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Data-driven Planning for Renewable Distributed
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Abstract—Many countries are setting ambitious goals to inte-
grate large amounts of sustainable, low-emission renewable en-
ergy into their electricity supply. These to-be-installed renewable
sites, mainly wind farms or solar panels, are highly uncertain
sources of electricity. Thus meeting these ambitious goals will
require careful planning and operational strategies. In this paper,
we first propose a two-stage data-driven distributionally robust
optimization model (O-DDSP) for the optimal placement of
renewable distributed generation (RDG). In our model, we con-
sider both load and generation uncertainties through data-driven
ambiguity set, which enables more flexibility than stochastic
optimization and allows less conservative solutions than robust
optimization. The objective is to minimize the total cost of RDG
installation plus the total operational cost on the planning hori-
zon. Next, we introduce a tight approximation of O-DDSP based
on principal component analysis (leading to a model denoted by
P-DDSP), which reduces the original problem size by keeping the
most valuable data in the ambiguity set. The performance of O-
DDSP and P-DDSP is compared with stochastic optimization (SO)
and robust optimization (RO) on the IEEE 33-Bus radial network
with real data set, where we show that P-DDSP significantly
speeds up the solution procedure, especially when the number
of periods increases. Indeed, as compared to SO and RO, which
become computationally impractical solving the siting and sizing
problem with large sample sizes, our P-DDSP formulation can
increase the accuracy of its solutions by utilizing larger sample
sizes. Finally, extensive numerical experiments demonstrate that
the optimal RDG planning decisions lead to significant savings
as well as increasing penetration of intermittent renewables in
the distribution network.

Index Terms—Distributionally robust optimization, renewable
distributed generation, principal component analysis, semidefi-
nite programming, delayed constraint generation algorithm.

I. NOMENCLATURE

A. Indices and Sets
n/k/t Index of buses / RDGs / periods
N/E Set of buses / power distribution lines.
N0 Set of buses connected to bus 0.
N1 Set of buses with dispatchable DG units.
N2 Set of buses with reactive power sources.
X Feasibility set of the first-stage decision x.
Yt Set of all the power flow variables at period t.
Dt/Dtr Original/projected ambiguity set of ξt at period t.
F t Feasibility region of the dual of the second-stage

problem at period t.
VFt Set of selected vertices of F t used to solve O-

DDSP and P-DDSP.
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GK Set of location alternatives for installing K RDGs.
B. Parameters
Â/B̂/ê Auxiliary matrices and vectors used to represent
Ĉ(x)/d̂ the second-stage problem in compact form.
c0kn Setup cost of placing the kth RDG at bus n.
c1k/c2k Size-based investment / maintenance cost of the

kth RDG.
ctp/c

t
q Electricity price of purchasing active / reactive

power from the main grid.
cfn/c

e
n Fuel / emission price for the dispatchable DGs at

bus n.
ω Emission factor of the dispatchable DGs (kg/kWh).
K The total number of RDGs to be installed.
T The total number of time intervals in the planning

horizon.
c̄mn Capacity of the power transmission line (m,n).
(p̄tn, p

t
n
)/Active / Reactive power output bounds of

(q̄tn, q
t
n
) dispatchable DGs at period t.

Rmn/XmnElectrical resistance / reactance of line (m,n).
δn Binary indicator if bus n has a dispatchable unit.
τkn Binary indicator if kth reactive power source is

installed at bus n.
µt/Σt/ Mean vector / covariance matrix / support set of
St random variable ξt.
A, b Coefficients used to represent St.
U t/Λt Matrix of eigenvectors / eigenvalues of Σt.
U t
m×m1

/The dominant m1 elements in matrix of eigenvec-
Λt
m1

tors / eigenvalues of Σt.
x̄k/xk The max / min capacity of the kth RDG.
zkn Binary indicator if kth RDG is located at bus n.
u Number of pieces in the polyhedral ε-

approximation of the SOCP constraint.
v̄/v The upper / lower bound of voltage magnitude.
C. Random Variables
dtpn/d

t
qn Active / reactive load at bus n at period t.

stk Active power output of the kth RDG at period t.
ξt Vector of uncertainty in compact form at period t,

i.e., [st1, ..s
t
k, d

t
p1, ...d

t
pN , d

t
q1...., d

t
qN ]T .

ξtr The PCA projection of the ξt into m1 dimensions.
D. Decision Variables
x Size (i.e., capacity) of RDG units, i.e., [x1, ..xK ]T .
pt0/q

t
0 Active / reactive power purchased from the main

grid at bus 0 at period t.
P tmn/ Active / reactive power flow from buses m to n at
Qtmn period t.
V tn/ Complex voltage at bus n at period t
|V tn|2 / its magnitude.
Itmn/ Complex current from buses m to n at period
|Itmn|2 t / its magnitude.
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ptn/q
t
n Active / reactive power output of the dispatchable

DG units (reactive DG units) at bus n at period t.
W t Auxiliary variable denoting the second-stage OPF

variables at period t in compact form.
λt Dual variable of the second-stage constraints at

period t.
βt Dual variable corresponding to the polyhedral sup-

port constraint at period t.
st/str Scalar dual variable used in reformulation process

for O-DDSP / P-DDSP.
qt/qtr Vector dual variable used in reformulation process

for O-DDSP / P-DDSP.
Qt/Qt

r Matrix dual variable used in reformulation process
for O-DDSP / P-DDSP.

E. Auxilary variables for ε-approx. of SOCP cons.
Yt

1,mn /Yt
2,mn/ Yt

3,mn/ ε10, .., ε3u/ η10, .., η3u

F. Functions
Q(x, ξt) Optimal value of the second-stage problem at

period t when x and ξt are given.
EFξt Expectation over distribution Fξt .
P Probability of an event.
“•” The trace of two conformal matrices.
vert(.) The set of vertices of a polytope.

II. INTRODUCTION

Renewable energy is becoming an increasingly prevalent
source of electricity throughout the world. Recent technologi-
cal advances along with supportive government policies have
provided the means for significant investments in exploiting
wind and solar energy. For instance, the total installed capacity
for renewable energy was higher than that of traditional fossil
fuels in 2017 [1]. This implies a tremendous integration of
renewable distributed generation (RDG) at the distribution
level of the power grid. However, the electrical outputs from
RDGs are extremely variable and uncertain over different time
windows, from minutes to hours to days –because of weather
patterns, diurnal nature of the sun, changes in sun angles,
etc. This variability makes it extremely harder to maintain the
balance between electricity supply and demand at all times,
and it can lead to blackouts or other cascading problems.
Therefore, there is a limit to safe development of RDGs in an
existing distribution system. In brief, adding RDGs compli-
cates the configuration of circuit breakers and other protection
systems and leads to more sophisticated distribution networks.
Moreover, it further raises new challenges including managing
the distribution voltage and managing the contingency plan for
power generators and distribution lines, all of which could lead
to higher costs and faults on the electricity network [2]. To
overcome these challenges, improved analysis of distribution
system such a careful siting and sizing of RDGs within a
distribution feeder is proven to be an accessible and low-
cost strategy that can increase the penetration of renewable
energy while guaranteeing the smooth operation of an existing
distribution system [3].

