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Abstract

Unpredictable disruptive events significantly increase the difficulty of the management of

automobile supply chains. In this paper, we propose an automobile production planning problem

with component chips substitution in a finite planning horizon. The shortage of one chip can be

compensated by another chip of the same type with a higher-end feature at an additional cost.

Therefore, the automobile manufacturer can divert the on-hand inventory of chips to product

lines that are more profitable in the event of shortages caused by supply chain disruptions. To

cope with this, we propose a max-min robust optimization model that captures the uncertain

supplies of chips. We show that the robust model has an MIP equivalence that can be solved by

a commercial IP solver directly. We compare the max-min robust model with the corresponding

deterministic and two-stage stochastic models for the same problem through extensive numerical

experiments. The computational results show that the max-min robust model outperforms the

other two models in terms of the average and worst-case profits.
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1 Introduction

The last three decades have witnessed the development of automobile supply chains that are more

complex and more geographically dispersed than ever before (cf. Manuj and Mentzer, 2008; Grant,

2014; JLT, 2019). The drivers for such changes include: (i) the global nature of the major vehicle

manufacturers; (ii) the progressive breakdown of barriers to free trade around the world; (iii)

the increasingly competitive nature of the vehicle manufacturing business; and (iv) the increasing

complexity and variety of the vehicles.

These developments have led to an increase in lead times. Simultaneously, cost cutting pressures

have resulted in diminished attention to alternate sourcing so that in many situations the number

of suppliers capable to provide a given commodity has decreased. As a result, it is now not

uncommon even for crucial classes of commodities to be manufactured by a single supplier at a

limited number of facilities. This has led to some well publicized disruptions, such as the 1996 strike

at a brake supplier factory that resulted in the idling of twenty-six General Motors (GM) plants,

i.e., a shutdown of nearly all of the GM’s North American production (cf. WSJ, 2007). After

the terrorist attack on September 11, 2001, Ford Motor and Toyota Motor suffered severe oversea

supply transportation disruptions (cf. Sheffi and Rice, 2005). In December 2001, Land Rover had

to suspend the Discovery vehicles production due to the bankruptcy of UPF-Thompson, the only

supplier for chassis frames of Discovery (cf. Sheffi and Rice, 2005). As also evidenced by Wagner

et al. (2009), it may not be helpful to mitigate the adverse consequences of supply disruptions by

enriching the supplier portfolio because these suppliers are not independent to each other. Indeed,

disruptions of this type have been experienced in industries other than automobile (e.g., electronics,

aerospace), as the respective supply chains have undergone developments similar to those described

above for the automobile industry. For example, the great East Japan earthquake on March 11,

2011 and then the catastrophic flooding in Thailand in October 2011, both events led to a series

of disruptions on electronics supply chains that caused huge losses of many companies (cf. Zhang,

2011; Tokui et al., 2017).

The detailed description of the part logistics steps and the decision problems involved in the

automobile industry can be found in Boysen et al. (2015). Extensive literature exists about

supply chain disruptions, see Kleindorfer and Saad (2005), Sodhi et al. (2012), and the references

therein for qualitative studies, and Snyder et al. (2016) and the references therein for quantitative
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studies. Despite the vast volume of the studies, most of them adopt a conceptual framework with

empirical findings or a production/inventory optimization model that helps companies prepare for

and mitigate the adverse consequences caused by supply, demand, and cost disruptions, especially

in the area of automobile supply chain disruptions (cf. Tomlin, 2006; Wu et al., 2007; Thun and

Hoenig, 2011; MacKenzie et al., 2014; Matsuo, 2015; Simchi-Levi et al., 2015). A number of

authors have recently stressed the need for companies to pay more attention to the resiliency of

their supply chains; see, e.g., Christopher and Peck (2004), Sheffi and Rice (2005), Tang (2006),

and Ponomarov and Holcomb (2009). The resiliency may have impact on the competitiveness of

a firm and could influence its overall profit, especially when it faces disruptive events. Also at

a number of firms, efforts are under way to detect as early as possible events that may result in

supply chain disruptions (cf. Blackhurst et al., 2005; Qi et al., 2010). The cost of supply chain

disruptions could be tremendously high, which, if handled inadequately, can result in the inability

to serve the customer demand in time and the increase of substitution costs. Disruptions are,

however, often inherent and inevitable in a global supply chain context, especially for the automobile

industry which commonly pursues Just-in-Time (JIT) production enthusiastically. In this paper,

we consider the issue of optimally managing the consequences of a component commodity shortage

once a disruption has taken place in automobile supply chains.

The situation we model is the one where the shortage affects a class of commodities that are used

on several vehicle lines manufactured at different automobile assembly plants. For instance, the

shortage could be due to a major accident at a supplier production facility, e.g., a seat manufacturer.

Another possibility could be a situation where a large batch of work-in-process materials used to

produce a whole class of components (e.g., silicone wafers used in the production of engine control

chips) are found to be defective: this could easily result in supply shortages if production involves

long batch processes.

When a shortage due to supply chain disruptions occurs, it is possible to at least divert the

existing inventory to the product lines that are more profitable for the vehicle manufacturer. In

situations involving a whole class of commodities such as silicone chips, it may also be possible for

certain types of chips to be used for functions for which they were not originally intended. This

typically entails an added cost because chips with higher-end features can be used for low end

applications and not vice versa.
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The parts experiencing shortages may not be very deeply embedded in the final product. If this

is the case, the vehicle manufacturer may consider continuing vehicle production and holding the

vehicles until the missing parts become available and can be installed. This option, however, can

become too costly especially in the case of a prolonged shortage. This is because of the cost and the

logistics difficulties of storing a large number of finished vehicles. Furthermore, the negative effect

on customer demand of first withholding and later releasing a large number of vehicles of the same

type has to be kept into account. Finally, it should be noted that while the operation of installing

the missing parts may have been easy to perform in the assembly plant, retrofitting may be an

altogether different matter (cf. Boysen et al., 2015). Therefore, here we consider a situation where

the only decision to be made is to choose the plants (or the lines of products) where production

will be continued and the shortages are substituted by other alternatives that will not influence the

function of the vehicle.

Motivated by these issues, we are going to study a production planning problem with compo-

nent parts substitution (PPCPS). In the PPCPS, we are given a fixed planning horizon which is

represented by a finite set of discrete time periods, a finite set of vehicle model lines, and a finite

set of component part types, each of which contains a finite set of component parts in which a

higher-end chip can be used to substitute a lesser one. In each time period, the automobile manu-

facturer targets a minimum market demand and has a production capacity for each vehicle model.

