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Abstract 10 

Lanes used by taxis and other shared-ride vehicles at airports and rail terminals are often congested.  11 
The present paper examines congestion-mitigating strategies for a special type of lane inside of which 12 
taxis are prohibited from overtaking each other while dropping-off patrons.  Taxis must therefore 13 
often wait in first-in-first-out (FIFO) queues that form in the lane during busy periods.  Patrons may 14 
be discharged from taxis upon reaching a desired area near the terminal entrance.  When wait times 15 
grow long, however, some taxis discharge their patrons in advance of that desired area. 16 

The Nanjing South Railway Station in China is selected as a case study.  Its FIFO drop-off lane is 17 
presently managed by police officers who allow taxis to enter the lane in batched fashion.  18 
Inefficiencies are observed because curb space near the upstream and downstream ends of the lane 19 
often goes unused. 20 

A microscopic simulation model is developed in-house, and is painstakingly calibrated to data 21 
measured in the study site’s FIFO lane.  Simulation experiments indicate that rescinding the lane’s 22 
present batching strategy can increase taxi outflow by more than 25%.  Further experiments show that 23 
even greater gains can be achieved by requiring taxis to discharge patrons when forced by 24 
downstream queues to stop a prescribed distance in advance of a desired drop-off area.  Further gains 25 
were predicted by requiring the lead taxi in each batch to discharge its patron(s) only after travelling a 26 
prescribed distance beyond a desired location.  The above findings are confirmed for scenarios 27 
calibrated with field data collected on two different days, and for hypothetical scenarios with varying 28 
input parameters.  Roles that technology can play in implementing these new lane-management 29 
strategies are discussed.  So are their practical implications in light of the present boom in shared-ride 30 
services. 31 
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1. Introduction 33 

Special-use lanes for dropping-off travelers at or near terminals are common features at airports, train 34 
stations, and border crossings (de Neufville and Odoni, 2013).  Present focus is on fully-separated, 35 
single-lane facilities that are reserved for vehicle drop-offs.  These are found in many places in the 36 
world, and are especially common at high-speed rail terminals throughout China. 37 

Drop-off vehicles are often made to enter a lane of this sort in batches, meaning in convoys or 38 
platoons, and to traverse the single, separated lane in first-in-first-out (FIFO) fashion.  The batched 39 
outflows achieved in this way depend in part upon the locations where the lead vehicle in each batch 40 
stops to discharge its passenger(s). Other vehicles in a batch are forced to stop when their leader does. 41 
Whether or not these other vehicles drop-off their own patrons during these forced stops also affect 42 
outflows. These drop-off decisions are influenced by: a vehicle’s present position relative to a desired 43 
drop-off location; the anticipated time still required of the vehicle to reach that location; and the time 44 
already spent to that end. 45 

In short, the operation of FIFO drop-off lanes is rather complex.  Importantly, this complex operation 46 
can produce sizable delays during busy periods.  Passengers tend to be especially sensitive to these 47 
delays, since they may have planes or trains to catch.  Improving the performance of these FIFO lanes 48 
thus becomes a worthy objective (e.g., Costa and de Neufville, 2012; Ji et al., 2016).  This may be 49 
especially true in the coming era of shared-ride services, when more of these lanes will be needed to 50 
serve shared-ride vehicles at busy terminals and meeting-points (Aïvodji et al., 2016; Li et al., 2018; 51 
Lokhandwala and Cai, 2018). 52 

To date, most of the research in this realm pertains to drop-off areas with passing lanes (e.g. Parizi 53 
and Braaksma, 1994; Chang et al., 2000; Chang, 2001), and is therefore not of present interest.  Some 54 
of those studies relied upon deterministic models (Whitlock and Cleary, 1969; Neufville, 1976; 55 
Mandle et al., 1980; 1982; Shapiro, 1996; Ashford et al., 2011).  The simplicity of these models is 56 
desirable, but the inherent variability in dwell times and drop-off locations are ignored as a result. 57 

Simulation models have often been used to address these variabilities (Costa and de Neufville, 2012; 58 
Farhan, 2015).  Yet, the models coded to date overlook certain other features of FIFO lanes.  Some 59 
simulation models, for example, ignore that patrons prefer certain drop-off locations over others 60 
(Tillis, 1973; McCabe and Carberry, 1975; Hall, 1977).  Other logic has failed to appreciate how 61 
patrons can grow impatient and opt to alight from vehicles in advance of a desired location, 62 
particularly when vehicle queues grow long (Wang, 1990; Parizi and Braaksma, 1994; Bender and 63 
Chang, 1997; Tunasar et al., 1998; Chang et al., 2000; Chang, 2001). 64 

In light of the above, the present work has developed a microscopic simulation model that more 65 
faithfully replicates vehicle traffic in a FIFO drop-off lane.  When in motion, vehicle movements are 66 
governed by the car-following model in Menendez and Daganzo (2007).  Distributions of patrons’ 67 
desired drop-off locations are estimated from data.  So are patron tendencies to grow impatient and 68 
alight vehicles prior to reaching those desired locations. 69 

The Nanjing South Railway Station (NSR) was selected as a case study.  A FIFO drop-off lane at the 70 
NSR is reserved for taxi use only.  Taxi entries to this lane are batched by policemen who are posted 71 
at the scene.  Once the simulation model was calibrated to replicate observed conditions, it was used 72 
to examine alternative schemes for managing the lane’s taxi operations.  Removing present-day police 73 
controls and allowing taxis to enter the lane at will was found to increase taxi discharge flows by 26-74 
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32%.  Two other control strategies produced even greater gains in outflow.  One requires that taxis 75 
discharge their patrons whenever stopped (by a lead taxi) at a location sufficiently close to the desired 76 
one.  The other requires that a lead taxi discharge its patrons a prescribed distance beyond the desired 77 
location, to free-up desirable curb space for other taxis in the batch. 78 

The NSR case-study site is described in the following section.  The logic of our simulation model 79 
follows from observations at the site and is presented in section 3.  Field data are described and used 80 
to calibrate the simulation model, as presented in section 4.  The calibrated model is tested in section 81 
5.  Parametric study of the aforementioned control strategies is presented in section 6.  Practical 82 
implications and roles for technology in implementing our ideas are discussed in section 7. 83 

