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CONVERGENCE ANALYSIS FOR A STABILIZED LINEAR

SEMI-IMPLICIT NUMERICAL SCHEME FOR THE NONLOCAL

CAHN–HILLIARD EQUATION

XIAO LI, ZHONGHUA QIAO, AND CHENG WANG

Abstract. In this paper, we provide a detailed convergence analysis for a first
order stabilized linear semi-implicit numerical scheme for the nonlocal Cahn–

Hilliard equation, which follows from consistency and stability estimates for

the numerical error function. Due to the complicated form of the nonlinear
term, we adopt the discrete H−1 norm for the error function to establish the

convergence result. In addition, the energy stability obtained in [Du et al., J.

Comput. Phys., 363:39–54, 2018] requires an assumption on the uniform `∞

bound of the numerical solution and such a bound is figured out in this paper

by conducting the higher order consistency analysis. Taking the view that the

numerical solution is indeed the exact solution with a perturbation, the error
function is `∞ bounded uniformly under a loose constraint of the time step

size, which then leads to the uniform maximum-norm bound of the numerical
solution.

1. Introduction

In this paper, our primary purpose is to develop a detailed convergence analysis
of a stabilized linear semi-implicit numerical scheme for the nonlocal Cahn–Hilliard
(NCH) equation taking the form [4, 11, 24]

(1.1) ut = ∆(u3 − u+ ε2Lu), (x, t) ∈ Ω× (0, T ],

where u = u(x, t) is the unknown function subject to the periodic boundary condi-

tion. Here, Ω =
d∏
i=1

(−Xi, Xi) is a rectangular domain in Rd, T > 0 is the terminal

time, ε > 0 is an interfacial parameter, and L is a nonlocal linear operator defined
by

(1.2) L : v(x) 7→
∫

Ω

J(x− y)(v(x)− v(y)) dy,

where J is a kernel function satisfying following conditions [11]:
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(a) J(x) ≥ 0 for any x ∈ Ω;
(b) J is even, i.e., J(x) = J(−x) for any x ∈ Rd;
(c) J is Ω-periodic;

(d)
1

2

∫
Ω

J(x)|x|2 dx = 1,

where the condition (d) means that the kernel has a finite second order moment in

Ω. In fact, J could be taken as a radial function over the domain Ω =
d∏
i=1

(−Xi, Xi),

with exponential decay at the boundary, such as J(x) = α exp
(
− |x|

2

σ2

)
(for a small

σ), and a periodic extension is made to Rd, so that both (b) and (c) are satisfied.
The NCH equation (1.1) can be viewed as the H−1 gradient flow with respect to
the free energy functional

(1.3) E(u) =

∫
Ω

F (u(x)) dx +
ε2

2
(Lu, u)L2 ,

with F (u) = 1
4 (u2 − 1)2, or equivalently, by using the condition (b),

(1.4) E(u) =

∫
Ω

(
F (u(x)) +

ε2

4

∫
Ω

J(x− y)(u(x)− u(y))2 dy
)

dx.

The second term in (1.4) usually represents the interaction energy, describing the
long-range interactions between atoms at different sites, and the kernel J measures
the strength of interactions. Using the Taylor formula, the periodicity of u, and
the conditions (b)-(d) of J , one can show that

ε2

4

∫
Ω

J(x− y)(u(x)− u(y))2 dy ≈ ε2

2
|∇u(x)|2,

which suggests that the classic Cahn–Hilliard equation [9]

(1.5) ut = ∆(u3 − u− ε2∆u),

corresponding to the local energy functional

(1.6) Elocal(u) =

∫
Ω

(
F (u(x)) +

ε2

2
|∇u(x)|2

)
dx,

is an approximation of the NCH equation (1.1) under the assumption that the
interaction exists only in a very short range.

If J is further integrable, then J ∗ 1 =

∫
Ω

J(x) dx > 0 is a positive constant and

(1.7) Lv = (J ∗ 1)v − J ∗ v,

where

(J ∗ v)(x) =

∫
Ω

J(x− y)v(y) dy =

∫
Ω

J(y)v(x− y) dy

is exactly the periodic convolution [24]. In this case, the NCH equation (1.1) can
be written as

ut = ∇ · (a(u)∇u)− ε2∆J ∗ u,
where a(u) = 3u2 − 1 + ε2J ∗ 1 is referred as the diffusive mobility. If

(1.8) γ0 := ε2J ∗ 1− 1 > 0,
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which gives a(u) > 0, then the equation (1.1) becomes diffusive and the solution
becomes regular in time; otherwise, the solution may exhibit some singular behav-
iors. Throughout this paper, we always assume that the kernel J is integrable with
the condition (1.8) held.

As one of typical systems of the phase field models, the classic Cahn–Hilliard
equation (1.5) has been successfully used to model phase transitions occurring in
mixtures of small molecules and some other interface problems involving mass-
conserved order parameters. Recently, the NCH equation (1.1) has attracted in-
creasing attentions and been used in various fields ranging from materials science to
finance and image processing. For instance, in materials science, the NCH equation
and other related equations arise as mesoscopic models of interacting particle sys-
tems [2, 25] and are taken to model phase transitions [18]; in the dynamic density
functional theory [1, 2], the interaction kernel is the two-particle direct correlation
function and the solution represents the mesoscopic particle density. In the theo-
retical level, the well-posedness of the NCH equations equipped with Neumann or
Dirichlet boundary condition were investigated by Bates and Han [6, 7] by assum-
ing the integrability of the kernel. Du et al. [10] developed a general framework of
nonlocal diffusion problems and a number of examples ranging from continuum me-
chanics to graph theory were showed to be special cases of the proposed framework.
For more details on theoretical investigations, see [4, 8, 18, 19, 20, 21].

