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Abstract 

Quantitative labeling of oil compositions has become a trend to ensure the quality and safety of 

blended oils in the market. However, methods for rapid and reliable quantitation of blended oils are 

still not available. In this study, matrix-assisted laser desorption/ionization mass spectrometry 

(MALDI-MS) was used to profile triacylglycerols in blended oils, and partial least squares regression 

(PLS-R) was applied to establish quantitative models based on the acquired MALDI-MS spectra. We 

demonstrated that this new method allowed simultaneous quantitation of multiple compositions, and 

provided good quantitative results of binary, ternary and quaternary blended oils, enabling good limits 

of detection (e.g., detectability of 1.5% olive oil in sunflower seed oil). Compared to the conventional 

GC-FID method, this new method could allow direct analysis of blended oils, analysis of one blended 

oil sample within minutes, and accurate quantitation of low-abundant oil compositions and blended 

oils with similar fatty acids contents.  

 

Keywords: Blended oils; quantitation; mass spectrometry; matrix-assisted laser 

desorption/ionization; partial least squares regression.  
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1. Introduction 

Vegetable oils are commonly used in our daily life. The average consumption of vegetable oils per 

capita per year was reported to be 17.3 kg in India, 25.3 kg in China, and 25.8 kg in Europe in 2015-

2017 (OECD/FAO, 2018). Intake of suitable fatty acids (FAs) was recommended by the World Health 

Organization (WHO) for a healthy diet, with the intake ratio of saturated FAs, monounsaturated FAs 

and polyunsaturated FAs around 1:1.5:1, and the intake ratio of linoleic acid (omega 6) and alpha 

linolenic acid (omega 3) between 5:1 and 10:1 (FAO, 2010). The FAs profiles of most pure vegetable 

oils on their own fail to meet the requirements individually. Therefore, blended oils have become 

more and more popular because of their higher nutritional values, enhanced flavors and advantages 

in physical and chemical properties (Choi, Lee, & Lee, 2014; Choudhary, Grover, & Kaur, 2015). 

Because of the enormously varied prices of different pure vegetable oils, mislabeling of the oil 

compositions for financial gain, particularly exaggerated labeling of those more expensive oils, e.g., 

olive oil and grapeseed oil, has been a problem frequently encountered in the market of blended oils 

(Roxborough, 2018; Tien & Hsu, 2017). Regulations about this have been made. For example, the 

percentages of all the contained pure oil compositions are required to be labeled for blended oil 

products in China and India (FSSAI, 2011; NHC & SAMR, 2018), and in the European Union, the 

percentage of olive oil is required to be indicated for olive oil-containing blended oil products (EC, 

2012). Reliable methods for quantitative analysis of blended oils are required to meet the numerous 

analytical demands for quantitative labeling and quality control of blended oil products. 

 

Gas chromatography (GC) is the conventional method for analyzing edible oils. After the conversion 

of triacylglycerols (TAGs), the predominant chemical composition of edible oils, to fatty acid methyl 

esters (FAMEs) by chemical derivatization, the FAs contents of edible oils could be determined using 
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GC coupled with flame ionization detector (FID) or mass spectrometry (MS). Pure edible oils could 

be identified by matching the obtained FAs contents with the Codex standards (Codex, 2015), and the 

concentrations of the individual oils in blended oils were determined using chemometric tools to 

process the obtained FAs contents (Monfreda, Gobbi, & Grippa, 2014; Xie, Liu, Yu, Song, & Hu, 

2013). TAGs can also be directly analyzed using high-temperature gas chromatography (Park, Chang, 

& Lee, 2010; Ruiz-Samblas, Marini, Cuadros-Rodriguez, & Gonzalez-Casado, 2012). High-

performance liquid chromatography (HPLC) have been more commonly used to profile TAGs 

contents of edible oils, and quantitation of olive oil in blended oils could be achieved based on the 

abundances of selected TAG peaks (Fasciotti & Pereira Netto, 2010) in chromatograms and 

chemometric analysis (de la Mata-Espinosa, Bosque-Sendra, Bro, & Cuadros-Rodríguez, 2011). Both 

the GC and HPLC approaches require sample pretreatment and column separation which could be 

laborious and time-consuming (Cozzolino & De Giulio, 2011). Direct analysis techniques, including 

those based on fluorescence (Li, Wang, Zhao, Ouyang, & Wu, 2015; Milanez, Nóbrega, Nascimento, 

Insausti, Band, & Pontes, 2017; Poulli, Mousdis, & Georgiou, 2006), UV-visible (Milanez, Nóbrega, 

Nascimento, Insausti, Band, & Pontes, 2017), Raman (El-Abassy, Donfack, & Materny, 2009) and 

Fourier transform infrared spectroscopy (FTIR) (Li, Wang, Zhao, Ouyang, & Wu, 2015; Rohman & 

Che Man, 2012), and electrospray ionization mass spectrometry (Alves, Sena, & Augusti, 2014), have 

been used for quantitative analysis of blended oils. However, most of the previous studies on oil 

quantitation focused on binary blended oils, with very few on blended oils with multiple compositions, 

which are very common in the market (Jović, Smolić, Primožič, & Hrenar, 2016; Rohman & Che 

Man, 2010, 2011). For blended oils with more compositions, the possible combinations of oil 

compositions become more complicated, resulting in a significantly increase in the number of 

samples for establishing the calibration relationship, more complex spectral data and consequently 
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more challenging quantitative analysis.  

 

Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is a technique with 

advantages such as simple sample preparation, short analysis time, high tolerance to impurities and 

high-throughput capacity (Cozzolino & De Giulio, 2011; Ng, So, Zheng, & Yao, 2015). It has been 

shown that MALDI-MS could detect the TAGs contents of edible oils (Ayorinde, Elhilo, & 

Hlongwane, 1999; Lay, Liyanage, Durham, & Brooks, 2006; SCHILLER, SÜß, PETKOVI, & 

ARNOLD, 2002), which allows the classification of edible oils (Calvano, Palmisano, & Zambonin, 

2005; Kuo, Kuei, Hsiao, Chung, Hsu, & Chen, 2019). We have previously established a simple 

protocol for direct analysis of edible oils (Ng, Li, Ng, So, Wong, Li, et al., 2018; Ng, So, Zheng, & 

Yao, 2015). Our previous study showed that the intensity ratio of selected ions could be used to 

determine the concentrations of olive oil in blends of olive oil and canola oil (Ng, So, Zheng, & Yao, 

2015), but such an approach was not applicable for blended oils with multiple compositions. Partial 

least squares regression (PLS-R) is a commonly used multivariate regression method, which is 

powerful in dealing with complex and multicollinear data (Jović, Smolić, Primožič, & Hrenar, 2016; 

Monfreda, Gobbi, & Grippa, 2014). PLS-R extracts the most useful information (called PLS 

components) from original data, builds models using the PLS components to reduce data complexity 

and provides multiple predictors simultaneously based on the dimension-reduced models (Wold, 

Sjöström, & Eriksson, 2001). In this study, we aimed to develop a method for rapid quantitation of 

blended oils using MALDI-MS. We hypothesized that the MALDI-MS spectrum of a blend oil 

contained the quantitative information of its compositions and such information could be obtained 

using the PLS-R models. By investigating various blended oils, including binary, ternary and 

quaternary blends as well as commercial products, we demonstrated for the first time that 
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simultaneous quantitation of multiple compositions in blended oils could be achieved by using 

MALDI-MS and the developed method was simple, high-throughput and had high sensitivity in the 

measuring of oil compositions. 

 

2. Materials and Methods 

2.1 Chemicals 

2, 5-Dihydroxybenzoic acid (DHB) and α-cyano-4-hydroxycinnanic acid (CHCA) were was 

purchased from Aldrich (St. Louis, MO, USA). HPLC grade acetone, HPLC grade methyl tert-butyl 

ether (MTBE), and trimethylsulfonium hydroxide (TMSH, 0.25 M solution in methanol) were 

purchased from Acros Organic (Waltham, MA, USA). HPLC grade acetonitrile (ACN) was purchased 

from Anaqua Chemical Supply (Houston, TX, USA). Polyethylene glycol (PEG) standards were 

purchased from Fluka (St. Louis, MO, USA) and sodium iodide (NaI) was purchased from Panreac 

Química (Barcelona, Spain). The mixture standard of 37 FAMEs was purchased from Supelco (St. 

Louis, MO, USA). 

 

2.2 Oil samples 

Vegetable oil products were collected from suppliers in Hong Kong and in mainland China, with the 

details as shown in Table S1. In this study, both commercial blended oil products as well as blended 

oil samples, which were prepared in laboratory by mixing pure edible oils in different weight ratios 

(Table S2), were analyzed. For each commercial blended oil product, the corresponding pure oil 

products of the same brands were also collected. Blended oil samples were divided into a training set 

and a testing set for establishing and validating PLS-R models, respectively. For each type of binary 

blended oils, there were 2 pure samples, and 4 blended samples with an increment of 20% in 
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concentrations (i.e., 20%:80%, 40%:60%, 60%:40% and 80%:20%) in the training set; the testing set 

had 5 blended samples that were not in the training set. For each type of ternary blended oils, there 

were 66 samples with an increment of 10% in concentrations in the training set, namely 3 pure 

samples, 9× 3 binary blended samples, and 36 ternary blended samples (e.g., 0%:0%:100%, 

0%:10%:90% and 10%:10%:80%); the testing set had 12 samples including pure and blended samples. 