The manufacturer obtains a unit revenue by producing each unit of a vehicle model in each time

period. The contracted suppliers can supply the manufacturer with an amount of each chip of each

type at the beginning of each time period. This amount is possibly subject to uncertainty due to

disruptions. If necessary, the manufacturer can also receive the supply of each chip of each type

from the emergency supply channel in the market and the supply amount is assumed to be always

enough in each time period. In addition, there is an initial inventory for each chip of each type at

the beginning of the planning horizon. The production of each unit of a vehicle model consumes a

certain amount of each chip of each type. Four types of costs are considered in this problem:

• Substitution costs. When a chip with a higher-end feature is used to replace a lesser chip of

the same type, a substitution cost incurs for such a replacement.

• Inventory holding costs. Each chip of each type, which is not used in the current time period
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and will be carried over to the next time period, incurs an inventory holding cost at a constant

rate.

• Acquisition costs. The manufacturer incurs a per unit acquisition cost for each chip of each

type provided by the contracted suppliers.

• Emergency supply costs. The manufacturer incurs a per unit emergency supply cost for each

chip of each type provided by the emergency suppliers.

The problem is to determine the optimal production plan for each vehicle model, and sourcing and

substitution of each chip of each type in each time period so as to maximize the total revenues

minus the total substitution, inventory holding, acquisition, and emergency supply costs over the

predetermined planning horizon.

In the PPCPS, supply chain disruptions could induce the uncertain supplies of automobile

component parts. Both stochastic programming and robust optimization are commonly adopted

to deal with mathematical optimization problems that involve input uncertainties. We refer to the

references, e.g., Birge and Louveaux (1997), Shapiro et al. (2009), on stochastic programming. For

the important developments on robust optimization, and its applications in inventory and supply

chain management, we refer to Ben-Tal et al. (2005), Ben-Tal et al. (2009), and the review article

of Bertsimas et al. (2011), and the references therein. In a more general perspective, the PPCPS is

related to process flexibility models by adding flexibility into resource provision, i.e., the availability

of capacity or materials that can be used for more than one downstream process/product. We refer

to Jordan and Graves (1995) and subsequent papers for the stream of research on process flexibility.

The rest of the paper is organized as follows. In Section 2, we first propose a deterministic

mixed-integer programming (MIP) model for the production planning problem with component

parts substitution. Based on the deterministic model, we construct a max-min robust model for

the PPCPS that captures uncertainties in the contracted supply of chips. We also show how to

derive the MIP equivalence of the robust model, which can be solved by a commercial MIP solver

directly. In Section 3, we conduct a set of numerical experiments to demonstrate the advantage of

the max-min robust model by comparing with the associated deterministic and two-stage stochastic

models. Finally, we conclude the paper in Section 4.
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2 Problem Description and Model Formulation

We start this section with the problem description and the development of the deterministic model

over a predetermined planning horizon. Built upon the deterministic model, we then proceed to

the max-min robust model that captures component parts supply uncertainties.

2.1 Deterministic Model

The production planning problem with component parts substitution (PPCPS) is optimized over

a pre-specified planning horizon. We assume that the planning horizon consists of T disjoint time

periods, which is denoted by T = {1, 2, . . . , T}. Without loss of generality, these time periods are

of equal length, each of which can represent a week. The production planning consists of a set of

vehicle models and a set of component chip types, which are denoted by M = {1, 2, . . . , M} and

N = {1, 2, . . . , N}, respectively. Each component chip type n ∈ N consists of a set of chips, which

is denoted by Pn = {1, 2, . . . , Pn}. The assembly of one vehicle model j requires an
ij units of chip i

of type n (denoted by (n, i)), i.e., the bill of material (BOM) ratio is an
ij for each i ∈ Pn and n ∈ N .

Each chip (n, i) with a higher-end feature can be used to replace chip (n, i′) with a relatively low-end

feature at a unit cost of cn
ii′t in each period t ∈ T for each component chip type n ∈ N and i, i′ ∈ Pn.

We assume that all the chips in Pn are ordered in such a way that chip (n, i) can substitute chip

(n, i′) if and only if i > i′, ∀i, i′ ∈ Pn, for each n ∈ N . We note that the PPCPS can be easily

generalized to accommodate any partial ordering of substitutability. We focus here on the more

common case of downward substitution, which allows for simpler notation. At the beginning of the

planning horizon, the initial inventory for chip (n, i) is yn
i0. At the beginning of each time period t,

the manufacturer receives an amount of supply of each chip (n, i) from its contracted suppliers and

this amount is denoted by sn
it. The unit acquisition cost of each chip (n, i) amounts to τn

it in each

period t. The manufacturer can also source each chip (n, i) from an emergency supply in the market

at the cost of δn
it per unit in each period t. We assume that there is adequate emergency supply of

each chip (n, i) in each period t. There is a constant inventory holding cost rate hn
it for each chip

(n, i) at each time period t. We note that such rates at the last period of the planning horizon,

i.e., hn
iT , can also be viewed as the unit salvage value of chip (n, i), for all i ∈ Pn and n ∈ N .

We assume that the manufacturer has a minimum market demand forecast of Djt, i.e., these units

have already been committed to customers, and a production capacity of Djt for each vehicle
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model j in each period t. Because normally the production capacity is set to be larger than the

forecasted minimum possible market demand, we can safely assume that the production capacity

is always bigger than the minimum market demand, i.e., Djt < Djt, ∀j ∈ M, t ∈ T . In addition,

we assume that the demand of each vehicle model not satisfied is lost and the market demand

of each vehicle model exists for as many vehicles as the manufacturer can possibly produce. The

manufacturer can accumulate rjt revenue from the assembly of each unit of vehicle model j in period

t. In each period, the manufacturer first receives the committed chip supplies from the contracted

suppliers, then operates the emergency chip supplies and chip substitutions, and organizes the

production based on the minimum demand forecast and the production capacity. The problem is

to simultaneously determine the optimal number of each vehicle model to assemble in each period

(which, in turn, determines the number of each chip of each type required in each period), the

optimal inventory level of each chip of each type at the end of each period, the optimal amount of

each chip of each type obtained from the emergency supply, and the optimal chip substitution plan

in each period, for which we define the following decision variables:

• xjt: integer variable representing the number of vehicle model j assembled in period t;

• dn
it: number of chip (n, i) required for assembly in period t;

• yn
it: inventory of chip (n, i) at the end of period t;

• en
it: number of chip (n, i) received from the emergency supply in period t;

• zn
ii′t: number of chip (n, i) used to substitute chip (n, i′) in period t for each pair (i, i′) such

that i > i′, i, i′ ∈ Pn.

