
Pilotage Planning in Seaports

Lingxiao Wu, Shuai Jia, Shuaian Wang∗

Department of Logistics & Maritime Studies, The Hong Kong Polytechnic University, Hung Hom, Hong Kong

Abstract

Vessel pilotage is compulsory in most seaports around the world. When traveling into or out of the
terminals of a seaport, vessels should be navigated by sea pilots in order to follow correct and safe
waterways. This paper studies a pilotage planning problem that involves decisions of scheduling
the vessel traffic in a seaport, assigning work shifts to pilots, and scheduling the pilots in each
work shift for vessel navigation. We formulate the problem as a linear mixed-integer programming
(MIP) model that aims at minimizing the cost incurred by the pilotage operations, and show that
the problem is strongly NP-hard. For solving the problem, we develop a branch-and-price (B&P)
algorithm in which the pricing problem is solved by a novel dynamic programming algorithm.
We further propose several acceleration techniques to improve the efficiency of the B&P algorithm.
Computational performance of the B&P algorithm is evaluated in extensive numerical experiments.
Computational results demonstrate that the B&P algorithm is able to solve problem instances of
practical sizes, and that the algorithm outperforms a standard MIP solver and a solution method
commonly used in practice.

Keywords: Scheduling, Port Operations, Sea Pilot, Pilotage Planning, Branch-and-Price,
Column Generation

1. Introduction

Seaborne transportation forms the backbone of the global supply chain. According to the
estimation of UNCTAD (2018), the volume of seaborne trade reached 10.7 billion tons in 2017,
accounting for over 80 percent of the total volume of global trade. In the global supply chain,
seaports play a critical role in cargo transportation, as cargos are transhipped between sea
transportation and land transportation at seaports. Due to the growth of seaborne trade, the
numbers and sizes of vessels that need to be served at seaports have been increasing continuously.
As a result, vessel traffic in seaports has become more and more dense, imposing the challenge of
congestion mitigation on vessel traffic service (VTS) operators.

Figure 1 shows the layout of a seaport, which can generally be divided into two parts, namely,
the seaside part and the landside part (i.e., terminals). The seaside part of a seaport is composed
of an outer anchorage, an inner anchorage, and a navigation channel. The navigation channel is
a bidirectional waterway that is used by the vessels for entering or leaving the terminals of the

∗Corresponding author.
E-mail addresses: lingxiaowu513@gmail.com (L. Wu), shuai.jia@connect.polyu.hk (S. Jia), wangshuaian@

gmail.com (S. Wang).

Preprint submitted to European Journal of Operational Research September 30, 2019

https://doi.org/10.1016/j.ejor.2020.05.009 This is the Preprint Version.

lingxiaowu513@gmail.com
shuai.jia@connect.polyu.hk
wangshuaian@gmail.com
wangshuaian@gmail.com

Figure 1: Layout of a seaport.

seaport. Vessels that need to enter the terminals from the open sea should first reach the outer
anchorage, then travel through the channel and arrive at the inner anchorage, where vessels will
wait for their berths to become available. After being served at the berths, the vessels will unberth
and leave the terminals. Vessels that need to leave the terminals should first reach the inner
anchorage, where the vessels will wait for the navigation channel to become available. The vessels
will then arrive at the outer anchorage after passing through the navigation channel, and finally
return to the open sea.

In most seaports, pilotage is compulsory for the majority of the calling vessels (especially for
foreign vessels and vessels of large sizes) due to safety and security concerns. When entering or
leaving the terminals of a seaport, vessels should be navigated by sea pilots. For each vessel that
enters (or leaves) a terminal, a pilot will board the vessel to provide navigation service when the
vessel starts entering or leaving the terminal. The pilot will provide assistance for the captain to
maneuver the vessel so that the vessel will sail at a safe speed and keep clear of the other vessels
that sail in the same direction in the channel. Pilotage is completed when the vessel arrives at the
inner anchorage (or outer anchorage), upon which the pilot will leave the vessel. The pilot then
either travels (by taking a pilot boat or a helicopter) to the depot where he/she rests and waits for
the next task, or travels directly to the location of another vessel to provide navigation service.

To mitigate vessel congestion in the channel of a seaport, the vessel traffic and the pilots should
be jointly scheduled so that the vessels can enter and leave the terminals on time. In practice,
pilotage and vessel traffic in navigation channels are regulated by VTS operators of local maritime
departments (International Maritime Organization, 1997), whereas the berthing and handling of
each calling vessel are managed by terminal operators. After receiving berthing and unberthing
plans of calling vessels from the terminals, the VTS is responsible for developing a pilotage plan,
which controls the vessel traffic in the channel, assigns pilots to the vessels, and schedules the pilots
for serving the vessels. However, pilotage planning can be very challenging because it involves joint
management of vessel traffic, pilots, and the pilot transport vehicles (namely the pilot boats and
the helicopters), as well as various operational restrictions, such as the tidal conditions of the
channel, capacity of the channel, and the availability of the pilots.

This paper studies a pilotage planning problem (PPP) from the perspective of a VTS operator
for congestion mitigation in a seaport. We develop a linear mixed-integer programming (MIP)
model for this problem. Our model involves various decisions that arise in the practice of a
VTS operator, including the decision of scheduling the vessel traffic in the navigation channel,

2

the decision of assigning work shifts to pilots, and the decision of scheduling the pilots for vessel
navigation in each work shift. The objective of the model is to minimize the cost incurred by the
pilotage operations. We show that the problem is strongly NP-hard, and develop a branch-and-
price (B&P) algorithm for solving the problem.

Maritime transportation has been a hot topic in operations research, e.g., Song and Carter
(2009), Meng et al. (2012), Ng (2017), and Cruz et al. (2019). Studies on seaport operations
date back to the 1950s (Eddison and Owen, 1953). Researchers that study seaport operations
have mainly focused on problems that manage the utilization of the landside (terminal) resources.
These problems include the berth allocation problem, e.g., Giallombardo et al. (2010) and Xu
and Lee (2018), the quay crane scheduling problem, e.g., Choo et al. (2010), the yard planning
problem, e.g., Zhen et al. (2016), the yard crane scheduling problem e.g., Galle et al. (2018), and
the integration of two or more of these problems, e.g., Vacca et al. (2013) and Robenek et al. (2014).
For comprehensive reviews of operations research applications in terminal operations management
problems, we refer the readers to Stahlbock and Voß (2008), Bierwirth and Meisel (2010), Bierwirth
and Meisel (2015), and Carlo et al. (2015).

While there exist extensive studies on the management of terminal operations, only a few
studies focused on the vessel traffic management in the seaside. Zhang et al. (2016) considered a
problem that schedules entering and leaving vessels for passing a navigation channel. A similar
problem was investigated by Lalla-Ruiz et al. (2016). The authors formulated the problem as a
variation of the vehicle routing problem, and proposed a metaheuristic for solving the problem.
Jia et al. (2019) extended the problem studied by Zhang et al. (2016) and Lalla-Ruiz et al. (2016)
by considering the utilization of the anchorages areas in the terminal basin. They showed that the
traffic management problem with anchorage area utilization is strongly NP-hard, and proposed a
Lagrangian relaxation heuristic for generating near-optimal solutions.

Besides vessel traffic scheduling, pilotage planning is another important issue in seaside
operations management. However, studies on pilotage planning problems are rare. To our
knowledge, only two works have studied problems related to pilotage planning. Wermus and
Pope (1994) studied a pilot rostering problem that determines the start and end times of the
work shift assigned to each pilot. While the problem involves the decision of scheduling of pilots,
the scheduling of the vessel traffic is not part of the decisions of the problem. In another study,
Edwards (2010) investigated a problem that assigns a group of pilots to a set of pilotage tasks. In
this problem, each pilotage task corresponds to a vessel that enters or leaves a terminal through
a channel and each task has a fixed start time. Capacity limitations in the channels were not
considered, and all pilots were transported among tasks using pilot boats. Our work differs from
the two studies in several aspects. First, our work schedules the vessel traffic and the pilots jointly,
whereas the two studies only considered the assignment of pilots to a given set of pilotage tasks.
Second, our work considers two options for transporting pilots among different locations, namely
transporting pilots via pilot boats and transporting pilots via helicopters, whereas Edwards (2010)
only considered the transportation of pilots by pilot boats. Note that helicopters have been widely
used for transporting pilots in seaports around the world, to name a few, Ports of Newcastle and
Hedland in Australia, Ports of Shanghai and Tianjin in China, Port of Le Havre in France and
Port of Richards Bay in South Africa. Finally, in terms of solution methods, our work applies an
exact solution method which is able to generate optimal solutions for the PPP, while Wermus and
Pope (1994) and Edwards (2010) generated sub-optimal solutions using heuristics.

Our main contributions are highlighted below:

3

• We study the PPP that aims to schedule the vessel traffic in the seaside of a seaport
and schedule the pilots for serving the vessels. The problem that we study is of practical
importance but has not been well addressed in the literature. We develop a MIP model for
the problem and show that the problem is strongly NP-hard.

• For solving the problem, we develop a tailored B&P algorithm, in which the pricing problem
is solved by a novel and efficient dynamic programming (DP) algorithm. We also propose
several acceleration strategies to improve the efficiency of the B&P algorithm.

• We conduct extensive numerical experiments to evaluate the computational performance
of the proposed solution method. Computational results show that the proposed solution
method can generate optimal or near-optimal solutions for instances of practical sizes within
a short running time.

The remainder of the paper is organized as follows. Section 2 provides a detailed description of
the PPP. Section 3 presents the MIP model. Section 4 discusses the computational complexity
of the PPP. Section 5 describes our solution method. Section 6 describes the computational
experiments and reports the computational results. Section 7 draws conclusions with our main
findings.

2. Problem Description

In this section, we describe the pilotage operations and the costs incurred by the operations.
We introduce some terminologies that we use throughout the paper, and give a formal definition
of the PPP. We also present the assumptions that we made to facilitate the modeling and analysis
of the PPP.

We refer to the service requests of vessels for channel navigation as pilotage tasks (or tasks).
In particular, as shown in Figure 2, the service requests for entering the terminals are called
the in-wharf tasks, while the service requests for leaving the terminals are called the out-wharf
tasks. An in-wharf task requires a pilot to navigate a vessel from the outer anchorage to the inner
anchorage, while an out-wharf task requires a pilot to navigate a vessel from the inner anchorage
to the outer anchorage. In the PPP, we assume that pilotage is compulsory for each vessel, that
is, each vessel must be served by one pilot when traveling between the outer anchorage and the
inner anchorage. Therefore, each task must be assigned to one pilot. Furthermore, each task has
a time window during which it must be executed by a pilot. In practice, the time window of each
in-wharf task is determined based on estimated arrival time and the planned berthing time of the
corresponding vessel, whereas the time window of each out-wharf task is determined based on the
planned unberthing time and the planned port departure time of the corresponding vessel. For a
seaport where the water depth in the navigation channel is affected by the tide such that some
vessels can sail in the channel only during high-tide periods, the time window of a task also depends
on the tide and the draft of the vessel (Ding et al., 2016; Zhen et al., 2017). Note that the planned
berthing and unberthing times of vessels are provided by the terminal operators, while the pilotage
plans are devised by the VTS. The decision maker of our model is the VTS, and the time windows
of tasks are predetermined and are given as input data.