For each type of quaternary blended oils, there were 286 samples with an increment of 10% in 

concentrations in the training set, namely 4 pure samples, 9×6 binary blended samples, 36×4 ternary 

blended samples, and 84 quaternary blended samples (e.g., 0%:0%:0%:100%, 0%:0%:10%:90%, 

0%:10%:10%:80% and 10%:10%:10%:70%); the testing set had 13 samples including pure and 

blended samples. All the oil samples were sealed and stored in a dark and dry place before analysis.  

 

2.3 MALDI-MS analysis 

Sample preparation for MALDI-MS analysis was performed using a previously reported protocol (Ng, 

et al., 2018). Briefly, aliquots of 0.5 μL of 100 mg mL-1 DHB in acetone were loaded onto spots of 

the MADLI plate and air-dried. Each oil sample was directly applied as a thin layer on the DHB by 

using a medical cotton tip. PEG solution mixture (PEG600/PEG1000/PEG2000/NaI = 1/2/2/5 (v/v)) 

was mixed with 10 mg mL-1 CHCA solution (ACN/H2O = 7/3 (v/v)) and then loaded onto the MALDI 

plate for calibration of the mass spectrometer. 

 

An UltrafleXtreme MALDI-TOF/TOF mass spectrometer (Bruker, Billerica, MA, USA) equipped 

with a 355 nm smartbeam-II laser was operated in positive ion and reflectron mode for the MALDI-

MS analysis. The ion source voltage 1, ion source voltage 2, lens voltage, reflector voltage 1 and 

reflector voltage 2 were set to 19 kV, 16.4 kV, 8 kV, 21 kV and 9.6 kV, respectively. The ion pulse 
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excitation was set to 80 ns. Mass spectra with a m/z range of 500–2000 Da were acquired 

automatically with the laser intensity varied in the limited range, and each shot included 1000 laser 

pulses. 8 single spectra with resolutions higher than 3000 in the TAGs range (typically at the region 

of m/z 850–920) were accumulated and saved as one spectrum for further analysis. Each sample was 

analyzed in eight replicates. 

 

2.4 GC-FID analysis 

Conversion of oil samples to FAMEs for GC-FID analysis was made according to ISO 12966-3 (ISO, 

2014). The prepared FAMEs samples were analyzed by a 6890N gas chromatograph with an Agilent 

DB-23 column (60 m, 0.25 mm i.d., 0.25 μm film thickness) and a flame ionization detector (Agilent, 

Santa Clara, CA, USA). The injector temperature and detector temperature were 250 oC and 280 oC, 

respectively. The temperature of the oven was set at 50 oC at the beginning, held for 1 min, and 

increased to 175 oC at 25 oC min-1. Then the oven temperature was slowly increased from 175 oC to 

230 oC at 3 oC min-1 and held at 230 oC for 10 mins. The gas flow of nitrogen and hydrogen was 4 

mL min-1 and 40 mL min-1, respectively. Each sample was analyzed in triplicate, and the 

chromatograms of the oil samples were compared with those of the mixture standard of 37 FAMEs 

to determine the fatty acid contents. 

 

2.5 Statistical analysis  

The MALDI-MS spectra and GC-FID chromatograms were normalized by making the total 

intensities of all the chosen peaks in one profile as 100% before statistical analysis. The normalized 

intensities of the chosen peaks and corresponding concentrations of oil compositions were input into 

a statistics software (Umetrics Simca 14.0, Andover, MA, USA) to establish the PLS-R models. 
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The protocol for establishing the PLS-R models (Wold, Sjöström, & Eriksson, 2001) is shown in 

Figure S1, with five major steps involved. In the 1st step, the number of PLS components (A) is a 

critical factor for the performance of PLS-R model, and in this study, Wold’s R criterion (Li, Morris, 

& Martin, 2002) and RMSE criterion (Jović, Smolić, Primožič, & Hrenar, 2016) (see Section S1 of 

Supporting Information for the details) were applied to obtain optimal A and prevent over-fitting. In 

the 2nd step, the PLS-R model was evaluated by two parameters, i.e., R2Y and Q2, which described 

the fitting ability and predictive ability of the model, respectively. In the 3rd step, outliers with 

standardized residuals greater than +4 or -4 standard deviations (SDs) and “unimportant” variables 

with VIP (variable importance for the projection) values lower than 0.5 were excluded from the 

original data. A new fitting based on the reduced data set was carried out by repeating the above 

procedures. When a PLS-R model with good R2Y and Q2 values (both > 0.8 in this study) (Cho, Yang, 

Kim, Kim, Ko, Riu, et al., 2009; Veerasamy, Rajak, Jain, Sivadasan, Varghese, & Agrawal, 2011) but 

without outliers and unimportant variables was obtained, the model fitting was finished. To review 

the predictive ability of the established PLS-R model, the compositions of samples in both the training 

set and the testing set were quantified by the model. In the 4th step, the root mean square error of 

estimation (RMSEE), root mean square error of cross-validation (RMSEcv) and correlation 

coefficient (R2) were used to describe the difference between the actual concentrations and the 

measured concentrations of samples in the training set. In the 5th step, the root mean square error of 

prediction (RMSEP) and correlation coefficient (R2) were used to describe the difference between the 

actual concentrations and the measured concentrations of samples in the testing set. Grubbs test with 

detection level α = 0.05 was carried out to detect outliers of the measured results of testing samples.  
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3. Results and discussion 

3.1 MALDI-MS spectra of blended oils 

Olive oil and sunflower seed oil blends are one of the most common blended oil products in the 

market due to their improved quality and high nutritional value. Figure 1 shows the MALDI-MS 

spectra of pure olive oil, pure sunflower seed oil and blends of olive oil and sunflower seed oil in 

different blending ratios, with the peaks assigned according to the literatures (Calvano, Palmisano, & 

Zambonin, 2005; Lay, Liyanage, Durham, & Brooks, 2006; Ng, et al., 2018). Obvious changes of 

peak abundances in the TAGs region were observed with the varied oil compositions. The highest 

intensity peaks in the spectrum of pure sunflower seed oil (Figure 1a) were m/z 901.7 (LLL, L: linoleic 

acid) and m/z 903.7 (OLL, O: oleic acid), while olive oil (Figure 1d) was abundant with m/z 881.8 

(POO, P: palmitic acid) and m/z 907.8 (OOO). With increased concentration of olive oil in the oil 

blends, the relative abundances of m/z 881.8 and m/z 907.8 increased and the peaks at m/z 901.7 and 

m/z 903.7 became lower, indicating a correlation between the oil compositions of the blended oils 

and their MALDI-MS spectra.  

  

3.2 Quantitative analysis of binary blended oils 

3.2.1 Determination of optimal A 

To quantify the oil compositions of olive oil and sunflower seed oil blends, PLS-R models were 

established based on the acquired MALDI-MS spectra. As described in Section 2.5 and Supporting 

Information, A is critical for the performance of PLS-R model. Wold’s R criteria with thresholds at 

0.90 (called R(0.90)) and 0.95 (called R(0.95)) and RMSE criterion were applied to determine the 

optimal A, and factors of the corresponding PLS-R models were summarized in Table S3. The optimal 

A of R(0.90), R(0.95) and RMSE increased in turn, leading to better fitting ability (decreased RMSEE) 
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and better predictive ability (decreased RMSEcv and RMSEP) of the PLS-R models. For PLS-R 

models of ternary blended oils (Table S4), the same optimal A was obtained for R(0.90) and R(0.95), 

which was smaller than that of RMSE. The RMSE model showed better fitting ability compared with 

the R(0.90) and R(0.95) models, while the RMSEP values of the RMSE model (0.0282, 0.0358 and 

0.0298 for olive oil, perilla oil and sunflower seed oil, respectively) were similar to that of the R(0.90) 

and R(0.95) models, indicating that there were no differences in the predictive abilities among the 

models (Table S2). For blended oils containing four oil compositions (Table S5), the optimal A of the 

R(0.90) model, the R(0.95) model and the RMSE model significantly increased, leading to the 

improved fitting ability. Comparing the R(0.90) model with the R(0.95) model, better quantitative 

results (smaller RMSEP) of all the oil compositions were observed from the R(0.95) model which 

had a larger A; while for the R(0.95) model and the RMSE model, there was little improvement or 

even slight deterioration in the quantitative results of some compositions when A increased from 10 

to 15, which might be related to over-fitting. In this study, R(0.90) tended to produce smallest A while 

RMSE usually generated models with the largest A among the three criteria. Therefore Overall, 

R(0.95) was more suitable for the determination of optimal A to prevent over-fitting and achieve a 

balance between fitting ability and predictive ability of the PLS-R models. 

 

3.2.2 Validation of the PLS-R model 

According to the R(0.95) criteria, the optimal A of the PLS-R model of olive oil and sunflower seed 

oil blends was determined as 2 (Table S3), and the olive oil concentrations of samples in the testing 

set were measured by the model to validate its predictive ability. For all the testing samples with olive 

oil concentrations from low to high levels, the relative errors of the measured results was close to 0 

and the intra-day precision was in the range of 0.4–4.9% (Table S6), illustrating that the PLS-R could 
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be applied to quantify the oil compositions of olive oil and sunflower seed oil blends. Based on the 

established PLS-R model and the measured results of the blank sample (i.e., the pure sunflower seed 

oil), the limit of detection (LOD) of olive oil was calculated as 0.9% (see Section S2 of Supporting 

Information for the calculation) (Olivieri, Faber, Ferré, Boqué, Kalivas, & Mark, 2006; Ortiz, Sarabia, 

Herrero, Sánchez, Sanz, Rueda, et al., 2003). Two blended samples with 1.0% and 1.5% olive oil 

were prepared, and they were measured to contain 0.7% and 1.0% olive oil, respectively, by the model. 