There have been several works on numerical analysis for nonlocal models. For
a class of nonlocal diffusion models with variable boundary conditions, finite dif-
ference and finite element approximations were addressed in [35, 36, 44]. For the
nonlocal Allen–Cahn equation, the L2 gradient flow with respect to (1.4), Bates et
al. [5] developed an L∞ stable and convergent finite difference scheme by treat-
ing the nonlinear and nonlocal terms explicitly and Du et al. [13] analyzed the
spectral-Galerkin approximations. In addition, the maximum principle preserving
property has been established for the exponetial time differencing (ETD) schemes
in a more recent work [12]. For the NCH equation, an important fact is that the ex-
act solution decreases the energy in time due to the energetic variational structure
of the underlying model, so it is highly desirable to develop numerical algorithms
inheriting this property of energy stability at the discrete level. Energy stability
has been widely investigated for numerical schemes of a family of classic PDE-based
phase field models, such as convex splitting schemes [17, 29, 42], stabilized schemes
[33, 43], and so on. The application of similar analysis for nonlocal phase field
models are still full of challenges due to the lack of the higher order diffusion term.
Guan et al. [22, 23, 24] constructed convex splitting schemes for the NCH equation
and nonlocal Allen–Cahn equation by treating the nonlinear term implicitly and
putting the nonlocal term into the explicit part. The proposed scheme allows one
to evaluate the nonlocal term explicitly only once at each time step, but iterations
are inevitable due to the nonlinearity of the scheme.

In order to avoid the nonlinear iteration, in a recent work [11], a linear semi-
implicit scheme has been developed by using the stabilizing approach. The linear
nonlocal term is set in the implicit level and solved efficiently in the frequency
space by using the fast Fourier transform (FFT) technique due to the linearity of
the resulted fully discrete system. The first order stabilized linear semi-implicit
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(SSI1) scheme given in [11] reads

(1.9)
un+1 − un

∆t
= ∆N

[
(un)3 − un +A(un+1 − un) + ε2LNun+1

]
,

and the energy stability has been proved, that is, EN (un+1) ≤ EN (un) if the
stabilizing constant A satisfies

(1.10) A ≥ 1

2
‖un+1‖2∞ + ‖un‖2∞ −

1

2
.

Here, EN , ∆N and LN are the spatially discretized forms of the operators E, ∆
and L, respectively, and their precise definitions will be given in the next section.
Notice that the infinity-norms of the numerical solutions at time steps tn and tn+1

have been involved on the right hand side of (1.10). However, such a lower bound
for constant A has not been justified.

We aim to justify the lower bound of A in this paper. A direct analysis provided
in [26, 27, 28] for the local Cahn–Hilliard model could hardly be extended to the
case of nonlocal models due to the lack of higher order diffusion terms. Instead,
we view the numerical solution as a perturbation of the exact solution to (1.1),
perform a local in time convergence analysis, and obtain the `∞ bound of the
numerical solution via the convergence result. All the analysis will be specified in
the 2-D case, similar results can be obtained for the 1-D and 3-D cases without any
extra essential difficulties.

The outline of the paper is as follows. Some notations and lemmas for the spectral
collocation method for the spatial discretization are summarized in Section 2. The
convergence analysis, as well as the `∞ bound of the numerical solutions, of the first
order stabilized linear semi-implicit scheme (1.9) is presented in Section 3. Finally,
some concluding remarks are given in Section 4.

2. Spectral collocation method for the spatial discretization

In this section, we summarize some notations and lemmas introduced in [11]
for the spectral collocation approximations of some spatial operators in the two-
dimensional space with Ω = (−X,X)× (−Y, Y ).

Let Nx and Ny be two even numbers. The Nx×Ny mesh Ωh of the domain Ω is
a set of nodes (xi, yj) with xi = −X+ihx, yj = −Y +jhy, 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny,
where hx = 2X/Nx and hy = 2Y/Ny are the uniform mesh sizes in each direction.
Let h = max{hx, hy}. We define the index sets

Sh = {(i, j) ∈ Z2 | 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny},

Ŝh =
{

(k, l) ∈ Z2
∣∣∣ − Nx

2
+ 1 ≤ k ≤ Nx

2
, −Ny

2
+ 1 ≤ l ≤ Ny

2

}
.

All of the periodic grid functions defined on Ωh are denoted by Mh, that is,

Mh = {f : Ωh → R | fi+mNx,j+nNy
= fij for any (i, j) ∈ Sh and (m,n) ∈ Z2}.

For any f, g ∈ Mh and f = (f1, f2)T , g = (g1, g2)T ∈ Mh ×Mh, the discrete
L2 inner product 〈·, ·〉, discrete L2 norm ‖ · ‖2, and discrete L∞ norm ‖ · ‖∞ are
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respectively defined by

〈f, g〉 = hxhy
∑

(i,j)∈Sh

fijgij , 〈f , g〉 = hxhy
∑

(i,j)∈Sh

(f1
ijg

1
ij + f2

ijg
2
ij),

‖f‖2 =
√
〈f, f〉, ‖f‖2 =

√
〈f ,f〉,

‖f‖∞ = max
(i,j)∈Sh

|fij |, ‖f‖∞ = max
(i,j)∈Sh

√
|f1
ij |2 + |f2

ij |2.