2. Taxi Lane Case Study 84 

The NSR terminal and its taxi drop-off lane are described in section 2.1.  Taxi operations in that lane 85 
are detailed in section 2.2. 86 

2.1 Site 87 

A photograph of the drop-off area at the NSR terminal is provided in Figure 1.  The area’s layout is 88 
illustrated in Figure 2.  Note from the latter figure that the area extends for 240m and consists of 5 89 
lanes.  Four of the lanes are open to general traffic, and the fifth is reserved for taxis.  The taxi lane is 90 
separated from others by means of a physical barrier, such that vehicular overtaking is not possible in 91 
the taxi lane; i.e. its operation is FIFO.  A painted crosswalk that guides pedestrians to the terminal’s 92 
entrance and ticketing station is also shown in Figure 2.  Crossing pedestrians periodically interrupt 93 
taxi flows. 1  In an apparent effort to discourage excessive drop-off numbers near the terminal’s 94 

entrance, curbside railing is installed between the 90m and 150m marks. 95 

 96 
Figure 1. Photo of the drop-off area at the NSR terminal 97 

2.2 Lane Operations 98 

During uncongested periods, taxis enter their FIFO lane free of police controls, such that batch size is 99 
limited only by the lane’s storage space. During congested periods, a police officer stationed 100 
approximately 65m in advance of the drop-off area admits taxis to the FIFO lane in batches.  101 
Admissions are offered whenever the lane is nearly emptied of its previous batch.  The lead taxi in 102 
each batch can choose its drop-off location within the 240m area.  Data measured from videos show 103 
that almost all lead taxis choose locations spanning the 90m and 170m marks.  The police officer 104 

 
1 A second crosswalk exists downstream of the first (at the 186m mark).  Pedestrian flows in that downstream 

crosswalk are small, and seldom interrupt taxi flows. 
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virtually always releases secondary, smaller-sized batches whenever a present batch is stopped by a 105 
leader (these stoppages occur whenever leaders discharge their patrons).  Admitting secondary 106 
batches helps to fill the FIFO lane. 107 

 108 
Figure 2. Layout of the drop-off area at the NSR terminal, Nanjing, China 109 

Other taxis in a batch can discharge their patrons while the leader dwells at its drop-off location, or 110 
they can wait until advancing closer to a desired spot. A taxi that defers discharging its patron(s) tends 111 
to retard outflow from the FIFO lane by virtue of making the deferred stop. Further outflow 112 
reductions occur because each fresh batch of taxis is admitted to the lane only after its upstream 113 
portion had been empty for some time.  Oftentimes even the admission of secondary batches leaves 114 
upstream space in the lane unused.  Yet further outflow losses occur because drop-offs almost never 115 
occur at the downstream-most portion of the FIFO lane, beyond the 170m mark. 116 

3. Simulation Model 117 

Once in the FIFO drop-off lane, taxis move forward as per the car-following model in Menendez and 118 
Daganzo (2007). The logic is based on a vehicle’s bounded acceleration capabilities, with added 119 
considerations for safety and driver/passenger comfort.  The model has been a popular choice to 120 
simulate vehicle queues owing to its physical realism and parsimony in parameters (e.g., Cassidy et 121 
al., 2015a, b).  Details of this car-following model are furnished in Appendix A. 122 

Other features of the simulation program are original.  These were developed to emulate observations 123 
taken at the NSR’s taxi drop-off lane, and are described below. 124 

The driver of the lead taxi in a batch selects a drop-off location in the lane as per distributions 125 
estimated from field data; see section 4.2.  The selection process used by all other taxis to select drop-126 
off locations is modelled as per the state transition diagram in Figure 3.  A summary is given below. 127 

Consider a taxi forced by its leader to stop in advance of the desired drop-off location.  The taxi 128 
drops-off its patron(s) during that stop, if or when the elapsed time at the stop exceeds an underlying 129 
limit value, which we term the patron’s patience. The taxi moves forward once the batch leader 130 
enables this.  If a patron is still onboard, she alights: (i) at the first forced stop to occur when the time 131 
limit (i.e. patron patience) has elapsed; or (ii) upon reaching the desired drop-off location, should that 132 
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occur first.2  Distributions used in executing the above logic were estimated from field data, as 133 
described in section 4.2. 134 

 135 
Figure 3. State transition diagram for a vehicle that is not the leading one in a batch 136 

4. Parameter Estimation 137 

Taxi movements were recorded by four video cameras placed in series along the FIFO 138 
lane.  Recordings were made over 90-min periods (approximately) on the mornings of April 25 and 139 
July 13, 2017.  Long taxi queues and police batching operations occurred throughout these periods.  140 
Trajectories of more than 1,000 taxis were constructed using methods described in Zhang (2000) and 141 
Yang et al. (2019). 142 

The trajectories were used to estimate parameters in our simulation model.  Estimations were 143 
performed in three parts. First, the FIFO lane was partitioned into multiple contiguous segments to 144 
reflect the varying locations where taxis were forced (by their leaders) to stop. Second, distributions 145 
were estimated for patron patience, as previously described in section 3. The third part of the process 146 
entailed the estimation of all other parameters used in our simulation model. 147 

The three parts of the process are described in sections 4.1-4.3. Importantly, estimates from each part 148 
were separately generated for the two observation days. This is because data from each day appear to 149 
reflect seasonal differences in travel behavior. More will be said on this matter in due course. 150 

4.1 Lane partitioning 151 

The FIFO lane was partitioned with consideration of the varying location where taxis stopped due to 152 
stoppages downstream. A taxi’s resulting forced wait time is defined as: (i) the elapsed time from 153 
when the taxi was forced to stop, until it began to drop-off its patron(s); or (ii) the stop’s entire 154 
duration, whenever patron drop-off did not occur in that instance. 155 

 
2 The logic does not consider the taxi’s distance from its desired drop-off location when forced to stop. 
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These wait times tended to be larger when forced stops were spent toward the FIFO lane’s upstream 156 
end. This is evident in Figure 4. Its data were collected on April 25 and correspond to taxis’ first 157 
instances of being forced to stop in the lane. (Second and later instances were less common and 158 
usually of shorter duration.) Note how the trend of the best-fit line is downward, though not strictly 159 
downward for reasons to be explained momentarily. The trend unveils the longer forced wait times 160 
that often occurred upstream, and reflects patron reluctance to alight taxis when still far from the 161 
terminal entrance. 162 