Therefore, the PLS-R model of olive oil and sunflower seed oil blends could experimentally detect 

the presence of olive oil from at least down to 1.5% in sunflower seed oil. To investigate the 

reproducibility of the developed approach, the same testing samples were analyzed for 8 selected 

days (i.e., 1st, 2nd, 3rd, 5th, 7th, 10th, 14th and 20th) in 20 days and their olive oil concentrations 

were measured by the PLS-R model established on the first day (Table S7). The largest relative errors 

(‒16.1%) and largest RSD (11.8%) belonged to the sample with low olive oil concentration, and for 

the samples with higher concentrations, the relative errors was between ‒7.0% and ‒0.1% with inter-

day precision within 1.6-2.0% (Table S6), demonstrating the durable applicability of the established 

models.  

 

The quantitative analysis of olive oil and sunflower seed oil blends has been previously investigated 

using fluorescence (Poulli, Mousdis, & Georgiou, 2006) and Raman (El-Abassy, Donfack, & Materny, 

2009) spectroscopy coupled with PLS-R. For pure olive oil and sunflower seed oil, noticeable 

differences were observed from their fluorescence spectra, while the differentiation of these two oils 

in their Raman spectra mainly depended on the differences in peak intensities. For the fluorescence-

based PLS-R model, the RMSEE and RMSEP were 1.7% and 3.4%, respectively, while the Raman-

based PLS-R method showed RMSEE and RMSEcv as 2.56% and 3.59%, respectively. All these 



13 
 

parameters were larger than the corresponding parameters of the MALDI-MS-based PLS-R model 

(0.52%, 0.56% and 0.58% for RMSEE, RMSEcv and RMSEP , respectively, as shown in Table S3), 

indicating that the MALDI-MS-based method could provide more accurate results for quantitation of 

olive oil and sunflower seed oil blends. 

 

3.3 Quantitative analysis of blended oils with multiple compositions 

3.3.1 Quantitative analysis of ternary and quaternary blended oils 

Ternary and quaternary blended oils are commonly available in the market, but such multiple 

compositions make quantitative analysis of their compositions much more complicated. Olive oil, 

perilla oil and rice bran oil are often added into blended oil products because of their special 

nutritional characteristics, and sunflower seed oil is a common composition of blended oil products. 

In this study, MALDI-MS integrated with PLS-R was employed to analyze ternary and quaternary 

blended oils, with olive oil, perilla oil and sunflower seed oil blends as well as olive oil, perilla oil, 

rice bran oil and sunflower seed oil blends as examples. Their PLS-R models were established 

following the protocol (Figure S1) and R(0.95) as described in Section 2.5.  

 

The model of olive oil, perilla oil and sunflower seed oil blends showed the best description and 

prediction to olive oil with the lowest RMSEE, RMSEcv and RMSEP. The highest RMSEP was 

obtained at perilla oil, indicating that the predictive ability of the model for perilla oil was slightly 

worse than that for the other two compositions (Table S4). For olive oil, perilla oil, rice bran oil and 

sunflower seed oil blends, the PLS-R model showed good fitting ability (≤0.0170) and powerful 

predictive ability (≤0.0221) to olive oil and perilla oil, and the largest RMSEcv (0.0243) and RMSEP 

(0.0320) belonged to rice bran oil and sunflower seed oil, respectively (Table S5). As the number of 
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oil compositions increased, the number of training samples significantly increased. For the PLS-R 

model of the ternary blended oils, 66 samples in the training set formed a large triangle in the score 

plot (Figure 2a), with the three vertices of the triangle representing the three pure oils, the three edges 

formed by the binary blends of the three pure oils, and the interior of the triangle filled with the ternary 

blended oils. For the quaternary blended oils, the training set of the PLS-R model contained 286 oil 

samples, forming a tetrahedron in the 3D score plot with the faces for the ternary blended oils and the 

inside for the quaternary blended oils (Figure 2b). 

 

To validate the predictive ability of PLS-R models for ternary and quaternary blended oils, the 

compositions of testing samples were quantified by the established models. As shown in Table 1, for 

the olive oil, perilla oil and sunflower seed oil blends, the measured results for high-abundant (>20%)  

compositions were close to their actual concentrations, with the relative errors and precision within ‒

16.7-12.0% and 0.5-4.7%, respectively. For the quaternary blends of olive oil, perilla oil, rice bran 

oil and sunflower seed oil, the PLS-R model showed satisfactory predictive ability to all the high-

abundant compositions with the relative errors and precision within ‒19.9-10.4% and 0.5-9.2%, 

respectively (Table S8). However, for the low-abundant compositions (~5%) of the ternary blended 

oils, the relative errors and precision of the measured results varied from ‒45.0% to 41.9% and 2.6% 

to 38.9%, respectively, indicating the poor predictive ability of the PLS-R model for the compositions 

at low levels. Meanwhile, there was the possibility of false positive results of compositions that were 

not present, which was observed the quantitative results of both the ternary and quaternary blended 

oils. 

 

For ternary and quaternary blended oils, the multiple oil compositions caused complex spectral data 
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and very large numbers of training samples (66 and 286 for ternary and quaternary blends, 

respectively). Since the PLS-R models were established based on all the training samples, the 

maximum differences of the training samples (i.e., differences between the pure oils) were 

summarized and some minor differences that were critical to differentiate compositions at low levels 

might be ignored by the models, leading to the poor predictive ability of the PLS-R models for the 

low-abundant compositions. To overcome such drawbacks, for the first time, a two-step zoom-in 

strategy was proposed in this study.  

 

3.3.2 Zoom-in strategy for improved analysis of multi-composition blended oils 

By narrowing the size of the PLS-R model, the zoom-in PLS-R models were developed to improve 

the analysis of oil compositions at low levels as a follow-up and complimentary step of the full range 

PLS-R model. Based on the quantitative results of a blended oil sample provided by the full range 

model, training samples with compositions similar to the measured results were selected from the 

training set of the full range PLS-R model and applied to establish a new PLS-R model for the blended 

sample, which was called zoom-in model. For example, for a testing sample containing 95.2% olive 

oil, 0.6% perilla oil and 4.2% sunflower seed oil as measured by the full range PLS-R model (Table 

1, T1), three samples in the whole training set (i.e., olive oil: perilla oil: sunflower seed oil = 100%: 

0%: 0%, 90%: 10%: 0% and 90%: 0%: 10%), which had the most similar compositions with the 

testing sample, were employed to develop the zoom-in model. The established zoom-in model 

showed a small triangle in the score plot which focused on the testing sample (Figure 2c). Applying 

this strategy to a quaternary blended oil sample (Table S8, Q2), four training samples were selected 

to develop the zoom-in model where a mini tetrahedron was observed in the 3D score plot (Figure 

2d). 
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As summarized in Table 1, all the testing samples of the olive oil, perilla oil and sunflower seed oil 

blends were further quantified by the zoom-in models, and significant improvement in the 

quantitative results for the low-abundant compositions (~5%) was observed as the ranges of relative 

errors and precision were narrowed to ‒22.9-18.3% and 6.6-20.8%, respectively. For the non-existing 

compositions, the concentrations measured by the zoom-in models were close to 0, preventing 

erroneous determination of the oil compositions. On the other hand, for the high-abundant 

compositions, the relative errors and the precision of the results measured by the zoom-in models 

were in the range of ‒15.0-14.5% and 0.3-8.0%, respectively, which were quite similar to those 

obtained by the full range model. The zoom-in strategy was also applied for the quantitative analysis 

of the olive oil, perilla oil, rice bran oil and sunflower seed oil blends. For compositions of quaternary 

blended oils, the relative errors of quantitative results by the zoom-in models was typically in the 

range of ‒22.4-12.9% (excluding two extreme accuracies ‒42.5% and 26.1%), and the precision was 

within 0.4-12.1% (Table S8), which were comparable to those obtained by the full range model. 

Similarly, the measured results by the zoom-in models were improved for the non-existing 

compositions, with the highest false positive results significantly decreased from 5.8% to 1.6% (Table 

S8). Together these results demonstrated that the full range model showed excellent quantitative 

ability to compositions at medium and higher levels and the zoom-in models could provide better 

results to low-abundant compositions. Hence, our general strategy to quantify the compositions of 

blended oils was to use the full range PLS-R model first for screening and then apply the zoom-in 

PLS-R model for more accurate measurements of the compositions at low levels.  
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3.4 Comparison of GC-FID and MALDI-MS for quantitative analysis of blended oils 

The GC-FID method is a standard method to analyze the FAs contents of edible oils and is commonly 

employed for authentication of edible oils (Codex, 2015; ISO, 2014). In this study, based on the GC-

FID chromatograms (Figure S2) and MALDI-MS spectra obtained by analyzing the same batch of 

olive oil and sunflower seed oil blends, two optimal PLS-R models (Table S9) were established, and 

the olive oil concentrations of 5 testing samples were measured by both models for comparison. For 

samples containing medium and high percentages of olive oil (>30%), both GC-FID- and MALDI-

MS-based models provided excellent quantitative results, with relative errors within ‒1.0-7.8% and 

‒4.1-0.7%, respectively (Table 2). However, for the sample with 7.4% olive oil, the result measured 

by the MALDI-MS-based model, i.e., 8.0%, was much closer to the actual value than that measured 

by the GC-FID-based model, i.e., 13.3%.  

