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Optical encryption has provided a new insight for 
securing information, however it is always desirable that 
high security can be achieved to withstand the attacks. In 
this Letter, we propose a new method via learning 
complex scattering media for optical encryption. After 
the recordings through complex scattering media, a 
designed learning model is trained. The proposed 
method uses an optical setup with complex scattering 
media to experimentally record the ciphertexts, and uses 
a learning model to generate security keys. During the 
decryption, the trained learning model with its 
parameters is applied as security keys. In addition, 
various parameters, e.g., virtual phase-only masks, can 
be flexibly applied to further enlarge key space. It is 
experimentally demonstrated that the proposed 
learning-based encryption approach possesses high 
security. The proposed method could open up a new 
research perspective for optical encryption. © 2020 
Optical Society of America 

http://dx.doi.org/10.1364/OL.99.099999 

Optical encryption has become one of the advanced encoding 
methods owing to its outstanding properties [1–5]. Optical 
encoding technologies originated from the milestone work done 
by Refregier and Javidi, who put forward the idea of double 
random phase encoding (DRPE) [3]. Since then, there is an 
explosion of optical encryption schemes, such as fractional Fourier 
transform domain and Fresnel transform domain [6,7]. With a 
rapid development of optical techniques, different optical 
cryptosystems are accordingly proposed, such as interferometric 
imaging, diffractive imaging and ghost imaging [8–12]. However, it 
has been found that optical encoding schemes cannot withstand 
some attacks [13–17]. For instance, Carnicer et al. proposed a 
groundbreaking philosophy of chosen-ciphertext attack to vet the 
vulnerability of DRPE scheme [13]. Similarly, chosen-plaintext, 
known-plaintext attack and ciphertext-only attack provided an 
insight for the cryptoanalysis of optical encryption [14–16]. The 
major objective in the developed optical cryptoanalyses was to 
extract an estimated plaintext from the ciphertext by using the 
estimated security keys. Apart from the aforementioned attacking 
technologies, another method, called learning-based attack, has  

 

Fig. 1.  A schematic experimental setup with complex scattering media: 
SLM, spatial light modulator (Holoeye LC-R720); D1, D2, D3, D4 and D5, 
diffusers (Thorlabs, DG10-600); BS, beam splitter cube; CCD, charge-
coupled device (Thorlabs, DCC1240C). 

also been developed [17]. It can allow a direct extraction of 
unknown plaintexts from the given ciphertexts without individual 
retrieval of various security keys or the usage of complex phase 
retrieval algorithms. The recent progress in optical cryptoanalysis 
becomes a serious threat to optical encryption schemes, which 
would request the advances in optical encryption methods or 
infrastructures. 

  Inspired by remarkable characteristics of machine learning 

[18–22], we introduce machine learning into optical cryptography. 

In this Letter, learning complex scattering media for optical 

encryption is proposed for the first time to our knowledge. The 

proposed method uses an optical setup with complex scattering 

media to experimentally record the ciphertexts, and uses a 

learning model to generate security keys. It is experimentally 

demonstrated that the proposed learning-based encryption is 

feasible and effective, and possesses high security. 

  A schematic experimental setup is shown in Fig. 1, and complex 

scattering media can be flexibly designed and applied in the optical 

setup. The collimated He-Ne laser beam with wavelength of 633.0 

nm propagates through a beam splitter to be separated into two 

beams. One beam illuminates a reflective spatial light modulator 

(SLM, Holoeye LC-R720). The input grayscale images (i.e., 

plaintexts) are sequentially embedded into the SLM, which are 

fashion-product images from fashion MNIST database [18] or 

handwritten-digit images from MNIST database [19]. Then, the 

modulated laser beam successively propagates through the  
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Fig. 2.  (a)–(d) and (i)–(l) Typical input images (i.e., plaintexts) 
embedded into the SLM, and (e)–(h) and (m)–(p) the corresponding 
speckle patterns (i.e., ciphertexts) experimentally recorded by a CCD. 

diffusers D1 and D2. The reference beam is sequentially diffracted 
by the diffusers D3, D4 and D5, and then interferes with the object 
beam. The interference patterns recorded by a CCD are used as 

ciphertexts (size of 600×600 pixels) in this study. Figures 2(a)–2(p) 

show several plaintexts selected from the two databases [18,19] 
and their corresponding ciphertexts experimentally recorded by 
the CCD. 

 It has been demonstrated that various attacks [13–17] pose a 

great threat to optical cryptosystems. Here, we propose learning-

based optical encryption. Using machine learning technologies 

[18–22], we generate a trained model with its parameters as 

security keys. The decryption process is not the directly reverse 

process of encryption. Meanwhile, parameters in the optical setup 

used to record the ciphertexts can be discarded. The ciphertexts 

and the plaintext-ciphertext pairs cannot be directly generated by 

the attackers. The proposed method uses an optical setup with 

complex scattering media to experimentally record the ciphertexts, 

and uses a learning model to generate security keys. 