To ensure that in-wharf tasks and out-wharf tasks can be executed during their time windows,
the VTS should assign work shifts to the pilots and schedule the pilot in each work shift for serving
the tasks. We refer to a work shift of a pilot as a pilot shift. The length of each pilot shift is limited

4

Figure 2: An illustration of in-wharf and out-wharf tasks.

(typically eight hours) due to safety and fatigue considerations. If a pilot is assigned a pilot shift,
then the pilot will be available for the tasks during the pilot shift. We assume that all pilots are
initially deployed at the depot, which is located at the inner anchorage (see Figure 2). We also
assume that all pilots must return to the depot by the end of each pilot shift assigned to the pilot.

To serve a task, a pilot may need to move from the depot to the target vessel, or move from
a vessel that has completed navigation service to the target vessel. Two types of vehicles are
used for transporting pilots among different locations, namely pilot boats and helicopters. Pilot
transport operations are classified into two types: (i) through-channel transport; and (ii) non-
through-channel transport. Through-channel transport refers to the transport operation in which
a pilot needs to pass through the channel in order to arrive at the location of the target vessel.
Non-through-channel transport refers to the transport operation in which a pilot does not need to
pass through the channel when traveling to the location of the target vessel. Hence, in a through-
channel transport operation, a pilot serves two tasks of the same type (i.e., both are in-wharf tasks
or both are out-wharf tasks) consecutively, while in a non-through-channel transport operation,
a pilot serves two tasks of different types consecutively. Note that while the time required for
performing non-through-channel transport is usually quite short, the time required for performing
through-channel transport can be much longer, since the distance between the outer anchorage
and the inner anchorage of a seaport is generally very long. In our model, both pilot boats and
helicopters are used for through-channel transport, but only pilot boats are used for non-through-
channel transport.

Pilotage operations incur various operational costs. In our model, four cost components are
considered. These cost components are described as follows: (i) Task delay cost incurred in the
situation where the service of a task starts later than the earliest possible start time. (ii) Pilot
dispatching cost incurred by assigning a pilot shift to a pilot. (iii) Pilotage cost incurred by
executing the in-wharf and out-wharf tasks. (iv) Pilot transport cost incurred by transporting a
pilot (either by a pilot boat or by a helicopter) between two locations.

We now provide a formal definition of the PPP as follows: Given a planning horizon, a set of
tasks to be executed during the planning horizon, and the times and costs involved in the pilotage
operations, determine a plan that decides the number of pilot shifts to be assigned to the pilots,
assigns start and end times to each pilot shift, assigns service start times to the tasks, and schedules
the pilot in each pilot shift so that all tasks can complete service within their time windows, and

5

that the operational requirements on vessel pilotage are respected. The objective is to minimize
the total operational costs.

To facilitate the modeling and analysis of the PPP, we make the following assumptions:

A1. The planning horizon is discretized using a sequence of time points so that the time period
between any two consecutive time points has a unit length.

A2. Pilots are identical and are capable of executing each of the tasks.

A3. The number of pilot boats and the number of helicopters are sufficiently large.

A4. The time spent in each non-through-channel transport operation and the cost incurred by
each non-through-channel transport operation are trivial and are assumed to be zero.

Before presenting the model, we explain several important aspects in our problem. First,
discretized planning horizon is used in port management practices, so that vessels start entering
the channel at certain time points and pilot shifts also start and end at certain time points. For port
authorities, using a discretized planning horizon can better coordinate the activities of different
parties (e.g., the terminals, the VTS center, and vessels). Similar assumptions have also been
utilized in a number of studies on port operations (e.g., Giallombardo et al., 2010; Zhen et al.,
2016; Jia et al., 2019). Second, in this paper, we do not consider the rostering problem of pilots
(i.e., assign particular pilots to the shifts). In fact, the rostering problem can be solved based on
the output of our problem by considering various regulations regarding assigning workload to the
pilots. Third, pilot boats and helicopters can travel at much higher speeds than vessels in the
channel, therefore, a relatively small number of pilot boats and helicopters (compared with the
number of pilots and vessels) are sufficient to transport pilots between tasks without delay. Hence,
to simplify the analysis, we do not consider the detailed scheduling of pilot boats and helicopters
in the PPP.

3. Mathematical Model

In this section, we present a discrete-time MIP model for the PPP. In our model, the planning
horizon is discretized by a sequence of time points, and the time period between any two consecutive
time points has a unit length. All notations used in our model are explained in Table 1.

Table 1: Notation.

Indices:

i, j Indices for tasks and the depot (0 denotes the depot).
p Index for pilot shifts.
t, t1, t2 Indices for time points in a planning horizon.
k Index for types of pilot transport vehicles; k = 1 represents pilots boats, k = 2 represents

helicopters.
h Index for task types; h = 1 represents in-wharf tasks, h = 2 represents out-wharf tasks.

Sets:

Ω1 Set of in-wharf tasks.
Ω2 Set of out-wharf tasks.
Ω Set of all tasks, Ω = Ω1

⋃
Ω2.

6

Ω̄ An extended task set, Ω̄ = Ω
⋃
{0} (0 denotes the depot).

Φ Set of task types, Φ = {1, 2}.
Ψ Set of pilot shifts. We set Ψ = {1, 2, ..., |Ω|} to ensure that there are sufficiently many pilot

shifts for the tasks. In addition, if a pilot shift is not assigned to any pilot, then the pilot shift
is empty.

Θ Set of types of pilot transport vehicles, Θ = {1, 2}.
T Set of time points in the planning horizon, T = {1, 2, ...,maxi∈Ω{li}}.
T̂ Set of time points in an extended planning horizon, T̂ = T

⋃
{|T | + 1, |T | + 2, ..., |T | +

maxi∈Ω{di}+ maxk∈Θ{rk}}.

Parameters:

ci1 Unit delay cost of task i.
c2 Cost for assigning a pilot shift.
c3 Cost for providing pilotage service to a task.
ck4 Cost for performing a through-channel transport operation using a type-k vehicle.
ei Earliest allowed start time of task i.
li Latest allowed start time of task i.
di Time required for serving task i.
σi,j = 1 if through-channel transport is required to transport a pilot to task j after he/she finishes

task i, and 0, otherwise.
σ0,j = 1 if through-channel transport is required to transport a pilot from the depot to task j, and

0, otherwise.
σi,0 = 1 if through-channel transport is required to transport a pilot to the depot after he/she

finishes task i, and 0, otherwise.
rk Time required for performing through-channel transport using a type-k vehicle.
uh Capacity of the navigation channel for vessels that correspond to type-h tasks.
D̄ Maximum length of duration of each pilot shift.
M A sufficiently large positive constant.

Decision Variables:

αp
t = 1, if pilot shift p starts at time t, and 0, otherwise.
βp
t = 1, if pilot shift p ends at time t, and 0, otherwise.
xpij = 1, if a pilot executes task j immediately after task i during pilot shift p, and 0, otherwise.

xp0j = 1, if task j is the first task executed during pilot shift p, and 0, otherwise.

xpi0 = 1, if task i is the last task executed during pilot shift p, and 0, otherwise.
yit = 1, if task i starts at time t, and 0, otherwise.
zkij = 1, if a type-k vehicle is used in a through-channel transport operation that transports a pilot

to task j after he/she finishes task i, and 0, otherwise.
zk0j = 1, if a type-k vehicle is used in a through-channel transport operation that transports a pilot

from the depot to task j, and 0, otherwise.
zki0 = 1, if a type-k vehicle is used in a through-channel transport operation that transports a pilot

to the depot after he/she finishes task i, and 0, otherwise.

The mathematical formulation (denoted by M1) for the PPP is presented below:

(M1) minF =
∑

i∈Ω c
i
1

∑
t∈T (t− ei)yit + c2

∑
p∈Ψ

∑
t∈T α

p
t

+c3
∑

p∈Ψ

∑
i∈Ω

∑
j∈Ω̄\{i} x

p
ij +

∑
k∈Θ c

k
4

∑
i∈Ω̄

∑
j∈Ω̄\{i} z

k
ij ,

(1)

7

∑
t∈T

αp
t ≤ 1, p ∈ Ψ, (2)

∑
t∈T̂

βpt ≤
∑
t∈T

αp
t , p ∈ Ψ,

(3)

min{t1+D̄,T̂}∑
t2=t1

βpt2 ≥ α
p
t1
, t1 ∈ T, (4)

∑
j∈Ω

xp0j =
∑
t∈T

αp
t , p ∈ Ψ, (5)

∑
j∈Ω̄\{i}

xpij −
∑

j∈Ω̄\{i}

xpji = 0, i ∈ Ω, p ∈ Ψ,
(6)

∑
p∈Ψ

∑
j∈Ω̄\{i}

xpij = 1, i ∈ Ω,
(7)

∑
t∈T

yit = 1, i ∈ Ω, (8)

∑
t1∈T

t1α
p
t1

+
∑
k∈Θ

rkz
k
0j −

∑
t2∈T

t2yjt2 + (xp0j − 1)M ≤ 0, j ∈ Ω, p ∈ Ψ, (9)

∑
t1∈T

t1yit1 + di +
∑
k∈Θ

rkz
k
ij −

∑
t2∈T

t2yjt2 + (
∑
p∈Ψ

xpij − 1)M ≤ 0, i, j ∈ Ω, (10)

∑
t1∈T

t1yit1 + di +
∑
k∈Θ

rkz
k
i0 −

∑
t2∈T̂

t2β
p
t2

+ (xpi0 − 1)M ≤ 0, i ∈ Ω, p ∈ Ψ,
(11)

yit = 0, t ∈ T\[ei, li], i ∈ Ω, (12)

∑
k∈Θ

zkij ≥
∑
p∈Ψ

xpij , i ∈ Ω̄, j ∈ Ω̄ \ {i}, σij = 1, (13)

∑
i∈Ωh

t1∑
t2=max{1,t1−di+1}

yit2 ≤ uh, t1 ∈ T, h ∈ Φ, (14)

αp
t ∈ {0, 1}, t ∈ T, p ∈ Ψ, (15)

βpt ∈ {0, 1}, t ∈ T̂ , p ∈ Ψ, (16)

xpij ∈ {0, 1}, p ∈ Θ, i ∈ Ω̄, j ∈ Ω̄ \ {i}, (17)

8

zkij ∈ {0, 1}, k ∈ Ψ, i ∈ Ω̄, j ∈ Ω̄ \ {i}, (18)

yit ∈ {0, 1}, i ∈ Ω, t ∈ T. (19)

The objective function (1) minimizes the total cost of the pilotage operations, including the
task delay costs (the first term), the pilot dispatching costs (the second term), the pilotage costs
(the third term), and the pilot transport costs (the fourth term). We note that the third term is a
constant. Constraint (2) ensures that each pilot shift is assigned at most one start time. If a pilot
shift is not assigned any start time, then the pilot shift is empty and will not be assigned to any pilot.
Constraint (3) ensures that each pilot shift is assigned at most one finishing time. Constraint (4)
ensures that the length of each pilot shift does not exceed D̄. Constraint (5) ensures that each pilot
shift has at most one starting task. Constraint (6) ensures flow balances. Constraint (7) ensures
that each task is exected by one pilot. Constraint (8) ensures that each task is assigned one start
time. Constraint (9) ensures that the start time of the first task in a pilot shift is no earlier than
the start time of the pilot shift, and that the first task cannot start until a pilot has arrived at the
location of the corresponding vessel. Similarly, Constraint (10) specifies the relationship between
the start times of two tasks conducted consecutively in the same pilot shift; and Constraint (11)
specifies the relationship between the start time of the last task in a pilot shift and the time at
which the pilot returns to the depot. Constraint (12) imposes a time window for each of the tasks.
Constraint (13) ensures that a transport vehicle is used to transport a pilot through the channel
if the pilot needs to consecutively execute two tasks of the same type. Constraint (14) imposes
upper limits on the number of entering vessels and the number of leaving vessels that sail in the
channel at the same time. Constraints (15)–(19) define binary variables.