For any f ∈Mh, we call f := 1
4XY 〈f, 1〉 the mean value of f . In particular, denote

by M0
h all the grid functions in Mh with mean zero, i.e.,

M0
h = {f ∈Mh | 〈f, 1〉 = 0}.

2.1. Discrete gradient, divergence and Laplace operators. For a function

f ∈ Mh, the 2-D discrete Fourier transform f̂ = Pf is defined componentwisely
[32, 37] by

(2.1) f̂kl =
∑

(i,j)∈Sh

fij exp
(
− i

kπ

X
xi

)
exp

(
− i

lπ

Y
yj

)
, (k, l) ∈ Ŝh.

The function f can be reconstructed via the corresponding inverse transform f =

P−1f̂ with components given by

(2.2) fij =
1

NxNy

∑
(k,l)∈Ŝh

f̂kl exp
(

i
kπ

X
xi

)
exp

(
i
lπ

Y
yj

)
, (i, j) ∈ Sh.

Let M̂h = {Pf | f ∈Mh} and define the operators D̂x and D̂y on M̂h as

(D̂xf̂)kl =
(kπi

X

)
f̂kl, (D̂y f̂)kl =

( lπi

Y

)
f̂kl, (k, l) ∈ Ŝh,

then the Fourier spectral approximations to the first and second partial derivatives
can be represented as

Dx = P−1D̂xP, Dy = P−1D̂yP, D2
x = P−1D̂2

xP, D2
y = P−1D̂2

yP.

For any f ∈Mh and f = (f1, f2)T ∈Mh ×Mh, the discrete gradient, divergence
and Laplace operators are given respectively by

∇Nf =

(
Dxf

Dyf

)
, ∇N · f = Dxf

1 +Dyf
2, ∆Nf = D2

xf +D2
yf.

It is easy to prove the following results.

Lemma 2.1. (i) For any f, g ∈ Mh and g ∈ Mh ×Mh, we have the summation
by parts formulas

〈f,∇N · g〉 = −〈∇Nf, g〉, 〈f,∆Ng〉 = −〈∇Nf,∇Ng〉 = 〈∆Nf, g〉.

(ii) The inversion of −∆N exists on M0
h and (−∆N )−1 is self-adjoint and positive

definite.

Lemma 2.1 (ii) tells us that (−∆N )−1f is well-defined for any f ∈ M0
h. Then

we can define the discrete H−1 norm ‖ · ‖−1,N by

(2.3) ‖f‖−1,N =
√
〈f, (−∆N )−1f〉, ∀ f ∈M0

h.
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2.2. Discrete convolution and nonlocal operators. To define the discrete con-
volutions, we consider the kernel function set

Kh = {ψ : Ωh,0 → R |ψi+mNx,j+nNy = ψij for any (i, j) ∈ Sh and (m,n) ∈ Z2},

where Ωh,0 = {(ihx, jhy) | (i, j) ∈ Sh} is the mesh on the domain (0, 2X)× (0, 2Y ).
A discrete transform and its inversion of a function ψ ∈ Kh could be defined
similarly via (2.1) and (2.2) by replacing xi and yj by ihx and jhy, respectively.
Actually, Kh is equivalent to Mh due to the periodicity of their elements, and we
consider the functions from Kh as the kernels just for convenience of notations.

For any ψ ∈ Kh and f ∈ Mh, the discrete convolution ψ ∗© f ∈ Mh is defined
componentwisely by

(ψ ∗© f)ij = hxhy
∑

(m,n)∈Sh

ψi−m,j−nfmn, (i, j) ∈ Sh.

Especially, by setting f ≡ 1 on Ωh, we have

ψ ∗© 1 = hxhy
∑

(m,n)∈Sh

ψmn.

The following preliminary estimate is needed in the convergence analysis.

Lemma 2.2. Suppose J ∈ C1
per(Ω) and define its grid restriction by Jij := J(xi, yj).

Then for any f, g ∈Mh, we have

(2.4) |〈J ∗© f,∆Ng〉| ≤ α‖f‖22 +
C

α
‖∇Ng‖22,

for any α > 0, where C is a positive constant that depends on J but is independent
of hx and hy.

Proof. An application of summation by parts and Cauchy–Schwarz inequality shows
that

(2.5) |〈J ∗© f,∆Ng〉| = |〈∇N (J ∗© f),∇Ng〉| ≤ ‖∇N (J ∗© f)‖2 · ‖∇Ng‖2.

An application of the definitions of discrete gradient and convolution gives us

(2.6) (∇N (J ∗© f))ij = hxhy
∑

(m,n)∈Sh

(∇NJ)i−m,j−nfmn, (i, j) ∈ Sh.

Then,

‖∇N (J ∗© f)‖22 = hxhy
∑

(i,j)∈Sh

(
hxhy

∑
(m,n)∈Sh

(∇NJ)i−m,j−nfmn

)2

≤ |Ω|‖∇NJ‖2∞
(
hxhy

∑
(m,n)∈Sh

fmn

)2

≤ |Ω|2‖∇NJ‖2∞‖f‖22.

The smoothness of J implies the bound ‖∇NJ‖∞ ≤ CJ. Then, we arrive

(2.7) |〈J ∗© f,∆Ng〉| ≤ CJ|Ω|‖f‖2‖∇Ng‖2 ≤ α‖f‖22 +
C

α
‖∇Ng‖22,

for any α > 0, where C = 1
4C

2
J |Ω|2. �
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Remark 2.3. We make a technical assumption J ∈ C1
per(Ω) to facilitate the analysis.