  Figure 3 shows a designed convolutional neural network (CNN) 

for the encryption. 5000 images are randomly selected from each 

database to serve as plaintexts, and their corresponding speckle 

patterns (i.e., ciphertexts) are recorded by the CCD shown in Fig. 1. 

The designed learning model is composed of two convolutional 

layers followed by one pooling layer after each convolutional layer, 

one reshaping layer and one fully connected layer. The ciphertext 

is preprocessed by resizing it to reduce the dimensionality and 

computational complexity. Size of convolutional kernels depends 

on dimension of the input, and the number of the kernels is 

determined accordingly. The first convolutional layer is labeled as 

C1 with weights and biases respectively denoted as wc and bc. The 

feature map for C1 can be described by 

1 c 0 c[( ) ],  x w x b                                       (1) 

where x0 denotes the ciphertext,   denotes convolution, and σ 

denotes the activation function used in C1. After down sampling, 

the first pooling layer (P1) is processed by convolution, and the 

feature map for C2 is given by  

 

Fig. 3.  A framework for the proposed learning-based encryption: x0, 
ciphertext; C1 and C2, the first and second convolutional layer; P1 and 
P2, the first and second pooling layer; R, shaping layer; FC, fully 
connected layer; p, plaintext. 

2 d p d[( ) ],  x w x b                                      (2) 

where wd and bd respectively represent weights and biases of the 

kernels used in C2, and xp denotes feature map of P1. Subsequently, 

the pooling layer (P2) is formed by down sampling. After image 

resizing, P2 is reshaped to a one-dimensional vector (R). To achieve 

a prediction of the plaintext, R is connected to a fully connected 

layer (FC) with the usage of weights (we) and biases (be). The 

feature map of FC is described by 

    FC e R e( ) ,  x w x b                                      (3) 

where xR denotes feature map of the reshaping layer. Then, the 

one-dimensional vector of FC is reshaped to a two-dimensional 

vector, which is the ultimate prediction. Here, θ is a combination of 

all the weights and biases.  

  In this study, the input ciphertext is resized from 600×600 

pixels to 100×100. The resized ciphertext convolves with 20 

convolutional kernels (size of 5×5) forming the first convolutional 

layer with size of 96×96×20. Weights wc (dimension of 5×5×20) 

and biases bc (dimension of 20×1) in Eq. (1) are randomly 

initialized. Activation function adopted for each convolutional layer 

is sigmoid. After down sampling, the first pooling layer is 

generated with size of 48×48×20. Down-sampling size is 2 for 

each pooling layer. The pooled data is further processed by 

convolution with 20 kernels (size of 5×5) forming the second 

convolutional layer with size of 44×44×20. Weights wd 

(dimension of 5×5×20) and biases bd (dimension of 20×1) in Eq. 

(2) are randomly initialized. Next, down-sampling processing is 

adopted again to generate the second pooling layer with size of 22

×22×20. Subsequently, the second pooling layer is reshaped from 

a three-dimensional vector to a one-dimensional vector with size 

of 1×9680. The reshaped data is fully connected to the reshaped 

plaintext (size of 1×784). Weights we (dimension of 784×9680) 

and biases be (dimension of 9680×1) in Eq. (3) are randomly 

initialized. 4800 speckle patterns and their corresponding 

plaintexts are used as the training data, and other 200 ciphertexts 

are used to test the learning model. To evaluate the difference 

between the retrieved plaintexts and original plaintexts, mean 

squared error (MSE) is calculated. When the MSE value is higher 

than a preset threshold, the error is back-propagated and then the 

weights and biases of each layer are updated by stochastic 

gradient descent [22]. Here, the training epoch is selected to be 5. 

The momentum is set to be -9.5×10-4, and the learning rate is 10-6. 

The learning model is trained by using Matlab 2009 running on a 

PC with Intel Core i7@8GHz, 64GB RAM and Nvidia GTX1080Ti. 