 163 
Figure 4. Lane partition for the April 25 dataset (𝑘 = 4) 164 

The k-means clustering algorithm of Hartigan and Wong (1979) was used to partition the lane into 165 
four contiguous segments, also as shown in Figure 4 and detailed in Appendix B.3 Outcomes of 166 
segment-specific analyses are presented for each observation day in Table 1. 167 

Note from the table that the clustering algorithm selected segment lengths that were distinct across 168 
days. Further note how average forced wait times were greater in Segment 3 than in upstream 169 
Segment 2. This is because the lane’s curbside railing coincides with Segment 3 (see again Figure 2), 170 
which seems to discourage patrons from alighting there. 171 

Table 1. Four segments and average forced wait times in each segment 172 
  Segment 1 Segment 2 Segment 3 Segment 4 

April 25 
Range (m) 0-54.5 54.5-91 91-119.5 119.5-169 

Average forced wait time (s) 17.5 13.2 15.5 8.4 

July 13 
Range (m) 0-38 38-74.5 74.5-110 110-167 

Average forced wait time (s) 23.4 14.9 20.8 12.7 

 173 

4.2 Distributions of patron patience 174 

While undergoing a forced stop, a patron will alight from her taxi when her patience reaches its end. 175 
Distributions of patron patience corresponding to first instances of forced stops were estimated 176 
separately for each segment of the FIFO lane and for each observation day. Second and higher 177 

 
3 The clustering algorithm was also separately run for cases in which the lane was partitioned into 3 and 5 

segments. The 𝑅2 exceeded 0.999 in all cases. A 4-segment partition was ultimately selected because it better 

aligned with the lane’s spatially-varying physical features; e.g. the terminal entrance and curbside railing 
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instances of forced stops were fewer in number. For this reason, data corresponding to these higher 178 
instances were combined across all segments, and a single distribution for these instances was 179 
estimated for each day. 180 

All distributions estimated in the above fashion seem to follow a mixed-distribution pattern. The 181 
pattern is exemplified for one case via the empirical CDF shown in Figure 5. The function reveals that 182 
the patience of a good many patrons was exhausted soon after being forced to stop. In contrast, the 183 
patience of the remaining patrons was spread over a wide range. 184 

The patron patience distributions were thus estimated as mixtures of two gamma distributions. Values 185 
for all parameters were obtained via maximum likelihood estimation, as described in Appendix C. 186 
The estimate for the example case in Figure 5 is shown with a dashed line. Note how the estimate 187 
nicely fits the empirical data.  188 

 189 
Figure 5. Patron patience distribution for first-instance forced stops in Segment 1 (the April 25 dataset) 190 

4.3 Remaining model parameters 191 

Additional parameters to model the taxi-batching strategy were estimated as described in Appendix 192 
D.1. As already noted, taxi motion along the FIFO lane was modeled as per the logic in Menendez 193 
and Daganzo (2007), with patron drop-off locations and durations that were fit to empirical 194 
distributions; see Appendix D.2. 195 

Finally, a virtual (i.e. simulated) demand-responsive traffic signal was placed at the crosswalk 196 
previously shown in Figure 2. Red and green phases were varied across cycles to emulate periods 197 
when taxi movements were and were not interrupted by crossing pedestrians. Empirical distributions 198 
for these two phases were fit to each day’s data. 199 

The above-cited parameter estimates are provided in Table 2 for the two datasets. Values for the July 200 
13 dataset are enclosed in parentheses, if they are different from those for the April 25 dataset. Further 201 
details on the parameter estimation can be found in a technical report (Yang et al., 2019). 202 

5. Model Testing 203 

Once calibrated with the input parameters estimated for a given day, model outputs for that day nicely 204 
matched those measured in the FIFO lane. The outcomes reported below are averages of 500 205 
simulation runs. The duration of each run equaled the observation period used for its respective day. 206 
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Demand for the FIFO lane was always set to 400 taxis/h. This ensured that taxi queues persisted 207 
upstream of the lane, consistent with observations on both days. Importantly, the presence of 208 
upstream queues guaranteed that resulting outflows were maximum (i.e., capacity) rates.4 209 

Table 2. Other parameter values 210 
Parameter Value 

Vehicle motion model 

Reaction time 1 s 

Jam spacing 7.5 m 

Maximum acceleration 2.12 m/s2 (2.39 m/s2) 

Maximum deceleration -2.86 m/s2 (-2.37 m/s2) 

Cruise speed in Segment 1 6.13 m/s (5.91 m/s) 

Cruise speed in Segment 2 4.94 m/s (5.11 m/s) 

Cruise speed in Segment 3 3.30 m/s (4.20 m/s) 

Cruise speed in Segment 4 6.07 m/s (5.89 m/s) 

Cruise speed in [169,240] m 5.72 m/s (5.82 m/s) 

Initial speed 4.54 m/s (4.48 m/s) 

Initial headway 2 s 

Drop-off behavior 

Desired drop-off location distribution An empirical distribution fitted by data 

Drop-off duration distribution for lead taxis An empirical distribution fitted by data 

Drop-off duration distribution for other taxis An empirical distribution fitted by data 

Proportion of taxis that drop-off patrons in the lane 0.83 (0.85)# 

Signal representing the crosswalk 

Red period distribution An empirical distribution fitted by data 

Green period distribution An empirical distribution fitted by data 

Batching control 

𝐿𝑚1  
Primary batches 122.4 m (199.4 m) 

Secondary batches 70.2 m (70.4 m) 

𝐿𝑚2  
Primary batches 66.5 m (72.2 m) 

Secondary batches 15.4 m (27.7 m) 

𝑇𝑚  
Primary batches 120 s (93.5 s) 

Secondary batches 14.5 s (16.9 s) 

𝐿𝑙𝑒𝑓𝑡  
Primary batches 42.3 m (53.4 m) 

Secondary batches 12.3 m (18.3 m) 
# The remaining vehicles might have dropped off patrons before entering the FIFO lane. 211 

5.1 Outflows 212 

Measured and simulated taxi outflows from the FIFO lane are shown for each day in Table 3. Each 213 
day’s measured and simulated rates agree to within 6%. 5  Simulation consistently underpredicted 214 
outflows, in part because of its use of a traffic signal to describe interruptions by pedestrians; see 215 
again section 4.3. In reality, drivers sometimes squeezed their taxis between neighboring groups of 216 
crossing pedestrians. This heightened outflows in a way not considered in the model. 217 