On the other hand, a singular J may also be of certain scientific interests in many
relevant physical models. However, a direct application of the above analysis is not
available for a singular J, since a point-wise bound of ∇NJ is not available in (2.6)
any more. A non-standard extension to the case with a singular J will be considered
in our future works.

Given an integrable kernel J satisfying the assumptions (a)–(d), we can define
the discrete version of the nonlocal operator L by

(2.8) LNf = (J ∗© 1)f − J ∗© f, ∀ f ∈Mh.

It is easy to check that LN commutes with ∆N and is self-adjoint and positive
semi-definite. Finally, the discrete version of the energy (1.3) is defined as

(2.9) EN (v) = 〈F (v), 1〉+
ε2

2
〈LNv, v〉, v ∈Mh.

2.3. Fourier projection of the exact solution. The existence and uniqueness
of a smooth periodic solution to the IPDE (1.1) with smooth periodic initial data
may be established by using techniques developed by Bates and Han in [6, 7]. In
this article, we denote this IPDE solution by U . Motivated by these results, one
obtains

(2.10) ‖U‖L∞(0,T ;L∞) + ‖∇U‖L∞(0,T ;L∞) < C,

for any T > 0.
Define UN ( · , t) := PNU( · , t), the (spatial) Fourier projection of the exact so-

lution into BN , the space of trigonometric polynomials of degree up to N . The
following projection approximation is standard: if U ∈ L∞(0, T ;H`

per), for some
` ∈ N,
(2.11)
‖UN − U‖L∞(0,T ;Hk) ≤ Ch`−k‖U‖L∞(0,T ;H`), h = max{hx, hy}, ∀ 0 ≤ k ≤ `.

By UmN , Um we denote UN ( · , tm) and U( · , tm), respectively, with tm = m∆t. It
is clear that

∫
Ω
UN (·, tm) dx =

∫
Ω
U(·, tm) dx, for any m ∈ N, due to the fact that

UN is the Fourier projection of U , and thus,

∫
Ω

UN (·, tm) dx =

∫
Ω

U(·, tm) dx =

∫
Ω

U(·, tm−1) dx =

∫
Ω

UN (·, tm−1) dx, ∀ m ∈ N,

(2.12)

in which the second step is based on the fact that the exact solution U is mass con-
servative at the continuous level. On the other hand, the solution of the numerical
scheme (1.9) is also mass conservative at the discrete level:

(2.13) um = um−1, ∀ m ∈ N.

Meanwhile, we denote by umN the values of UN at discrete grid points at time instant
tm, i.e., umN := PhUN ( · , tm). Since UN ∈ BN , it always holds∫

Ω

UN ( · , tm) dx = hxhy
∑

(i,j)∈Sh

UN (xi, yj , tm) = hxhy
∑

(i,j)∈Sh

(umN )i,j ,
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so the mass conservative property is available at the discrete level: umN = um−1
N .

As indicated before, we use the mass conservative projection for the initial data:
u0 = u0

N = PhUN ( · , t = 0), that is

(2.14) u0
i,j := UN (xi, yj , t = 0),

The error grid function is defined as

(2.15) em := umN − um, ∀ m ≥ 0.

Therefore, it follows that

(2.16) em = 0, since umN = u0
N = u0 = um, ∀m ≥ 0,

so that the discrete norm ‖ · ‖−1,N is well defined for the error grid function. We
also notice that the Fourier projection of the exact solution has to be taken at the
initial time step as (2.14), instead of a pointwise interpolation of the exact initial
data, to assure the zero-mean property of the numerical error grid function at a
discrete level. In addition, we have (with Nk := [ T∆t ] denoting the integer part of
T
∆t ),

(2.17) max
1≤k≤Nk

‖ukN‖∞ + max
1≤k≤Nk

‖∇NukN‖∞ < C.

3. Convergence analysis and energy stability analysis

We begin this section by stating the main result on the convergence analysis
of the stabilized linear scheme (1.9). The detailed proof is given in the following
two subsections, including the higher order consistency analysis and the convergence
analysis. The energy stability of (1.9) is then obtained under some new assumptions
on A, instead of (1.10) given in [11]. With an initial data with sufficient regularity,
we could assume that the exact solution has regularity of class R:

(3.1) U ∈ R := H4(0, T ;C0
per) ∩H3(0, T ;C2

per) ∩ L∞(0, T ;Cm+2
per ), m ≥ 3.

Theorem 3.1. Given periodic initial data U(x, y, t = 0) ∈ Cm+2
per (Ω). Suppose the

unique periodic solution for the IPDE (1.1), given by U(x, y, t) on Ω × (0, T ] for
some T < ∞, is of regularity class R. In addition, the following assumption is
made for the constant A:

(3.2) A ≥ 18M4
0

γ0
, with M0 = 1 + max

1≤k≤Nk

‖ukN‖∞.

Then, provided ∆t and h are sufficiently small, under linear refinement path con-
straint ∆t ≤ Ch, with C any fixed constant, we have

(3.3) ‖en‖−1,N +
(
γ0∆t

n∑
k=1

‖ek‖22
) 1

2 ≤ C(∆t+ hm),

for all positive integers n, such that n∆t ≤ T , where C > 0 is independent of h and
∆t.
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3.1. Higher order consistency analysis. By consistency, the Fourier projection
solution UN solves the discrete equation with an O(∆t+ hm) accuracy:

(3.4)
Un+1
N − UnN

∆t
= ∆N

(
(UnN )3 − UnN +A(Un+1

N − UnN ) + ε2LNUn+1
N

)
+ τn+1

0 ,

where the local truncation error τn+1
0 satisfies

(3.5) ‖τn+1
0 ‖−1,N ≤ C(∆t+ hm).