Indeed, if RDG units (RDGs) are installed efficiently (with
optimal sizing and siting decisions), then they can not only
increase the penetration of clean and cheap renewable energy,
but also boost the overall efficiency and reliability of a

microgrid as well as the whole power grid by providing reac-
tive power support, minimizing the network power loss, and
improving the voltage stability and energy security [4, 5]. On
the contrary, an improper installation of the RDGs can cause
various malfunctions in the system such as unbalanced supply
and demand, power quality decay, voltage increase at the end
of the feeder, more power losses, and low system reliability
[6, 7]. Therefore, the planning of the RDGs is of outstanding
importance to ensure the aforementioned benefits as well as
to maximize the expansion of renewable energy penetration
while respecting the installation and operation costs of the
RDGs. Consequently, the problem of siting and sizing of new
RDGs has received much attention from both academia and
industry practice [8, 9]. For instance, [10] suggests that the
siting and sizing of RDGs have a large affect on the system
losses and proposes an ant lion optimization algorithm that
minimizes power losses. An environmentally committed short-
term planning of electrical distribution systems considering
RDGs siting and sizing is proposed in [11]. [12] proposes
a mixed-integer linear programming technique to find the
optimal short-term siting and sizing plan of RDGs and reactive
power sources.

The RDG sizing and siting problems are difficult to solve
in general because 1) the distribution systems are extremely
complex as the mathematical model includes nonlinear expres-
sions, complex numbers, and large number of variables and
constraints, and 2) there is a significant amount of uncertainty
incorporated in the model. Therefore, implementation of meta-
heuristic methods (e.g., genetic algorithms, particle swarm
optimization, tabu search) [13, 14] and analytical techniques
(e.g., eigen-value based analysis, index method) [6] are usually
preferred to the exact mathematical programming methods.
While the meta-heuristic techniques are efficient and provide
a fast search of the solution space, they may not be able to
obtain global optimality and there is no guarantee about the
quality of the solution. The analytical approaches, on the other
hand, are valuable as they ensure the convergence of RDG
planning solution. However, the assumptions used for over-
simplifying the problem come at the expense of the accuracy
of the solution.

Among few papers that use mathematical programming
methods to solve the sizing and siting of RDGs, the uncertainty
has been mostly modeled by stochastic optimization (SO) [15,
16, 17] and robust optimization (RO) [18, 19, 20]. Although
both of these techniques have been studied to support decision
making under uncertainty, their shortcomings for the RDG
planning problem are also straightforward. In particular, SO
requires exact probability distribution of random parameters,
which is usually impractical to accurately estimate in real
practice. Thus, Sample Average Approximation (SAA) is often
used to solve SO because its advantage in guaranteeing con-
vergence to the optimal solution with large enough scenarios.
Nevertheless, the SAA is proven to be extremely computation-
ally expensive when the sample size is large. Meanwhile, RO
is too conservative because it finds solutions by considering
the worst case of uncertain parameters, which rarely happens
in practice. Distributionally robust optimization (DRO), on
the other hand, considers both distributional information and
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the range of uncertain parameters, and can help address the
limitations of RO and SO [21, 22]. Other advantages of
applying the DRO method to the sizing and siting of RDGs are
1) we can use historical data to estimate certain information
(e.g., support, mean, variance, etc.) of random parameters,
which can be further used to support decision making, leading
to a data-driven approach. 2) Increasing the sample size
in DRO problems will further improve the accuracy of its
ambiguity set without adversely affecting the size of the
problem, whereas for the classic optimization methods, i.e., SO
and RO, the computation time grows exponentially with larger
sample sizes. This is especially important as the sizing and
siting decisions are medium-term planning decisions that are
made by considering the big dataset of distribution system’s
load and generation data over a long planning horizon (6-
48 months). Moreover, 3) these data usually do not follow
a single distribution as stochastic optimization assumes. In
contrast, DRO provides a lot of flexibility as it allows to
incorporate information about the estimation errors into the
optimization problem and its solutions are guaranteed for all
the distributions in the ambiguity set [23].

Therefore, DRO has been recently used to determine the
optimal size of wind farms in power system [24], however,
this work only considers a low dimension uncertainty vector
(with five random variables), and it solves the DRO model
using linear decision rule which fails for large-scale problems
(i.e., with a lot of uncertain parameters). A DRO based data-
driven RDG sizing model is proposed in [25] which considers
both uncertain RDG outputs and uncertain load demands,
however, it uses the CVaR (conditional value at rist) objective
function to maximize the penetration of RDGs for active
distribution networks. Note that a DRO problem with first-
and second-moment information can be reformulated exactly
as a semidefinite programming problem (SDP), and if the size
of the uncertainty vector increases, size of SDP constraints will
increase as a result and the corresponding problem becomes
quickly intractable dealing with large SDP constraints. Indeed,
most of the DRO papers in the power system literature study
only the case when the size of the uncertainty vectors is low.
For instance, [26] considers a maximum of two wind outputs
(with 2 random variables) and [27] considers a maximum of
four wind outputs (with 4 random variables) in their numerical
tests. Also, [25] considers CVaR objective function which
limits the number of SDP constraints to very few. In general,
while showing the benefits of using the DRO vs. RO or SO,
none of DRO papers in literature introduce any means to deal
with large-scale uncertainty which is usually the case in power
system problems. Moreover, to the best of our knowledge, few
DRO studies have focused on planning strategies regarding
the placement and capacity of intermittent RDGs in the
power distribution network, and even less have studied the
efficient computational approaches to solve practical large-
scale planning problems.