The objective is to maximize the total revenues minus the total substitution, emergency supply,

inventory holding, and acquisition costs over the predetermined planning horizon, each of which

can be, respectively, formulated as follows:

• Total revenues:
T∑

t=1

M∑

j=1

rjtxjt;

• Substitution costs:
T∑

t=1

N∑

n=1

Pn∑

i=2

∑

i′:i>i′
cn
ii′tz

n
ii′t;
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• Emergency supply costs:
T∑

t=1

N∑

n=1

Pn∑

i=1

δn
ite

n
it;

• Inventory holding costs:
T∑

t=1

N∑

n=1

Pn∑

i=1

hn
ity

n
it;

• Acquisition costs:
T∑

t=1

N∑

n=1

Pn∑

i=1

τn
its

n
it.

We note that the contracted supply sn
it is a constant in the deterministic model, for each i ∈ Pn,

n ∈ N , and t ∈ T . Therefore, the acquisition cost
∑T

t=1

∑N
n=1

∑Pn
i=1 τn

its
n
it is a constant, which

is exogenous in our model development. Thus, we can ignore this cost component in the model

development. With these notations, the objective function can be formulated as follows:
T∑

t=1

M∑

j=1

rjtxjt −
T∑

t=1

N∑

n=1

Pn∑

i=2

∑

i′:i>i′
cn
ii′tz

n
ii′t −

T∑

t=1

N∑

n=1

Pn∑

i=1

δn
ite

n
it −

T∑

t=1

N∑

n=1

Pn∑

i=1

hn
ity

n
it.

In each period, we should have the number of each chip of each type required for assembly

across all the vehicle models balance constraint, i.e.,
M∑

j=1

an
ijxjt = dn

it, ∀i ∈ Pn, n ∈ N , t ∈ T . (1)

The number of each vehicle model assembled should be within the range of the minimum market

demand forecast and the production capacity of it in each period, i.e.,

Djt ≤ xjt ≤ Djt, ∀j ∈M, t ∈ T . (2)

For each chip of each type in each time period, we have the flow conservation constraint for the

chips, i.e.,

yn
it − yn

it−1 + dn
it +

∑

i>i′
zn
ii′t −

∑

i′>i

zn
i′it = sn

it + en
it, ∀i ∈ Pn, n ∈ N , t ∈ T . (3)

Finally, we have the non-negativity and integrality requirements for all the decision variables, i.e.,

xjt, d
n
it, e

n
it, y

n
it, z

n
ii′t ∈ Z+, ∀i > i′, i, i′ ∈ Pn, n ∈ N , j ∈M, t ∈ T , (4)

where Z+ represents the set of non-negative integers. To this end, the deterministic model of the

PPCPS becomes:

Maximize
T∑

t=1

M∑

j=1

rjtxjt −
T∑

t=1

N∑

n=1

Pn∑

i=2

∑

i′:i>i′
cn
ii′tz

n
ii′t −

T∑

t=1

N∑

n=1

Pn∑

i=1

δn
ite

n
it −

T∑

t=1

N∑

n=1

Pn∑

i=1

hn
ity

n
it

subject to (1), (2), (3), (4).

(5)
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We next show that dn
it, en

it, yn
it, and zn

ii′t in (4) can be relaxed to be continuous variables, i.e.,

xjt ∈ Z+, dn
it, e

n
it, y

n
it, z

n
ii′t ≥ 0, ∀i > i′, i, i′ ∈ Pn, n ∈ N , j ∈M, t ∈ T , (6)

and we can obtain the following equivalent formulation (7).

Maximize
T∑

t=1

M∑

j=1

rjtxjt −
T∑

t=1

N∑

n=1

Pn∑

i=2

∑

i′:i>i′
cn
ii′tz

n
ii′t −

T∑

t=1

N∑

n=1

Pn∑

i=1

δn
ite

n
it −

T∑

t=1

N∑

n=1

Pn∑

i=1

hn
ity

n
it

subject to (1), (2), (3), (6).

(7)

Theorem 1 Formulation (5) is equivalent to formulation (7).

The proof of Theorem 1 is presented in Appendix A.1. Although formulation (7) significantly

reduces the number of general non-negative integer variables, it is still a very challenging problem.

As a matter of fact, it is NP-hard even when it is simplified to the single-period single-chip of

single-type problem without considering the inventory holding cost. The proof of it is presented in

Appendix A.2.

Theorem 2 The deterministic model, i.e., formulation (7), is NP-hard even if T = 1, N = 1,

Pn = 1, and h1
11 = 0.

2.2 Two-Stage Stochastic Model

In practice, it is hard to follow the deterministic model that assumes all the inputs are known a

priori. Because disruptive events are usually unpredictable, these can result in the random supply

of each chip of each type. In this part, we define a two-stage stochastic programming model to

capture this uncertainty based on the deterministic model.

The two-stage stochastic programming model is a two-stage model, for which the decisions in

the deterministic model is separated into two stages. The first stage concerns with the number of

each vehicle model j assembled in each planning period, i.e., xjt, for each j ∈M and t ∈ T . All the

input parameters associated with the first stage are assumed to be known as in the deterministic

model, i.e., rjt, Djt, and Djt for each j ∈ M and t ∈ T . The second stage includes the rest of

the decisions and parameters in the deterministic model, in which we consider the following input

uncertainty:
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• s̃n
it: Random supply of chip i of type n in period t, for all i ∈ Pn, n ∈ N , and t ∈ T .

The exact value of s̃n
it will not be realized until the second stage. For ease of exposition, we use the

uncertain vector s̃n to represent s̃n
it for all i ∈ Pn and t ∈ T .

The first stage decision variables represent the decisions that are implemented before the real-

ization of the uncertain parameters in the second stage. Furthermore, constraint (2) and the subset

of constraint (4) that only involves the first stage decision variables correspond to the constraints

in the first stage. All of the parameters that associate with the first stage decision variables and

the first stage constraints are deterministic.

The remaining decision variables in the deterministic model, which exclude the first stage de-

cision variables, are referred to as the second stage decision variables. Similarly, the remaining

constraints in the deterministic model, which exclude the first stage constraints, are the second

stage constraints. We note that the uncertain parameters s̃n only appear in the right-hand-side of

the second stage constraints. All the other parameters are independent of the uncertain parameters

s̃n. All of the first stage decision variables have nonzero coefficients in the second stage constraints.