In addition, the discrete zero-mean property of τn+1
0 is observed, which will be

useful in later analysis:

(3.6) τn+1
0 = 0,

since

Un+1
N = UnN ,

∫
Ω

∆N

(
(UnN )3 − UnN +A(Un+1

N − UnN ) + ε2LNUn+1
N

)
dx = 0.

Notice that the first identity is derived in (2.12), while the second one comes from
the periodic boundary condition. However, this local truncation error will not be
enough to recover the ‖ · ‖∞ bound of the numerical solution due to the first order
accuracy in time. To remedy this, we have to construct supplementary fields, U1

∆t,
U2

∆t, and denote

(3.7) Û = UN + ∆tPNU1
∆t + ∆t2PNU2

∆t.

We also notice that both U1
∆t, U

2
∆t are (spatially) continuous functions, and their

construction will be outlined later. Moreover, a higher O(∆t3+hm) consistency has
to be satisfied with the given numerical scheme (1.9). The constructed fields U1

∆t,
U2

∆t, which will be obtained using a perturbation expansion, will depend solely on
the exact solution U .

In other words, we introduce a higher order approximate expansion of the exact
solution, since a first order temporal consistency estimate (3.5) is not able to control
the discrete `∞ norm of the numerical solution. Instead of substituting the exact
solution into the numerical scheme, a careful construction of an approximate profile
is performed by adding O(∆t) and O(∆t2) correction terms to the exact solution
to satisfy an O(∆t3) truncation error. In turn, we estimate the numerical error
function between the constructed profile and the numerical solution, instead of a
direct comparison between the numerical solution and exact solution. Such a higher
order consistency enables us to derive a higher order convergence estimate in the
‖ · ‖−1,N norm, which in turn leads to a desired ‖ · ‖∞ bound of the numerical
solution, via an application of inverse inequality. This approach has been reported
for a wide class of nonlinear PDEs; see the related works for the incompressible
fluid equation [15, 16, 30, 31, 38, 39, 40], various gradient equations [3, 22, 24], the
porous medium equation based on the energetic variational approach [14], nonlinear
wave equation [41], etc.

We begin with an application of the temporal discretization in the numerical
scheme (1.9) for the Fourier projection solution UN :
(3.8)
Un+1
N − UnN

∆t
= ∆

(
(UnN )3−UnN+A(Un+1

N −UnN )+ε2LUn+1
N

)
+∆tg(1)+O(∆t2)+O(hm),
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which comes from the Taylor expansion in time. In more details, the function g(1)

is smooth enough and only depends on the higher order derivatives of UN . In
particular, by making use of similar arguments as in the derivation of (3.6), we
conclude that
(3.9)∫

Ω

(Un+1
N −UnN ) dx = 0,

∫
Ω

∆
(

(UnN )3−UnN +A(Un+1
N −UnN ) + ε2LUn+1

N

)
dx = 0.

This in turn indicates that

(3.10)

∫
Ω

g(1) dx = 0.

The first order temporal correction function U1
∆t is given by the solution of the

following linear differential equation

∂tU
1
∆t = ∆

(
3U2

NU
1
∆t − U1

∆t + ε2LU1
∆t

)
− g(1),(3.11)

U1
∆t(·, t = 0) ≡ 0,(3.12)

with the periodic boundary condition. In fact, (3.11) is a linear parabolic PDE, with
a sufficiently regular coefficient function 3U2

N (regularity dependent on U ∈ R). The
existence and uniqueness of its solution could be derived by making use of a standard
Galerkin procedure and Sobolev estimates, following the classical techniques for
time-dependent parabolic equation [34]. Such a solution depends solely on the
profile UN and is regular enough. Similar to (3.8), an application of the temporal
discretization to U1

∆t indicates that

(U1
∆t)

n+1 − (U1
∆t)

n

∆t
= ∆

(
3(UnN )2(U1

∆t)
n − (U1

∆t)
n +A((U1

∆t)
n+1 − (U1

∆t)
n)

+ ε2L(U1
∆t)

n+1
)
− (g(1))n +O(∆t).(3.13)

In turn, we denote Û (1) = UN + ∆tPNU1
∆t. A combination of (3.8) and a Fourier

projection of (3.13) results in the following higher order consistency estimate:

(Û (1))n+1 − (Û (1))n

∆t
= ∆

(
((Û (1))n)3 − (Û (1))n +A((Û (1))n+1 − (Û (1))n)

+ ε2L(Û (1))n+1
)

+ ∆t2g(2) +O(∆t3) +O(hm),(3.14)

in which we have made use of the following estimate

(Û (1))3 = (UN + ∆tPNU1
∆t)

3 = U3
N + 3∆tU2

NPNU1
∆t +O(∆t2)

= U3
N + 3∆tPN (U2

NPNU1
∆t) +O(∆t2) +O(hm).(3.15)

Again, g(2) is smooth enough and only dependent on the higher order derivatives
of UN .