 218 

 
4 Maximizing outflows in turn minimizes delays in the lane. 
5 Two-sided T-tests were performed to determine if simulated travel times are not statistically different from 

those estimated in the field (Sun and Elefteriadou, 2010; Sun et al., 2013). The p-values (0.09 for the April 25 

data and 0.77 for the July 13 data) indicate that simulated and measured travel times are not statistically 

different at 95% confidence level. 
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5.2 Travel Times 219 

Displayed in Figures 6a and b are measured and simulated probability density functions of taxi travel 220 
times in the FIFO lane. Note again the good fit each day between measured and simulated values.6 221 

Table 3. Measured and simulated outflows 222 
Parameter Dataset Type Value Relative error 

Outflow 

(taxis/h) 

April 25 
field data 361.5 

-5.81% 
simulation 340.5 

July 13 
field data 338.3 

-2.16% 
simulation 331 

 223 

       224 
(a) the April 25 dataset                                                        (b) the July 13 dataset 225 
Figure 6. Comparison between the PDFs of simulated and measured travel time 226 

5.3 Forced Stops and their Durations 227 

Predicted and measured numbers of forced stops are displayed in Table 4. Each day’s predictions 228 
match observed tallies to within 7%. The model over-predicted the number of first-instance stops 229 
occurring in upstream-most segment 1 by modest amounts. It therefore tended to under-predict first-230 
instance numbers in downstream segments. The table also shows that differences between simulated 231 
and measured stop durations were less than 10%. 232 

5.4 Drop-off locations 233 

The PDFs of simulated and measured drop-off locations are shown for each day in Figures 7a and b. 234 
The difference between each day’s simulated and measured average location is within 3%. 235 

6. Experiments 236 

Having shown that the simulation model can replicate each day’s taxi operations, the model was next 237 
used to evaluate three alternative management strategies. The three alternatives promote greater 238 
curbside utilization in the FIFO lane by dispensing with present-day batching controls. All three are 239 
found as a result to produce greater taxi outflows than those presently achieved.  240 

 
6 T-tests were again performed for this metric. The high p-values (0.10 for the April 25 data and 0.19 for the 

July 13 data) again indicate that simulated and measured outflows are not statistically different at 95% 

confidence level. 
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Table 4. Measured and simulated numbers of forced stops and mean forced wait times 241 
  1st-instance forced stops 2nd~4th-instance 

forced stops 
Total 

  Zone 1 Zone 2 Zone 3 Zone 4 

The April 25 dataset 

Number of 

forced stops 

field data 183 135 79 47 39 483 

simulation 198 128 41 22 64 453 

Average forced 

wait time (s) 

field data 17.5 13.2 15.5 8.4 12.2 16.9 

simulation 17.9 15.1 16.2 11 16.8 16.5 

The July 13 dataset 

Number of 

forced stops 

field data 87 126 96 53 34 396 

simulation 100 149 60 23 80 412 

Average forced 

wait time (s) 

field data 23.4 14.9 20.8 12.7 11.5 17.7 

simulation 20.9 14 16.1 11.6 14.7 16 

 242 

      243 
(a) the April 25 dataset                                                    (b) the July 13 dataset 244 

Figure 7.  PDFs of taxi drop-off locations 245 

The alternatives are described in section 6.1-6.3, and taxi outflows from each are compared against 246 
simulated values produced under present-day batching. Parametric analysis presented in section 6.4 247 
indicates that the alternatives are robust to variations in patron drop-off patterns. Maximum outflows 248 
(i.e. capacities) are assessed by setting demand for the FIFO lane at 700 taxis/h. In this way, taxi 249 
queues were always present at the lane’s entry. All outcomes presented below are again averages of 250 
500 simulations. 251 

6.1 No-control alternative 252 

Under the first alternative, un-batched taxis enter the FIFO lane and drop-off patrons wherever they 253 
wish. Outcomes from this no-control alternative and comparisons with present-day batching control 254 
are presented in Table 5. 255 

The table shows that each day’s outflow under the no-control alternative grew by more than 25% over 256 
present-day rates. Improvements occurred thanks to greater curbside utilization in the FIFO lane’s 257 
upstream portion; i.e. note from the table that each day’s average drop-off location under the 258 
alternative moved upstream by more than 10m. Note too from the table that this produced more 259 
forced stops to boot. 260 
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Table 5. Comparison of simulated outcomes between the present-day control and the no-control alternative 261 
Parameter Dataset Type Value 

Outflow (taxis/h) 

April 25 
present day 340.5 

no control 429.3 (+26%) 

July 13 
present day 331 

no control 438.4 (+32%) 

Average drop-off 

location (m) 

April 25 
present day 79.5 

no control 66.2 (-13.3) 

July 13 
present day 83.8 

no control 67.2 (-16.6) 

Number of forced 

stops in Segment 1 

April 25 
present day 198 

no control 277 (+40%) 

July 13 
present day 100 

no control 193 (+93%) 

6.2 No-wait alternative 262 

Under the second alternative, taxis having travelled a distance 𝐿0 inside the FIFO lane must discharge 263 
their patrons upon next being forced to stop by conditions downstream. Should no forced stop occur, a 264 
taxi may discharge its patron(s) at any location desired in the lane. 265 

The minimum-distance location for drop-offs, 𝐿0, was examined parametrically.  The full length of 266 
the FIFO lane was considered, such that 0 ≤ 𝐿0 ≤ 240m.  Setting 𝐿0 to the full length of the lane 267 
(240m), in effect, makes the no-wait alternative equivalent to the no-control alternative.  268 

Each day’s taxi outflow is plotted in Figure 8 as a function of 𝐿0. Note how outflow is maximum 269 
when 𝐿0 = 0 for both datasets.  That choice of 𝐿0 makes best use of the lane’s upstream segments. 270 