They connect the first and second stages, which reflect how the first stage decisions directly affect

the second stage decisions.

The second stage decisions are made after implementing the first stage decisions and observing

the realized values of the uncertain parameters in the second stage. In other words, the values

of the second stage decision variables depend on the values of the first stage decision variables as

well as the realized values of the second stage uncertain parameters. To this end, the two-stage

stochastic model that maximizes the first stage revenue minus the expectation of the second stage

cost among all realizations of s̃n for the PPCPS can be formulated as follows:

max
T∑

t=1

M∑

j=1

rjtxjt −
N∑

n=1

Es̃n [Qn(x, s̃n)]

s.t. Djt ≤ xjt ≤ Djt, ∀j ∈M, t ∈ T ,

xjt ∈ Z+, ∀j ∈M, t ∈ T ,

(8)
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where

Qn(x, s̃n) = min
T∑

t=1

Pn∑

i=2

∑

i′:i>i′
cn
ii′tz

n
ii′t +

T∑

t=1

Pn∑

i=1

δn
ite

n
it +

T∑

t=1

Pn∑

i=1

hn
ity

n
it

s.t.
M∑

j=1

an
ijxjt = dn

it, ∀i ∈ Pn, t ∈ T ,

yn
it − yn

it−1 + dn
it +

∑

i>i′
zn
ii′t −

∑

i′>i

zn
i′it = s̃n

it + en
it, ∀i ∈ Pn, t ∈ T ,

dn
it, e

n
it, y

n
it, z

n
ii′t ≥ 0, ∀i > i′, i, i′ ∈ Pn, t ∈ T .

(9)

For ease of exposition, we rewrite the two-stage stochastic model (8-9) in a compact form as

follows:

max cT
1 x−

N∑

n=1

Eb̃n
2
[Qn(x, b̃n

2 )]

s.t. A1x ≤ b1,

x ∈ Z+,

(10)

where
Qn(x, b̃n

2 ) = min cn
2

T yn

s.t. An
2x + Bnyn = b̃n

2 ,

yn ≥ 0,

(11)

where the vector of the first stage decision variables and the cost coefficient vector corresponding

to the first stage decision variables are denoted by x and c1, respectively. The constraints that only

involve the first stage decision variables are represented by A1x ≤ b1. All the first stage parameters

are deterministic. The second stage decision variables and the associated cost coefficients are

denoted by vectors yn and cn
2 , respectively, for all n ∈ N . The second stage constraints are

represented by An
2x + Bnyn = b̃n

2 for each n ∈ N . The uncertain parameters b̃n
2 only appear in

the right-hand-side of the second stage constraints, whereas An
2 , Bn, and cn

2 are deterministic. The

specific distribution of b̃n
2 is required so as to compute the expectation. In most cases, a finite

number of scenarios, e.g., bn1
2 , bn2

2 , . . . , bnKn
2 , are considered, and each of them happens with the
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probability pn
k ,∀k = 1, 2, . . . , Kn. Then model (10-11) can be rewritten as

max cT
1 x−

N∑

n=1

Kn∑

k=1

pn
kcn

2
T ynk

s.t. A1x ≤ b1,

x ∈ Z+,

An
2x + Bnynk = bnk

2 , ∀n ∈ N , k = 1, 2, . . . , Kn,

ynk ≥ 0, ∀n ∈ N , k = 1, 2, . . . , Kn.

(12)

Although (12) has been widely applied in various problems, the main difficulty to implement this

scenario-based approach is how to select the scenarios and calculate the probability for each scenario.

2.3 Max-Min Robust Model

The max-min robust model that we will define in this part is developed in the same way as the

two-stage stochastic model except that we consider that the uncertain vector s̃n can take any value

in an uncertainty set U∫n and the max-min robust model maximizes the first stage revenue minus

the worst-case second stage cost among all realizations of s̃n ∈ U∫n for each n ∈ N . Thus, the

max-min robust model for the PPCPS can be formulated as follows:

max
T∑

t=1

M∑

j=1

rjtxjt −
N∑

n=1

max
s̃n∈U∫n

[Qn(x, s̃n)]

s.t. Djt ≤ xjt ≤ Djt, ∀j ∈M, t ∈ T ,

xjt ∈ Z+, ∀j ∈M, t ∈ T ,

(13)

where

Qn(x, s̃n) = min
T∑

t=1

Pn∑

i=2

∑

i′:i>i′
cn
ii′tz

n
ii′t +

T∑

t=1

Pn∑

i=1

δn
ite

n
it +

T∑

t=1

Pn∑

i=1

hn
ity

n
it

s.t.
M∑

j=1

an
ijxjt = dn

it, ∀i ∈ Pn, t ∈ T ,

yn
it − yn

it−1 + dn
it +

∑

i>i′
zn
ii′t −

∑

i′>i

zn
i′it = s̃n

it + en
it, ∀i ∈ Pn, t ∈ T ,

dn
it, e

n
it, y

n
it, z

n
ii′t ≥ 0, ∀i > i′, i, i′ ∈ Pn, t ∈ T .

(14)

Suppose that we know the lower bound snL
it , the upper bound snU

it , and the most likely value

snM
it for each uncertain supply s̃n

it, ∀i ∈ Pn, n ∈ N , t ∈ T . Without loss of generality, we suppose

12



snL
it < snM

it < snU
it for each i ∈ Pn, n ∈ N , t ∈ T . For each s̃n

it, we measure its deviation from the

most likely value snM
it by ηn

it ∈ [0, 1] which is defined as follows:

ηn
it =





(snM
it − s̃n

it)/(snM
it − snL

it ), if s̃n
it ≤ snM

it

(s̃n
it − snM

it )/(snU
it − snM

it ), if s̃n
it > snM

it

∀i ∈ Pn, n ∈ N , t ∈ T . (15)

Based on the deviation measurement ηn = [ηn
11, η

n
12, . . . , η

n
PnT ]T defined in (15), we define the

uncertainty set U∫n for each n ∈ N as follows:

U∫n =





s̃n ∈ RPn×T

∣∣∣∣∣∣∣∣∣∣

ηn
it =





(snM
it − s̃n

it)/(snM
it − snL

it ), if s̃n
it ≤ snM

it

(s̃n
it − snM

it )/(snU
it − snM

it ), if s̃n
it > snM

it

∀i ∈ Pn, t ∈ T ,

s̃n
it ∈ [snL

it , snU
it ] ∀i ∈ Pn, t ∈ T ,

∑
i∈Pn

∑
t∈T ηn

it ≤ 1





.