In addition, we observe that the constructed profile U1
∆t has zero-mean at the

continuous level, based on the equation (3.11)-(3.12), combined with the fact (3.10):

(3.16)

∫
Ω

∂tU
1
∆t dx =

∫
Ω

∆
(

3U2
NU

1
∆t − U1

∆t + ε2LU1
∆t

)
dx−

∫
Ω

g(1) dx = 0,

so that

(3.17)

∫
Ω

U1
∆t(·, t) dx =

∫
Ω

U1
∆t(·, t = 0) dx = 0, ∀ t > 0.
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In turn, its projection also has a zero-mean:

(3.18)

∫
Ω

PNU1
∆t(·, t) dx = 0, ∀ t > 0.

Therefore, we conclude that Û (1) has the same average as UN at the continuous
level:

(3.19)

∫
Ω

Û (1)(·, t) dx =

∫
Ω

UN (·, t) dx, ∀ t > 0.

Since UN is mass conservative at the continuous level, as indicated by (2.12), we

arrive at a similar property for Û (1):

(3.20)

∫
Ω

(Û (1))n+1 dx =

∫
Ω

(Û (1))n dx, ∀n ∈ N.

As a consequence, by making use of similar arguments as in (3.9)-(3.10), we see
that g(2) has zero-mean at the continuous level:

(3.21)

∫
Ω

g(2) dx = 0.

The second order temporal correction function U2
∆t could be constructed in a

similar manner, and it turns out to be the solution of the following linear differential
equation

∂tU
2
∆t = ∆

(
3U2

NU
2
∆t − U2

∆t + ε2LU2
∆t

)
− g(2),(3.22)

U2
∆t(·, t = 0) ≡ 0,(3.23)

with the periodic boundary condition. Similarly, (3.22) is a linear parabolic PDE,
with a sufficiently regular coefficient function 3U2

N , and its unique solution depends
solely on the profile UN and is smooth enough. An application of the temporal
discretization to U2

∆t gives

(U2
∆t)

n+1 − (U2
∆t)

n

∆t
= ∆

(
3(UnN )2(U2

∆t)
n − (U2

∆t)
n +A((U2

∆t)
n+1 − (U2

∆t)
n)

+ ε2L(U2
∆t)

n+1
)
− (g(2))n +O(∆t).(3.24)

Notice that Û = Û (1) + ∆t2PNU2
∆t. In turn, a combination of (3.14) and (3.24)

leads to the desired third order consistency estimate in time:
(3.25)

Ûn+1 − Ûn

∆t
= ∆

(
(Ûn)3 − Ûn +A(Ûn+1 − Ûn) + ε2LÛn+1

)
+O(∆t3) +O(hm),

in which we have made use of the following estimate

Û3 = (Û (1) + ∆t2PNU2
∆t)

3 = (Û (1))3 + 3∆t2U2
NPNU2

∆t +O(∆t3)

= (Û (1))3 + 3∆t2PN (U2
NPNU2

∆t) +O(∆t3) +O(hm).(3.26)

Similar to the analyses in (3.16)-(3.20), we are able to prove that Û has the same
average as UN at the continuous level:

(3.27)

∫
Ω

∂tU
2
∆t dx =

∫
Ω

∆
(

3U2
NU

2
∆t − U2

∆t + ε2LU2
∆t

)
dx−

∫
Ω

g(2) dx = 0,
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so that ∫
Ω

U2
∆t(·, t) dx =

∫
Ω

U2
∆t(·, t = 0) dx = 0, ∀ t > 0,(3.28) ∫

Ω

PNU2
∆t(·, t) dx = 0, ∀ t > 0.(3.29) ∫

Ω

Û(·, t) dx =

∫
Ω

Û (1)(·, t) dx =

∫
Ω

UN (·, t) dx, ∀ t > 0.(3.30) ∫
Ω

Ûn+1 dx =

∫
Ω

Ûn dx, ∀n ∈ N.(3.31)

Finally, with an application of Fourier pseudo-spectral approximation in space,
we obtain the O(∆t3 + hm) truncation error estimate for the constructed solution

Û :

Ûn+1 − Ûn

∆t
= ∆N

(
(Ûn)3 − Ûn +A(Ûn+1 − Ûn) + ε2LN Ûn+1

)
+ τn+1

2 ,(3.32)

with ‖τn+1
2 ‖−1,N ≤ C(∆t3 + hm).(3.33)

We notice that τn+1
2 has zero-mean at a discrete level, τn+1

2 = 0, for any n ∈ N,

based on the estimate (3.31), combined with the fact that Ûk ∈ BN .
As stated earlier, the purpose of the higher order expansion (3.7) is to obtain an

`∞ bound of the error function via its ‖ · ‖−1,N norm in higher order accuracy by
utilizing an inverse inequality in spatial discretization, which will be shown below.
A detailed analysis shows that

(3.34) ‖Û − UN‖∞ ≤ C∆t,

since ‖U1
∆t‖∞, ‖U2

∆t‖∞ ≤ C. In particular, the following bound becomes available:

(3.35) ‖Û − UN‖∞ ≤ C∆t ≤ 1

2
,

provided that ∆t is sufficiently small, so that

(3.36) ‖Û‖∞ ≤ ‖UN‖∞ + ‖Û − UN‖∞ ≤ ‖UN‖∞ +
1

2
.