4. Complexity of the Problem

In this section, we show that the PPP is NP-hard in the strong sense. To do so, we show the
decision version of the PPP is strongly NP-hard. That is, given settings of tasks, pilot shifts, and
pilot transport, it cannot be determined in polynomial time or even in pseudo-polynomial time
whether the objective value F of the problem is no larger than a given constant λ unless P=NP.

We prove the strong NP-hardness of the PPP by reducing a well-known strongly NP-hard
problem—the Bin Packing Problem (BPP)—to a decision version of the PPP.

Theorem 1. The PPP is strongly NP-hard.

Proof. We transform the BPP to the decision version of the PPP. The BPP can be stated as follows.
There is a set Ω of items, and the volume of item i ∈ Ω is vi. There is also a set B of identical bins,
each of which has a capacity of C̄. The BPP asks whether there is a packing strategy (denoted by
S) such that a set Ωb ⊆ Ω of i’s are packed in bin b ∈ B and the following conditions hold:∑

i∈Ωb

vi ≤ C̄, b ∈ B, (20)

⋃
b∈B

Ωb = Ω. (21)

9

Given an arbitrary instance of BPP, we construct a corresponding instance of the PPP as
follows. There is a set Ω of tasks (i’s) to be executed in a planning horizon. Let T = {1, 2, ..., |T |}
denote the set of time points in the planning horizon. Specifically, we set other parameters as
follows.

uh = |Ωh|, h ∈ Φ, (22)

di = vi, i ∈ Ω, (23)

ei = 1, i ∈ Ω, (24)

li = |T |, i ∈ Ω, (25)

rk = 0, k ∈ Θ, (26)

D̄ = C̄, (27)

|T | ≥ C̄ + 1, (28)

ci1 = 0, i ∈ Ω, (29)

c2 = 1, (30)

c3 = 0, (31)

ck4 = 0, k ∈ Θ, (32)

λ = |B|. (33)

Clearly, this transformation is pseudo-polynomial. We will show that there exists a feasible
solution to the constructed instance of PPP if and only if the answer to the BPP is “yes”.

Suppose the answer to the BPP is “yes”. Let Ω∗b denote the items packed in bin b ∈ B
in S. Then consider the following solution (S) to the constructed instance of the PPP. First,
corresponding to each b ∈ B, generate a pilot shift pb, such that pb starts from time 1 and ends at
time D̄ + 1. Then, corresponding to each item i ∈ Ω∗b , assign task i to pilot shift pb. Let P and
Ωpb denote the set of generated pilot shifts and the set of tasks executed in shift pb, respectively.
Obviously, |P | = |B|. The feasibility of S to the PPP instance can be verified as follows. To
begin with, Equations (22), (24), and (25) indicate that each task can start at any time within the
planning horizon, since the time window of each task covers the entire planning horizon and the
channel always has spare capacities. In addition, Equation (23) and (26) indicate that the time
to complete all tasks i ∈ Ωpb (denoted by Tpb) can be calculated by: Tpb =

∑
i∈Ωpb

di =
∑

i∈Ω∗b
vi,

10

which follows that Tpb ≤ C̄ = D̄. Hence, all tasks assigned to shift pb can be completed within the
shift. Besides, Equation (21) implies that

⋃
pb∈P Ωpb =

⋃
b∈B Ω∗b = Ω. Hence, all tasks in Ω are

executed in the shifts in set P . As for the objective value F , since ci1 = 0, c3 = 0, and ck4 = 0, we
have F = c2

∑
p∈Ψ

∑
t∈T α

p
t = c2|P | = |B| = λ. Therefore, S is feasible to the constructed instance

of the PPP.
Conversely, suppose that there exists a feasible solution to the constructed instance of the PPP

such that F ≤ λ. Let P ∗ denote the set of pilot shifts assigned in the solution. Further, for each
p ∈ P ∗, let Ωp be the set of tasks executed in shift p. It is easy to infer that (i)

∑
i∈Ωp

di ≤ D̄, p ∈ P ∗,
(ii)

⋃
p∈P ∗ Ωp = Ω, and (iii) |P ∗| ≤ |B|. Considering that D̄ = C̄ and vi = di, i ∈ Ω, we can

construct a feasible solution to the BPP by packing all items i ∈ Ω to the set B of bins. This
completes the proof.

Remark 1. In the proof of Theorem 1, the constructed instance of the PPP has channel capacities
u1 = |Ω1| and u2 = |Ω2|. Therefore, the PPP is NP-hard in the strong sense even if there are no
capacity limitations in the navigation channel.

5. The Branch and Price Algorithm

In view of the complexity of the considered problem, this paper proposes a tailored B&P
algorithm to solve the problem. In this section, we first reformulate model M1 developed in
Section 3 as a set covering model in Section 5.1. In Section 5.2, we introduce the framework of
the algorithm. The pricing problem and the branching strategy are described in Section 5.3 and
Section 5.4, respectively. Finally, in Section 5.5, we propose several acceleration techniques to
improve the efficiency of the algorithm.

5.1. A Set Covering Reformulation

In this section, we provide a set covering formulation for the PPP. To formulate the model, we
define columns used in the model as follows. A column q corresponds to a route which records the
sequence of a pilot for conducting a set of tasks in a pilot shift. The route begins and ends at the
depot. Associated with column q are two parameters cq and sqit. In particular, cq denotes the cost
of the column, that is, the cost for assigning the pilot shift, starting tasks with delays, providing
pilotage services and transporting pilots in the corresponding route. Besides, sqit is set to be 1 if
task i starts at time t in column q and 0, otherwise.

Let Q denote the set of all feasible columns, and let ωq be the decision variable which equals
1, if column q is selected and 0, otherwise. The set covering model (MP) for the PPP can be
formulated as follows.

(MP) min
∑
q∈Q

ωqcq, (34)

∑
q∈Q

ωq

∑
t∈T

sqit ≥ 1, i ∈ Ω, (35)

−
∑
q∈Q

ωq

∑
i∈Ωh

t∑
t1=max{1,t−di+1}

sqit1 ≥ −uh, t ∈ T, h ∈ Φ, (36)

11

ωq ∈ {0, 1}, q ∈ Q. (37)

The objective function (34) aims at minimizing the total cost. Constraint (35) ensures each
task is covered by at least one column (i.e., the task is conducted in at least one pilot shift).
Constraint (36) enforces channel capacity restrictions. Constraint (37) defines the decision variables
to be binary.

5.2. The B&P Scheme

The B&P algorithm solves the MP in a Branch-and-Bound (B&B) framework. At each
node of the B&B tree, we solve a linear relaxation of a restricted MP (denoted by LRMP) by
using column generation. Column generation has been widely used to solve complicated integer
programming problems (refer to Lübbecke and Desrosiers, 2005 and Desaulniers et al., 2006). In
column generation, columns are generated for an LRMP at a node by solving a pricing problem
(see in Section 5.3). If columns with negative reduced costs are identified in the pricing problem,
these columns will be added into the LRMP, which will then be solved again, otherwise, the LRMP
has been solved to its optimum. Then, if the solution to the LRMP is integral, a valid upper bound
is obtained for the MP, otherwise, a branch is made by partitioning the feasible space of the integer
solution in a way that eliminates the current fractional solution (see Section 5.4).

5.3. The Pricing Problem

This section introduces the pricing sub-problem (SP) for generating columns with negative
reduced costs when solving an LRMP. We first formulate the SP as a MIP model and then propose
a dynamic programming (DP) algorithm to solve the problem.

5.3.1. A MIP Model for the Pricing Problem

To begin with, the new variables and parameters used in the MIP model for the SP are listed
in Table 2.

Table 2: Notations for the SP.

Parameters:

πi Dual value for the ith constraint in Constraint (35).
µth Dual value for t, hth constraint in Constraint (36).
e′i (Truncated) earliest start time for task i. e′i ≥ ei, due to the time-window branch (see Section 5.4).
l′i (Truncated) latest start time for task i. l′i ≤ li, due to the time-window branch (see Section 5.4).

Decision Variables:

χij 1, if task j starts immediately after task i finishes in the column (route) and 0, otherwise.
χ0j 1, if task j is the first task in the column (route) and 0, otherwise.
χi0 1, if task i is the last task in the column (route) and 0, otherwise.

γk
ij 1, if a type-k vehicle is used in a through-channel transport operation to transport the pilot to j after

he/she finishes task i and 0, otherwise.

γk
0j 1, if a type-k vehicle is used in a through-channel transport operation to transport the pilot from the

depot to task j and 0, otherwise.

γk
i0 1, if a type-k vehicle is used in a through-channel transport operation to transport the pilot to the

depot after he/she finishes task i and 0, otherwise.
νit 1, if task i starts at time t and 0, otherwise.
a Time when the corresponding pilot shift starts.
b Time when the corresponding pilot shift ends.

12

The problem can be formulated as follows.

(SP) min ĉ =
∑
i∈Ω

ci1
∑
t∈T

(t− ei)νit + c2 + c3

∑
i∈Ω

∑
j∈Ω̄\{i}

χij +
∑
k∈Θ

ck4
∑
i∈Ω̄

∑
j∈Ω̄\{i}

γkij

−
∑
i∈Ω

πi
∑
t∈T

νit +
∑
t∈T

∑
h∈Φ

µth
∑
i∈Ωh

t∑
t1=max{1,t−di+1}

νit1 ,

(38)

b− a ≤ D̄, (39)

∑
j∈Ω̄\{i}

χij −
∑

j∈Ω̄\{i}

χji = 0, i ∈ Ω,
(40)

∑
t∈T

νit =
∑

j∈Ω̄\{i}

χij , i ∈ Ω,
(41)

a+
∑
k∈Θ

rkγ
k
0j −

∑
t∈T

tνjt + (χ0j − 1)M ≤ 0, j ∈ Ω, (42)

∑
t1∈T

t1νit1 + di +
∑
k∈Θ

rkγ
k
ij −

∑
t2∈T

t2νjt2 + (χij − 1)M ≤ 0, i, j ∈ Ω, (43)

∑
t∈T

tνit +
∑
k∈Θ

rkγ
k
i0 − b+ (χi0 − 1)M ≤ 0, i ∈ Ω, (44)

νit = 0, t ∈ T\[e′i, l′i], i ∈ Ω, (45)

∑
k∈Θ

γkij ≥ χij , i ∈ Ω̄, j ∈ Ω̄ \ {i}, σij = 1, (46)

a ∈ T, (47)

b ∈ T̂ , (48)

χij ∈ {0, 1}, i ∈ Ω̄, j ∈ Ω̄ \ {i}, (49)

γkij ∈ {0, 1}, k ∈ Ψ, i ∈ Ω̄, j ∈ Ω̄ \ {i}, (50)

νit ∈ {0, 1}, i ∈ Ω, t ∈ T. (51)

The objective function (38) is to minimize the reduced cost of the column, which is obtained
by deducting the summation of the values of the involved dual variables from the cost of the
corresponding route. Constraint (39) ensures that the route must cover a period with no more
than D̄ time units. Constraint (40) ensures the flow balance. Constraint (41) ensures each task
has at most one start time. Constraint (42) describes the relationship between the time when the

13

pilot shift starts and the time when the first task in the column starts. Constraint (43) describes the
relationship between the start times of two tasks that are conducted consecutively in the column.
Constraint (44) describes the relationship between the time when the pilot shift ends and the time
when the last task in the column starts. Constraint (45) enforces the time windows constraints.
Constraint (46) specifies when through-channel transport is needed by clarifying the relationship
among σij , χij , and γkij . Finally, the last five constraints define integer and binary variables.