Therefore, in this paper, we aim to determine the sizing
and siting plan for the RDGs in an active distribution network
by using historical generation and load data and constructing
the corresponding DRO model. The main contributions of this
paper can be summarized as follows:

• A novel two-stage data-driven distributionally robust op-
timization model (O-DDSP) to make the planning de-
cision for the RDGs in an active distribution network
considering multiple periods is proposed. In our model,
the probability distribution function (PDF) of uncertain
renewable generation, as well as uncertain demand of
each bus, belongs to a set of multivariate distributions
with known support, first- and second-moment informa-
tion. The information is estimated by using historical data
from real industry. The historical load data is obtained
from the Pecanstreet project [28], which provides access
to a large set of real electricity usage data for academic
use. The renewable generation data is from ERCOT [29].
The objective function is to minimize the expected total
cost, including strategic installation cost in the first-stage
and operational cost against the worst-case distribution in
the second stage.

• We present an exact semidefinite programming (SDP) re-
formulation of the proposed multi-period O-DDSP model,
and it is solved by a delayed constraint generation algo-
rithm. The size of the O-DDSP problem, however, can be
very large-scale in practice so that it cannot be handled
by the solvers. To overcome the significant computational
difficulty of the SDP reformulation, we propose a tight
approximation of the O-DDSP based on principal com-
ponent analysis (PCA), leading to a model denoted by P-
DDSP, by keeping the most dominant information in the
ambiguity set. This P-DDSP formulation has significantly
lower CPU times, and it allows for investigating practical
sizing and siting optimization problems that have large-
sized uncertainty vectors. The efficiency of P-DDSP, as
compared to O-DDSP, SO method and RO method, has
been demonstrated with extensive numerical results.

• A general framework to decentralize planning strategies is
proposed. By performing numerical tests and sensitivity
analyses on the detailed second-stage cost components,
we confirm the efficiency of our data-driven results such
that the RDG sizing and siting decisions can have a
conclusive impact on the total cost. The joint RDG siting
and sizing problem requires several instances of the RDG
sizing problem to be run quickly, and our P-DDSP allows
several instances to be run within several minutes. Note
that, it would take several days instead of minutes to run
the several instances of the sizing problem with RO or
SO. Therefore, our proposed method makes it possible to
practically expand the RDGs towards the minimum cost
and high penetration of renewable energy as compared
to RO which is too conservative, and SO which is too
computationally expensive for large sample sizes.

The remaining parts of this paper are organized as follows.
The mathematical modeling of the two-stage multi-period
planning problem and its DRO reformulation is presented in
Section II. The SDP reformulation of the DRO problem, a
PCA approximation of the original DRO problem, and also
the constraint generation algorithm are presented in Section
IV. Numerical results are provided in Section V. Finally, we
conclude this paper in Section VI.
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III. MATHEMATICAL MODEL

In this section, we first present a two-stage planning model
for RDG placement and then introduce its DRO counterpart.

A. Two-stage Model Formulation

We consider a common topology of distribution networks,
i.e., a radial network. The load demand in the distribution
network is primarily satisfied by the power internally generated
from the DG units. When the internal power supply is not
enough, the system will buy power from the main grid via the
Point of Common Coupling (PCC), thus incurring operating
costs. This paper investigates the optimal siting and sizing of
RDGs at each bus in N to minimize the total cost during the
whole time horizon, including investment, maintenance, and
operational costs. In the following, we formulate the plan-
ning model as a two-stage optimization model and describe
the corresponding first-stage and second-stage objectives and
constraints.

1) First-stage planning model: The objective is to min-
imize the total cost, including a set-up cost and size-based
investment and maintenance costs for the RDGs as follows:
C1(x) =

∑K
k=1

(∑
n∈N c

0
knzkn + (c1k)xk + (c2k × T )xk

)
.

The support of first-stage decision variable x is defined as
X :=

{
x ∈ RK : xk ≤ xk ≤ x̄k, ∀k = 1, 2, · · · ,K

}
.

2) Second-stage operational model: The objective is to
minimize the costs of the power generated by the dispatchable
DG units as well as the power purchased from the main grid,
while respecting physical constraints such as optimal power
flow (OPF) constraints. Note that the OPF problem is non-
convex and thus is hard to solve. Recently, [30] shows that
when the network is radial, the OPF constraints can be exactly
reformulated to a set of Second Order Cone Programming
(SOCP) constraints in a branch flow model. Hence, we adopt
the branch flow model to construct the OPF constraints. There-
fore, given the first-stage decision x and the actual realization
of uncertainty ξt at period t, the minimum operating cost
(denoted by Q(x, ξt)) is obtained by solving the following
problem:

min
Y,p

ctpp
t
0 + ctqq

t
0 +

∑
n∈N1

cfnp
t
n +

∑
n∈N1

cenωp
t
n (1a)

s.t. p
¯
t

n
≤ ptn ≤ p̄tn, ∀ n ∈ N1 (1b)

q
¯
t

n
≤ qtn ≤ q̄tn, ∀ n ∈ N2 (1c)

v ≤ |V tn |2 ≤ v̄, ∀ n ∈ N \ {0}
(1d)

pt0 =
∑
n∈N0

P t0n, qt0 =
∑
n∈N0

Qt0n, (1e)

P tmn −Rmn|Itmn|2 = dtpn −
∑K
k=1 zkns

t
kxk − δnptn+∑

l∈Nn
P tnl, ∀ (m,n) ∈ E

(1f)

Qtmn − Xmn|Itmn|2 = dtqn −
∑
k∈N2

τknq
t
kn+∑

l∈Nn
Qtnl, ∀ (m,n) ∈ E

(1g)

|V tm|2 − |V tn |2 = 2RmnP
t
mn + 2XmnQ

t
mn − (R2

mn+

X2
mn)|Itmn|2, ∀ (m,n) ∈ E

(1h)

‖[2P tmn, 2Qtmn, |V tm|2 − |Itmn|2]‖2 ≤ |V tm|2 + |Itmn|2,
∀ (m,n) ∈ E

(1i)

(P tmn)2 + (Qtmn)2 ≤ (c̄mn)2, ∀ (m,n) ∈ E ,
(1j)

where |V tm|2 represents the voltage magnitude of bus m
and |Itmn|2 represents the current magnitude on line (m,n).
Constraints (1b) and (1c) restrict the active and reactive
generations of each unit to their bounds, respectively. (1d) sets
the bounds on voltage of each bus. Constraints (1e) represent
the active and reactive power balance equations at bus 0,
respectively. Constraints (1f) and (1g) are active and reactive
power balance equations from the Kirchhoff’s current law,
respectively. (1h) represents the voltage drop on each line.
(1i) is the branch power flow constraint and the capacity of
each transmission line is limited by (1j).