(16)

Proposition 1 shows that the uncertainty set U∫n is a bounded polytope and completely char-

acterizes the extreme points of it. The proof of Proposition 1 is presented in Appendix A.3.

Proposition 1 Define snuvw = [snuvw
11 , snuvw

12 , . . . , snuvw
PT ]T , u = 1, 2, . . . , Pn, v = 1, 2, . . . , T, w =

1, 2, such that

snuvw
it =





snL
it , if i = u, t = v,

snM
it , otherwise,

∀i ∈ Pn, t ∈ T , if w = 1,

and

snuvw
it =





snU
it , if i = u, t = v,

snM
it , otherwise,

∀i ∈ Pn, t ∈ T , if w = 2.

The extreme points of the uncertainty set U∫n are {snuvw : u = 1, 2, . . . , Pn, v = 1, 2, . . . , T, w =

1, 2}.

For ease of exposition, we rewrite the max-min robust model (13-14) in a compact form as

follows:

max cT
1 x−

N∑

n=1

max
s̃n∈U∫n

[Qn(x, s̃n)]

s.t. A1x ≤ b1,

x ∈ Z+,

(17)

13



where
Qn(x, s̃n) = min cn

2
T yn

s.t. An
2x + Bnyn = s̃n,

yn ≥ 0.

(18)

where x, yn, c1, cn
2 , A1, An

2 , Bn, and b1 are those that are defined in the development of the

two-stage stochastic model (10-11).

Given the values of x and s̃n, by taking the dual of (18), we have

Qn(x, s̃n) = max (s̃n −An
2x)T λn

s.t. BnT λn ≤ cn
2 .

Therefore, maxs̃n∈U∫n [Qn(x, s̃n)] = max{(s̃n − An
2x)T λn|s̃n ∈ U∫n , BnT λn ≤ cn

2}. As a result, (17)

can be rewritten as:

max cT
1 x−

N∑

n=1

max{(s̃n −An
2x)T λn|s̃n ∈ U∫n , BnT λn ≤ cn

2}

s.t. A1x ≤ b1,

x ∈ Z+.

(19)

Theorem 3 shows that Model (19) has a linear MIP equivalence. The proof of it is presented in

Appendix A.4.

Theorem 3 Model (19) with the uncertainty set U∫n defined in (16) has an equivalent linear MIP

formulation as follows.

max cT
1 x−∑N

n=1 zn

s.t. A1x ≤ b1,

x ∈ Z+,

zn ≥ cn
2

T ynuvw, ∀u ∈ Pn, n ∈ N , v ∈ T , w = 1, 2,

An
2x + Bnynuvw = snuvw, ∀u ∈ Pn, n ∈ N , v ∈ T , w = 1, 2,

ynuvw ≥ 0, ∀u ∈ Pn, n ∈ N , v ∈ T , w = 1, 2.

(20)

For any n ∈ N , the uncertainty set U∫n in (16) considers the case that the total deviation of the

supplies s̃n
it for all i and t does not exceed 1. As a generalization, we can consider the case that the

14



total deviation is bounded by a given parameter Γ, which leads to the following uncertainty set:

U∫n =





s̃n ∈ RPn×T

∣∣∣∣∣∣∣∣∣∣

ηn
it =





(snM
it − s̃n

it)/(snM
it − snL

it ), if s̃n
it ≤ snM

it

(s̃n
it − snM

it )/(snU
it − snM

it ), if s̃n
it > snM

it

∀i ∈ Pn, t ∈ T ,

s̃n
it ∈ [snL

it , snU
it ] ∀i ∈ Pn, t ∈ T ,

∑
i∈Pn

∑
t∈T ηn

it ≤ Γ





.

(21)

U∫n in (21) remains a polytope, but the number of its extreme points grows exponentially in

Γ. Therefore, the robust model (19) cannot be equivalently reformulated as a compact MIP. In

response, we propose the following cutting plane algorithm to solve model (19) with the uncertainty

set U∫n defined in (21).

Step 0. For any n ∈ N , choose a finite set U ′∫n such that U ′∫n ⊆ U∫n .

Step 1. Solve the following master problem

max cT
1 x−∑N

n=1 zn

s.t. A1x ≤ b1,

x ∈ Z+,

zn ≥ cn
2

T yn(sn), ∀n ∈ N , sn ∈ U ′∫n ,

An
2x + Bnyn(sn) = sn, ∀n ∈ N , sn ∈ U ′∫n ,

yn(sn) ≥ 0, ∀n ∈ N , sn ∈ U ′∫n

to obtain an optimal solution (x̄, z̄n, ȳn(sn)) for all n ∈ N and sn ∈ U ′∫n .

Step 2. For any n ∈ N , solve the following separation problem

ẑn = max
s̃n∈U∫n

Qn(x̄, s̃n)

to obtain the optimal value ẑn and an optimal solution ŝn. If ẑn > z̄n, add ŝn to the set U ′∫n .

Step 3. If ẑn ≤ z̄n for all n ∈ N , x̄ is an optimal first-stage solution to the robust model (19);

otherwise, go to Step 2.

Note that the robust model (19) is equivalent to

max cT
1 x−∑N

n=1 zn

s.t. A1x ≤ b1,

x ∈ Z+,

zn ≥ Qn(x, s̃n), ∀n ∈ N , s̃n ∈ U∫n ,

15



while the master problem in Step 1 is equivalent to

max cT
1 x−∑N

n=1 zn

s.t. A1x ≤ b1,

x ∈ Z+,

zn ≥ Qn(x, s̃n), ∀n ∈ N , s̃n ∈ U ′∫n ,

which is a relaxation of the original robust model. The solution obtained in Step 1 is feasible to

the original model if and only if

z̄n ≥ max
s̃n∈U∫n

Qn(x̄, s̃n)

for all n ∈ N . Therefore, we need to solve the separation problem in Step 2. Note that Qn(x̄, s̃n)

is defined as a minimization problem in (18). Thus, the separation problem itself is a max-min

problem. If we consider the dual of (18), then the separation problem can be written as

max (s̃n −An
2x)T λn

s.t. BnT λn ≤ cn
2 ,

s̃n ∈ U∫n ,

which has a non-linear objective function. The following theorem shows that the separation problem

in Step 2 has an equivalent linear MIP formulation. For notational simplicity, we use Kn to denote

the number of columns in the matrix Bn. Then yn is a Kn× 1 vector of decision variables. Let Bn
k

be the kth column of the matrix Bn. The proof of it is given in Appendix A.5.