 

To further investigate the quantitative analysis of oil compositions at low levels, three prepared 

samples with 1.0%, 3.2% and 5.2% olive oil were measured by MALDI-MS and GC-FID. The 

measured concentrations of 0.8%, 2.8% and 5.4%, and 0.1%, 5.0% and 8.1% obtained by the 

MALDI-MS approach and the GC-FID approach, respectively (Table 2) confirmed the much higher 

accuracy of the MALDI-MS approach for the compositions at low levels. This was believed to be due 

to the fact that MALDI-MS directly analyzed the TAGs profiles of oil samples while GC-FID detected 

the FAs contents converted from the TAGs. For pure olive oil and sunflower seed oil, the cosine 

correlation scores of their MALDI-MS spectra and GC-FID chromatograms were 0.3068 and 0.5468, 

respectively, illustrating the variation of the GC-FID chromatograms was smaller than that of the 

MALDI-MS spectra. The cosine correlation scores between the samples with extremely low olive oil 

concentrations (i.e., 1.0%, 3.2% and 5.2% olive oil) and the training samples with 20% olive oil were 
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0.9695, 0.9765 and 0.9805, and 0.9807, 0.9860 and 0.9893 for the MALDI-MS spectra and the GC-

FID chromatograms, respectively, indicating larger differences between the MALDI-MS spectra. 

Therefore, MALDI-MS is more sensitive to slight changes in oil composition than GC-FID and would 

be more suitable for analyzing compositions at low levels. 

 

GC-FID and MALDI-MS based PLS-R models were also compared for analysis of ternary blends of 

sunflower seed oil, canola oil and grapeseed oil. For canola oil, the two models showed similar fitting 

ability and predictive ability, while for sunflower seed oil and grapeseed oil, the MALDI-MS-based 

model had better fitting ability and improved predictive ability (Table S9). For the sunflower seed oil 

- canola oil - grapeseed oil blends with blending ratios at 0%:20%:80%, 20%:20%:60%, 50%:10%:40% 

and 90%:0%:10%, the cosine correlation scores between any two MALDI-MS spectra were lower 

than those of the corresponding GC-FID chromatograms, which were in the range of 0.9800-0.9980 

and 0.9983-0.9997, respectively. Four ternary blended samples with different compositions were 

measured by the GC-FID and MALDI-MS approaches and the results were shown in Table 2. For 

samples T3 and T4, comparable results were obtained by the two approaches, while for samples T1 

and T2, the MALDI-MS approach provided much better accuracy and precision than the GC-FID 

approach. As shown in Figure S3, analysis of the VIP values indicated that the quantitative analysis 

by the GC-FID-based model was mainly determined by the content of docosanoic acid (C22:0) (the 

only one with VIP values >1). However, C22:0 was very deficient (0-0.7%) in the three pure oils 

(Table S10), and thus the GC-FID results could be easily affected by random errors. On the other 

hand, the MALDI-MS-based model had five “important” peaks (VIP value >1) with four of them 

being the major peaks in the spectra, thus it could provide better quantitative results to different the 

oil compositions. Compared with the GC-FID approach, there was no need for the MALDI-MS 
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approach to convert TAGs into FAs, making the quantitative measurements not only simpler but also 

more accurate due to the maintenance of the delicate TAGs for more sensitive differentiation of 

complicated oil compositions. 

 

TAGs have similar molecular structures and similar MALDI-MS responses. In this study, the 

quantitative analysis was based on the relative abundances of TAGs in the MALDI-MS spectra and 

comparison with data of training samples acquired under the same conditions, minimizing the ion 

suppression effects. Due to the direct analysis of oil samples in their oily states and much reduced 

variations of sample spots, the developed MALDI-MS approach offer mass spectra of edible oils with 

high quality and high reproducibility and is applicable to different types of MALDI-MS equipment 

(Ng et al., 2018; Ng et al., 2015). Compared with the GC-FID approach, the equipment of the 

MALDI-MS approach is more expensive, but considering the labor, time and consumables used, the 

operation cost for analyzing oil samples using MALDI-MS is significantly lower, due to its minimal 

sample pretreatment and high analysis efficiency, making the MALDI-MS approach robust and 

economical for analysis of massive samples. 

 

3.5 Quantitation of commercial blended oil products 

Previous study demonstrated that specific oil products of the same brands showed highly similar 

TAGs profiles (Ng, et al., 2018). Therefore, for quantitative analysis of commercial blended oil 

products, the corresponding pure oil products of the same brands were used to prepare blended oil 

samples for the establishment of PLS-R models, minimizing the variations of TAGs profiles. Ten 

commercial blended oil products involving 7 different blending types (Table 3) were analyzed using 

the MALDI-MS-based PLS-R models (Table S11). Among the eight binary blended products 
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(products 1-8), the measured concentrations of olive oil, the oil of major concern, for products 4, 5, 

7 and 8 were close to the labeled concentrations with relative errors within ±12%, while for products 

2, 3 and 6, large differences were observed between the measured and labeled concentrations of olive 

oil with relative errors exceeding ±20% (Table 3). The concentration of olive oil in product 1 was 

quite low, which was labeled as 5% and measured as 6.9%, leading to a moderate absolute error (1.9%) 

but a relatively large relative error (38.0%). 

 

Product 9 was labeled to contain 11% olive oil, 6% flaxseed oil and 83% sunflower seed oil, which 

were measured as 4.0%, 10.8% and 85.3%, and 2.8%, 6.2% and 91.1%, respectively, by the full range 

model and the zoom-in model, respectively. The full range and zoom-in models detected sunflower 

seed oil as the dominant composition, which was consistent with the labeling, but the detected 

concentrations of olive oil was lower than the labeled one.  

 

Product 10 was labeled to contain 18% olive oil, 15% soybean oil and 67% sunflower seed oil, but 

both the full range and zoom-in models showed soybean oil as the major composition (~85%) with 

both olive oil and sunflower seed oil less than 10%. By comparing the MALDI-MS spectra of the 

pure oils, the manually prepared 10% olive oil – 10% soybean oil – 80% sunflower seed oil blend 

and product 10, it was obvious that the spectrum of product 10 was quite similar to that of the pure 

soybean oil, both had the characteristic peak of soybean oil at m/z 899.7, which was much higher than 

that of the manually blended oil (Figure S4). It could be concluded that product 10 was mislabeled 

and that soybean oil should be the dominant composition of product 10 rather than the labeled 

sunflower seed oil.  
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4. Conclusions 

A method for rapid and high-throughput quantitation of oil compositions in blended oils has been 

developed using MALDI-MS and PLS-R. We demonstrated that this method could detect the presence 

of individual oils at trace level in blended oils, allowed simultaneous measurements of different 

compositions, and showed excellent quantitative ability for multiple compositions in blended oils 

particularly with the help of the zoom-in strategy. Compared with the conventional GC-FID approach, 

the MALDI-MS approach did not need derivatization and column separation, could provide 

comparable quantitative results and was advantageous for quantitation of the low-abundant 

compositions. The established method was applied for quantitative analysis of various types of 

commercial blended oil products, and the results indicated that some commercial products were 

mislabeled. With the benefits from the simplicity of the sample preparation, the high throughput of 

MALDI-MS, the robustness of the analytical protocol and the power of PLS-R in data processing, 

the developed method is very suitable for quantitative analysis of blended oils, especially for those 

with multiple compositions, and is expected to bring about a significant impact on the quality control 

of the big blended oil market. 
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Table 1. Quantitative results of olive oil (OO) – perilla oil (PR) – sunflower seed oil (SF) blends 

by the full range and zoom-in models 

 

Sample 
Oil 

species 

Actual 

con. 

(%) 

Full range model Zoom-in model 

Measured 

con. (%) 

Relative 

error (%) 

RSD 

(%) 

Measured 

con. (%) 

Relative 

error (%) 

RSD 

(%) 