Note that constraints (1i) and (1j) are nonlinear SOCP
constraints. Moreover, in order to obtain a tractable formu-
lation that can be used practically in large-scale settings, we
approximate these constraints with linear constraints. First, we
build a polyhedral ε-approximation for (1i) according to [31]
with the following constraints:


ε10 ≥

∣∣2P tmn∣∣ , η10 ≥
∣∣|V tm|2 − |Itmn|2∣∣ ,

ε20 ≥
∣∣∣Yt3,mn∣∣∣ , η20 ≥

∣∣2Qtmn∣∣ ,
ε30 ≥

∣∣∣Yt1,mn∣∣∣ , η30 ≥
∣∣∣Yt2,mn∣∣∣ , (2a)



ε1j = cos( π
2j+1 )ε1

j−1 + sin( π
2j+1 )η1

j−1 ,

η1j ≥
∣∣∣− sin( π

2j+1 )ε1
j−1 + cos( π

2j+1 )η1
j−1
∣∣∣ ,

ε2j = cos( π
2j+1 )ε2

j−1 + sin( π
2j+1 )η2

j−1 ,

η2j ≥
∣∣∣− sin( π

2j+1 )ε2
j−1 + cos( π

2j+1 )η2
j−1
∣∣∣ ,

ε3j = cos( π
2j+1 )ε3

j−1 + sin( π
2j+1 )η3

j−1 ,

η3j ≥
∣∣∣− sin( π

2j+1 )ε3
j−1 + cos( π

2j+1 )η3
j−1
∣∣∣ ,

j = 1, 2, ..., u ,

(2b)
ε1u ≤ Yt1,mn , η1u ≤ tan( π

2v+1 )ε1
u ,

ε2u ≤ Yt2,mn , η2u ≤ tan( π
2v+1 )ε2

u ,

ε3u ≤ |V tm|2 + |Itmn|2, η3u ≤ tan( π
2v+1 )ε3

u ,
(2c)

Note that the system of constraints (3) are a polyhedral
ε approximation of constraint (1i). Thus, the error ε of this
approximation depends on the parameter of the construction
u, and it is calculated by 1

cos(π/2u+1) − 1. For example, for
u equal to 2, 5, and 10, the ε is 0.41, 10−3 and 10−6,
respectively. Next, note that the equation (1j) describes a circle,
and it can be approximated by several squares as depicted in
Figure 1. Generally, the more squares considered, the higher
the accuracy. Here, we used 2 squares as it already provides a
tight approximation appropriate for engineering applications:

− c̄mn ≤ P tmn ≤ c̄mn , (3a)

− c̄mn ≤ Qtmn ≤ c̄mn , (3b)

−
√

2c̄mn ≤ P tmn +Qtmn ≤
√

2c̄mn , (3c)

−
√

2c̄mn ≤ P tmn −Qtmn ≤
√

2c̄mn , (3d)

For notational brevity, we use a compact matrix form to
represent the linearized model (1), as shown in the following:

Q(x, ξt) = min
W t

êTW t (4a)

s.t. ÂW t + B̂x+ Ĉ(x)ξ
t ≤ d̂ (4b)

The dual of model (4) can be represented as follows:
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Fig. 1. Linearization of circular constraints: the intersection of the two
squares, i.e., grey area, is used to approximate the circle.

Q(x, ξt) = max
λt

λt
T

(B̂x+ Ĉ(x)ξ
t − d̂) (5a)

s.t. F t =
{
λt|ÂTλt + ê = 0,λt ≥ 0

}
. (5b)

where λt are the dual variables corresponding to constraints
(4b).

B. O-DDSP Model

In reality, when we make the RDG planning decisions,
we do not know the real value of the uncertainty vector ξt

in advance. More specifically, the multivariate PDF of ξt is
unknown in many cases in practice, which prevents us from
performing a stochastic programming approach. Accordingly
by adopting the DRO method, we assume that the PDF of ξt

belongs to a moment-based ambiguity set Dt(St,µt,Σt). It
consists of all the possible probability distributions that share
the mean vector µt and covariance matrix Σt and are on the
support set St as follows:

Dt(St,µt,Σt) =

{
F

∣∣∣∣∣ P(ξt ∈ St) = 1
EF [ξt] = µt

EF [(ξt − µt)(ξt − µt)T ] � Σt

}
,

(6)

where these parameters (St,µt,Σt) are usually calculated
empirically from the historical data.

The DRO approach looks for the solutions that perform the
best under the worst-case distribution within the ambiguity set.
Since uncertain vector ξt follows an independent PDF with
specific ambiguity set Dt for each period t, we can present
the multi-period second-stage problem as follows:

sup
Fξt∈Dt

EFξt [

T∑
t=1

Q(x, ξt)] =

T∑
t=1

sup
Fξt∈Dt

EFξt [Q(x, ξt)]. (7)

Combined with the first-stage problem, the complete DRO
model, denoted by O-DDSP, can be described as the following
two-stage optimization problem:

min
x∈X

[
C1(x) +

T∑
t=1

sup
Fξt∈Dt

EFξt [Q(x, ξt)]

]
. (8)

By replacing the inner maximization problem in (8) under
ambiguity set Dt with its conic dual, we obtain the following
equivalent reformulation:

min
x,st,

qt,Qt

C1(x) +
T∑
t=1

[
st + (µt)>qt + (Σt + µt(µt)>) •Qt

]
(9a)

s.t. st + ξt
>
qt + ξt

>
Qtξt ≥ Q(x, ξt), ∀ξt ∈ St, t = 1, ..T, (9b)

x ∈ X ,Qt � 0, (9c)

where st ∈ R, qt ∈ Rm, Qt ∈ Rm×m. Note that strong
duality holds because Q(x, ξt) is F-integrable for any F ∈ Dt.

Note that, when the ambiguity set is singleton and the
distribution of uncertainty is assumed to be known beforehand,
then the DRO model becomes the classic stochastic opti-
mization. Alternatively, when the ambiguity set only includes
support information, then the DRO model becomes robust
optimization.

IV. SOLUTION METHOD

In this section, we first obtain the equivalent SDP reformu-
lation of O-DDSP (9). Next, we introduce P-DDSP, which is a
relaxation of O-DDSP (8) based on PCA. Finally, we present
the algorithm that we will use to solve both O-DDSP and
P-DDSP.