Total time taken for the model training is about 4.0 hours. After the  
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Fig. 4.  Decrypted images obtained by using all correct security keys: 
(a)–(e) and (k)–(o) ciphertexts; (f)–(j) and (p)–(t) the retrieved 
plaintexts. Peak signal-to-noise ratios (PSNR) for (f)–(j) and (p)–(t) are 
25.22 dB, 26.76 dB, 18.61 dB, 22.04 dB, 28.34 dB, 28.14 dB, 23.69 dB, 
25.26 dB, 29.20 dB and 22.63 dB, respectively. 

training, the unknown plaintext can be retrieved in real time by 

using the trained learning model with its parameters. 
  The trained learning model with its parameters, e.g., size of 

kernels, the number of kernels, activation function, wc, wd, we and 
θ, can be used as security keys. The security keys can also be 
updated with a new training iteration. It needs to be pointed out 
that security keys can be obtained by training the designed model 
using multiple databases. To save time, security keys for each 
database can be obtained individually. When all security keys are 
correct, the plaintexts can be fully retrieved as typically shown in 
Fig. 4. The security keys are further analyzed and demonstrated by 
using PSNR values. Figures 5(a) and 5(b) show the performance of 
parameters we used in the decryption process respectively for the 
two different databases. In this case, all other security keys are 
assumed to be correct. When eavesdropping percent for 
parameters we is lower than 99.90%, the decoded images cannot 
visually render useful information about the plaintexts. Moreover, 
performance of θ on PSNR values of the decrypted images has also 
been studied as shown in Figs. 5(c) and 5(d) respectively for the 
two different databases. In this case, all other security keys are also 
assumed to be correct. It is demonstrated in Figs. 5(c) and 5(d) that 
when eavesdropping percent for θ is lower than 99.95%, the 
decoded images cannot visually render useful information about 
the plaintexts. For the sake of brevity, eavesdropping analysis of 
other security keys is not presented here. These eavesdropping 
analyses demonstrate that security of the proposed learning-based 
optical cryptosystem can be fully guaranteed. Without accurate 
knowledge about security keys, the plaintexts cannot be effectively 
extracted. The proposed method uses an optical setup with 
complex scattering media to experimentally record the 
ciphertexts, and uses a learning model to generate security keys. 
Therefore, high security can be achieved. 

The higher security can be flexibly achieved by using virtual 

phase-only masks which serve as supplementary security keys for 

the decryption. One virtual phase-only mask is further used here 

and shown in Fig. 6. The axial distance (L1) between the CCD and 

virtual phase-only mask is 4.0 cm, and that (L2) between virtual 

phase-only mask and the D2 plane is 2.0 cm. The ciphertexts  

   

Fig. 5.  Eavesdropping analysis of security keys we and θ. 

recorded by the CCD are back-propagated to the D2 plane when 

virtual phase-only mask is used, and amplitude-only patterns 

obtained in the D2 plane rather than the recorded ciphertexts are 

used as the inputs for the designed learning model. After the 

training, virtual phase-only mask, axial distances, wavelength, and 

the trained learning model with its parameters can be used as 

security keys. The speckle patterns recorded by the CCD are still 

used as ciphertexts. Figures 7(a)–7(t) show the plaintexts 

retrieved from their ciphertexts by using all correct security keys. 

Performance of virtual phase-only mask in the decryption process  
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Fig. 6.  A schematic experimental setup with complex scattering media: 
L1 and L2, axial distances; V, virtual phase-only mask. A virtual phase-
only mask is further used as supplementary security key for the 
decryption. 

is demonstrated in Fig. 8. As shown in Figs. 8(a) and 8(b), when 
eavesdropping percent for virtual phase-only mask is lower than 
99.99%, the decoded images cannot visually render useful 
information about the plaintexts. For the sake of brevity, 
eavesdropping analysis of other security keys is not presented 
here. It is expected that multiple virtual phase-only masks used for 
the decryption would further enhance the security. 

  In conclusion, we have proposed a new method for optical 

encryption by learning complex scattering media. Instead of 

directly using the parameters in optical setup as security keys, the 

proposed method uses the trained learning model with its 

parameters as security keys. In addition to the trained model with 

its parameters, other parameters, e.g., virtual phase-only mask, can 

be flexibly used to enlarge key space. The proposed method uses 

an optical setup with complex scattering media to experimentally 

record the ciphertexts, and uses a learning model to generate 

security keys. Therefore, high security is achieved in the proposed 

method. The proposed method can be theoretically and 

experimentally implemented, and is not limited to the typical 

optical setup and the typical number of diffusers presented in this 

study. The proposed learning-based encryption might open up a 

new research perspective for optical encryption. 

 

Fig. 7.  Decrypted images obtained by using all correct security keys: 
(a)–(e) and (k)–(o) ciphertexts; (f)–(j) and (p)–(t) the retrieved 
plaintexts. The PSNR values for (f)–(j) and (p)–(t) are 30.65 dB, 24.63 
dB, 16.09 dB, 29.26 dB, 25.42 dB, 23.08 dB, 34.36 dB, 24.63 dB, 29.59 
dB and 22.04 dB, respectively.  

 

Fig. 8.  Eavesdropping analysis of virtual phase-only mask. All other 
security keys are assumed to be correct. 
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