 271 
Figure 8. Effect of no-wait policy on the FIFO lane’s outflow 272 

Two related points emerge from the figure as well.  First, setting 𝐿0 = 0 increases taxi outflow by 273 
more than 20% over the no-control alternative (with 𝐿0 = 240m), or by more than 50% over the 274 
present-day batching control.  Second, benefits of this second alternative disappear when 𝐿0 grows 275 
sufficiently large.  In the present case, the curves trend horizontal when 𝐿0 > 120m.  Of course, 276 
setting 𝐿0 at a small value may be objectionable to some patrons who find themselves walking long 277 
distances from their taxis to the transport terminal.  This matter will be taken up in section 7. 278 
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Visual comparisons of the two curves in Figure 8 reveals that, as 𝐿0 decrease toward 0, the outflow on 279 
July 13 increases faster than does the one on April 25. This is because on July 13, patrons were 280 
seldom observed to alight at the upstream end of the FIFO lane. 281 

We next turn our attention to the third and final management alternative. 282 

6.3 Promoting downstream drop-offs 283 

The third alternative is like the second in that the parameter 𝐿0 remains in force. Additionally, every 284 
taxi not encountering a forced stop from downstream can now drop-off patrons only upon reaching a 285 
location 𝐿𝐻 > 𝐿0. 286 

Percentages of outflow increase as compared against the present-day control are plotted in Figures 9a 287 
and b for 𝐿𝐻 ∈ [90m, 240m] and 𝐿0 = 0, 30, 60 and 90m.7  The lower bound of 𝐿𝐻 was set to 90m 288 
because, in reality, almost all lead taxis dropped patrons off beyond the 90m mark.  The curves’ 289 
vertical intercepts thus approximate the percentages of outflow increase for the no-wait alternative.  290 
For comparison, the percentage of outflow increase for the no-control policy is also shown as the 291 
horizontal line in each figure. 292 

The figures show that outflows increase with large 𝐿𝐻, no doubt by promoting better use of the lane’s 293 
downstream segments.  Thus, for example, comparing the right end of each curve in Figures 9a and b 294 
against the same curve’s vertical intercept unveils that introducing 𝐿𝐻 = 240m typically increases 295 
taxi outflow by over 20% as compared to the no-wait alternative. 296 

 297 
 (a) the April 25 dataset                                                  (b) the July 13 dataset 298 

Figure 9. Effect of promoting downstream drop-offs 299 

Greatest outflows were therefore achieved by 𝐿0 = 0 and 𝐿𝐻 = 240m.  Outflows in this extreme case 300 
were more than 90% higher than what is presently achieved via batching.  These extremal thresholds, 301 
moreover, increase outflows by over 50% compared to the no-control alternative.  And less restrictive 302 
thresholds of 𝐿0 = 90m and 𝐿𝐻 = 160m still enhance taxi outflows; e.g. by over 50% compared to 303 
present-day rates. 304 

Taxi patrons might, of course, object to high values of 𝐿𝐻, as well as to low values of 𝐿0.  Matters of 305 
this kind are discussed in section 7. 306 

 307 

 
7 Larger values of 𝐿0 were not tested in light of the findings reported in section 6.2. 
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6.4 Sensitivity Analysis 308 

To verify the robustness of the benefits brought by the three alternatives, we conduct sensitivity 309 
analyses of taxi outflow gains with respect to the distributions of: (i) desired drop-off locations; (ii) 310 
drop-off durations; and (iii) patience. 311 

For the first round of analyses, we examine two instances that differ only in the distribution of desired 312 
drop-off locations. The first instance features patrons that are “more selfish”, such that their desired 313 
drop-off locations are closer to the terminal entrance. Those locations are assumed to be uniformly 314 
distributed between 100m and 140m. The second instance features patrons that are “more selfless” in 315 
that they are willing to alight further downstream in the FIFO lane; i.e., their desired drop-off 316 
locations are assumed to follow a uniform distribution between 140m and 180m. In both instances, all 317 
the other parameters take the same values as in the April 25 dataset. Figures 10a and b plot the 318 
percentages of outflow gain against the present-day control for 𝐿𝐻 ∈ [90m, 240m] and 𝐿0 = 0, 30, 60, 319 
90m under the two instances, respectively. Note that the curves’ vertical intercepts again approximate 320 
the percent gains for the no-wait strategy for various 𝐿0. Gains for the no-control alternative are again 321 
plotted as the horizontal lines in each figure. 322 

In both figures, the curves exhibit similar trends as those in Figure 9a.  Specifically, rescinding the 323 
present-day batching control still increases the outflow by around 20%.  Enforcing the no-wait policy 324 
with 𝐿0 = 0 can produce another outflow gain of over 20%.  Promoting downstream drop-offs with 325 
𝐿𝐻 = 240m will bring yet another 20% or more.  Comparison between Figures 10a and b unveils that 326 
outflow gains brought by the alternative policies are smaller for “selfless” patrons who are willing to 327 
alight taxis further downstream of the FIFO lane, even if they are not forced to do so.  This is because 328 
their selfless behavior increases the utilization of the lane’s curbside space, and thus the policies 329 
would have smaller effects. 330 

  
(a) More “selfish” patrons (b) More “selfless” patrons 

Figure 10. Sensitivity analysis with respect to the desired drop-off locations 331 
 332 
Our second round of sensitivity analyses entailed comparisons of two instances: (i) where the taxi 333 
drop-off durations are short and less varied, with a mean of 6s and a standard deviation of 4.2s; and (ii) 334 
where the drop-off durations are long and more varied, with a mean of 40s and a standard deviation of 335 
20s. The outflow gains for the three alternative policies under various parameter values are plotted in 336 
Figures 11a and b for the two instances, respectively. The other parameter values are again the same 337 
as in the April 25 dataset.  The curves in both figures are again similar to those in Figure 9a.  The 338 
outflow gains are greater when the drop-off durations are less varied.  This is as expected, because a 339 
taxi will be blocked by downstream taxis that are still dwelling in the lane.  This blockage between 340 

90 120 150 180 210 240

L
H

 (m)

20%

40%

60%

80%

100%

p
er

ce
n

ta
g
e 

in
cr

ea
se

 i
n
 o

u
tf

lo
w L0 = 0 L0 = 30 L0 = 60

L0 = 90 no control

90 120 150 180 210 240

L
H

 (m)