3.2. Convergence analysis in the `∞(0, T ;H−1
h ) ∩ `2(0, T ; `2) norm. Instead

of a direct comparison between the numerical solution and the Fourier projection
UN of the exact solution, we estimate the error between the numerical solution and
the constructed solution to obtain a higher order convergence in ‖ · ‖−1,N norm. In
turn, the following error function is introduced:

(3.37) êk := Ûk − uk.
In particular, the established consistency estimate (3.30) indicates that

(3.38) Ûk =
1

|Ω|

∫
Ω

Ûk dx =
1

|Ω|

∫
Ω

UkN dx, ∀k ∈ N,

in which the first step is based on the fact that Ûk ∈ BN . Its combination
with (2.16) results in the discrete zero-mean property of the numerical error func-
tion êk:

(3.39) êk = 0, since Ûk = UkN = U0
N = u0 = uk, ∀ k ≥ 0.

In turn, the discrete ‖ · ‖−1,N norm of this error function is well defined.
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Subtracting (1.9) from (3.32) yields

(3.40)
ên+1 − ên

∆t
= ∆N

(
(Ûn)3− (un)3− ên +A(ên+1− ên) + ε2LN ên+1

)
+ τn+1

2 .

To carry out the nonlinear error estimate, we make an ‖ · ‖∞ assumption for the
numerical error function at the previous time step tn:

(3.41) ‖ên‖∞ ≤
1

2
.

In turn, the ‖ · ‖∞ bound for the numerical solution at tn becomes available

(3.42) ‖un‖∞ = ‖Ûn − ên‖∞ ≤ ‖Ûn‖∞ + ‖ên‖∞ ≤ ‖UnN‖∞ +
1

2
+

1

2
≤M0,

in which the estimate (3.35) for ‖Ûn‖∞ has been recalled in the third step. The a
priori assumption (3.41) will be recovered in the convergence estimate at the next
time step, as will be demonstrated later.

Since êk = 0 for any k ≥ 0, (−∆N )−1êk has been well-defined. Taking a discrete
inner product with (3.40) by 2(−∆N )−1ên+1 leads to

‖ên+1‖2−1,N − ‖ên‖2−1,N + ‖ên+1 − ên‖2−1,N + 2A∆t〈ên+1 − ên, ên+1〉

= −2∆t〈(Ûn)3 − (un)3, ên+1〉+ 2∆t〈ên, ên+1〉 − 2ε2∆t〈LN ên+1, ên+1〉
+ 2∆t〈(−∆N )−1ên+1, τn+1

2 〉,(3.43)

in which summation by parts formulas have been repeatedly applied. For the left
hand side term associated with the artificial regularization, the following identity
is valid:

(3.44) 2A〈ên+1 − ên, ên+1〉 = A(‖ên+1‖22 − ‖ên‖22 + ‖ên+1 − ên‖22).

The right hand side term associated with the truncation error could be bounded in
a straightforward way:
(3.45)
2〈(−∆N )−1ên+1, τn+1

2 〉 ≤ 2‖ên+1‖−1,N · ‖τn+1
2 ‖−1,N ≤ ‖ên+1‖2−1,N + ‖τn+1

2 ‖2−1,N .

For the second linear term on the right hand side, a direct application of Cauchy
inequality gives

(3.46) 2〈ên, ên+1〉 ≤ ‖ên‖22 + ‖ên+1‖22.

For the nonlocal linear term on the right had side, we begin with a rewritten
form:

−2ε2〈LN ên+1, ên+1〉 = −2ε2〈(J ∗© 1)ên+1 − J ∗© ên+1, ên+1〉
= −2ε2(J ∗© 1)‖ên+1‖22 + 2ε2〈J ∗© ên+1, ên+1〉.(3.47)

Meanwhile, for the term 2ε2〈J ∗© ên+1, ên+1〉, we apply (2.4) in Lemma 2.2 and
obtain

2ε2〈J ∗© ên+1, ên+1〉 = −2ε2〈J ∗© ên+1,∆N ((−∆N )−1ên+1)〉

≤ γ0

2
‖ên+1‖22 +

C3

γ0
‖∇N (−∆N )−1ên+1‖22

≤ γ0

2
‖ên+1‖22 +

C3

γ0
‖ên+1‖2−1,N ,(3.48)
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with C3 only depends on C2 and ε. Subsequently, a combination of (3.47) and
(3.48) yields

(3.49) −2ε2〈LN ên+1, ên+1〉 ≤ −2ε2(J ∗© 1)‖ên+1‖22 +
γ0

2
‖ên+1‖22 +

C3

γ0
‖ên+1‖2−1,N .

For the nonlinear inner product on the right hand side of (3.43), we begin with
a rewritten form:
(3.50)

−2〈(Ûn)3 − (un)3, ên+1〉 = −2〈(Ûn)3 − (un)3, ên〉 − 2〈(Ûn)3 − (un)3, ên+1 − ên〉.
Because of the following nonlinear expansion

(3.51) (Ûn)3 − (un)3 = ((Ûn)2 + Ûnun + (un)2)ên,

we see that the first term on the right hand side of (3.50) is always non-positive:

(3.52) −2〈(Ûn)3 − (un)3, ên〉 = −2〈(Ûn)2 + Ûnun + (un)2, (ên)2〉 ≤ 0.

The other term on the right hand side of (3.50) could be represented as

(3.53) −2〈(Ûn)3− (un)3, ên+1− ên〉 = −2〈((Ûn)2 + Ûnun + (un)2)ên, ên+1− ên〉.

On the other hand, the ‖ · ‖∞ estimate (3.36) for Û and the a-priori bound (3.42)
have implied that

(3.54) ‖Ûn‖∞ ≤M0, ‖un‖∞ ≤M0.