Theorem 4 For any n ∈ N and any feasible first-stage solution x,

maxs̃n∈U∫n Qn(x̄, s̃n) = max cn
2

T yn

s.t. An
2x + Bnyn = s̃n,

0 ≤ cn
2 −Bn

k
T λn ≤ Mζn

k , ∀k ∈ {1, 2, . . . , Kn},
0 ≤ yn

k ≤ M(1− ζn
k ), ∀k ∈ {1, 2, . . . , Kn},

ζn
k ∈ {0, 1}, ∀k ∈ {1, 2, . . . , Kn},

ηn
it ≥ (snM

it − s̃n
it)/(snM

it − snL
it ), ∀i ∈ Pn, t ∈ T ,

ηn
it ≥ (s̃n

it − snM
it )/(snU

it − snM
it ), ∀i ∈ Pn, t ∈ T ,

s̃n
it ∈ [snL

it , snU
it ], ∀i ∈ Pn, t ∈ T ,

∑
i∈Pn

∑
t∈T ηn

it ≤ Γ,

where M is a sufficiently large number.
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3 Computational Results

The purpose of this section is to compare the performance of the max-min robust model with those

of the deterministic and two-stage stochastic models proposed in Section 2. We first describe how

we generate the test instances and the implementation procedure of the experiments. We then

demonstrate that the max-min robust model outperforms the other two models in both optimal-

ity and robustness through extensive numerical experiments. All the randomly generated MIP

instances are solved by the CPLEX 12.4 MIP solver. All the test instances are implemented on a

Dell workstation with 3.20 GHz Intel i7 CPU and 16G memory. The maximum CPU time needed

among all the instances solved does not exceed 3,600 seconds. Because the models are proposed

to make the strategic production decision for each future period, one hour solution time will not

discount the potential practical usefulness of the proposed models.

3.1 Instance Generation

In this part, we describe how we generate the inputs in each numerical experiment. We use U(a, b)

and U(∆) to denote a uniform distribution in the closed interval [a, b] and a discrete uniform

distribution that takes values in the finite set ∆, respectively. In addition, we use N(µ, σ) to

represent a normal distribution with mean µ and standard deviation σ. Then, we use N(µ, σ, a, b)

to represent a truncated normal distribution that is based on N(µ, σ), in which [a, b] specifies the

truncation interval. Furthermore, we use T (a, b, c) to denote a triangular distribution with lower

bound a, most likely value b, and upper bound c.

3.1.1 Planning Horizon, Time Periods, Type of Vehicles, Capacities, and Demands

We assume that the automobile manufacturer has a fixed planning horizon. In each week of the

planning horizon, the top management of the automobile manufacturer determines the minimum

target market demand and the assembly line capacity for each vehicle type. Therefore, the length

of one period is set to be one week. We generate the number of time periods, the number of vehicle

types, and the minimum target demand and the production capacity of each vehicle type of each

time period as follows.

• Number of time periods: We set the number of time periods T ∈ {2, 4, 6, 8, 10, 12, 16, 20, 24};
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• Vehicle types: We generate the number of vehicle types M ∼ U({3, 5, 10});

• Minimum demand: We generate the minimum target market demand of each vehicle type at

each time period as Djt ∼ U({0, 1, . . . , 1000}), ∀j ∈M, t ∈ T ;

• Production capacity: We generate the production capacity of each vehicle type at each time

period as Djt = 5000(1 + φjt) where φjt ∼ U(−0.2, 0.2) for each j ∈M, t ∈ T .

3.1.2 Type of Chips, Number of Chips of Each Type, BOM Ratio, and Initial Inven-

tory

We generate the number of chip types, the number of chips of each type, the BOM ratio of each

chip of each type for each vehicle type, and the initial inventory level of each chip of each type as

follows.

• Chip types: We generate the number of chip types N ∼ U({3, 5, 7});

• Number of chips of each type: We generate the number of chips of each type Pn ∼ U({3, 4, 5}),
∀n ∈ N ;

• BOM ratio: We generate the BOM ratio an
ij ∼ U({1, 2, 3, 4}), ∀i ∈ Pn, n ∈ N , j ∈M;

• Initial inventory: We implement with three sets of initial inventory levels, i.e., high, medium,

and low. We let ξn
i0 ∼ U(−0.2, 0.2), ∀i ∈ Pn, n ∈ N . The generation of high, medium,

and low initial inventory levels corresponds to yn
i0 ∼ 5000(1 + ξn

i0), yn
i0 ∼ 2500(1 + ξn

i0), and

yn
i0 ∼ 100(1 + ξn

i0), respectively, ∀i ∈ Pn, n ∈ N .

3.1.3 Supplies of Chips

The numerical experiments adopt two approaches to generate the supplies of chips, i.e., an autore-

gressive chip supply value approach and a healthy level of the chip supply chain approach.

The first approach is based on the AR(1) model. Suppose that {s̃n
it,∀i ∈ Pn, t ∈ T } are

independent across n. The following notations are employed to define the joint distribution for

{s̃n
it,∀i ∈ Pn, t ∈ T } used in our numerical experiments. First, for any i ∈ Pn, we generate µn

i and

σn
i uniformly in the intervals [5000, 15000] and [1000, 3000], respectively. These two parameters
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denote the mean and standard deviation of s̃n
it for all t ∈ T , respectively. For any i, j ∈ Pn, let αn

ij

be a number uniformly generated in [0, 1]. Let εn
jt for all j ∈ Pn and t ∈ T denote independent

standard normal random variables. In addition, let ρn be a number generated uniformly in [0.2, 0.8].

The joint distribution for {s̃n
it,∀i ∈ Pn, t ∈ T } is defined as follows.

• Consider t = 1. For any i ∈ Pn, let

s̃n
i1 = µn

i + σn
i

∑
j∈Pn

αn
ijε

n
j1√∑

j∈Pn
(αn

ij)2
. (22)

It is straightforward to see that {s̃n
i1,∀i ∈ Pn} follows a multivariate normal distribution

where E[s̃n
i1] = µn

i for all i ∈ Pn, V ar(s̃n
i1) = (σn

i )2 for all i ∈ Pn, and

Cov(s̃n
i1, s̃

n
i′1) = E





σn

i

∑
j∈Pn

αn
ijε

n
j1√∑

j∈Pn
(αn

ij)2





σn

i′

∑
j∈Pn

αn
i′jε

n
j1√∑

j∈Pn
(αn

i′j)
2







= σn
i σn

i′

∑
j∈Pn

∑
j′∈Pn

E[αn
ijε

n
j1α

n
i′j′ε

n
j′1]√∑

j∈Pn
(αn

ij)2
√∑

j∈Pn
(αn

i′j)
2

= σn
i σn

i′

∑
j∈Pn

αn
ijα

n
i′j√∑

j∈Pn
(αn

ij)2
√∑

j∈Pn
(αn

i′j)
2

for any i, i′ ∈ Pn.