10%

20%

30%

40%

50%

60%

70%

p
er

ce
n

ta
g
e 

in
cr

ea
se

 i
n
 o

u
tf

lo
w L0 = 0 L0 = 30 L0 = 60

L0 = 90 no control



 14 

the taxis becomes more severe when the number of taxis dwelling simultaneously in the lane 341 
increases (Gu et al., 2011; 2015; Shen et al., 2019).  When the drop-off durations are less varied, this 342 
blockage is modest, and thus policies that promote better utilization of the FIFO lane’s curbside space 343 
will be more effective. 344 

The last round of analyses pertains to patron patience.  Figures 12a and b plot the outflow gains for 345 
two instances: (i) less patient patrons, with a mean patience of 11s and a standard deviation of 12.7s; 346 
and (ii) patron patience has a higher mean (22.5s) and standard deviation (22.6s).  The other 347 
parameter values are yet again the same as in the April 25 dataset.  Note again the similarity between 348 
the two figures and Figure 9a.  The no-wait and downstream drop-off policies are more effective 349 
when applied to patient patrons (Figure 12b). This is because under the two policies, patient patrons 350 
alight immediately after their taxis are forced to stop. Many of those patrons would have stayed in the 351 
taxi and waited until they could move forward again, if the policies were not enforced. 352 

  
(a) Shorter and less-varied drop-off durations (b) Longer and more-varied drop-off durations 

Figure 11. Sensitivity analysis with respect to the drop-off durations  353 
 354 

  
(a) Less patient patrons (b) More patient patrons 

Figure 12. Sensitivity analysis with respect to the patience distribution 355 

7. Conclusions 356 

Simulations of a busy FIFO drop-off lane unveil the value of managing taxi operations in efficient 357 
fashion.  The simulation model itself was developed in-house to emulate taxi movements in the lane.  358 
Parameters were estimated from data measured over two days.  Once separately calibrated to each 359 
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day’s data, the model replicated the day’s movements quite well.  Outputs were thus used as baselines 360 
against which alternative lane-management strategies were compared. 361 

Comparisons show that rescinding the present-day batching strategy can increase the maximum rates 362 
that taxis discharge from the FIFO lane, and thus diminish delays and queueing.  Instituting a “no-363 
control” alternative alone increased taxi outflows by more than 25%.  Also tested was a distinct 364 
alternative that requires drop-offs whenever downstream conditions force a taxi to stop a distance 365 
greater than 𝐿0 inside the lane.  By promoting greater use of curb space in upstream portions of the 366 
FIFO lane, this latter alternative improved taxi outflows by up to an additional 20%.  Coupling this 367 
with another requirement that taxis discharge patrons at a lengthy distance 𝐿𝐻  inside the lane 368 
promotes greater use of downstream curb space.  Instituting requirements in terms of both 𝐿0 and 𝐿𝐻 369 
thus further improved outflows by as much as 20%. The alternative strategies continued to generate 370 
higher outflows when patron behavior varied from observed patterns. This underscores the robustness 371 
of the alternatives to changing inputs, or even to errors in their estimates. 372 

The above predictions are compelling, but are not without errors.  The model’s failure to consider a 373 
patron’s accrued delay in choosing her drop-off location is a likely source of error.  The coarse 374 
method used to partition the FIFO lane (see again section 4.1) is another.  Further sources may stem 375 
from unique features of taxi motion as drivers search for drop-off locations. These features are not 376 
captured in the car-following model selected for the present work.  Such is the nature of simulation.  377 
Our inability to calibrate a single model to replicate operations in any given day may be a further 378 
concern, though in fairness the data suggest that taxi outflows are influenced by factors that vary day 379 
to day. These factors include train schedules and whether patrons are likely tourists or business 380 
travelers. 381 

All these considerations motivate need for field tests.  The inexorable growth in ride-sharing and ride-382 
sourcing adds further motivation for these tests (Zha et al., 2016; Lokhandwala and Cai, 2018).  They 383 
would require certain accommodations.  These could be met through careful thinking, and suitable 384 
application of technologies. 385 

In particular, the restrictive nature of our proposed drop-off rules means that some travelers would 386 
walk greater distances from their taxis to a station entrance.  The onerousness of this might be 387 
lessened in simple, common-sense ways, say by providing luggage carts and human baggage handlers.  388 
Moving walkways and other commonplace technologies could play roles as well. 389 

It would also help if stipulated drop-off distances, 𝐿0 and 𝐿𝐻, were allowed to vary (e.g. over a day) 390 
based on time-varying input conditions.  Stipulated distances could grow more restrictive in peak 391 
periods when taxi queues at the lane entry grow long.  This sort of traffic-responsive approach would 392 
benefit from vehicle sensors, perhaps like those often used for dynamic traffic-signal and ramp-393 
metering control (e.g. Vigos et al., 2008).  Video-based surveillance could play a role here as well 394 
(Wan et al., 2014).  Apprising taxi drivers of time-varying drop-off rules could rely on roadside 395 
changeable message signs (Li et al., 2016), or on-board information systems (Golob and Regan, 2005). 396 

Surveillance, particularly of the video-based variety (Wan et al., 2014) would be needed for 397 
enforcement.  The emergence of vehicle automation (Chen et al., 2016) would lessen the concern here, 398 
since the docking locations of automated taxis could be readily controlled. 399 

 400 
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Appendix A. Vehicle motion model 407 

Taxis are numbered from downstream to upstream.  Their positions are updated every time interval ∆𝑡.  408 
The ∆𝑡 is set to a constant coefficient termed the reaction time, which represents the time needed for 409 
the backward shockwave to propagate across one vehicle in queue (Daganzo, 2006; Menendez and 410 
Daganzo, 2007).  Specifically, taxi 𝑛’s location at 𝑡 + ∆𝑡, 𝑥𝑛(𝑡 + ∆𝑡), is given by: 411 

𝑥𝑛(𝑡 + ∆𝑡) = 𝑚𝑎𝑥{𝑙𝑛(𝑡 + ∆𝑡)}         (A1) 412 
subject to: 413 
∆𝑥𝐿

𝑛(𝑡 + ∆𝑡) ≤ 𝑙𝑛(𝑡 + ∆𝑡) − 𝑥𝑛(𝑡) ≤ min{∆𝑥𝑈
𝑛(𝑡 + ∆𝑡), ∆𝑥𝑆

𝑛(𝑡 + ∆𝑡), ∆𝑥𝐶
𝑛(𝑡 + ∆𝑡)}   (A2) 414 

𝑠𝑛(𝑡) ≥ 𝑠𝑗𝑎𝑚,                                                 (A3) 415 

where ∆𝑥𝐿
𝑛(𝑡 + ∆𝑡) and ∆𝑥𝑈

𝑛(𝑡 + ∆𝑡) are the minimum and maximum distances that taxi 𝑛 can travel 416 
in time interval [𝑡, 𝑡 + ∆𝑡] given the maximum deceleration and acceleration, respectively; ∆𝑥𝑆