5.3.2. A DP for Solving the SP

In this section, we propose a DP for solving the SP. The algorithm first decomposes the SP into
a minimum distance routing problem in a three-dimensional task–time–pilot-transport network. In
addition, to speed up the DP, we propose several dominance rules to narrow down the searching
space of the algorithm.

Task–time–pilot-transport Network Construction. To solve the SP by a DP algorithm, we first
construct a task–time–pilot-transport network as follows. To begin with, each node in the task–
time–pilot-transport network can be denoted by a three-dimensional tuple (i, t, z), where i is the
position [including the depot (i = 0) and tasks (i 6= 0)], t stands for the time the pilot starts
working on the task or arrives at the depot, and z reflects the transport mode the pilot utilizes
to get to position i. In particular, z has three states, which are 0 denoting “no through-channel
transport”, 1 denoting “through-channel transport using pilot boats”, and 2 denoting “through-
channel transport using helicopters”.

Then, consider an extension from a node (in, tn, zn) to another node (in′ , tn′ , zn′). Suppose
in, tn, in′ , and tn′ are given. Since the cost of transport-by-boat is always lower than that of
transport-by-helicopter zn′ can also be fixed according to the following property.

Property 1. zn′ can be obtained by Equation (52) when a node (in, tn, zn) is extended to another
node (in′ , tn′ , zn′).

zn′ =

0, if σin,in′ = 0,
1, if σin,in′ = 1, tn′ − tn ≥ din + r1,
2, if σin,in′ = 1, tn′ − tn < din + r1,

(52)

where din is set to be 0, specifically, if in = 0.

The cost of extending node (in, tn, zn) to (in′ , tn′ , zn′), denoted by c̄(in, tn, zn → in′ , tn′ , zn′), is
defined as follows (note that we only need to consider arcs between nodes with different positions,
i.e., in 6= in′):

1. c̄(0, tn, 0→ in′ , tn′ , zn′) = c2 + c3 + c
in′
1 (tn′ − e′in′) + f(zn′), in′ ∈ Ω;

2. c̄(in, tn, zn → in′ , tn′ , zn′) = c3 + c
in′
1 (tin′ − e

′
in′

) + f(zn′)− πin + ϕin,tn , in, in′ ∈ Ω;

3. c̄(in, tn, zn → 0, tn′ , zn′) = f(zn′)− πin + ϕin,tn , in ∈ Ω.

In the above equations, f(zn′) and ϕin,tn are calculated using Equations (53) and (54), respectively.

f(zn′) =

0, if zn′ = 0,
c1

4, if zn′ = 1,
c2

4, if zn′ = 2,
(53)

14

ϕin,tn =
∑
h∈Φ

αh
in

min{|T |,tn+din−1}∑
t1=tn

µt1h, (54)

where, αh
in

= 1, if in ∈ Ωh and 0, otherwise.

The DP Algorithm. We now present the DP algorithm. The algorithm aims at finding
the set of routes in the network that have negative reduced costs. A route in the
network can be denoted by an ordered array R that starts from and ends at the pilot
depot. R = [(i0, t0, z0), (i1, t1, z1), ..., (in, tn, zn), ..., (iN , tN , zN), (iN+1, tN+1, zN+1)], where tuple
(in, tn, zn) stands for the nth visited node. Specifically, n = 0 represents starting from the depot
and n = N + 1 represents returning to the depot. In the algorithm, we only consider elementary
routes, that is, in 6= in′ , n, n

′ ∈ {1, 2, ..., N}, n 6= n′.
Given a set of partial routes, the DP works by extending each partial route task by task in the

task–time–pilot-transport network. To this end, corresponding to each partial route, we define a
state (sn). sn = [in, tn, ptn, c̃n,Ω

r
n], where in stands for the current position (depot or tasks) of the

partial route, tn stands for the time the pilot arrives at the position (gets ready to leave the depot
or starts working on the task), ptn is the duration of the pilot working time when the pilot arrives
at the position (i.e., ptn = tn−t0), c̃n represents the reduced cost of the partial route, and Ωr

n is the
set of tasks that can be reached after the pilot leaves in. To ensure the elementarity of the route, Ωr

n

only includes tasks that have not been visited in the current route. In addition, each task j ∈ Ωr
n

of state sn is associated with a vector (denoted by rst jn) such that rst jn = [hetjn, hlt
j
n, bet

j
n, blt

j
n],

where hetjn and hltjn denote the earliest and latest start times of task j using helicopters as the
transport vehicle between in and j, and betjn and bltjn are the earliest and latest start times of
task j using pilot boats as the transport vehicle between in and j. It can be easily inferred that
hetjn = betjn, and hltjn = bltjn if σin,j = 0.

The algorithm starts by creating |T | routes each of which corresponds to a state at the depot
which can be denoted by [0, t0, 0, 0,Ω0], where t0 = 1, 2, ..., |T |, and Ω0 is the set of tasks that can
be reached after the pilot leaves the depot at time t0. Each time, sn can be extended by adding
tasks from Ωr

n. The detailed extension procedure for a given stage sn is presented in Algorithm 1.
When a new state sn is generated, we check whether a column with negative reduced cost can

be identified by extending the corresponding partial route (from node (in, tn, zn)) to the depot.
It is noted that the cost of extending (in, tn, zn) to the depot (0, tn′ , zn′), which is calculated by
c̄(in, tn, zn → 0, tn′ , zn′) = f(zn′) − πin + ϕin,tn , is independent of the time tn′ , if zn′ is given.
Therefore, we only need to check the reduced cost of the column that enables the pilot to return
to the depot at the lowest transport cost (if through-channel transport is needed) and at the
correspondingly earliest time. Further, it is easy to infer that when through-channel transport
is needed to send the pilot back to the depot, if time permits, using a pilot boat is always more
favorable than using a helicopter (cost of using a pilot boat is always lower than using a helicopter).
Knowing this, we design the procedure shown in Algorithm 2 to calculate the (minimum) reduced
cost of extending a partial route to the depot.

Suppose the reduced cost corresponding to a route R = [(i0, t0, z0), (i1, t1, z1), ..., (in, tn, zn), ...,
(iN , tN , zN), (iN+1, tN+1, zN+1)] returned by Algorithm 2 is negative (i.e., RC < 0). Then, we
generate a column q such that cq = c2 +

∑N
n=1 c

in
1 (tn − ein) +

∑N+1
n=1 f(zn), and sqit = 1, if i = in

and t = tn, n = 1, ..., N and sqit = 0, otherwise. q is then added into the corresponding LRMP,
which will be solved again.

15

Algorithm 1 State extension procedure.

Input: (1) The current state sn; (2) Vector rstjn for each task j ∈ Ωr
n;

Output: The set of states extended from sn (denoted by ES);
1: ES = ∅;
2: for j ∈ Ωr

n do
3: if σin,j = 0 then
4: for t = hetj to hltj do
5: ptn′ = ptn + (t− tn);
6: c̃n′ = c̃n + c̄(in, tn, zn → j, t, 0);
7: Ωr

n′ = U(Ωr
n, j, t, ptn′); . The procedure U(Ωr

n, j, t, ptn′) for updating Ωr
n′ from Ωr

n is
presented in Algorithm 3 in Appendix A.

8: sn′ = [j, t, ptn′ , c̃n′ ,Ωr
n′];

9: ES = ES
⋃
{sn′};

10: end for
11: end if
12: if σin,j = 1 then
13: for t = betj to bltj do
14: ptn′ = ptn + (t− tn);
15: c̃n′ = c̃n + c̄(in, tn, zn → j, t, 1);
16: Ωr

n′ = U(Ωr
n, j, t, ptn′);

17: sn′ = [j, t, ptn′ , c̃n′ ,Ωr
n′];

18: ES = ES
⋃
{sn′};

19: end for
20: for t = hetj to hltj do
21: ptn′ = ptn + (t− tn);
22: c̃n′ = c̃n + c̄(in, tn, zn → j, t, 2);
23: Ωr

n′ = U(Ωr
n, j, t, ptn′);

24: sn′ = [j, t, ptn′ , c̃n′ ,Ωr
n′];

25: ES = ES
⋃
{sn′};

26: end for
27: end if
28: end for

Algorithm 2 Column generation procedure.

Input: State sn.
Output: The reduced cost of the column generated by extending the corresponding partial route (from

node (in, tn, zn)) to the depot (denoted by RC);
1: if σin,0 = 0 then
2: zn′ = 0;
3: tn′ = tn + din ;
4: end if
5: if σin,0 = 1 then
6: zn′ = 1;
7: tn′ = tn + din + r1;
8: if ptn + din + r1 > D̄ then
9: zn′ = 2;

10: tn′ = tn + din + r2;
11: end if
12: end if
13: RC = c̃n + c̄(in, tn, zn → 0, tn′ , zn′);

16

Dominance Rules. Two dominance rules are applied in the DP to speed up the searching process.
We introduce them in the following two statements.

Proposition 1. State sn1 dominates state sn2 if the following Conditions (55)-(61) hold:

in1 = in2 6= 0, (55)

c̃n1 ≤ c̃n2 , (56)

Ωr
n1
⊇ Ωr

n2
, (57)

hetjn1
≤ hetjn2

, j ∈ Ωr
n2
, (58)

hltjn1
≥ hltjn2

, j ∈ Ωr
n2
, (59)

betjn1
≤ betjn2

, j ∈ Ωr
n2
, (60)

bltjn2
≥ bltjn2

, j ∈ Ωr
n2
, (61)

and Condition (62) or (63) holds:{
ptn2 − tn2 + hetjn2 > D̄ − (2d̂), j ∈ Ωr

n2
, if σin2 ,0

= 0 (a),

ptn2 − tn2 + hetjn2 > D̄ − (d̂+ r1), j ∈ Ωr
n2
, if σin2 ,0

= 1 (b),
(62)

ptn1 − tn1 ≤ ptn2 − tn2 , (63)

where d̂ = mini∈Ω{di}.