T1 

OO 100.0  95.2±1.0 ‒4.8 1.1  99.7±0.3 ‒0.3 0.3  

PR 0.0  0.6±1.4 / / ‒0.4±0.4 / / 

SF 0.0  4.2±0.8 / / 0.7±0.5 / / 

T2 

OO 0.0  3.8±0.3 / / ‒0.2±0.4 / / 

PR 100.0  97.4±1.0 ‒2.7 1.0  99.8±0.7 ‒0.2 0.7  

SF 0.0  ‒1.4±1.2 / / 0.4±0.6 / / 

T3 

OO 0.0  ‒0.3±0.6 / / ‒1.3±0.6 / / 

PR 0.0  7.4±1.4 / / 0.5±0.5 / / 

SF 100.0  92.6±0.5 ‒7.4 0.5  99.6±0.7 ‒0.4 0.7  

T4 

OO 0.0  1.5±0.5 / / 0.4±0.4 / / 

PR 49.8  52.7±1.0 5.9 2.0  52.7±0.8 5.8 1.5  

SF 50.2  45.8±0.7 ‒8.8 1.6  46.9±0.6 ‒6.6 1.2  

T5 

OO 49.8  48.0±0.7 ‒3.5 1.4  47.3±0.4 ‒5.0 0.9  

PR 0.0  2.9±0.6 / / 1.0±0.5 / / 

SF 50.2  49.4±1.4 ‒1.5 2.9  51.4±0.5 2.5 1.0  

T6 

OO 50.2  44.4±0.4 ‒11.5 1.0  46.3±0.3 ‒7.7 0.7  

PR 49.8  55.8±1.0 12.0 1.9  53.8±0.5 8.0 1.0  

SF 0.0  ‒0.2±0.7 / / ‒0.1±0.6 / / 

T7 

OO 5.0  4.2±0.7 ‒15.2 17.6  3.8±0.3 ‒22.9 8.4  

PR 5.4  7.6±1.5 41.9 19.2  6.4±0.6 18.3 9.0  

SF 89.6  88.2±0.9 ‒1.7 1.0  90.1±0.8 0.5 0.9  

T8 

OO 5.0  5.4±0.1 7.7 2.6  4.4±0.3 ‒12.7 6.6  

PR 89.8  91.7±1.2 2.0 1.3  90.6±0.8 0.8 0.8  

SF 5.1  2.8±1.1 ‒45.0 38.9  5.0±0.7 ‒2.3 14.5  

T9 

OO 89.7  88.7±0.7 ‒1.1 0.8  89.8±1.1 0.2 1.2  

PR 5.0  4.6±0.8 ‒8.8 18.5  4.4±0.9 ‒13.0 20.8  

SF 5.3  6.8±0.8 28.9 12.4  5.8±0.7 9.2 11.4  

T10 

OO 20.2  18.0±0.7 ‒10.7 4.1  18.6±1.5 ‒7.5 8.0  

PR 20.1  21.3±1.0 5.9 4.7  20.6±0.8 2.4 3.9  

SF 59.7  60.7±1.0 1.6 1.6  60.7±0.8 1.7 1.2  

T11 

OO 20.1  16.7±0.4 ‒16.7 2.1  17.1±0.3 ‒15.0 1.6  

PR 59.8  66.1±0.6 10.5 1.0  64.0±0.4 6.9 0.6  

SF 20.1  17.1±0.6 ‒14.6 3.5  19.0±0.5 ‒5.5 2.8  

T12 

OO 59.7  60.2±0.5 0.8 0.9  56.8±0.5 ‒4.8 0.9  

PR 20.2  19.4±0.2 ‒3.8 0.9  23.1±0.2 14.5 0.9  

SF 20.1  20.4±0.5 1.3 2.3  20.1±0.4 ‒0.3 1.9  
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Table 2. Comparison of PLS-R quantitative results of olive oil (OO) – sunflower seed oil (SF) 

binary blends (B1-B8) and sunflower seed oil (SF) – canola oil (CA) – grapeseed oil (GP) ternary 

blends (T1-T4) based on the GC-FID chromatograms and MALDI-MS spectra 

 

Sample 
Oil 

species 

Actual 

con. 

(%) 

GC-FID MALDI-MS 

Measured 

con. (%) 

Relative 

error (%) 

RSD 

(%) 

Measured 

con. (%) 

Relative 

error (%) 

RSD 

(%) 

B1 OO 1.0 0.1±0.8 ‒93.5 1173.3 0.8±0.8 ‒20.0 95.5  

B2 OO 3.2 5.0±0.1 56.8 1.7 2.8±0.6 ‒13.8 20.5  

B3 OO 5.2 8.1±0.7 56.4 8.5 5.4±2.1 3.8 38.8  

B4 OO 7.4 13.3±0.4 79.5 2.8 8.0±0.7 7.7 9.2  

B5 OO 30.1 32.4±0.6 7.8 1.8 28.9±0.8 ‒4.1 2.8  

B6 OO 49.9 51.5±0.5 3.1 1.0 49.7±0.6 ‒0.5 1.2  

B7 OO 69.9 70.4±0.6 0.6 0.8 70.4±0.7 0.7 0.9  

B8 OO 92.3 91.3±0.1 ‒1.0 0.1 92.7±0.5 0.5 0.5  

T1 

SF 0.0 16.3±9.9 / / ‒0.6±3.2 / / 

CA 23.0 22.4±1.1 ‒2.3 5.1 23.4±1.4 1.6 5.8 

GP 77.0 61.2±9.1 ‒20.5 14.8 77.2±3.3 0.2 4.2 

T2 

SF 20.0 25.9±9.9 29.6 38.0 18.5±2.5 ‒7.6 13.5 

CA 18.0 19.4±2.4 8.1 12.5 18.0±0.8 ‒0.2 4.4 

GP 62.0 54.6±7.5 ‒11.9 13.8 63.6±2.4 2.5 3.8 

T3 

SF 50.0 52.4±0.8 4.8 1.6 47.1±2.2 ‒5.7 4.6 

CA 13.1 14.1±1.4 8.3 9.6 13.5±0.9 3.6 6.8 

GP 37.0 33.5±0.8 ‒9.4 2.5 39.4±2.5 6.4 6.2 

T4 

SF 89.8 89.7±1.6 ‒0.2 1.8 86.8±3.0 ‒3.4 3.5 

CA 4.1 5.2±1.7 25.8 33.3 5.1±1.5 24.1 29.4 

GP 6.0 5.1±2.6 ‒15.2 50.8 8.1±2.6 34.0 32.4 
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Table 3. Quantitative results of commercial blended oil products 

 

Product Typea Modelb Oil 

species 

Labeled 

con. (%) 

Model 

range 

Measured 

con. (%) 

Relative 

error (%) 

RSD 

(%) 

1 OO-SF M1 OO 5 Full 6.9±1.2 38.0 16.9 

2 OO-SF 
M2 

OO 10 Full 3.5±0.5 ‒65.0 15.3 

3 OO-SF OO 20 Full 12.9±0.3 ‒35.5 2.5 

4 OO-CA M3 OO 10 Full 9.4±1.7 ‒6.0 18.2 

5 OO-CO M4 OO 6 Full 6.5±0.6 8.3 9.6 

6 OO-CO M5 OO 20 Full 15.6±1.8 ‒22.0 11.8 

7 OO-PA M6 OO 50 Full 45.0±3.0 ‒10.0 6.7 

8 OO-PR M7 OO 50 Full 55.6±1.2 11.2 2.1 

9 
OO-FS-

SF 
M8 

OO 11 
Full 4.0±0.5 ‒63.6 12.3 

Zoom-in 2.8±0.4 ‒74.5 16.3 

FS 6 
Full 10.8±0.4 80.0 4.2 

Zoom-in 6.2±0.6 3.3 9.4 

SF 83 
Full 85.3±0.4 2.8 0.4 

Zoom-in 91.1±0.6 9.8 0.7 

10 
OO-SO-

SF 
M9 

OO 18 
Full 4.3±0.4 ‒76.1 9.2 

Zoom-in 6.8±0.9 ‒62.2 13.2 

SO 15 
Full 85.9±1.0 472.7 1.2 

Zoom-in 84.4±1.9 462.7 2.2 

SF 67 
Full 9.8±1.2 ‒85.4 12.3 

Zoom-in 9.5±0.9 ‒85.8 9.6 
a OO: olive oil, SF: sunflower seed oil, CA: canola oil, CO: corn oil, PA: high oleic peanut oil, PR: 

perilla oil, FS: flaxseed oil, SO: soybean oil. 
b See Table S11 for the information of the corresponding PLS-R models. 
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Figure Captions 

Figure 1. The TAGs region of the MALDI-MS spectra for (a) 100% sunflower seed oil, (b) 40% olive 

oil – 60% sunflower seed oil blend, (c) 60% olive oil – 40% sunflower seed oil blend, and (d) 100% 

olive oil, with the identities of the major peaks assigned. P, palmitic acid; L, linoleic acid; O, oleic 

acid; S, steric acid.  

 

Figure 2. The score plots of the (a) full range and (c) zoom-in PLS-R models of olive oil (O), perilla 

oil (P) and sunflower seed oil (S) blends, and the 3D score plots of the (b) full range and (d) zoom-in 

PLS-R models of olive oil (O), perilla oil (P), rice bran oil (R) and sunflower seed oil (S) blends. 

Axes t[1], t[2] and t[3] represent the X-scores of the first, second and third PLS components, 

respectively. 
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Figure 1.  
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Figure 2. 
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Additional Experimental Details 

S1. Determination of optimal A 

Generally, increasing the number of PLS components would result in a better fitting of the PLS-R 

model to the original data but might decrease its predictive ability due to noise information, which is 

called over-fitting. Wold’s R criterion and RMSE criterion based on the results of cross-validation 

were applied to determine the optimal number of PLS components (A) and prevent the over-fitting. 

Wold’s R criterion calculates the ratio of the predicted error sum of squares (PRESS) for (m + 1) PLS 

components and m PLS components, which is equal to the square of RMSEcv ratio for (m + 1) PLS 

components and m PLS components as shown in equation (1). When R exceeds threshold (0.90 or 

0.95), an optimal A is obtained as m. For RMSE criterion, the root mean square error (RMSE) is 

calculated as in equation (2), and the optimal A is obtained with minimal RMSE.  