A. O-DDSP in SDP form

Note that we cannot solve O-DDSP (9) directly because
(9b) includes an infinite number of constraints and also the
function Q(x, ξt) is not given in a closed form. To resolve the
latter issue, we replace Q(x, ξt) with the dual of the second-
stage problem (5). Thus, constraints (9b) can be equivalently
reformulated with the following constraints:

st + ξt
>
qt + ξt

>
Qtξt ≥ ξt>λt>(B̂x+ Ĉ(x)ξ

t − d̂),

∀λt ∈ F t, ξt ∈ St, t = 1, .., T.
(10)

Here we assume the support set St are in the form
of a polytope with at least one interior point, i.e.
St = {ξt|Aξt ≤ b} 6= ∅, ∀t = 1, 2, ..T . Thus model (8) can
be reformulated as the following SDP problem:

min
x,st,βt,

qt,Qt

C1(x) +
T∑
t=1

[
st + (µt)>qt + (Σt + µt(µt)>) •Qt

]
, (11)

s.t. x ∈ X ,
βt ≥ 0,Qt � 0, Mt

11 Mt
21
>

Mt
21 Mt

22

 � 0, ∀λt ∈ vert(Ft), t = 1, .., T,

Mt
11 = st + ξt

>
λt
>
(d̂− B̂x)− βt>b,

Mt
21 =

[
1
2
(qt − Ĉ>

(x)
λt +A>βt)

]
, Mt

22 =
[
Qt
]
,

where set vert(F t) includes all the vertices of the feasibility
region {λt|λt ≥ 0, Â>λt + ê = 0}.
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B. Low-rank approximation for O-DDSP

It is important to notice that O-DDSP (11) still has an
exponential number of SDP constraints. Each of these con-
straints are of size m×m, leading to a heavy computational
burden. Thus, to improve the computational performance,
we implement a relaxation technique based on PCA [32] to
decrease the size of the SDP constraints to a lower size of
m1×m1 with m1 < m. To that end, we excavate the dominant
and accordingly useful information in the ambiguity set by
projecting the random variable ξt with original dimension m
to a m1-dimensional vector ξtr.

Consider the ambiguity set Dt(St,µt,Σt). Given a positive
definite matrix Σt, its eigendecomposition can be presented as
Σt = U tλtU t> = U tΛt

1
2 (U tΛt

1
2 )>, where U t ∈ Rm×m

and Λt ∈ Rm×m is a diagonal matrix with the eigenvalues
on the diagonal. By sorting the eigenvalues in Λt in a
decreasing order and picking the largest m1 elements and
their corresponding eigenvectors, U t

m×m1
Λt

1
2
m1
ξtr will carry

the highest variability of the uncertainty in the data in m1

dimension. Thus, the distributional ambiguity set for random
variable ξtr centered around zero can be represented as:

Dtr =

{
Fr

∣∣∣∣∣ P(ξtr ∈ Str) = 1
EFr [ξtr] = 0m1

EFr [(ξtr)(ξ
t
r)
T ] � Im1

}
, with (12)

Str := {ξtr ∈ Rm1 : U t
m×m1

Λt
1
2
m1
ξtr + µt ∈ St}, (13)

where 0m1 is a vector of zeros with dimension m1 and Im1

is an identity matrix with dimension m1.
Therefore, problem (8) with the projected uncertainty vector

ξtr instead of the ξt and under the new ambiguity set Dtr is
an approximation of O-DDSP and we refer to it as P-DDSP.
Similar to Subsection (IV-A), we can derive an equivalent SDP
reformulation of P-DDSP as follows:

min
x,st,βt,

qtr,Q
t
r

C1(x) +
T∑
t=1

[
st + Im1 •Q

t
r

]
, (14)

s.t. x ∈ X
βt ≥ 0, st ∈ R, qtr ∈ Rm1 ,Qtr ∈ Rm1×m1 M ′11 M ′21

>

M ′21 M ′22

 � 0, ∀λt ∈ vert(Ft), t = 1, 2, ..T

M ′11 = st + λt
>
(d̂− B̂x)− βt>b+ (βt

>
A− λt>Ĉ(x))µ

t

M ′21 =

[
1
2
(qtr + (U tm×m1

Λt
1
2
m1 )(A

>βt − Ĉ>
(x)
λt))

]
M ′22 =

[
Qtr
]
.

C. Delayed Constraint Generation Algorithm

Since enumerating all the vertices of the feasibility region
F t in both O-DDSP (11) and P-DDSP (14) is not practical,
we present an efficient algorithm (as shown in Algorithm 1) to
solve both models in this subsection. In fact, SDP constraints
are highly computationally intense and the global optimization
techniques would quickly become computationally expensive,
especially for such large-scale problems. In Algorithm 1,
we present the details of the delayed constraint generation

algorithm [33] to overcome this challenge and solve (11)
efficiently. According to this algorithm, we start to solve a
relaxed version of the SDP problem by considering a subset
of vert(F t). We then check if the SDP constraint in (11) is
satisfied. If yes, then the optimal solution is found. Otherwise,
we add the corresponding feasibility cuts.

Algorithm 1: Delayed Constraint Generation Algo-
rithm
Step1: Find initial sets of vertices of the feasibility

region {λt|λt ≥ 0, Â>λt + ê = 0} for each t, as the
starting point for Vtf .

Step2: Solve the problem (11) considering the vertices
only in Vtf , namely the master problem. Then, save
the optimal value R∗ and optimal solution X ∗.

Step3: Solve the following biconvex subproblem on
each period t using the optimal values of s, qt, Qt ,
x from Step2:

min
λt,ξt

st + ξt
>
qt + ξt

>
Qtξt − λt>(B̂x+ Ĉ(x)ξ

t − d̂)

s.t. ∀λt ∈ F t, ξt ∈ S,
and save the optimal value as rt∗ and optimal solution

as λt∗. To do so, we use the alternating direction
search algorithms.

Step4: If rt∗ ≥ 0 for all t, then (9b) is feasible and the
optimal solution R∗ obtained in Step2 is optimal for
O-DDSP. Otherwise, if rt∗ < 0 for some t, then add
the optimal λt∗ obtained in Step3 to set Vtf and go to
Step2.

Note that in the first step of Algorithm 1 and to find the
vertices of the feasibility region {λt|λt ≥ 0, Â>λt + ê = 0},
we solve a linear program with different objective functions
each time subject to this feasibility region. In this way,
the obtained solution is a vertex of the feasibility region.
In Step3, the optimization problem is nonlinear due to the
bilinear term λt

>
ξt and it can be solved by the nonlinear

optimization solvers to the exact optimal point for small-
size problems. For the large-scale problems, it is possible to
solve the problem in Step3 to the near-optimal solutions using
alternating direction search techniques. In addition, note that
Algorithm 1 is specially designed to solve O-DDSP (11), while
similarly one can be developed to solve P-DDSP (14) and thus
we omit it due to limited space.

