 26, 2468–2494.

Guigues, V. (2017a). Inexact cuts for deterministic and stochastic dual dynamic programming

applied to convex nonlinear optimization problems. arXiv preprint arXiv:1707.00812 (2017).

Guigues, V. (2017b). Multistep stochastic mirror descent for risk-averse convex stochastic programs

based on extended polyhedral risk measures. Mathematical Programming, 163, 169–212.

Guigues, V. (2018). Inexact cuts in deterministic and stochastic dual dynamic programming applied

to linear optimization problems. arXiv preprint arXiv:1801.04243 (2018).

Guigues, V., & Römisch, W. (2012). Sampling-based decomposition methods for multistage s-

tochastic programs based on extended polyhedral risk measure. SIAM Journal on Optimization,

22, 286–312.

33

Higle, J.L., & Sen, S. (1991). Stochastic decomposition: an algorithm for two-stage linear programs

with recourse. European Journal of Operational Research, 16(3), 650–669.

Infanger, G., & Morton, D. (1996). Cut sharing for multistage stochastic linear programs with

interstage dependency. Mathematical Programming, 75, 241–256.

Kim, K., & Mehrotra, S. (2015). A two-stage stochastic integer programming approach to

integrated staffing and scheduling with application to nurse management. Operations Research,

63, 1431–1451.

Kleywegt, A.J., Shapiro, A., & Homem de Mello T. (2001). The sample average approximation

method for stochastic discrete optimization. SIAM Journal on Optimization, 12(2), 479–502.

Lohmann, T., Hering, A.S, & Rebennack, S. (2016). Spatio-temporal hydro-inflow forecasting of

multireservoir inflows for hydro-thermal scheduling. European Journal of Operational Research,

255(1), 243-258.

Löhndorf, N., Wozabal, D., & Minner, S. (2013). Optimizing trading decisions for hydro storage

systems using approximate dual dynamic programming. Operations Research, 61(4), 1182–

1213.

Long, Y., Lee, L.H., & Chew, E.P. (2012). The sample average approximation method for empty

container repositioning with uncertainties. European Journal of Operational Research , 222(1),

65–75.

Moreno, A., Alem, D., Ferreira, D., & Clark, A. (2018). An effective two-stage stochastic multi-trip

location-transportation model with social concerns in relief supply chains. European Journal of

Operational Research, 269(3), 1050–1071.

Nascimento, J., & Powell, W.B. (2013). An optimal approximate dynamic programming algorithm

for concave, scalar storage problems with vector-valued controls. IEEE Transactions on

Automatic Control, 58(12), 2995–3010.

Nemirovski, A., Juditsky, A., Lan, G., & Shapiro, A. (2009). Robust stochastic approximation

approach to stochastic programming. SIAM Journal on Optimization, 19(4), 1574–1609.

Neveu, J. (1975). Discrete parameter martingales. North Holland, Amsterdam.

34

Pereira, M.V.F., & Pinto, L.M.V.G. (1991). Multi-stage stochastic optimization applied to energy

planning. Mathematical Programming, 52, 359–375.

Philpott, A.B., & Guan, Z. (2008). On the convergence of stochastic dual dynamic programming

and related methods. Operations Research Letters, 36, 450–455.

Philpott, A.B., & de Matos, V.L. (2012). Dynamic sampling algorithms for multi-stage stochastic

programs with risk aversion. European Journal of Operational Research, 218(2), 470–483.

Polyak, B.T., & Juditsky, A.B. (1992). Acceleration of stochastic approximation by averaging.

SIAM Journal on Control and Optimization, 30(4), 838–855.

Powell, W.B., Ruszczyński, A., & Togaloglu, H. (2004). Learning algorithms for separable

approximation of discrete stochastic optimization problems. Mathematics of Operations

Research, 29(4), 814–836.

Rebennack, S. (2016). Combining sampling-based and scenario-based nested benders decomposition

methods: application to stochastic dual dynamic programming. Mathematical Programming,

156(1), 343–389.

Restrepo, M.I., Gendron, B., & Rousseau, L.M. (2017). A two-stage stochastic programming

approach for multi-activity tour scheduling. European Journal of Operational Research, 262(2),

620–635.

Robbins, H., & Monro, S. (1951). A stochastic approximation method. The Annals of Mathematical

Statistics, 22(3), 400–407.

Rockafellar, R.T., & Wets, J.B. (1988). A note about projections in the implementation of

stochastic quasigradient methods. Numerical Techniques for Stochastic Optimization, Springer

Ser.Comput.Math, vol. 10. Springer, Berlin, 385–392.

Ruszczyński, A. (1987). A linearization method for nonsmooth stochastic optimization problems.

Mathematics of Operations Research, 12, 32–49.

Shapiro, A. (2011). Analysis of stochastic dual dynamic programming method. European Journal

of Operational Research, 209(1), 63–72.

Shapiro, A., Dentcheva, D., & Ruszczyński, A. (2014). Lectures on stochastic programming:

35

modeling and theory, second edition. Society for Industrial and Applied Mathematics,

Philadelphia.

Shapiro, A., Tekaya, W., da Costa, J., & Soares, M. (2013). Risk neutral and risk averse stochastic

dual dynamic programming method. European Journal of Operational Research, 224(1), 375–

391.

Song, D.P., & Dong, J.X. (2008). Empty container management in cyclic shipping routes. Maritime

Economics & Logistics, 10(4), 335–361.

Steeger, G., Lonhmann, T., & Rebennack, S. (2018). Strategic bidding for a price-maker

hydroelectric producer: stochastic dual dynamic programming and lagrangian relaxation. IISE

Transactions, 50(11), 929–942.

Taylor, H.M. (1990). Martingales and random walks. Volume 2, Elsevier Science Publishers B.V.

Van Slyke, R.M., & Wets, R.J-B. (1969). L-shaped linear programs with applications to optimal

control and stochastic programming. SIAM Journal on Applied Mathematics, 17(4), 638–663.

Wallace, S.W., & Ziemba, W.T. (2005). Applications of Stochastic Programming. MOS-SIAM

Series on Optimization 5.

Zakeri, G., Philpott, A.B., & Ryan, D.M. (2000). Inexact cuts in Benders decomposition. SIAM

Journal on Optimization, 10(4), 643–657.

36