PRESS = ∑ (𝑦𝑖,𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑦𝑖,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)2
𝑁

𝑖=1
 

 

RMSEcv = √
∑ (𝑦𝑖,𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑦𝑖,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)2𝑁

𝑖=1

𝑁
 

 

R =
PRESS(𝑚 + 1)

PRESS(𝑚)
=  (

RMSEcv(𝑚 + 1)

RMSEcv(𝑚)
)2                                         (1) 

 

RMSE = RMSEcv × √
𝑁

𝑁 − 𝐴 − 1
                                                          (2) 

N is the number of data in the training set, and yi, measured and yi, actual are the measured concentrations 

and actual concentrations of samples, respectively. 

 

S2. Determination of limit of detection 

The limit of detection (LOD) of the PLS-R model could be calculated using equation (3) (Ortiz et al., 

2003),  

LOD𝑐𝑎𝑙 = ∆(𝛼, 𝛽)
𝜎

𝑏
√

1

𝐾
+

1

𝑁
+

(�̅�𝑎𝑐𝑡𝑢𝑎𝑙)
2

∑ (𝑦𝑖,𝑎𝑐𝑡𝑢𝑎𝑙 − �̅�𝑎𝑐𝑡𝑢𝑎𝑙)
2𝑁

𝑖=1

               (3) 
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σ = √
∑ (𝑦𝑖,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑦𝑖,𝑎𝑐𝑡𝑢𝑎𝑙)2𝑁

𝑖=1

𝑁 − 2
 

where ∆(α, β) is the non-centrality parameter of non-central Student’s t-distribution with (n-2) degrees 

of freedom, n is the number of training samples, N is the number of data in the training set, σ is the 

standard residual deviation of regression curve by plotting the measured concentrations (yi, measured) of 

samples in the training set against their actual concentrations (yi, actual), b is the slope of the regression 

curve, K is the number of determination performed on each sample, and ȳactual is the mean actual 

concentration of all the samples in the training set.  

 

For the PLS-R model of olive oil and sunflower seed oil blends, the degree of freedom was 4 and the 

∆(α, β) with confidence level of 95% was 4.07 (Clayton, Hines, & Elkins, 1987). The slope and the 

standard residual deviation of the regression curve between the measured olive oil concentrations and 

the actual olive oil concentrations of training samples were 1.0 and 0.5%, respectively. Therefore, the 

LOD of olive oil was calculated as 0.9%. Furthermore, a blank sample (i.e., the pure sunflower seed 

oil) was measured for 20 replicates, and the olive oil concentration measured by the established PLS-

R model was -0.4 ± 0.4%. As IUPAC recommended, to make a correct positive detection decision 

with sufficiently high probability, the probabilities of both false positive and false negative should be 

considered (Olivieri, Faber, Ferré, Boqué, Kalivas, & Mark, 2006). Thus, the LOD based on the 

measured results of the blank sample was calculated also as 0.9%, based on equation (4). 

LOD =  Average (blank) +  3.3 ×  Standard deviation                   (4) 

 

S3. Similarity Scoring Method 

Similarity between two MALDI-MS spectra was determined by cosine correlation (Tabb, MacCoss, 

Wu, Anderson, & Yates, 2003), as defined below, 
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𝑐𝑜𝑠 𝜃 =  
∑ 𝑖𝐴𝑖𝐵

√∑ 𝑖𝐴
2 ∑ 𝑖𝐵

2
 

where θ is the spectral contrast angle between the MALDI-MS spectra of selected oil sample A and 

sample B, iA is the relative intensities of peaks from spectrum A and iB is the relative intensities of 

peak from spectrum B. For the first sum, only when a peak at a particular m/z is observed in both 

spectrum A and spectrum B would the relative intensities of this peak in both spectra be multiplied 

together, otherwise the product of iA multiplied by iB should be zero. The calculation of similarity of 

the GC-FID chromatograms between selected oil sample A and sample B wad the same as above. 
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Table S1. Vegetable oil products collected from the market 

 

No. Type Brand Origin 

1 Olive oil A Hong Kong 

2 Sunflower seed oil A Hong Kong 

3 Rice bran oil B Hong Kong 

4 Grapeseed oil B Hong Kong 

5 Perilla oil C Hong Kong 

6 Olive oil A Mainland China 

7 Sunflower seed oil A Mainland China 

8 Canola oil A Mainland China 

9 Olive oil D Mainland China 

10 Sunflower seed oil D Mainland China 

11 Corn oil D Mainland China 

12 Olive oil E Mainland China 

13 Corn oil E Mainland China 

14 Olive oil F Mainland China 

15 High oleic acid peanut oil F Mainland China 

16 Olive oil G Mainland China 

17 Perilla oil G Mainland China 

18 Olive oil H Mainland China 

19 Soybean oil H Mainland China 

20 Sunflower seed oil H Mainland China 

21 Olive oil I Mainland China 

22 Flaxseed oil I Mainland China 

23 Sunflower seed oil I Mainland China 

24 Olive oil - sunflower seed oil blend A Mainland China 

25 Olive oil - sunflower seed oil blend D Mainland China 

26 Olive oil - sunflower seed oil blend D Mainland China 

27 Olive oil - canola oil blend A Mainland China 

28 Olive oil - corn oil blend D Mainland China 

29 Olive oil - corn oil blend E Mainland China 

30 Olive oil - perilla oil blend G Mainland China 

31 
Olive oil - high oleic acid peanut oil 

blend 
F Mainland China 

32 
Olive oil - soybean oil - sunflower seed 

oil blend 
H Mainland China 

33 
Olive oil - flaxseed oil - sunflower seed 

oil blend 
I Mainland China 
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Table S2-1. Blended oil samples prepared for establishment of PLS-R models for binary and ternary 

blended oils 

 

Binary 

blended 

oils 

Training set (6) Testing set (5) 

Pure (2) 
8%:92% 

30%:70% 

50%:50% 

70%:30% 

92%:8% 

0%:100% 100%:0% 

Binary blends (4) 

20%:80% 

40%:60% 

60%:40% 

80%:20% 

Ternary 

blended 

oils 

 

Training set (66) Testing set (12) 

Pure (3) 

50%:50%:0% 

50%:0%:50% 

0%:50%:50% 

5%:5%:90% 

5%:90%:5% 

90%:5%:5% 

20%:20%:60% 

20%:60%:20% 

60%:20%:20% 

0%:0%:100% 

0%:100%:0% 

100%:0%:0% 

0%:0%:100% 0%:100%:0% 100%:0%:0% 

Binary blends (9×3) 

0%:10%:90% 

0%:20%:80% 

0%:30%:70% 

0%:40%:60% 

0%:50%:50% 

0%:60%:40% 

0%:70%:30% 

0%:80%:20% 

0%:90%:10% 

10%:90%:0% 

20%:80%:0% 

30%:70%:0% 

40%:60%:0% 

50%:50%:0% 

60%:40%:0% 

70%:30%:0% 

80%:20%:0% 

90%:10%:0% 

10%:0%:90% 

20%:0%:80% 

30%:0%:70% 

40%:0%:60% 

50%:0%:50% 

60%:0%:40% 

70%:0%:30% 

80%:0%:20% 

90%:0%:10% 

Ternary blends (36) 

10%:10%:80% 

10%:20%:70% 

10%:30%:60% 

10%:40%:50% 

10%:50%:40% 

10%:60%:30% 

10%:70%:20% 

10%:80%:10% 

20%:10%:70% 

20%:20%:60% 

20%:30%:50% 

20%:40%:40% 

20%:50%:30% 

20%:60%:20% 

20%:70%:10% 

30%:10%:60% 

30%:20%:50% 

30%:30%:40% 

30%:40%:30% 

30%:50%:20% 

30%:60%:10% 

40%:10%:50% 

40%:20%:40% 

40%:30%:30% 

40%:40%:20% 

40%:50%:10% 

50%:10%:40% 

50%:20%:30% 

50%:30%:20% 

50%:40%:10% 

60%:10%:30% 

60%:20%:20% 

60%:30%:10% 

70%:10%:20% 

70%:20%:10% 

80%:10%:10% 
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Table S2-2 Blended oil samples prepared for establishment of PLS-R models for quaternary blended oils 

 

Quaternary  

blended oils 

Training set (286) Testing set (13) 

Pure (4) 

10%:10%:10%:70% 

10%:10%:70%:10% 

10%:70%:10%:10% 

70%:10%:10%:10% 

20%:20%:20%:40% 

20%:20%:40%:20% 

20%:40%:20%:20% 

40%:20%:20%:20% 

25%:25%:25%:25% 

0%:0%:0%:100% 

0%:0%:100%:0% 

0%:100%:0%:0% 

100%:0%:0%:0% 

0%:0%:0%:100% 0%:0%:100%:0% 0%:100%:0%:0% 100%:0%:0%:0% 

Binary blends (9×6) 

10%:0%:0%:90% 

20%:0%:0%:80% 

30%:0%:0%:70% 

… 

90%:0%:0%:10% 

10%:0%:90%:0% 

20%:0%:80%:0% 

30%:0%:70%:0% 

… 

90%:0%:10%:0% 

10%:90%:0%:0% 

20%:80%:0%:0% 

30%:70%:0%:0% 

… 

90%:10%:0%:0% 
 

0%:10%:90%:0% 

0%:20%:80%:0% 

0%:30%:70%:0% 

… 

0%:90%:10%:0% 

0%:10%:0%:90% 

0%:20%:0%:80% 

0%:30%:0%:70% 

… 

0%:90%:0%:10% 

0%:0%:10%:90% 

0%:0%:20%:80% 

0%:0%:30%:70% 

… 

0%:0%:90%:10% 

Ternary blends (36×4) 