V. NUMERICAL RESULTS

In this section, first we briefly introduce the IEEE 33-
Bus system and the historical real data that we acquired.
Next, we investigate the effectiveness of Algorithm 1 to
solve the proposed multi-period model O-DDSP (11) and its
PCA relaxation P-DDSP (14). Finally, sensitivity analyses
are carried out by using in-sample and out-of-sample tests
to further validate the effectiveness of the obtained planning
solutions. All numerical tests were executed on a PC with
an Intel Core i7-7700 CPU and 16 GB RAM. The master
problem and subproblem were solved by MOSEK solver on
CVX software.
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A. Data

We consider a modified IEEE 33-Bus radial distribution
network [34]. All generators and DGs are connected to the grid
in three phases. Two active power DGs are considered at buses
15 and 29, and three reactive power sources are considered
at buses 11, 13, and 32. The reactive power sources are of
the hybrid (capacitive and inductive) compensator type which
have the ability to both generate and absorb reactive power in
order to stabilize the voltage. Three RDGs are to be placed
in the network, i.e., K = 3. The optimal capacity of each
of these RDGs (between xk = 0.2 MW and x̄k = 2.5 MW
for k=1,2,3) should be decided by O-DDSP (11), while the
siting decision will be analyzed later. We consider two folds
of uncertainties: 1) the hourly active/reactive loads at each
bus, i.e., dtpn/d

t
qn, at period t, and 2) the renewable generation

outputs of each RDG, i.e., stk, at period t. Our dataset includes
hourly load data (from Pecanstreet project [28]) and hourly
wind generation coefficient data (from ERCOT [29]) for 4
years. As we consider our planning periods to be seasonal,
we have 2160 (90 days×24 hours) sample points available at
each season.

B. Performance Analyses of O-DDSP and P-DDSP

First, in Table I, we report the performance of O-DDSP by
considering different number of seasons T (labeled as “T”)
and two different candidate location alternatives to install the
RDGs, which are labeled as Alte. A at buses (32, 17, 21)
and Alte. B at buses (24, 29, 13). In addition, we consider
two different cases regarding the support set S, in which the
results inside the parenthesis are obtained when increasing the
support set from [−2σ,+2σ] to [−3σ,+3σ]. From the table,
we can observe that the penetration of the RDGs (labeled as
“Pene. (MWh)”) increases when we consider longer planning
horizons, and the grid will have higher costs (labeled as “Tot.
Cost (K$)”) as the planning horizon increases. However, it is
easy to infer that the average second-stage costs per season
(labeled as “ Season OPT (K$)”) is significantly lower when
we consider a longer planning horizon. This clearly shows
the long-term cost-wise benefits of the RDG penetration.
Moreover, we can see that adopting a less accurate ambiguity
set, which may be due to insufficient data, usually leads to
longer computational time (labeled as “ Time (s)”) and more
iterations (labeled as “# ITE”) towards optimality. Indeed, a
broader support set means a larger solution space to search for
the optimality, and thus potentially longer computational time.
In addition, comparing the results for alternatives A and B, we
can see that the siting decision will have a decisive effect on
the outcomes, especially on the renewable penetration, and we
will investigate it in detail in Subsection V-C.

Next, we compare the performance of O-DDSP with its
approximation, P-DDSP, on solution quality and time in Tables
II and III. In Table II, we consider m1 = 67, 40, 30, 20,and
10, which corresponds to 100%, 60%, 45%, 30%, and 15%
of the size of ξ, respectively. In Table II, the optimality gap
between P-DDSP and O-DDSP (labeled as “GAP(%)”) is
defined as π∗(m)−π∗(m1)

π∗(m) × 100%, where π∗(m) and π∗(m1)
are the optimal values of O-DDSP and P-DDSP, respectively.
We can observe that P-DDSP will provide very high-quality

TABLE I
THE O-DDSP PERFORMANCE

Alte. T Tot. Cost (K$) Season Cost (K$) Pene. (MWh) Time (s) # ITE

A

2 6988 (7159) 1747 (1790) 0.60 (0.60) 59 (192) 4 (9)
4 14768 (9558) 923 (597) 0.60 (0.60) 112 (223) 11 (12)
6 19624 (14975) 545 (415) 2.77 (1.75) 611 (757) 22 (13)
8 24305 (17147) 379 (268) 3.44 (2.57) 606 (461) 6 (15)

B

2 7228 (7286) 1807 (1821) 0.60 (0.60) 3275 (1370) 6 (9)
4 14919 (9666) 932 (705) 0.60 (0.60) 1196 (2271) 11 (9)
6 19837 (19889) 551 (553) 2.63 (2.76) 2353 (2334) 13 (17)
8 26177 (26023) 409 (407) 3.98 (4.07) 3033 (3627) 19 (19)

solutions in dramatically shorter CPU times (labeled as “ Time
(s)”). For instance, for the case with T = 8 and support
[−2σ,+2σ], solving the original reformulation O-DDSP takes
7227 seconds, while P-DDSP obtains a high-quality solution
(less than 1% optimality gap) in only 247 seconds when
m1 = 10. This is because the dimension of SDP constraints
for O-DDSP is 68×68 while for P-DDSP with m1 = 10 the
dimension is 11×11. The O-DDSP, having to deal with large
number of big SDP constraints, becomes very slow while the
P-DDSP is able to solve the problem and provide high quality
solution in a fraction of O-DDSP’s computational time. Table
III shows that such improvements get amplified by further
increasing the number of periods to T = 16, as it leads to
larger number of SDP constraints (e.g., P-DDSP is 2000 times
faster). Therefore, we show that when the size of the problem
is very large-scale so that it cannot be handled by the solvers,
our proposed P-DDSP maintains a very tight optimality gap,
thus, it brings about practical usefulness. Note that the results
in Tables II and III is based on a given candidate location
to install RDGs at buses 17, 32, and 24. To better show
the efficiency of model P-DDSP, we try to obtain average
performance of Algorithm 1 by running instances that consider
different candidate location alternatives.