𝑛(𝑡 +417 

∆𝑡) is the maximum distance that taxi 𝑛 can travel in [𝑡, 𝑡 + ∆𝑡] without crashing into its leader, 418 
numbered 𝑛 − 1; ∆𝑥𝐶

𝑛(𝑡 + ∆𝑡) is the maximum distance that taxi 𝑛 can travel in [𝑡, 𝑡 + ∆𝑡] subject to 419 

driver comfort; 𝑠𝑛(𝑡) = 𝑥𝑛−1(𝑡) − 𝑥𝑛(𝑡) is the spacing between taxis 𝑛  and 𝑛 − 1 at time 𝑡; and 420 
𝑠𝑗𝑎𝑚 is the jam spacing of taxis.  421 

The ∆𝑥𝐿
𝑛(𝑡 + ∆𝑡), ∆𝑥𝑈

𝑛(𝑡 + ∆𝑡), ∆𝑥𝑆
𝑛(𝑡 + ∆𝑡), and ∆𝑥𝐶

𝑛(𝑡 + ∆𝑡) are defined by: 422 

∆𝑥𝐿
𝑛(𝑡 + ∆𝑡) = max{0, 𝑣𝑛(𝑡) · ∆𝑡 + 𝑎𝐿 · ∆𝑡2}         (A4) 423 

∆𝑥𝑈
𝑛(𝑡 + ∆𝑡) = min{𝑢 · ∆𝑡, 𝑣𝑛(𝑡) · ∆𝑡 + 𝑎𝑈 · ∆𝑡2}        (A5) 424 

∆𝑥𝑆
𝑛(𝑡 + ∆𝑡) = max {0,

𝑎𝐿·∆𝑡2

2
+ ∆𝑡 · √−2𝑎𝐿 · [𝑠𝑛(𝑡) − 𝑠𝑗𝑎𝑚 + 𝑑𝑛−1(𝑡)]}    (A6) 425 

∆𝑥𝐶
𝑛(𝑡 + ∆𝑡) = 𝑠𝑛(𝑡) − 𝑠𝑗𝑎𝑚,          (A7) 426 

where 𝑣𝑛(𝑡) denotes taxi 𝑛’s average speed in [𝑡 − ∆𝑡, 𝑡], given by 𝑣𝑛(𝑡) =
𝑥𝑛(𝑡)−𝑥𝑛(𝑡−∆𝑡)

∆𝑡
; 𝑎𝐿  and 427 

𝑎𝑈  are the minimum acceleration (i.e. the opposite of maximum deceleration) and maximum 428 

acceleration of the taxi, respectively; 𝑢  is the desired travel speed; and 𝑑𝑛−1(𝑡) is the minimum 429 

stopping distance of taxi 𝑛 − 1 at time 𝑡.  The  𝑑𝑛−1(𝑡) is given by: 430 

𝑑𝑛−1(𝑡) = 𝑚𝑎𝑥 {0, −
[𝑣𝑛−1(𝑡)]

2

2𝑎𝐿
−

𝑣𝑛−1(𝑡)·∆𝑡

2
} .       (A9) 431 

Derivation of (A1)-(A9) can be found in Menendez and Daganzo (2007) and Menendez (2006), and is 432 
omitted here for brevity. 433 

 434 
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Appendix B. The 𝒌-mean clustering method 435 

The FIFO lane was partitioned by clustering taxis’ forced wait times at their first instances of forced 436 

stops.  Taxis’ second, third and fourth instances of forced stops were excluded because they were of 437 

much shorter durations.  For a given number of segments 𝑘, we seek a partition that minimizes the 438 

sum of total squared errors of forced wait times in each segment, 𝜀: 439 

min
𝐶≜{𝐶1,𝐶2,…,𝐶𝑘}

𝜀 = ∑ ∑ (𝑡𝑛 − 𝑢𝑖)2
𝑛:𝑦𝑛∈𝐶𝑖

𝑘
𝑖=1 ,       (B1) 440 

where 𝐶 is a lane partition, with each 𝐶𝑖 (𝑖 = 1,2, … , 𝑘) defining a continuous space interval (i.e. a 441 

segment) in [0,240m], ⋃ 𝐶𝑖
𝑘
𝑖=1 = [0,240m]; 𝑦𝑛 is the location of taxi 𝑛’s first forced stop (given that 442 

the taxi is not leading a batch); 𝑡𝑛  is taxi 𝑛 ’s forced wait time during that stop; and 𝑢𝑖 =443 

𝐸[𝑡𝑛|𝑦𝑛 ∈ 𝐶𝑖].  444 

Appendix C. Estimation of patience distribution 445 

The probability density function (PDF) of a mixture distribution for patrons’ patience is given as: 446 

𝑓(𝑝) = 𝛾𝑓1(𝑝) + (1 − 𝛾)𝑓2(𝑝),         (C1) 447 

where 𝑓1(𝑝) and 𝑓2(𝑝) are the PDFs of patience distributions for impatient patrons (i.e., those who 448 
alighted almost immediately after being forced to stop) and the remaining, patient ones, respectively; 449 
and 𝛾 is the probability that a taxi’s patron(s) were impatient. When 𝑓1(𝑝) and 𝑓2(𝑝) are gamma PDFs, 450 
we have: 451 

𝑓(𝑝; 𝛾, 𝑘1, 𝜃1, 𝑘2, 𝜃2) = 𝛾𝑓1(𝑝; 𝑘1, 𝜃1) + (1 − 𝛾)𝑓2(𝑝; 𝑘2, 𝜃2)  452 

= 𝛾
𝑝𝑘1−1𝑒−𝑝/𝜃1

𝜃1
𝑘1Γ(𝑘1)

+ (1 − 𝛾)
𝑝𝑘2−1𝑒−𝑝/𝜃2

𝜃2
𝑘2Γ(𝑘2)