Proof. To begin with, Equations (55) to (61) ensure that corresponding to any state sn′2 = [in′2 , tn′2 ,
ptn′2 , c̃n′2 ,Ω

r
n′2

] that is directly extended from sn2 , there exists a state sn′1 = [in′1 , tn′1 , ptn′1 , c̃n′1 ,Ω
r
n′1

]

that is directly extended from sn1 such that:

in′1 = in′2 , (64)

tn′1 = tn′2 , (65)

c̃n′1 ≤ c̃n′2 . (66)

Besides, as for the relationship between Ωr
n′1

and Ωr
n′2

, we distinguish the following cases:

Case 1. Equation (62a) holds. Note that the left-hand side of Equation (62a) calculates the
lower bound of the pilot working time when task in2 starts, and the right-hand side of the
equation calculates the upper bound of pilot working time after completing two additional
tasks (including task in2). Hence, in this case, sn′2 can no longer be extended to any new

17

task due to Constraint (39). Besides, as σin2 ,0
= 0, we have c̄(in′2 , tn′2 , zn′2 → 0, tn′′2 , 0) =

c̄(in′1 , tn′1 , zn′1 → 0, tn′′1 , 0) = 0, where tn′′1 , tn′′2 are obtained using Algorithm 2;

Case 2. Equation (62b) holds. Note that the left-hand side of Equation (62b) calculates the
lower bound of the pilot working time when task in2 starts, and the right-hand side of
the equation calculates the upper bound of pilot working time for completing task in2 and
returning the depot via pilot boats. Hence, in this case, sn′2 can no longer be extended to any

new task due to Constraint (39) (note that r2 < d̂). Besides, Equation (62b) indicates
that zn′′2 = 2 in c̄(in′2 , tn′2 , zn′2 → 0, tn′′2 , zn′′2) for any feasible tn′′2 . It easily follows that
c̄(in′2 , tn′2 , zn′2 → 0, tn′′2 , zn′′2) ≥ c̄(in′1 , tn′1 , zn′1 → 0, tn′′1 , zn′′1), where tn′′1 , zn′′1 , tn′′2 , and zn′′2 are
obtained using Algorithm 2;

Case 3. Equation (63) holds. According to Algorithm 3 in Appendix A (which generates Ωr
n′1

,

Ωr
n′2

, rst j
n′1

’s, and rst j
n′2

’s), Equations (57) to (61) and (63) easily lead to:

Ωr
n′1
⊇ Ωr

n′2
, (67)

hetj
n′1
≤ hetj

n′2
, j ∈ Ωr

n′2
, (68)

hltj
n′1
≥ hltj

n′2
, j ∈ Ωr

n′2
, (69)

betj
n′1
≤ betj

n′2
, j ∈ Ωr

n′2
, (70)

bltj
n′2
≥ bltj

n′2
, j ∈ Ωr

n′2
. (71)

In addition, Algorithm 2 indicates that c̄(in′2 , tn′2 , zn′2 → 0, tn′′2 , zn′′2) ≥ c̄(in′1 , tn′1 , zn′1 →
0, tn′′1 , zn′′1) for any tn′′2 .

Therefore, it now easily follows that for any state sn∗2 = [in∗2 , tn∗2 , ptn∗2 , c̃n∗2 ,Ω
r
n∗2

] with rst jn∗2
=

[hetjn∗2
, hltjn∗2

, betjn∗2
, bltjn∗2

] for each j ∈ Ωr
n∗2

that is either directly or indirectly extended from sn2 ,

there exists a state sn∗1 = [in∗1 , tn∗1 , ptn∗1 , c̃n∗1 ,Ω
r
n∗1

] that is either directly or indirectly extended from
sn1 such that the following conditions hold:

in∗1 = in∗2 , (72)

tn∗1 = tn∗2 , (73)

c̃n∗1 ≤ c̃n∗2 , (74)

Ωr
n∗1
⊇ Ωr

n∗2
, (75)

hetjn∗1
≤ hetjn∗2 , j ∈ Ωr

n∗2
, (76)

18

hltjn∗1
≥ hltjn∗2 , j ∈ Ωr

n∗2
, (77)

betjn∗1
≤ betjn∗2 , j ∈ Ωr

n∗2
, (78)

bltjn∗2
≥ bltjn∗2 , j ∈ Ωr

n∗2
, (79)

c̄(in∗1 , tn∗1 , zn∗1 → 0, tn∗∗1 , zn∗∗1) ≤ c̄(in∗2 , tn∗2 , zn∗2 → 0, tn∗∗2 , zn∗∗2), (80)

where tn∗∗1 , zn∗∗1 , tn∗∗2 , and zn∗∗2 in the last equation are obtained using Algorithm 2. Therefore, we
have sn∗1 dominates sn∗2 , and further, sn1 dominates sn2 . This completes the proof.

Corollary 1. For two states sn1 and sn2 that are extended from the same state, suppose the
following conditions hold:

in1 = in2 6= 0, (81)

tn1 ≤ tn2 , (82)

c̃n1 ≤ c̃n2 , (83)

then, sn1 dominates sn2.

Proof. We only need to prove that Conditions (55)–(61) and Condition (62) or (63) hold for sn1

and sn2 in this corollary. First, Equations (81) and (83) are equivalent to Equations (55) and (56),
respectively. Second, based on Algorithm 1, Equation (82) easily leads to

ptn1 − tn1 = ptn2 − tn2 , (84)

which indicates Condition (63) holds. Third, based on Algorithm 3 and Equations (82) and (84),
it is easy to infer that Conditions (57)–(61) hold as well. Therefore, the dominance relationship is
proved.

5.4. Branching Strategy

This section introduces how the B&B tree is explored and extended. To begin with, the B&B
tree is explored in a balanced manner, i.e., we alternatively select the node with the overall minimum
lower bound and the node with the minimum lower bound at the highest level to branch. Such an
exploration method helps strike a balance between the speed of finding new integer solutions and
the quality of them, both of which are important for finding tighter upper bounds.

After solving the LRMP at a node, if the obtained objective is no smaller the incumbent upper
bound, the node is fathomed, otherwise, a branching operation is applied on the node. In particular,
when generating new nodes, this paper adopts a two-level branching strategy, which combines a
0-1–arc branch at the primary level and a time-window branch at the secondary level. Details of
the branching strategy are presented as follows.

19

Let Qs := {q|ωq > 0, q ∈ Q}. Then, for each arc (i, j) (which denotes that position j is visited
immediately after position i in the columns), we calculate:

λij =
∑
q∈Qs

ςqijωq, i ∈ Ω̄, j ∈ Ω̄ \ {i}, (85)

where ςqij = 1, if arc (i, j) is included in column q and 0, otherwise.
We distinguish the following three conditions regarding the solutions (ωq’s) in Qs:

Condition (i) ωq’s are all integral;

Condition (ii) All or part of the ωq’s are fractional, and there are fractional λij ’s;

Condition (iii) All or part of the ωq’s are fractional, but all the λij ’s are integral.

Note that Condition (iii) is possible when and only when there exists at least two columns (q1

and q2) that belong to Qs such that 0 < ωq1 , ωq2 < 1 and q1 and q2 share the same task sequences
(i.e., arcs) while the start times of certain tasks in them are different. Then, according to different
conditions, we make different branching decisions.

If Condition (i) happens (i.e., ωq = 0 or 1, q ∈ Qs), a valid upper bound to MP can be
identified and the node is thus fathomed. Note that in practice, the time and cost to conduct
any pilotage task are considerably larger than the time and cost required in any through-channel
transport operation (i.e., in our models, di > rk and c3 > ck4, i ∈ Ω, k ∈ Θ). Therefore, in any
optimal integer solution to any LRMP each task is conducted only once in the columns with ωq = 1.
This indicates that the solution is also feasible to M1.

If Condition (ii) happens, the node is branched on the λij that is closest to 0.5, where ties
are broken arbitrarily. Two new nodes will be generated in the branch. In particular, for the node
generated by 0-branch, the LRMP of the node is imposed with an implicit constraint λij = 0 (i.e.,
position j cannot be visited immediately after position i in any column). In this case, in the DP
for solving the SP on the node (and its offsprings), we stop generating any route that travels from
position i to position j. For the node generated by 1-branch, the LRMP of the node is imposed
with an implicit constraint λij = 1 (i.e., position j must be visited immediately after position i in
at least one column). In this case, in the DP for solving the SP on the node (and its offsprings), we
stop generating any route that travels from position i to position j′ ∈ Ω̄ \ {j} or from i′ ∈ Ω̄ \ {i}
to position j.

If Condition (iii) happens we branch the node using the time-window branch. As mentioned
above, in this condition, there are tasks with more than one start time in Qs. Among these tasks,
we identify the one with the minimum number of start times (denoted by i∗). Let [st1i∗ , st

2
i∗ , ..., st

N
i∗]

be an array of a total of N start times of task i∗ in Qs which are listed chronologically. Further, let
[ω1

q , ω
2
q , ..., ω

N
q] be an array of the solution values for columns corresponding to each start time in the

former array. Then the node will be branched on stki∗ such that
∑k−1

u=1 ω
u
q < 0.5 and

∑k
u=1 ω

u
q ≥ 0.5,

and we generate two new nodes where the time windows of task i∗ are truncated to be [e0
i∗ , st

k
i∗)

and [stki∗ , l
0
i∗] in the corresponding new LRMPs, respectively. Note that [e0

i∗ , l
0
i∗] is the time window

of task i∗ in the node selected to branch. The time windows of task i∗ are also adjusted accordingly
when we solve the SP on the nodes and their offsprings using the DP.

20

5.5. Acceleration Techniques

To improve the efficiency of the B&P algorithm, we propose to accelerate the algorithm by
using the following methods. When we are solving an LRMP at a node, it is unnecessary to
solve the pricing problem (Section 5.3) to optimum in each iteration. Hence, two heuristical DP
algorithms [denoted by SDP (Simple DP) and GDP (Greedy DP)] are designed to solve the SP.
The two algorithms, at their cores, are truncated versions of the DP proposed in Section 5.3.2 [for
notational simplicity, we denote it by FDP (Full DP) hereafter].

The SDP is reduced from the FDP by (a) only generating initial states each of which enables
a task i to start exactly at its earliest possible start time(s) (i.e., e′i, if σ0,i = 0 or max{e′i, r1}
and max{e′i, r2}, if σ0,i = 1) and (b) extending any state sn only to states sn′ ’s where task in′ ’s
start exactly at their earliest feasible start times using pilot boats or helicopters as the transport
vehicles between in and in′ , i.e., het′i and bet′i (note that het′i = bet′i if no through-channel transport
is required between in and in′).

The GDP reduces the searching space by only generating a subset of the initial states. In
particular, corresponding to each task i ∈ Ω, let ∆i denote the set of all feasible start times of
i. Then, for each t ∈ ∆i, (1) if σ0,i = 0 we generate initial states [0, t, 0, 0,Ω0] only when there
exist no t′ ∈ ∆i such that t′ < t and c̄(0, t′, 0 → i, t′, 0) < c̄(0, t, 0 → i, t, 0), and (2) if σ0,i = 1
we generate initial states [0, t − r1, 0, 0,Ω0] only when there exist no t′ ∈ ∆i such that t′ < t and
min{c̄(0, t′ − r1, 0 → i, t′, 1), c̄(0, t′ − r2, 0 → i, t′, 2)} < c̄(0, t − r1, 0 → i, t, 1) and initial states
[0, t − r2, 0, 0,Ω0] only when there exist no t′ ∈ ∆i such that t′ < t and min{c̄(0, t′ − r1, 0 →
i, t′, 1), c̄(0, t′ − r2, 0 → i, t′, 2)} < c̄(0, t − r2, 0 → i, t, 2). The extension procedure of the GDP is
the same as that of the FDP.

To further accelerate the algorithm, we allow the SDP, GDP, and FDP to stop prematurely,
after a total of MRCs, MRCg, and MRCf columns with negative reduced costs are generated by
the three DPs, respectively. In particular, when solving the SP, SDP is firstly used, and GDP is
only used when SDP fails to provide MRCs columns with negative reduced costs. Then, FDP is
only used when the other two fail to deliver MRCg columns with negative reduced costs. Finally,
the FDP stops when MRCf columns with negative reduced costs have been found by the DPs.