TABLE II
O-DDSP VS. P-DDSP

m 1 T=2 seasons T=8 seasons

GAP(%) Time (s) # ITE GAP(%) Time (s) # ITE

P-
D

D
SP

10 1.36 24 6 0.92 247 12
20 0.17 40 8 0.26 251 11
30 0.88 45 8 0.70 296 11
40 1.22 125 13 0.48 556 13
67 0.59 822 18 0.13 4939 20

O-DDSP 0 721 15 0 7227 24

TABLE III
O-DDSP VS. P-DDSP: T = 16

T Tot. Cost (K$) Time (s) # ITE

O-DDSP 16 17015.1 31925 65
P-DDSP 16 17097.4 63 4

In particular, we consider different values of m1 and two
different support sets. For given m1 and the support set,
models O-DDSP and P-DDSP run forty times, with each time
considering a different location alternative, and we obtain the
average optimality gap and computational time, as shown in
Fig. 2. From Fig. 2, we summarize the following observations:
1) the gap between O-DDSP and P-DDSP is very small, which
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is as low as 5% when m1 = 10; 2) the computational time
of P-DDSP is largely reduced when m1 decreases; 3) more
accurate ambiguity sets with tighter supports will bring not
only less conservative solutions but also shorter computational
times; 4) even when less accurate ambiguity set is used (e.g.,
due to lack of enough data), our proposed P-DDSP will lead
to high percentage reduction of the computational time.

Fig. 2. Performance of P-DDSP (with m1=10, 20, 30, 40, and 67) on two
different support sets: [−σ,+σ] on top, and [−2σ,+2σ] in below. Green
line indicates the average O-DDSP time. The red line shows the run time in
seconds and the blue line shows the optimality gap.

In table IV, we compare the out-of-sample performance
between the two proposed methods, i.e., O-DDSP and P-
DDSP, versus the conventional SO and RO methods. The
data-driven SO problem is solved by SAA method, and we
use the scenario-based polyhedral uncertainty sets introduced
in [35, 36] to solve the RO problem. Here, we randomly
divide the N samples into a training dataset (75% of the
samples) and a validation dataset (25% of the samples). We
first solve the sizing problem on the training dataset using
each method, and then use the validation dataset to obtain the
out-of-sample performance of each method. We can observe
that the proposed P-DDSP formulation reduces the computa-
tional times dramatically the sample size N increases. This
is especially important for our data-driven problem because
the accuracy of the results will increase by including more
samples. However, the disadvantage of SO and RO methods
is that its computational time severely increases with large
sample sizes while increasing the sample size in our proposed
DRO based methods, i.e., O-DDSP and P-DDSP, will only
increase the accuracy of the mean vectors and covariance
matrices of uncertainty without adversely affecting the size
of the problem. Especially, by using the PCA concept, our P-
DDSP formulation outperform SO and RO in all cases with
its extra-ordinary shorter CPU times.

TABLE IV
OUT-OF-SAMPLE PERFORMANCE

T N OPT (K$) Time (s)

RO SO O-DDSP P-DDSP RO SO O-DDSP P-DDSP

2

200 3664.8 3532.6 3545.8 3586.7 109 73 464 18
600 4047.5 3688.7 3752.6 3704.0 707 423 1355 100
1000 3359.8 2997.5 2988.3 2992.7 1992 1031 1171 41
2000 1570.2 1570.2 1570.2 1570.2 7028 3329 1177 40

4

200 11090.4 10599.2 11125.5 10911.8 306 194 896 86
600 12400.0 11067.9 11084.2 11088.2 1910 1003 1628 111
1000 8435.8 7520.7 7523.6 7523.6 7081 3107 2246 208
2000 3426.4 3426.4 3426.4 3426.4 28089 12190 3880 75

C. RDGs Siting Planning Analyses

From Section V-B, we can observe that the sizing decision
is highly dependent on the predetermined RDG locations.
Mathematically, it is possible to consider the siting decision in
model (8) by turning the parameter zkn to a binary decision
variable and solve the mixed-integer sizing and siting problem.
Unfortunately, due to the weakness of optimization solvers
and the CPU limits to this date, the corresponding problem
becomes quickly intractable dealing with SDP constraints inte-
grated with large-scale mixed-integer variables, not to mention
that the current model O-DDSP is already difficult to solve.
Nevertheless, considering that usually the options for RDG
placement are limited due to natural barriers and constraints,
enumerating these different candidate location alternatives and
comparing their corresponding costs is a plausible alternative
approach that we investigate hereafter.

For each given candidate location alternative, we will assess
the corresponding first-stage investment cost and second-stage
operational cost on an 8-season planning horizon (2 years) in
order to identify the elements of a successful RDG placement
as general siting strategies. Note that solving the SDP formula-
tion of P-DDSP (or O-DDSP) does not tell each individual cost
component of the second-stage operational cost, i.e., the costs
of purchasing active/reactive electricity from the main grid, the
fuel and emission costs of dispatchable DGs, because all of
them are aggregated by the dual of the second-stage problem.
Thus, to numerically retrieve these cost components in the
second stage, we perform the following procedure and thereby
validate the first-stage solution, where we use the historical
data in years 2014-2015 and 2016-2017 as the primary and
secondary sets of historical data, respectively.

a) Use the primary set of historical data to construct the
ambiguity set Dt at each period t.

b) Consider a set of different location alternatives for the
placement of K RDGs in set GK .

c) For each candidate location alternative gs ∈ GK :
1) Solve P-DDSP and report the first-stage costs, then fix

the first-stage decision.
2) To retrieve the second-stage cost components, sample

1000 scenarios from the primary (resp. secondary) set
of historical data on each period t to conduct in-
sample (resp. out-of-sample) test. That is, for each
scenario, given the obtained first-stage decision, solve
the deterministic second-stage problem, i.e., model (1).
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Here, we consider the IEEE 33-Bus network as shown in
Fig. 3 and let K = 3 and |GK | = 60 to show the main results.

To begin with, we employ the in-sample test results to
present the detailed cost components in the second stage, more
specifically the variance of the electricity purchased from the
main grid under these different location alternatives in GK , as
shown in Fig. 4. We can observe that the candidate location
alternatives with higher penetration of renewables lead to
higher variance of electricity purchase, which indicates higher
pressure towards the main grid and further implies a trade-
off between renewable penetration and the pressure towards
the main grid. This trade-off is one of the major drawbacks
of renewable expansion and confirms the complexity of the
problem and the necessity of developing optimal planning
strategies. In the following part, we will show how we can
address this trade-off by inferring some general rules for the
optimal planning of the RDGs. The rules will help the distribu-
tion network operators and utility companies validate different
candidate location alternatives quickly and reasonably.

Fig. 3. The Radial 33-Bus Network with varying range of demand on each
bus. Region A representing medium load. Region B has few but highly
demanded buses. Region C has a larger number of low demanded buses.

Fig. 4. The variance of the electricity purchased from the main grid is
plotted against the penetration of renewable energy for 60 different location
alternatives.