,        (C2) 453 

where 𝑘1 and 𝑘2 are the shape parameters, and 𝜃1 and 𝜃2 are the scale parameters for 𝑓1(𝑝) and 𝑓2(𝑝), 454 
respectively; and Γ(∙) is the gamma function. 455 

To estimate the values of 𝑘1, 𝑘2, 𝜃1, 𝜃2 and 𝛾, we formulate the log-likelihood function for the forced 456 
wait times as: 457 

Ψ(𝛾, 𝑘1, 𝜃1, 𝑘2, 𝜃2) = ∑ ln 𝑓(𝑡𝑛, 𝛾, 𝑘1, 𝜃1, 𝑘2, 𝜃2)𝑛∈𝒫 + ∑ ln[1 − 𝐹(𝑡𝑛, 𝛾, 𝑘1, 𝜃1, 𝑘2, 𝜃2)]𝑛∈𝒬 ,       (C3) 458 

where 𝒫 denotes the index set of taxis that dropped-off patrons at the present forced stop (i.e., the 459 
taxis whose forced waits equaled their patience); 𝒬 denotes the index set of taxis that did not drop-off 460 
patrons at the forced stop (i.e., those whose forced waits were less than their patience); and 𝐹(∙) is the 461 
CDF of the mixture distribution. 462 

The MLE problem is then formulated as: 463 

max
𝛾,𝑘1,𝜃1,𝑘2,𝜃2

Ψ (𝛾, 𝑘1, 𝜃1, 𝑘2, 𝜃2).                    (C4) 464 

This problem was solved by the nonlinear program solver “fminsearch” in Matlab R2017b. 465 
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The distribution parameter estimates for the two datasets are presented in Table C1.  Note in each 466 
day’s data that, for all the five distributions, the mean and variance for the impatient patrons are much 467 

smaller than those for the remaining, patient ones; i.e., 𝑘1𝜃1 ≪ 𝑘2𝜃2 and 𝑘1𝜃1
2 ≪ 𝑘2𝜃2

2 for all the five 468 
rows of each dataset. Also, the table shows that the probability of impatient patrons, 𝛾, increases from 469 
Segment 1 to Segment 4. This is consistent with intuition, since patrons were observed to become less 470 
patient as they moved downstream. 471 

The above distributions are coarse estimates of patron patience due to the limited data.  Better 472 

estimates can be obtained by using more sophisticated methods (e.g., the one developed in Sun and 473 

Elefteriadou, 2014), should larger, more detailed datasets be available. 474 

Appendix D. Estimation of other parameters 475 

D.1 Taxi-batching parameters 476 

We assume that a taxi batch is admitted to the FIFO lane whenever either: (i) the lane is vacant for a 477 
distance 𝐿𝑚1 in its upstream-most portion; or (ii) the lane is vacant for at least a distance 𝐿𝑚2 < 𝐿𝑚1 478 
in its upstream portion, and the last taxi in the previous batch has dwelled for a duration of at least 𝑇𝑚.  479 
The admission of secondary batches of taxis follows the same logic, but with distinct values for 480 
parameters 𝐿𝑚1, 𝐿𝑚2 and 𝑇𝑚.  We further denote 𝐿𝑙𝑒𝑓𝑡 as the lane space upstream of a batch that is 481 

left unoccupied when the batch stops.  The number of taxis in a batch is thus determined by dividing 482 
the length of the batch (e.g., 𝐿𝑚1 − 𝐿𝑙𝑒𝑓𝑡) by the jam, or stopped-vehicle spacing.  Parameters 𝐿𝑚1, 483 

𝐿𝑚2 and 𝑇𝑚 were estimated for each day’s data via the 𝑘-means clustering algorithm (Hartigan and 484 
Wong, 1979).  Parameter 𝐿𝑙𝑒𝑓𝑡  was set to the average lane space upstream of the primary and 485 

secondary batches, respectively, again for each day’s data. 486 

Table C1. Optimal parameters for patience distribution 487 

 𝑘1 𝜃1 𝑘1𝜃1 𝑘1𝜃1
2 𝑘2 𝜃2 𝑘2𝜃2 𝑘2𝜃2

2 𝛾 

The April 25 dataset 

1st-instance forced stops in Segment 1 2.13 1.42 3.02 4.29 3.62 8.77 31.8 278.4 0.43 

1st-instance forced stops in Segment 2 1.81 1.25 2.26 2.83 3.63 7.29 26.5 192.9 0.48 

1st-instance forced stops in Segment 3 0.97 6.80 6.60 44.85 5.71 4.78 27.3 130.5 0.55 

1st-instance forced stops in Segment 4 1.10 2.15 2.37 5.08 6.25 3.17 19.8 62.8 0.64 

2nd~4th-instance forced stops  3.48 0.70 2.44 1.71 3.75 8.72 32.7 285.1 0.49 

The July 13 dataset 

1st-instance forced stops in Segment 1 17.09 0.17 2.91 0.49 2.71 14.74 39.95 588.80 0.25 

1st-instance forced stops in Segment 2 14.67 0.16 2.35 0.38 1.84 14.57 26.81 390.60 0.40 

1st-instance forced stops in Segment 3 3.92 1.05 4.12 4.32 4.44 7.23 32.10 232.09 0.36 

1st-instance forced stops in Segment 4 6.27 0.47 2.95 1.39 5.93 4.58 27.16 124.39 0.56 

2nd~4th-instance forced stops  20.02 0.13 2.60 0.34 1.70 13.01 22.12 287.74 0.31 

 488 

D.2 Distributions for drop-off locations and durations 489 

We assume that the lead taxis of each batch dropped off patrons at their desired locations, and fit an 490 
empirical distribution (van der Vaart, 2000) to those locations measured from the videos.  The desired 491 
drop-off locations of the other taxis were assumed to follow the same distribution, since a taxi’s 492 
desired drop-off location should be irrespective of whether or not it is a batch leader.  Two other 493 
empirical distributions were fit to the drop-off durations of lead taxis and other taxis.  For the latter, 494 
the drop-off duration is defined as the time between the taxi door opening and closing, plus a fixed 495 
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time spent on necessary drop-off activities that occur before door opening and after door closing (e.g., 496 
payment collection and receipt preparation).  This fixed time was estimated by subtracting the average 497 
time between door openings and closings from the average dwell time for lead taxis. 498 
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