6. Numerical Experiments

In this section, we perform extensive computational experiments to verify the applicability and
effectiveness of our proposed models and solution methods. To do so, we generated 210 groups of
instances based on real cases faced by the VTS operators of Port of Xiamen in China (the 14th
largest container port in the world). The instance groups have different planning horizons, numbers
of tasks, and tidal conditions. Each group contains five randomly generated instances, resulting in
a total of 1050 instances.

We solve all instances with the proposed B&P method and a heuristic that simulates the First-
Come-First-Served (FCFS) policy that is commonly used in practice. Details of the heuristic will
be elaborated in Section 6.1. In addition, the instances with the smallest scales are also solved
by the well-known commercial MIP solver CPLEX using model M1. The algorithms are coded in
C++ language, and CPLEX 12.6 is used as the LP solver in the B&P method and as the MIP
solver for M1. The experiments are conducted on an Intel Core i7 3.60 GHz PC with 16 GB RAM.

21

Time

Water Depth

Planning Horizon

Jumbo Drafts

Medium Drafts

Feeder Drafts

Suitable Periods for
Entering the Channel

Figure 3: Water depth in the channel of a tidal port.

6.1. Instance Generation and Algorithm Settings

To test the performance of the model and the algorithm, 210 groups of instances were generated.
Each group can be denoted using a three-field notation “PL|TN|TC”, where “PL” stands for the
length of the planning horizon (days), “TN” stands for the number of tasks and “TC” indicates
whether the port is tidal or not. In these instance groups, PL changes from 1 to 5, representing 1
to 5 days, TN changes from 6 to 100 (the average number of tasks in a day is set to be within [6,
20]), and TC takes two values, where “T” represents tidal cases and “U” stands for untidal cases.

In all instances, the unit time (i.e., the interval between two consecutive time points) is set
as 15 minutes, hence, a day is divided into 96 unit times, and we suppose the arrival times of
entering vessels and the handling completion times of the leaving vessels are uniformly distributed
in the planning horizon. We consider three classes of vessels: Jumbo, Medium, and Feeder. In
tidal cases, as shown in Figure 3, Jumbo and Medium vessels can only enter the channel during
high-tide periods due to their large drafts, while Feeders can enter the channel at any time. Table 3
shows the settings for vessels of different sizes. Note that in the table, “Delay cost” refers to the
per unit time costs caused by the delays to start the tasks for vessels of a certain class. Besides,
for Jumbo and Medium vessels, the lengths of time windows to start the in-wharf or out-wharf
tasks are dependent on the tidal conditions of the channels and the times when the vessels arrive
or complete handling.

Table 3: Settings of vessels.

Class Ratio Delay cost
Time Window Length

Tidal Cases Untidal Cases

Jumbo 1/3 [25, 34] 1–5 hours 5 hours
Medium 1/3 [13, 22] 2–5 hours 5 hours
Feeder 1/3 [1, 10] 5 hours 5 hours

It is further supposed that the durations of all tasks are identical in an instance. The duration
(d) is generated from the uniform distribution on [4, 10] (unit times). The capacities u1 and u2 of
a channel are set according to the duration of a task, which are calculated by

u1 = u2 = bθdc, (86)

22

where θ is generated from the uniform distribution on [0.75, 1.5].
The maximum length of a pilot shift is set as eight hours (32 unit times) in all instances. The

costs of appointing an additional pilot shift and assigning additional pilotage service are generated
randomly in the ranges of [200, 300] and [40, 60], respectively. As for the two pilot transport
vehicles, the times for transporting a pilot through the channel using pilot boats and helicopters
are set to be b0.5dc, and d0.1de, respectively. In addition, the costs for transporting pilots are
generated randomly from the ranges of [1, 6] for using pilot boats and [10, 15] for using helicopters,
respectively.

Parameters in the algorithms are set as follows. First, for the B&P algorithm, when solving
the SP, the SDP is first used. Then, the GDP is used when no more than 5 columns with negative
reduced costs are found by the SDP. The FDP is only used when no more than 10 such columns
are found by the SDP and GDP. Finally, we let the FDP stop when 20 columns with negative
reduced costs are found (i.e., we set MRCs = 5, MRCg = 10, and MRCf = 20). We also set the
time limits for both the B&P algorithm and CPLEX to be 3600 seconds.

In practice, FCFS policy is commonly used by the VTS operators (e.g., the VTS operators in
Port of Xiamen) to schedule traffic in the channel and assign pilots to serve the vessels. To simulate
the policy, we design a heuristic algorithm in which tasks are executed in an order that sequences
their earliest start times chronologically, where ties are broken arbitrarily. The algorithm selects
through-channel transport vehicles myopically. That is, when a transport operation is needed, the
algorithm first calculates for each feasible type of vehicles (k) a cost (vck) by adding the transport
cost to the delay cost of the following task (if the transport operation leads the pilot to a new
task), then the one with lower vck is selected to be type of vehicles used in the transport operation.
Note that the pilot should be able to return to the depot within the allowable working period after
the transport operation and completing the following task (if any). In each pilot shift (denoted
by PS), the first task (denoted by FT) starts at its earliest feasible start time (denoted by ET)
by considering capacity limits of the channels, and under the transport-vehicle-selection rule given
above. Accordingly, the start time of the pilot shift PS is set to be the latest time that enables the
task FT to start at time ET under the transport-vehicle-selection rule. In PS, the following tasks
start at their earliest feasible start times under channel capacity constraints and the transport-
vehicle-selection rule, as well. Besides, during the scheduling process, pilot shifts are utilized in
such a way to enable as many as possible tasks to be conducted in one pilot shift. In the remaining
part of the paper, we refer to this heuristic as the FCFS heuristic.

6.2. Computational Results

This section reports the computational results of the numerical experiments. For a better
illustration, we report the results by dividing the instances into four parts. In the first part, we
report the results of instances with the smallest sizes (i.e., instances with PL= 1). The remaining
instances (i.e., instances with PL≥ 2) are divided into three parts according to the traffic densities
of the instances, including the “Low Densities” (6 ≤ TN/PL ≤ 10), “Medium Densities” (11 ≤
TN/PL ≤ 15), and “High Densities” (16 ≤ TN/PL ≤ 20). The performances of the solution
methods are reported in group-aggregated values according to their partition into the 210 groups.
Each partition contains five instances. Finally, we summarize and discuss the main findings from
the experiments at the end of this section.

23

6.2.1. Computational Results of Instances with the Smallest Sizes

The first part covers instances with the smallest sizes (PL=1). Instances in this part are
solved using the proposed B&P method, CPLEX using M1, and the FCFS heuristic. Table 4
compares the performances of these methods for solving these instances. Note that because the
B&P method managed to obtain optimal solutions for all instances in this part, we only report its
average solution time for different instance groups. “GAPc” reports average gaps (in percentage)
of solutions obtained by CPLEX against the best lower bounds delivered by CPLEX for instances
in a group. “GAPcb” and “GAPfb” report average gaps (in percentage) of solutions delivered
by CPLEX and the FCFS heuristic for instances in a group against those obtained by the B&P
method (the optimal solutions), respectively. “US” reports the number of instances in a group
that cannot be solved to optimum and “NS” reports the number of instances in a group for which
no feasible solutions are reported. “Average (U)” and “Average (T)” report average values for all
untidal and all tidal instances, respectively.

Table 4 shows that the B&P method can obtain optimal solutions for all instances in very short
times. In comparison, CPLEX takes much longer to solve the instances and cannot solve more
than half of the instances to optimum. It even fails to find feasible solutions for a considerable
number of instances within the time limit. As for the FCFS heuristic, it provides solutions that
are much worse than those obtained by the B&P method (the optimal solutions). The FCFS
heuristic also fails to obtain feasible solutions for several tidal instances. Therefore, the B&P
method outperforms CPLEX and the FCFS heuristic when solving small-sized instances.

6.2.2. Computational Results of Instances with Low Traffic Densities

In this part, we report the results of instances with the planning horizons of 2 to 5 days and
6 to 10 tasks a day on average. The instances are solved using the B&P method and the FCFS
heuristic. The results are shown in Table 5. Similar to the previous section, the B&P method
manages to obtain optimal solutions for all instances in this part. Hence, we only report the
average solution time for different instance groups. “GAPfb” reports average gaps (in percentage)
of solutions delivered by the FCFS heuristic for instances in a group against those obtained by the
B&P method (the optimal solutions). “NS” reports the number of instances in a group for which
no feasible solutions are reported. “Average (U)” and “Average (T)” report average values for all
untidal and all tidal instances, respectively.

As shown in Table 5, for all instances with low traffic densities, the B&P method can obtain
optimal solutions in short computational time, and the solutions are much better than those
delivered by the FCFS heuristic. Note that when the traffic densities are low, the FCFS can
find feasible solutions for all instances under both tidal and untidal conditions.

6.2.3. Computational Results of Instances with Medium Traffic Densities

This section reports the computational results of instances where 2≤PL≤5 and 11≤TN/PL≤15.
Table 6 demonstrates the results obtained using the B&P method and the FCFS heuristic to solve
these instances. The B&P method can provide feasible solutions for all instances; however, the
optimality of some solutions cannot be proved within the time limit. “GAPb” reports average
gaps (in percentage) of solutions delivered by the B&P method for instances in a group against
the minimum lower bounds of the unfathomed nodes in the B&B trees. “GAPfb” reports average
gaps (in percentage) of solutions delivered by the FCFS heuristic for instances in a group against
those obtained by the B&P method. “US” reports the number of instances in a group that cannot
be solved to optimum and “NS” reports the number of instances in a group for which no feasible

24

Table 4: Results of small-sized instances.

Group B&P CPLEX FCFS
(PL|TN|TC) Time(s) GAPc GAPcb Time(s) US NS GAPfb NS

1|6|U 0.03 0.00 0.00 4.51 0 0 20.71 0
1|7|U 0.03 0.00 0.00 3.66 0 0 11.09 0
1|8|U 0.06 0.00 0.00 311.81 0 0 20.22 0
1|9|U 0.06 2.76 0.00 1393.61 1 0 11.99 0
1|10|U 0.05 0.08 0.00 765.23 1 0 18.31 0
1|11|U 0.12 18.06 0.08 3086.70 4 0 37.04 0
1|12|U 0.10 0.48 0.00 1980.57 1 0 28.16 0
1|13|U 0.08 17.23 0.84 3073.73 3 0 20.61 0
1|14|U 0.06 31.43 5.14 3600.00 5 0 46.55 0
1|15|U 0.21 40.97 6.90 3600.00 5 0 37.42 0
1|16|U 0.43 35.19 2.53 3600.00 5 2 45.85 0
1|17|U 19.73 34.69 9.02 3600.00 5 3 46.23 0
1|18|U 6.13 36.53 6.18 3600.00 5 1 39.96 0
1|19|U 0.88 – – 3600.00 5 5 41.22 0
1|20|U 0.78 – – 3600.00 5 5 55.67 0
1|6|T 0.03 0.00 0.00 7.37 0 0 10.95 0
1|7|T 0.05 0.00 0.00 22.16 0 0 12.45 0
1|8|T 0.04 0.00 0.00 31.76 0 0 22.14 0
1|9|T 0.04 0.00 0.00 68.00 0 0 21.50 0
1|10|T 0.15 0.00 0.00 1698.12 0 0 16.54 0
1|11|T 0.06 9.56 0.00 3008.52 4 0 22.43 0
1|12|T 0.06 16.35 0.05 3600.00 5 0 23.58 0
1|13|T 0.14 25.18 0.13 3600.00 5 0 28.82 0
1|14|T 0.16 30.27 2.27 3600.00 5 0 32.29 0
1|15|T 0.27 34.56 5.50 3600.00 5 0 33.63 0
1|16|T 0.09 36.77 4.29 3600.00 5 0 27.46 1
1|17|T 0.17 34.25 5.00 3600.00 5 1 32.51 0
1|18|T 0.48 26.80 2.69 3600.00 5 4 34.60 0
1|19|T 0.51 33.75 6.42 3600.00 5 4 36.33 0
1|20|T 10.54 35.34 7.39 3600.00 5 4 45.54 1

Average (U) 1.92 16.72 2.36 2387.99 3.00 1.07 32.07 0

Average (T) 0.85 18.86 2.25 2482.40 3.27 0.87 26.72 0.13

Note 1. Values in columns “CPLEX” or “FCFS” are calculated based on the instances for
which CPLEX or the FCFS heuristic is able to deliver feasible solutions.