To clearly derive some RDG siting strategies, we report
numerical results corresponding to 9 representative location
alternatives in Fig. 5 and the numerical results corresponding
to another 9 alternatives in Fig. 6. Here, we use the out-of-
sample test results to validate the obtained first-stage decision
and better present the second-stage operational performance
against those future scenarios (e.g., in the secondary set of
historical data). Fig. 5 shows the results including the first-
stage investment (labeled as RDG Inv.) and maintenance costs
and the average second-stage operational cost of individual
location alternatives. We can see that the placement of the
RDGs at buses that are further away from bus 0 will reduce the

pressure on the main grid, the traditional and costly electricity
generation at buses 15 and 29, and the total cost in the network.

Fig. 5. The distribution network costs ($×103) for 9 different location
alternatives of 3 RDGs; long (resp. short) distance from bus 0 on the left
(resp. right) side of the horizontal axis.

Moreover, the distance between a bus and bus 0 is not the
only decisive factor for optimal RDG planning strategy. Note
that in Fig. 3, we use different colors to represent the load
intensity at each bus as well as at different demand regions,
and our numerical results show that these load intensities
are an important factor of successful RDG placement. In
particular, demand regions B and C are both far away from
bus 0 so they are potential regions for RDG placement, and
it is clear to see from Fig. 6 that ignoring both demand
regions B and C (candidate location alternatives labeled as
“Ignores both Regions”, i.e., candidate location alternatives
that does not place any RDGs in regions B and C) does
not have economic justification, as it leads to minimum
RDG penetration and highest total cost. More specifically, we
observe that candidate location alternatives that ignore region
B (i.e., a highly demanded region) bring the highest costs of
purchasing electricity from bus 0 and lead to high pressure
on the dispatchable DG at bus 29 (which is in region B)
to produce electricity. Thus, a sparse arrangement of RDGs
(e.g., candidate location alternatives labeled as “Covers both
regions”) within the distribution network with consideration
of the regional demand is the best strategy, which will lead
to the maximum RDG penetration and minimum total cost.
By merely comparing the two location alternatives that place
RDGs at buses (24,32,17) and at buses (18,22,2) as shown in
Fig. 6, there is a $5,000,000 decrease in total cost on a 2-
year horizon when picking optimal planning decisions. This
means the utility companies can have as much as 20% decrease
in the total cost (selecting the candidate location alternatives
sparsely to include high-demand regions) in the microgrid
while following their renewable expansion goals.

Finally, in Table V, the out-of-sample performance of our
proposed planning methodology is compared with SO and RO.
Here, we randomly divide 500 scenarios in two parts; we first
use the training dataset (includes 400 samples) to solve the
sizing and siting problem, and then we use the validation
dataset (includes 100 samples) to examine the performance
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Fig. 6. The distribution network costs ($×103) for 9 different location
alternatives in 3 groups of strategies regarding demand regions B and C.

TABLE V
OUT OF SAMPLE PERFORMANCE FOR SITING AND SIZING

Method N OPT (K$) Time (s)

T=2 T=8 T=2 T=8

SAA
5 3620.4 24895.2 13,432 ***
10 3651.3 26782.4 28,957 ***

100 *** *** *** ***

RO
5 3611.0 25225.2 21,202 ***
10 3816.4 26814.4 *** ***

100 *** *** *** ***

DRO 400 3542.5 22964.4 120 3481

of the solution obtained by each method. The time used by
MOSEK to reach optimality is reported in column labeled
“Time (s),” where “***” means MOSEK cannot solve the
problem within ten hours time limit, if so we use the best
integer solution retrieved from the solver to examine the
out-of-sample performance. The out-of-sample performance
is reported in the column labeled “OPT (K$),” where “***”
means MOSEK cannot obtain any feasible solutions within
the time limit. We can observe that our proposed planning
methodology outperforms SO and RO dramatically. Indeed,
for the case of T = 8 and N = 5, MOSEK could not solve
the SO and RO problems in more than 2 days, so that’s why we
set a time limit. When we choose sample sizes larger than 100
for the SO and RO methods, the sizing and siting problem be-
comes completely impractical computationally. Our proposed
methodology, on the other hand, is based on capturing the
first- and second-moment information in the ambiguity set,
and increasing the sample size does not increases the size of
our problem but only make the solution more accurate. The
extremely short computational times of the P-DDSP is also
promising, as the P-DDSP problem can be further extended
to include the siting decision as well, which is our ongoing
research that deals with mixed-inter SDP problems.

VI. CONCLUSION AND REMARKS

The recent technological advances together with govern-
ments supportive policies have progressively promoted the
penetration of renewable electricity generation. The renewable

energy, though, is a highly uncertain source of electricity
and its integration into the grid is extremely challenging and
requires novel planning techniques. In this paper, a data-driven
DRO approach with first- and second-moment information
is proposed for RDG sizing problem to safely increase the
penetration of low-carbon-emission renewable energy while
we avoid damaging the network equipment, blackouts, more
power losses, etc. that happens by over-sizing and under-
sizing the renewable sites. Additionally, a tight PCA based
approximation of the DRO model is proposed which speeds
up the solution procedure thus enable practical usefulness in
industry. Unlike conventional RO and SO methods that become
impractically time-consuming to solve the sizing problems
with large sample sizes, the proposed DRO models use the
large sets of historical data in their advantage to increase the
accuracy of their ambiguity sets thus their solutions, and they
are solved quickly. In addition, unlike other DRO works in
literature, we do not limit our paper to only problems with
small uncertainty vectors, or a small number of SDP con-
straints. Moreover, a general framework for siting strategies
was proposed through sensitivity analyses, and it is compared
to conventional SO and RO methods.

Through numerical results we showed that while the con-
ventional methods become intractable to solve the siting and
sizing problems with even 5 samples, our method is able to use
huge sample sizes to make planning decisions. Moreover, we
show that our optimal planning of the RDGs will lead to min-
imum planning cost, less pressure on the main grid, maximum
penetration of renewables, and decreasing greenhouse gas
production from the dispatchable DGs. More specifically, our
numerical results indicate that a sparse arrangement of RDGs
with optimal sizing and siting decisions will lead up to a 20%
reduction in costs. This is achieved while guaranteeing the
performance of the distribution system through our proposed
detailed mathematical model based on the optimal power flow
equations. Overall, we provided an optimal planning tool for
the management of utility companies when RDG placement
decision is not trivial due to the uncertainties in data and the
large-scale size of the problem.

Future research will consider developing tractable mixed-
integer DRO methods that can integrate the sizing and siting of
RDGs in one DRO model instead of using sensitivity analyses
for siting. In addition, alternative ambiguity set techniques,
such as Phi-divergence and Wasserstein ambiguity sets will be
analyzed. Another relevant avenue of research is the extension
of this work to include battery storage in the model.
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