These facts yield the following estimate

(3.55) ‖(Ûn)2 + Ûnun + (un)2‖∞ ≤ 3M2
0 .

In turn, we obtain the following inequality

−2〈(Ûn)3 − (un)3, ên+1 − ên〉 ≤ 2‖(Ûn)2 + Ûnun + (un)2‖∞ · ‖ên‖2 · ‖ên+1 − ên‖2
≤ 6M2

0 ‖ên‖2 · ‖ên+1 − ên‖2

≤ γ0

2
‖ên‖22 +

18M4
0

γ0
‖ên+1 − ên‖22.(3.56)

As a consequence, a substitution of (3.52) and (3.56) into (3.50) gives

(3.57) −2〈(Ûn)3 − (un)3, ên+1〉 ≤ γ0

2
‖ên‖22 +

18M4
0

γ0
‖ên+1 − ên‖22.

Therefore, a substitution of (3.44)-(3.46), (3.49) and (3.57) into (3.43) results in

‖ên+1‖2−1,N − ‖ên‖2−1,N +A∆t(‖ên+1‖22 − ‖ên‖22)

+
(
A− 18M4

0

γ0

)
∆t‖ên+1 − ên‖22 +

(
2ε2(J ∗© 1)− 1− γ0

2

)
∆t‖ên+1‖22

≤ (1 +
γ0

2
)∆t‖ên‖22 + (1 +

C3

γ0
)∆t‖ên+1‖2−1,N + ∆t‖τn+1

2 ‖2−1,N .(3.58)

Under the constraint (3.2) for the regularization parameter A, and making use of
the diffusivity condition (1.8), we get

‖ên+1‖2−1,N − ‖ên‖2−1,N +A∆t(‖ên+1‖22 − ‖ên‖22) +
(

1 +
3γ0

2

)
∆t‖ên+1‖22

≤ (1 +
γ0

2
)∆t‖ên‖22 + (1 +

C3

γ0
)∆t‖ên+1‖2−1,N + ∆t‖τn+1

2 ‖2−1,N .(3.59)
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Subsequently, an application of discrete Gronwall inequality results in the desired
convergence estimate:

(3.60) ‖ên+1‖−1,N +
(
γ0∆t

n+1∑
k=1

‖êk‖22
)1/2

≤ C∗(∆t3 + hm),

due to the fact that ‖τk2 ‖−1,N ≤ C(∆t3 + hm), for k ≤ n+ 1.
Moreover, we have to recover the a-priori assumption (3.41) at time instant tn+1,

so that the analysis could be carried out in the induction style. An application of
an inverse inequality to the convergence estimate (3.60) implies that

‖ên+1‖∞ ≤
C‖ên+1‖−1,N

h2
≤ CC∗(∆t3 + hm)

h2
≤ C ′C∗(h3 + hm)

h2

≤ C4C
∗h3

h2
= C4C

∗h ≤ 1

2
, provided that h ≤ 1

2C4C∗
,(3.61)

in which we have used the linear refinement path constraint ∆t ≤ Ch, as well as
the fact that m ≥ 3. This completes the error estimate for ê, the numerical error
between the numerical solution φ and the constructed approximation solution Û .

Finally, the error estimate (3.3) is a direct consequence of the following identity

(3.62) ek = êk −∆tU1
∆t −∆t2U2

∆t,

which comes from the construction (3.7), as well as the fact that

(3.63) ‖(U1
∆t)

k‖2 ≤ C, ‖(U2
∆t)

k‖2 ≤ C, for any k ≥ 0.

The proof for Theorem 3.1 is completed.

3.3. Theoretical justification of the energy stability. It has been proved in
[11] that the energy stability for the numerical scheme (1.9) is valid under the
condition (1.10). In addition, the convergence analysis reveals that the ‖·‖∞ bound
(3.54) for the numerical solution is available as long as another constraint (3.2) for
A is valid, so that the convergence analysis could pass through. The following
corollary provides a theoretical justification of the energy stability.

Corollary 3.2. Under the assumptions of Theorem 3.1, the energy stability, namely,
EN (un+1) ≤ EN (un), is valid, under the following constraint for the regularization
parameter A:

(3.64) A ≥ max
{18M4

0

γ0
,

3

2
M2

0 −
1

2

}
, with M0 = 1 + max

1≤k≤Nk

‖ukN‖∞.

4. Concluding remarks

In this work, we present detailed error estimates for a first order stabilized
semi-implicit numerical scheme for the nonlocal Cahn–Hilliard equation, where the
Fourier pseudo-spectral method is used for the spatial discretization. We consider
the discrete H−1 norm for the error function to establish the convergence result,
which avoids the complicated analysis on the nonlinear term. In order to bound the
error function in the `∞ norm, we combine the standard technique for the conver-
gence analysis with a higher order consistency estimate to ensure the convergence
order high enough to use the inverse inequality. As a result of the `∞ boundness of
the error function, we derive the uniform `∞ bound of the numerical solution, and
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then, the energy stability of the numerical scheme, obtained in [11], is improved by
requiring a new assumption on the stabilizer.

It is worth mentioning that we use the higher order consistency analysis to pick
up only the temporal truncated error since the spatial spectral accuracy O(hm)
is sufficient as long as m is large enough. However, if one considers the lower
order spatial approximations, for instance, the finite difference and finite element
methods, the truncated error is usually of the order two and the higher order
consistency estimate is also necessary to pick up the spatial truncated error, see,
e.g., [22, 24] and references therein.
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