• Consider t = 2, 3, . . . , T . For any i ∈ Pn, let

s̃n
it = ρns̃n

i,t−1 + (1− ρn)µn
i +

√
1− (ρn)2 · σn

i

∑
j∈Pn

αn
ijε

n
jt√∑

j∈Pn
(αn

ij)2
. (23)

We can see that s̃n
it follows an AR(1)-process. Furthermore, {s̃n

it,∀i ∈ Pn} follows a multi-

variate normal distribution where E[s̃n
it] = µn

i for all i ∈ Pn, V ar(s̃n
it) = (σn

i )2 for all i ∈ Pn,

and

Cov(s̃n
it, s̃

n
i′t) = E





ρn(s̃n

i,t−1 − µn
i ) +

√
1− (ρn)2 · σn

i

∑
j∈Pn

αn
ijε

n
jt√∑

j∈Pn
(αn

ij)2




×

ρn(s̃n

i′,t−1 − µn
i′) +

√
1− (ρn)2 · σn

i′

∑
j∈Pn

αn
i′jε

n
jt√∑

j∈Pn
(αn

i′j)
2







= (ρn)2ρn
i′Cov(s̃n

i,t−1, s̃
n
i′,t−1) + (1− (ρn)2)Cov(s̃n

i1, s̃
n
i′1) = Cov(s̃n

i1, s̃
n
i′1)

for any i, i′ ∈ Pn.
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Based on the joint distribution for {s̃n
it,∀i ∈ Pn, t ∈ T } defined above, we generate the forecasted

supply and the realized supply as follow.

• Forecasted supply: For each test instance, we generate 100 random samples according to (22)

and (23) for each n ∈ N . Let snL
it , snM

it , and snU
it be the minimum, average, and maximum of

the 100 samples, respectively, for each i ∈ Pn and t ∈ T . The three models are implemented

by (i) The deterministic model: We replace sn
it with snM

it . (ii) The stochastic model: For each

n ∈ N , we consider 100 scenarios, i.e., Kn = 100, ∀n ∈ N . Each scenario is sampled by

T (snL
it , snM

it , snU
it ) for all i ∈ Pn and t ∈ T . We assume pn

k = 0.01, ∀k ∈ {1, 2, . . . , 100}. (iii)

The robust model: For each n ∈ N , the uncertainty set U∫n is defined using (snL
it , snM

it , snU
it )

for all i ∈ Pn and t ∈ T .

• Realized supply: We generate 1,000 realizations of s̃n
it using (22) and (23).

The generated supply parameters are then truncated to [0,∞) to ensure that the supplies are

always nonnegative.

In the second approach, we introduce a parameter H̃ that represents the healthy level of the

chip supply chain. H̃ is assumed to be uniformly distributed in [0, 1]. s̃n
it is set to

s̃n
it = an

i H̃ + b̃n
it, (24)

where an
i > 0 is a given parameters and b̃n

it is a random variable independent across t and (n, i).

Thus, conditional on the supply chain health H̃, the chip supplies are independent random variables.

For example, the outbreak of COVID-19 can be viewed as a scenario where the health level H̃ is

very low. This would generally reduce the supplies of all chips during the planning horizon, i.e., s̃n
it

for all t and (n, i) are very likely to take small values. As an
i > 0, (24) obviously leads to such a

result. In this study, an
i is generated uniformly in [0.2, 2]. b̃n

it is normally distributed with mean µb,i
n

and standard deviation σb,i
n drawn uniformly from the intervals [0, 1] and [1, 10], respectively. As

in the AR(1)-based first approach, we can generate the forecasted and realized supplies according

to (24). These generated supplies are also truncated to [0,∞).

3.1.4 Revenues and Cost Parameters

The revenue and cost related parameters are generated as follows.
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• Unit revenue: We generate rjt = (1 + ϑjt)j × 105, where ϑjt ∼ U(−0.1, 0.1), ∀j ∈M, t ∈ T ;

• Unit substitution cost: We generate cn
ii′t = (i − i′)(1+θn

ii′t) × 103, where θn
ii′t ∼ U(−0.1, 0.1),

∀i > i′, i, i′ ∈ Pn, n ∈ N , t ∈ T ;

• Emergency chip supply cost rate: We generate δn
it ∼ 2(1+εn

it)i×103, where εn
it ∼ U(−0.2, 0.2),

∀i ∈ Pn, n ∈ N , t ∈ T ;

• Inventory holding cost rate: We generate hn
it ∼ (1 + εn

it)i × 102, where εn
it ∼ U(−0.2, 0.2),

∀i ∈ Pn, n ∈ N , t ∈ T .

3.2 Numerical Experiments

In the numerical experiment, we generate 100 random instances for each time period length T that

correspond to the high, medium, and low initial inventory levels, respectively. For each instance,

each value of T , and each type of the initial inventory level, we compare the deterministic model

(7), the two-stage stochastic model (12), and the max-min robust model (20). We solve all the

instances to optimality and obtain the optimal first stage solution, i.e., the number of vehicle model j

assembled in period t for each j ∈M, t ∈ T , for each of the three models. For each of the first stage

decision variable solutions obtained in the implementation of the deterministic, two-stage stochastic,

and max-min robust models and each of the realizations, we solve the corresponding second stage

problem (9) and compute the cost of both the first and second stages for this realization.

For each model of each value of T and each type of the initial inventory level implemented, we

calculate the average and the minimum among the profits corresponding to the 1,000 realizations,

which are denoted by PAve
D and PMin

D for the deterministic model, PAve
S and PMin

S for the two-stage

stochastic model, PAve
R and PMin

R for the max-min robust model, respectively. We evaluate the

performances of the deterministic, two-stage stochastic, and max-min robust models based on the

comparison of the average and minimum profits because they approximate the expectation and the

worst-case profits associated with implementing the corresponding first stage solution under the

true distribution of the uncertain supplies of chips. The improvements of the max-min robust model

with respect to the deterministic and two-stage stochastic models in terms of the average profit are

calculated by PAve
R /PAve

D − 1 and PAve
R /PAve

S − 1, respectively. Similarly, the improvements of the
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max-min robust model with respect to the deterministic and two-stage stochastic models in terms

of the minimum profit are calculated by PMin
R /PMin

D − 1 and PMin
R /PMin

S − 1, respectively.