Note 2. Values in “CPLEX” are displayed as “–” if CPLEX fails to deliver feasible solutions
for all instances in a group.

25

Table 5: Results of instances with low traffic densities.

Group B&P FCFS Group B&P FCFS
(PL|TN|TC) Time(s) GAPfb NS (PL|TN|TC) Time(s) GAPfb NS

2|12|U 0.14 15.53 0 2|12|T 0.09 9.83 0
2|14|U 0.29 19.03 0 2|12|T 0.06 15.46 0
2|16|U 0.18 19.71 0 2|12|T 0.16 23.89 0
2|18|U 0.31 22.43 0 2|12|T 0.36 16.68 0
2|20|U 0.66 31.77 0 2|12|T 0.34 21.46 0
3|18|U 0.14 15.88 0 2|12|T 0.16 18.26 0
3|21|U 0.11 18.82 0 2|12|T 1.48 17.34 0
3|24|U 0.38 22.64 0 2|12|T 0.48 20.72 0
3|27|U 0.67 20.82 0 2|12|T 0.27 24.91 0
3|30|U 1.77 19.63 0 2|12|T 1.83 21.87 0
4|24|U 0.98 18.38 0 2|12|T 0.60 11.00 0
4|28|U 1.58 16.23 0 2|12|T 0.53 16.01 0
4|32|U 1.13 15.13 0 2|12|T 8.88 14.81 0
4|36|U 15.39 19.14 0 2|12|T 6.13 19.08 0
4|40|U 1.53 25.49 0 2|12|T 23.64 23.31 0
5|30|U 0.47 11.53 0 2|12|T 0.75 13.34 0
5|35|U 1.75 15.82 0 2|12|T 0.46 17.78 0
5|40|U 4.36 16.46 0 2|12|T 1.21 15.18 0
5|45|U 87.42 20.70 0 2|12|T 26.84 18.97 0
5|50|U 703.84 28.60 0 2|12|T 458.88 20.48 0

Average (U) 41.16 19.69 0.00 Average (T) 26.66 18.02 0.00

solutions are reported. “Average (U)” and “Average (T)” report average values for all untidal and
all tidal instances, respectively.

Table 6 shows that the B&P method can obtain optimal or near-optimal solutions for all
instances in this part within reasonable time. In particular, most instances were solved to the
proven optimum. The instances that could not be solved to optimum are also with small optimality
gaps. In comparison, the solutions obtained by the FCFS heuristic are much worse. The results
also indicate the B&P can better solve instances under tidal conditions such that more optimal
solutions are found within shorter computational times. Moreover, under medium traffic densities,
the FCFS heuristic can still find feasible solutions for all instances without tidal constraints but
failed to provide feasible solutions for several instances with tidal constraints.

6.2.4. Computational Results of Instances with High Traffic Densities

In this section, we report the computational results of instances with high traffic densities (i.e.,
instances that cover 2 to 5 days of planning horizons and have 15 to 20 tasks a day on average). The
solutions obtained using the B&P method and the FCFS heuristic are shown in Table 7. “GAPb”
reports average gaps (in percentage) of solutions delivered by the B&P method for instances in a
group against the minimum lower bounds of the unfathomed nodes in the B&B trees. “GAPfb”
reports average gaps (in percentage) of solutions delivered by the FCFS for instances in a group
against those obtained by the B&P method. “US” reports the number of instances in a group
that cannot be solved to optimum and “NS” reports the number of instances in a group for which
no feasible solutions are reported. “Average (U)” and “Average (T)” report average values for all
untidal and all tidal instances, respectively.

As shown in Table 7, feasible solutions were found by the B&P method for all instances although

26

Table 6: Results of instances with medium traffic densities.

Group B&P FCFS Group B&P FCFS
(PL|TN|TC) GAPb Time(s) US GAPfb NS (PL|TN|TC) GAPb Time(s) US GAPfb NS

2|22|U 0.00 0.32 0 30.89 0 2|22|T 0.00 0.20 0 27.66 0
2|24|U 0.00 0.70 0 23.34 0 2|24|T 0.00 0.85 0 19.43 0
2|26|U 0.00 0.49 0 42.09 0 2|26|T 0.00 1.70 0 25.45 0
2|28|U 0.00 2.99 0 28.74 0 2|28|T 0.00 0.54 0 28.47 0
2|30|U 0.00 1.32 0 41.87 0 2|30|T 0.00 430.13 0 28.72 0
3|33|U 0.00 6.86 0 20.27 0 3|33|T 0.00 31.93 0 19.98 0
3|36|U 0.00 18.62 0 33.19 0 3|36|T 0.00 27.16 0 21.79 0
3|39|U 0.09 751.09 1 30.29 0 3|39|T 0.00 0.98 0 23.94 0
3|42|U 0.00 206.37 0 29.98 0 3|42|T 0.00 4.20 0 29.34 0
3|45|U 0.00 37.57 0 35.26 0 3|45|T 0.00 24.85 0 39.15 1
4|44|U 0.05 746.54 1 27.85 0 4|44|T 0.00 3.00 0 21.70 0
4|48|U 0.03 815.48 1 28.57 0 4|48|T 0.00 26.57 0 24.18 0
4|52|U 0.00 646.52 0 30.14 0 4|52|T 0.16 799.06 1 26.00 1
4|56|U 0.00 114.50 0 33.59 0 4|56|T 0.00 90.56 0 33.10 0
4|60|U 0.08 954.50 1 31.74 0 4|60|T 0.00 90.15 0 30.44 0
5|55|U 0.00 407.70 0 25.13 0 5|55|T 0.18 770.91 1 28.03 0
5|60|U 0.13 796.98 1 31.20 0 5|60|T 0.00 224.34 0 23.63 0
5|65|U 0.08 900.63 1 31.64 0 5|65|T 0.00 1091.42 0 26.42 0
5|70|U 0.43 1672.09 2 31.84 0 5|70|T 0.04 2036.05 2 27.61 1
5|75|U 0.35 2138.80 2 33.89 0 5|75|T 0.06 1618.22 1 27.60 2

Average (U) 0.06 511.00 0.50 31.08 0.00 Average (T) 0.02 364.64 0.25 26.63 0.25

Table 7: Results of instances with high traffic densities.

Group B&P FCFS Group B&P FCFS
(PL|TN|TC) GAPb Time(s) US GAPfb NS (PL|TN|TC) GAPb Time(s) US GAPfb NS

2|32|U 0.00 10.55 0 32.87 0 2|32|T 0.00 0.99 0 36.19 0
2|34|U 0.00 16.98 0 38.38 0 2|34|T 0.00 1.38 0 31.79 1
2|36|U 0.00 28.07 0 54.88 0 2|36|T 0.00 0.36 0 37.86 1
2|38|U 0.00 97.02 0 47.49 0 2|38|T 0.00 10.59 0 31.81 0
2|40|U 0.12 730.24 1 58.13 0 2|40|T 0.00 212.29 0 39.09 0
3|48|U 0.00 17.48 0 39.63 0 3|48|T 0.00 14.84 0 31.26 0
3|51|U 0.00 116.03 0 39.89 0 3|51|T 0.01 725.23 1 36.06 0
3|54|U 0.25 1159.08 1 38.29 0 3|54|T 0.00 56.12 0 31.42 0
3|57|U 0.00 1156.10 0 52.73 0 3|57|T 0.07 829.26 1 29.95 1
3|60|U 0.00 348.50 0 48.64 0 3|60|T 0.00 207.56 0 31.89 0
4|64|U 0.10 1460.79 2 39.72 0 4|64|T 0.49 1722.63 2 30.86 0
4|68|U 0.59 2588.48 3 38.44 0 4|68|T 0.35 1478.61 2 33.24 1
4|72|U 0.04 1467.27 1 42.83 0 4|72|T 0.42 1458.70 2 41.07 1
4|76|U 0.13 1298.83 1 48.75 0 4|76|T 0.00 166.78 0 37.87 0
4|80|U 0.16 1593.76 2 53.21 0 4|80|T 0.07 1214.88 1 34.91 2
5|80|U 0.50 1183.37 1 40.25 0 5|80|T 0.75 2171.57 3 28.56 1
5|85|U 0.14 2489.50 2 35.37 0 5|85|T 0.27 949.83 1 30.88 0
5|90|U 0.00 574.47 0 45.81 0 5|90|T 0.33 2189.52 3 34.13 1
5|95|U 0.55 2246.27 3 46.25 0 5|95|T 0.32 2520.26 3 32.98 0
5|100|U 0.90 1766.41 2 45.28 0 5|100|T 0.00 332.50 0 36.10 0

Average (U) 0.17 1017.46 0.95 44.34 0.00 Average (T) 0.15 815.19 0.95 33.90 0.45

27

some of them may not be optimal. The B&P method can solve most of the instances to optimum
and obtain near-optimal solutions for the remaining ones and thus, it obviously outperforms the
FCFS heuristic. In addition, the shorter average computational times and smaller average gaps
indicate the B&P method can better solve tidal cases than untidal cases. Under high traffic
densities, the FCFS can still provide feasible solutions for all untidal instances. However, it failed
to find feasible solutions for more tidal instances when compared with results of the instances with
medium traffic densities.

6.2.5. Summary and Discussion

In the experiments, we have tested the performances of the B&P algorithm on a large set of
instances with different parameter settings. The results demonstrate that the algorithm is able
to obtain optimal or near-optimal solutions for all instances within short computational time.
The B&P algorithm outperforms the well-known optimization software CPLEX and a scheduling
policy that is commonly used in practice. Hence, the proposed B&P algorithm is able to provide
high-quality solutions to support decision-making in real applications in reasonable times.

The B&P algorithm significantly outperforms the FCFS policy in almost all instances. In
particular, gaps between the solutions of the two methods are between around 20% to over 40%,
and even in low-traffic instances where the traffic in the channels is relatively sparse the gaps
between the two methods still reach 18%. This indicates that our method which tackles the
channel traffic management and the pilotage arrangement in a joint manner generates considerable
benefits to seaports when compared with the method that handles the two decisions sequentially
(as in the FCFS heuristic).