10%:10%:80%:0% 

10%:20%:70%:0% 

10%:30%:60%:0% 

… 

80%:10%:10%:0% 

10%:0%:10%:80% 

10%:0%:20%:70% 

10%:0%:30%:60% 

… 

80%:0%:10%:10% 

10%:10%:0%:80% 

10%:20%:0%:70% 

10%:30%:0%:60% 

… 

80%:10%:0%:10% 

0%:10%:10%:80% 

0%:10%:20%:70% 

0%:10%:30%:60% 

… 

0%:80%:10%:10% 

Quaternary blends (84) 

10%:10%:10%:70% 10%:40%:40%:10% 20%:30%:40%:10% 30%:50%:10%:10% 

10%:10%:20%:60% 10%:50%:10%:30% 20%:40%:10%:30% 40%:10%:10%:40% 

10%:10%:30%:50% 10%:50%:20%:20% 20%:40%:20%:20% 40%:10%:20%:30% 

10%:10%:40%:40% 10%:50%:30%:10% 20%:40%:30%:10% 40%:10%:30%:20% 

10%:10%:50%:30% 10%:60%:10%:20% 20%:50%:10%:20% 40%:10%:40%:10% 

10%:10%:60%:20% 10%:60%:20%:10% 20%:50%:20%:10% 40%:20%:10%:30% 

10%:10%:70%:10% 10%:70%:10%:10% 20%:60%:10%:10% 40%:20%:20%:20% 

10%:20%:10%:60% 20%:10%:10%:60% 30%:10%:10%:50% 40%:20%:30%:10% 
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Table S2-2-continued. Blended oil samples prepared for establishment of PLS-R models for quaternary blended oils 
 

Quaternary  

blended oils 

Training set (286) Testing set (13) 

Quaternary blends (84) 

 

10%:20%:20%:50% 20%:10%:20%:50% 30%:10%:20%:40% 40%:30%:10%:20% 

10%:20%:30%:40% 20%:10%:30%:40% 30%:10%:30%:30% 40%:30%:20%:10% 

10%:20%:40%:30% 20%:10%:40%:30% 30%:10%:40%:20% 40%:40%:10%:10% 

10%:20%:50%:20% 20%:10%:50%:20% 30%:10%:50%:10% 50%:10%:10%:30% 

10%:20%:60%:10% 20%:10%:60%:10% 30%:20%:10%:40% 50%:10%:20%:20% 

10%:30%:10%:50% 20%:20%:10%:50% 30%:20%:20%:30% 50%:10%:30%:10% 

10%:30%:20%:40% 20%:20%:20%:40% 30%:20%:30%:20% 50%:20%:10%:20% 

10%:30%:30%:30% 20%:20%:30%:30% 30%:20%:40%:10% 50%:20%:20%:10% 

10%:30%:40%:20% 20%:20%:40%:20% 30%:30%:10%:30% 50%:30%:10%:10% 

10%:30%:50%:10% 20%:20%:50%:10% 30%:30%:20%:20% 60%:10%:10%:20% 

10%:40%:10%:40% 20%:30%:10%:40% 30%:30%:30%:10% 60%:10%:20%:10% 

10%:40%:20%:30% 20%:30%:20%:30% 30%:40%:10%:20% 60%:20%:10%:10% 

10%:40%:30%:20% 20%:30%:30%:20% 30%:40%:20%:10% 70%:10%:10%:10% 
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Table S3. PLS-R models of olive oil (OO) – sunflower seed oil (SF) blends determined by different 

criteria 

 

Criterion A R2Y Q2 
Oil 

species 

Training set Testing set 

RMSEE RMSEcv R2 RMSEP R2 

R(0.90) 1 0.9995 0.9995 OO 0.0075 0.0076 0.9995 0.0064 0.9996 

R(0.95) 2 0.9998 0.9997 OO 0.0052 0.0056 0.9998 0.0058 0.9996 

RMSE 3 0.9998 0.9997 OO 0.0049 0.0055 0.9998 0.0054 0.9997 

*For information of the parameters, please see Section 2.5 in the manuscript. 

 

Table S4. PLS-R models of olive oil (OO) – perilla oil (PR) – sunflower seed oil (SF) blends 

determined by different criteria 

 

Criterion A R2Y Q2 
Oil 

species 

Training set Testing set 

RMSEE RMSEcv R2 RMSEP R2 

R(0.90) 

&R(0.95) 
5 0.9948 0.9946 

OO 0.0181 0.0195 0.9956 0.0283 0.9953 

PR 0.0199 0.0211 0.9946 0.0357 0.9917 

SF 0.0206 0.0221 0.9943 0.0296 0.9951 

RMSE 8 0.9956 0.9949 

OO 0.0177 0.0195 0.9957 0.0282 0.9954 

PR 0.0180 0.0205 0.9956 0.0358 0.9917 

SF 0.0186 0.0212 0.9954 0.0298 0.9953 

 

 

Table S5. PLS-R models of olive oil (OO) – perilla oil (PR) – rice bran oil (RB) – sunflower seed oil 

(SF) blends determined by different criteria 

 

Criterion A R2Y Q2 
Oil 

species 

Training set Tesing set 

RMSEE RMSEcv R2 RMSEP R2 

R(0.90) 8 0.9920 0.9918 

OO 0.0181 0.0185 0.9938 0.0235 0.9939 

PR 0.0171 0.0173 0.9944 0.0239 0.9947 

RB 0.0262 0.0265 0.9868 0.0372 0.9900 

SF 0.0188 0.0192 0.9932 0.0331 0.9904 

R(0.95) 10 0.9929 0.9927 

OO 0.0170 0.0173 0.9945 0.0210 0.9956 

PR 0.0170 0.0171 0.9945 0.0221 0.9948 

RB 0.0238 0.0243 0.9891 0.0287 0.9929 

SF 0.0183 0.0187 0.9936 0.0320 0.9924 

RMSE 15 0.9939 0.9935 

OO 0.0158 0.0166 0.9953 0.0213 0.9961 

PR 0.0160 0.0167 0.9951 0.0224 0.9946 

RB 0.0219 0.0230 0.9908 0.0278 0.9926 

SF 0.0170 0.0176 0.9945 0.0315 0.9936 
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Table S6. Quantitative results of olive oil – sunflower seed oil blends measured on the same day and 

measured in 8 different days in 20 days 

 

Actual olive oil 

con. (%) 

Intra-day (n = 8) Inter-day (n = 8) 

Measured olive 

oil con. (%) 

Relative 

error (%) 

RSD 

(%) 

Measured olive 

oil con. (%) 

Relative 

error (%) 

RSD 

(%) 

7.8 7.7±0.4 ‒0.4 4.9 6.5±0.8 ‒16.1 11.8 

29.9 29.9±0.5 ‒0.1 1.8 27.8±0.6 ‒7.0 2.0 

49.8 49.6±0.6 ‒0.5 1.3 48.3±0.9 ‒3.2 1.9 

69.7 69.6±0.9 ‒0.2 1.2 69.6±1.4 ‒0.1 2.0 

91.6 91.2±0.4 ‒0.4 0.4 91.0±1.5 ‒0.6 1.6 

 

 

Table S7. PLS-R model of olive oil (OO) – sunflower seed oil (SF) blends for inter-day measurements 
 

A R2Y Q2 
Oil 

species 

Training set Testing set 

RMSEE RMSEcv R2 RMSEP R2 

3 0.9986 0.9975 OO 0.0135 0.0173 0.9986 0.0157 0.9973 
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Table S8. Quantitative results of olive oil (OO) – perilla oil (PR) – rice bran oil (RB) – sunflower 

seed oil (SF) blends by the full range and zoom-in models 

 

Sample 
Oil 

species 

Actual 

con. (%) 

Full range model Zoom-in model 

Measured 

con. (%) 

Relative 

error (%) 

RSD 

(%) 

Measured 

con. (%) 

Relative 

error (%) 

RSD 

(%) 