It is also mentionable that the gaps between the solutions of the B&P algorithm and the FCFS
heuristic grow with the densities in the channels. Besides, B&P algorithm gains greater superiority
against the FCFS heuristic in terms of the solution quality when solving untidal instances. This
indicates the B&P algorithm brings more values to the port in busy periods and when there are
more flexibilities in channel traffic control (e.g., longer time windows to start pilotage tasks).

We have also found that when solving an instance, the B&P algorithm typically generates
fewer pilot shifts than the FCFS heuristic does. Therefore, by using the B&P algorithm, we can
lessen the work burdens for the pilots by enabling them to have longer continuous resting periods,
which is important for mitigating fatigue of the pilots (see the discussion on the importance of the
continuity of resting time by International Maritime Organization, 2001). Moreover, with fewer
pilot shifts, it will be easier for the VTS to roster pilots to work in the shifts.

In addition to providing a better pilotage arrangement for a seaport, the B&P algorithm also
helps improve the efficiency of other operations in the port. For example, as shown in Tables 4, 6,
and 7, the FCFS policy cannot find feasible solutions to some instances. In these cases, the port
may have to revise the vessel handling plan, leading to losses in the productivity of the port and
prolonged turnaround times of vessels.

By solving the PPP, we obtain the (sub)optimal number of pilot shifts to be set in a planning
horizon and their start and end times. Using this information, the VTS operators are able
to generate a rostering plan that assigns particular pilots to the shifts by taking into account
practical considerations (e.g., relevant governmental and industrial regulations regarding workforce
management).

28

7. Conclusions

Pilotage is compulsory for vessels that need to pass through the navigation channel in most
seaports around the world. Managing the vessel traffic and scheduling the pilots for vessel
navigation in the seaside of a port is important for congestion mitigation and vessel service
enhancement. This paper studies the PPP that arise in the practical operations in seaports.
The problem aims to schedule the vessel traffic in the navigation channel, assign work shifts to
pilots, and schedule the pilot in each work shift for vessel navigation. We formulate the problem as
a MIP model, and show that the problem is strongly NP-hard. For solving the problem, we provide
a set covering reformulation of the model and develop a B&P algorithm. Our algorithm makes use
of a two-level branching scheme which performs 0-1 arc branch at the primary level and performs
time-window branch at the secondary level, and solves each node of the branch-and-bound tree
using a column generation algorithm in which the pricing problem is solved by a tailored DP.
We also develop acceleration strategies for improving the efficiency of the B&P algorithm. We
perform extensive numerical experiments to evaluate the performances of the proposed model and
the algorithm. Computational results show that our solution method can efficiently solve problem
instances of practical sizes, and that our solution method outperforms a standard MIP solver and
a method used in practice in terms of solution quality and computation efficiency.

Although our model is designed for pilotage planning in the navigation channel of a seaport,
the model may also be applicable to pilotage planning in waterways such as canals and straits.
Hence, future research could focus on extending our model and solution method for solving pilotage
planning problems in a variety of waterways. In a seaport, the service of vessels not only involves
the utilization of seaside resources (e.g., navigation channels and pilots), but also involves the
utilization of landside facilities, such as the berths, the quay cranes, and the yard. Another
interesting research direction would be to investigate the possibilities of integrating the PPP into
terminal resource planning problems to improve the efficiency of port operations and enhance the
service levels of vessels.

References

Bierwirth, C., Meisel, F., 2010. A survey of berth allocation and quay crane scheduling problems in container
terminals. European Journal of Operational Research 202, 615–627.

Bierwirth, C., Meisel, F., 2015. A follow-up survey of berth allocation and quay crane scheduling problems
in container terminals. European Journal of Operational Research 244, 675–689.

Carlo, H.J., Vis, I.F., Roodbergen, K.J., 2015. Seaside operations in container terminals: literature overview,
trends, and research directions. Flexible Services and Manufacturing Journal 27, 224–262.

Choo, S., Klabjan, D., Simchi-Levi, D., 2010. Multiship crane sequencing with yard congestion constraints.
Transportation Science 44, 98–115.

Cruz, R., Mendes, A.B., Bahiense, L., Wu, Y., 2019. Integrating berth allocation decisions in a fleet
composition and periodic routing problem of platform supply vessels. European Journal of Operational
Research 275, 334–346.

Desaulniers, G., Desrosiers, J., Solomon, M.M., 2006. Column Generation. volume 5. Springer Science &
Business Media.

Ding, Y., Jia, S., Gu, T., Li, C.L., 2016. SGICT builds an optimization-based system for daily berth
planning. Interfaces 46, 281–296.

Eddison, R.T., Owen, D.G., 1953. Discharging iron ore. Journal of the Operational Research Society 4,
39–50.

Edwards, H., 2010. Pilot assignment to ships in the Sea of Bothnia, in: Energy, Natural Resources and
Environmental Economics. Springer, pp. 411–425.

29

Galle, V., Barnhart, C., Jaillet, P., 2018. Yard crane scheduling for container storage, retrieval, and
relocation. European Journal of Operational Research 271, 288–316.

Giallombardo, G., Moccia, L., Salani, M., Vacca, I., 2010. Modeling and solving the tactical berth allocation
problem. Transportation Research Part B: Methodological 44, 232–245.

International Maritime Organization, 1997. Guidelines for vessel traffic services, in: Resolution A.857(20).
URL: http://www.maritime-vts.co.uk/A857.pdf.

International Maritime Organization, 2001. Guidelines on fatigue mitigation and management. URL: http:
//www.imo.org/en/OurWork/HumanElement/VisionPrinciplesGoals/Documents/1014.pdf.

Jia, S., Li, C.L., Xu, Z., 2019. Managing navigation channel traffic and anchorage area utilization of a
container port. Transportation Science 53, 728–745.

Lalla-Ruiz, E., Shi, X., Voß, S., 2016. The waterway ship scheduling problem. Transportation Research
Part D: Transport and Environment 60, 191–209.

Lübbecke, M.E., Desrosiers, J., 2005. Selected topics in column generation. Operations Research 53, 1007–
1023.

Meng, Q., Wang, T., Wang, S., 2012. Short-term liner ship fleet planning with container transshipment and
uncertain container shipment demand. European Journal of Operational Research 223, 96–105.

Ng, M.W., 2017. Revisiting a class of liner fleet deployment models. European Journal of Operational
Research 257, 773–776.

Robenek, T., Umang, N., Bierlaire, M., Ropke, S., 2014. A branch-and-price algorithm to solve the integrated
berth allocation and yard assignment problem in bulk ports. European Journal of Operational Research
235, 399–411.

Song, D.P., Carter, J., 2009. Empty container repositioning in liner shipping. Maritime Policy & Management
36, 291–307.

Stahlbock, R., Voß, S., 2008. Operations research at container terminals: a literature update. OR Spectrum
30, 1–52.

UNCTAD, 2018. Review of Maritime Transportation 2018, in: Paper presented at the United Nations
Conference on Trade and Development, New York and Geneva. URL: http://unctad.org/en/

PublicationsLibrary/rmt2018_en.pdf.
Vacca, I., Salani, M., Bierlaire, M., 2013. An exact algorithm for the integrated planning of berth allocation

and quay crane assignment. Transportation Science 47, 148–161.
Wermus, M., Pope, J.A., 1994. Scheduling harbor pilots. Interfaces 24, 44–52.
Xu, Z., Lee, C.Y., 2018. New lower bound and exact method for the continuous berth allocation problem.

Operations Research 66, 778–798.
Zhang, X., Lin, J., Guo, Z., Liu, T., 2016. Vessel transportation scheduling optimization based on channel–

berth coordination. Ocean Engineering 112, 145–152.
Zhen, L., Liang, Z., Zhuge, D., Lee, L.H., Chew, E.P., 2017. Daily berth planning in a tidal port with

channel flow control. Transportation Research Part B: Methodological 106, 193–217.
Zhen, L., Xu, Z., Wang, K., Ding, Y., 2016. Multi-period yard template planning in container terminals.

Transportation Research Part B: Methodological 93, 700–719.

30

http://www.maritime-vts.co.uk/A857.pdf
http://www.imo.org/en/OurWork/HumanElement/VisionPrinciplesGoals/Documents/1014.pdf
http://www.imo.org/en/OurWork/HumanElement/VisionPrinciplesGoals/Documents/1014.pdf
http://unctad.org/en/PublicationsLibrary/rmt2018_en.pdf
http://unctad.org/en/PublicationsLibrary/rmt2018_en.pdf

Appendix A. The Reachable Task Identification Procedure

The following pseudo code in Algorithm 3 demonstrates how the Ωr
n′ and the corresponding

rst jn′ ’s are obtained when extending a state (sn) to another state (sn′).

Algorithm 3 Reachable task identification procedure.

Input: (1) Parameters in the current state (sn): Ωr
n, and the (truncated) earliest and latest start times

(e′j and l′j for each task j ∈ Ωr
n); (2) Parameters in the extended state (sn′): in′ , tn′ , ptn′ ; (3) Times of

through-channel transport using two types of vehicles (r1 and r2);
Output: Set of reachable tasks Ωr

n′ and for each task j ∈ Ωr
n′ , vector rstjn′ ;

1: Ωr
n′ = ∅;

2: for j ∈ Ωr
n\{in′} do

3: trat = 0;
4: if σj,0 = 1 then
5: trat = r2;
6: end if
7: if σin′,j = 0 then

8: hetjn′ = max{e′j , tn′ + din′};
9: hltjn′ = min{l′j , tn′ + D̄ − ptn′ − dj − trat};

10: if hetjn′ ≤ hltjn′ then;
11: Ωr

n′ = Ωr
n′
⋃
{j};

12: rstjn′ = [hetjn′ , hlt
j
n′ , het

j
n′ , hlt

j
n′];

13: end if
14: end if
15: if σin′,j = 1 then

16: hetjn′ = max{e′j , tn′ + din′ + r2};
17: hltjn′ = min{l′j , tn′ + D̄ − ptn′ − dj − r2 − trat};
18: betjn′ = max{e′j , tn′ + din′ + r1};
19: bltjn′ = min{l′j , tn′ + D̄ − ptn′ − dj − r1 − trat};
20: if hetjn′ ≤ hltjn′ then
21: Ωr

n′ = Ωr
n′
⋃
{j};

22: rstjn′ = [hetj , hltj , |T |+ 1,−1]; . We initialize betj and bltj to be |T |+ 1 and −1,
respectively, which indicates that using pilot boats is not a feasible option for transporting the pilot.

23: if betjn′ ≤ bltjn′ then

24: rstjn′ = [hetj , hltj , betj , bltj];
25: end if
26: end if
27: end if
28: end for

31

	Introduction
	Problem Description
	Mathematical Model
	Complexity of the Problem
	The Branch and Price Algorithm
	A Set Covering Reformulation
	The B&P Scheme
	The Pricing Problem
	A MIP Model for the Pricing Problem
	A DP for Solving the SP

	Branching Strategy
	Acceleration Techniques

	Numerical Experiments
	Instance Generation and Algorithm Settings
	Computational Results
	Computational Results of Instances with the Smallest Sizes
	Computational Results of Instances with Low Traffic Densities
	Computational Results of Instances with Medium Traffic Densities
	Computational Results of Instances with High Traffic Densities
	Summary and Discussion

	Conclusions
	References
	The Reachable Task Identification Procedure