Q1 

OO 100.0 95.2±0.9 ‒4.8 1.0 99.9±0.8 ‒0.1 0.8 

PR 0.0 1.5±0.8 / / 0.0±0.6 / / 

RB 0.0 0.0±1.4 / / ‒0.1±0.7 / / 

SF 0.0 3.3±0.8 / / 0.4±0.2 / / 

Q2 

OO 0.0 3.5±1.7 / / 0.0±0.3 / / 

PR 100.0 94.6±0.6 ‒5.4 0.6 99.6±0.8 ‒0.4 0.8 

RB 0.0 2.7±3.0 / / 0.9±1.1 / / 

SF 0.0 ‒0.4±0.9 / / ‒0.5±0.9 / / 

Q3 

OO 0.0 ‒2.4±1.1 / / 0.3±0.4 / / 

PR 0.0 ‒0.4±0.2 / / 0.1±0.3 / / 

RB 100.0 105±1.7 5.0 1.6 99.3±0.8 ‒0.7 0.8 

SF 0.0 ‒2.2±1.3 / / 0.3±0.7 / / 

Q4 

OO 0.0 ‒0.2±0.5 / / ‒0.5±0.4 / / 

PR 0.0 3.7±0.2 / / 0.2±0.2 / / 

RB 0.0 5.8±1.8 / / 1.6±0.7 / / 

SF 0.0 90.6±1.5 ‒9.4 1.6 98.7±0.7 ‒1.3 0.7 

Q5 

OO 10.2 9.5±0.3 ‒7.5 2.9 9.4±0.5 ‒8.1 5.0 

PR 9.9 9.5±0.1 ‒4.0 0.8 9.1±0.2 ‒8.5 2.0 

RB 10.2 11.1±0.8 9.0 7.4 11.0±1.3 7.6 12.1 

SF 69.6 70.0±0.9 0.6 1.3 70.4±1.4 1.2 2.0 

Q6 

OO 10.1 8.9±0.4 ‒12.2 4.5 9.9±0.4 ‒2.0 4.4 

PR 10.6 8.5±0.5 ‒19.9 5.8 9.9±0.6 ‒7.2 6.5 

RB 69.4 72.2±1.0 4.1 1.3 69.9±0.9 0.8 1.3 

SF 9.9 10.2±0.7 3.1 6.4 10.3±0.8 4.3 7.5 

Q7 

OO 10.1 8.7±0.3 ‒13.9 3.3 9.3±0.4 ‒7.7 3.9 

PR 69.3 70.9±0.4 2.3 0.5 70.7±0.3 1.9 0.4 

RB 10.3 10.9±0.2 5.2 2.3 10.7±0.6 3.5 5.6 

SF 10.2 9.3±0.4 ‒9.3 4.2 9.3±0.5 ‒8.7 5.5 

Q8 

OO 70.1 70.9±0.5 1.3 0.6 72.7±0.3 3.8 0.5 

PR 10.1 8.9±0.2 ‒11.8 1.7 5.8±0.3 ‒42.5 5.4 

RB 9.9 10.1±0.5 2.9 5.3 10.2±0.5 3.7 4.8 

SF 10.0 10.1±0.3 1.0 3.1 11.3±0.3 12.9 2.6 
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Table S8-continued. Quantitative results of olive oil (OO) – perilla oil (PR) – rice bran oil (RB) – 

sunflower seed oil (SF) blends by the full range and zoom-in models 
 

Sample 
Oil 

species 

Actual 

con. 

(%) 

Full range model Zoom-in model 

Measured 

con. (%) 

Relative 

error (%) 

RSD 

(%) 

Measured 

con. (%) 

Relative 

error (%) 
RSD (%) 

Q9 

OO 19.7 19.8±0.7 0.5 3.5 19.3±0.5 ‒2.0 2.4 

PR 20.4 19.8±0.3 ‒3.2 1.4 19.9±0.5 ‒2.5 2.3 

RB 20.2 22.3±1.0 10.4 4.7 25.5±1.2 26.1 4.7 

SF 39.6 38.3±0.8 ‒3.4 2.0 35.3±1.1 ‒11.0 3.1 

Q10 

OO 20.1 20.7±0.6 2.7 3.1 20.9±1.0 3.6 4.6 

PR 19.8 19.0±0.6 ‒4.1 3.0 19.9±0.6 0.2 3.2 

RB 40.3 39.5±1.0 ‒2.1 2.4 42.1±0.9 4.4 2.3 

SF 19.8 21.6±0.7 9.1 3.1 17.2±1.3 ‒12.9 7.4 

Q11 

OO 19.9 19.2±0.7 ‒3.7 3.4 17.2±0.3 ‒13.4 1.9 

PR 40.3 41.8±0.7 3.8 1.7 41.9±0.6 4.0 1.4 

RB 20.0 19.1±1.8 ‒4.5 9.2 19.7±1.4 ‒1.6 6.8 

SF 19.8 19.9±0.8 0.6 4.3 21.4±0.9 7.9 4.4 

Q12 

OO 39.9 40.7±0.6 2.0 1.5 43.6±0.9 9.2 2.1 

PR 19.8 18.6±0.6 ‒6.0 3.2 18.1±0.4 ‒8.6 2.2 

RB 20.2 19.1±1.0 ‒5.5 5.0 15.6±1.1 ‒22.4 7.1 

SF 20.1 21.6±0.6 7.4 2.7 22.6±0.6 12.6 2.7 

Q13 

OO 24.6 24.7±0.5 0.7 2.1 24.6±0.7 0.2 2.9 

PR 25.1 24.4±1.0 ‒2.7 3.9 25.0±0.7 ‒0.4 2.9 

RB 25.3 23.9±1.5 ‒5.8 6.4 26.0±1.2 2.6 4.7 

SF 25.0 27.0±0.8 7.9 3.1 24.4±0.5 ‒2.2 2.0 
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Table S9. PLS-R models of blended oils based on GC-FID chromatograms and MALDI-MS spectra 

 

Typea Method A R2Y Q2 
Oil 

species 

Training set Testing set 

RMSEE RMSEcv R2 RMSEP R2 

OO-SF 
GC 4 0.9994 0.9985 OO 0.0095 0.0134 0.9994 0.0297 0.9993 

MALDI 3 0.9995 0.9993 OO 0.0078 0.0095 0.9995 0.0093 0.9991 

SF-CA-

GP 

GC 3 0.9652 0.9638 

SF 0.0622 0.0629 0.9472 0.0888 0.9669 

CA 0.0244 0.0250 0.9916 0.0272 0.9938 

GP 0.0555 0.0555 0.9567 0.0957 0.9572 

MALDI 6 0.9832 0.9825 

SF 0.0444 0.0450 0.9732 0.0524 0.9832 

CA 0.0212 0.0215 0.9938 0.0228 0.9967 

GP 0.0359 0.0362 0.9825 0.0381 0.9900 
a OO: olive oil, SF: sunflower seed oil, CA: canola oil, GP: grapeseed oil. 
 

 

Table S10. Fatty acid compositions of sunflower seed oil, canola oil and grapeseed oil as determined 

by GC-FID 

 

Fatty acid Sunflower seed oil Canola oil Grapeseed oil 

C16:0 6.4% 4.4% 7.0% 

C16:1 0.1% 0.2% 0.1% 

C18:0 3.3% 1.9% 3.9% 

C18:1 29.8% 61.9% 20.5% 

C18:2 59.3% 20.7% 68.0% 

C18:3, n6 0.0% 0.3% 0.0% 

C18:3, n3 0.1% 8.3% 0.3% 

C20:0 0.2% 0.6% 0.2% 

C20:1 0.1% 1.3% 0.2% 

C22:0 0.7% 0.3% 0.0% 

C22:1 0.0% 0.2% 0.0% 
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Table S11. PLS-R models for determination of oil compositions of the commercial blended oil 

products 

 

Model Typea A R2Y Q2 
Oil 

species 

Training set Testing set 

RMSEE RMSEcv R2 RMSEP R2 

M1 OO-SF 2 0.9972 0.9966 OO 0.0185 0.0197 0.9972 0.0167 0.9968 

M2 OO-SF 2 0.9979 0.9975 OO 0.0161 0.0169 0.9979 0.0139 0.9990 

M3 OO-CA 4 0.9985 0.9947 OO 0.0140 0.0261 0.9985 0.0170 0.9969 

M4 OO-CO 3 0.9981 0.9971 OO 0.0156 0.0180 0.9981 0.0108 0.9987 

M5 OO-CO 3 0.9984 0.9979 OO 0.0144 0.0149 0.9984 0.0107 0.9988 

M6 OO-PA 4 0.9967 0.9945 OO 0.0205 0.0249 0.9967 0.0294 0.9899 

M7 OO-PR 4 0.9973 0.9953 OO 0.0187 0.0245 0.9973 0.0152 0.9974 

M8 
OO-FS 

-SF 
5 0.9985 0.9933 

OO 0.0170 0.0188 0.9961 0.0202 0.9970 

FS 0.0251 0.0266 0.9914 0.0265 0.9966 

SF 0.0224 0.0243 0.9931 0.0262 0.9955 

M9 
OO-SO 

-SF 
5 0.9900 0.9896 

OO 0.0131 0.0133 0.9977 0.0146 0.9986 

SO 0.0317 0.0320 0.9861 0.0589 0.9844 

SF 0.0315 0.0321 0.9863 0.0578 0.9761 
a OO: olive oil, SF: sunflower seed oil, CA: canola oil, CO: corn oil, PA: high oleic acid peanut oil, PR: perilla 

oil, FS: flaxseed oil, SO: soybean oil. 
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Figure S1. Protocol for establishing and optimizing the PLS-R models. For information 

of the parameters, please refer to Section 2.5 in the manuscript. 
 

 

 

 

1. Fit the PLS-R model 

Determine optimal A 

2. Evaluate the fitting 

R2Y and Q2 

3.1 Detect outliers 

|Standardized residuals| ＞ 4 SD 

3.2 Measure unimportant variables 

VIP values < 0.5 

4. Review model 

RMSEE, RMSEcv and R2 

(Prediction of data in training set) 

5. Validate model 

RMSEP and R2 

(Prediction of data in testing set) 
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Figure S2. GC-FID chromatograms of (a) 100% sunflower seed oil, (b) 40% olive oil – 

60% sunflower seed oil blend, (c) 60% olive oil – 40% sunflower seed oil blend, and 

(d) 100% olive oil. 
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Figure S3. VIP values of PLS-R models based on (a) the GC-FID chromatograms and 

(b) the MALDI-MS spectra of sunflower seed oil – canola oil – grapeseed oil blends. 
 

 

 
 

Figure S4. The TAG region of the MALDI-MS spectra for (a) 100% olive oil, (b) 100% 

soybean oil, (c) 100% sunflower seed oil, (d) commercial product 10, and (e) 10% olive 

oil – 10% soybean oil – 80% sunflower seed oil blend. 
 