Figure 1: Improvement comparison: robust model with Γ = 1 vs. deterministic model (approach

I)

Figure 2: Improvement comparison: robust model with Γ = 1 vs. stochastic model (approach I)

Figures 1 & 2 illustrate the average improvements of the 100 instances in terms of the average

profit and the worst-case profit for different types of the initial inventory level using the first

approach to generate the forecasted supply. Figures 1 & 2 show that the max-min robust model

(Γ = 1) outperforms both the deterministic and two-stage stochastic models. In particular, the

worst-case and average profit improvements of the max-min robust model (Γ = 1) are 8.60% and

7.06% higher than those of the two-stage stochastic model, respectively, for the high initial inventory

level. These two improvements are 9.45% and 8.65%, respectively, for the medium initial inventory
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level. These two improvements increase to 10.77% and 9.66%, respectively, for the low initial

inventory level. When we compare the max-min robust model (Γ = 1) with the deterministic

model, these two improvements reach to 11.80% and 11.14%, respectively, for the high initial

inventory level. Similarly, these two improvements increase to 12.08% and 11.09%, respectively,

for the medium initial inventory level. For the low initial inventory level, the two improvements

further increase to 15.99% and 14.62%, respectively. The computational results show that the

improvements of the max-min robust model (Γ = 1) comparing with the deterministic model are

higher than those of the max-min robust model (Γ = 1) comparing with the two-stage stochastic

model. This translates directly into the fact that the two-stage stochastic model performs better

than the deterministic model. This is because the two-stage stochastic model considers the input

uncertainties, whereas the deterministic model completely ignores them. In addition, the max-min

robust model (Γ = 1) has a better improvement in terms of the worst-case profit than it in terms

of the average profit. This is due to the fact that the max-min robust model (Γ = 1) takes into

account the worst-case profit among all possible realizations within the uncertainty set. Moreover,

the max-min robust model (Γ = 1) performs better in terms of both the average and worst-case

profits when the initial inventory level decreases. Similar observations can be obtained from Figures

3 & 4 by comparing the robust model (Γ = PnT ) with the deterministic and the two-stage stochastic

models, respectively. Figures 5, 6, 7, & 8 exhibit similar results when we use the second approach

to generate the forecasted supply.

Figure 3: Improvement comparison: robust model with Γ = PnT vs. deterministic model (approach

I)
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Figure 4: Improvement comparison: robust model with Γ = PnT vs. stochastic model (approach

I)

Figure 5: Improvement comparison: robust model with Γ = 1 vs. deterministic model (approach

II)
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Figure 6: Improvement comparison: robust model with Γ = 1 vs. stochastic model (approach II)

Figure 7: Improvement comparison: robust model with Γ = PnT vs. deterministic model (approach

II)
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Figure 8: Improvement comparison: robust model with Γ = PnT vs. stochastic model (approach

II)

4 Conclusions

In this paper, we propose a max-min robust optimization approach for the production planning

problem with component parts substitution that arises from automobile supply chain disruptions.

The PPCPS is defined on a fixed planning horizon with multiple periods. The robust model of

the PPCPS is a two-stage profit maximization model that optimizes the decision on the number of

each vehicle model to assemble before the realization of the uncertain supplies of chips of each type

in each planning period. The decisions on the chip substitution, emergency sourcing, consumption,

and inventory flow are made after implementing the decision of the number of each vehicle model

to assemble and observing the realized values of the uncertain supplies of chips of each type in

each planning period. The uncertainty set for the possible realizations of the uncertain supply

of each chip of each type is a bounded polytope that is defined based on the lower bound, the

most likely value, and the upper bound of this uncertain parameter. The proposed robust model

protects against any disturbance of the uncertain parameter that falls into the uncertainty set. We

analyze the structural properties of the robust model and give its computationally tractable MIP

equivalence. We evaluate the performance of the proposed robust model by comparing it with the

corresponding deterministic and two-stage stochastic models for the same problem via extensive

numerical experiments. The computational results show that the average improvements of the
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robust model in comparison with the other two models are non-neglectable.
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Appendix A Proofs

A.1 Proof of Theorem 1

Proof: Firstly, because xjt is integral, dn
it must be integral by constraint (1). As shown in Figure 1,

constraint (3) is a standard network flow constraint that satisfies the totally unimodular property

(cf. Nemhauser and Wolsey, 1988). Thus, en
it, yn

it, and zn
ii′t correspond to integral flows in the

network.

A.2 Proof of Theorem 2

Proof: Consider the case with T = 1, N = 1, and P = 1. We let δ1
11 := maxj∈M

{
rj1

a1
1j

}
+ 1

so that the optimal emergency supply e1
11
∗ = 0. Then, the objective of formulation (7) becomes

∑
j∈M rj1xj1 − h1

11y
1
11. In addition, constraint (3) becomes y1

11 + d1
11 = s1

11 by further imposing

y1
10 = 0. This implies that d1

11 = s1
11 − y1

11 ≤ s1
11 by y1

11 ≥ 0. Due to this, constraint (1) becomes
∑M

j=1 a1
1jxj1 = d1

11 ≤ s1
11 in which s1

11 is a constant. Together with h1
11 = 0, formulation (7) is

reduced to the knapsack problem by further imposing Dj1 = 0 and Dj1 = 1 for all j ∈ M, which

proves the NP-hardness of the deterministic model.

A.3 Proof of Proposition 1

Proof: For any s̃n ∈ U∫n , consider ηn = [ηn
11, η

n
12, . . . , η

n
PnT ]T ∈ [0, 1]PnT . Let us define αn

uvw, u =

1, 2, . . . , Pn, v = 1, 2, . . . , T, w = 1, 2, such that

αn
uv1 =





ηn
uv + 1−‖ηn‖1

PnT
snU
uv −snM

uv

snU
uv −snL

uv
, if s̃n

uv ≤ snM
uv ,

1−‖ηn‖1
PnT

snU
uv −snM

uv

snU
uv −snL

uv
, if s̃n

uv > snM
uv ,

and

αn
uv2 =





1−‖ηn‖1
PnT

snM
uv −snL

uv

snU
uv −snL

uv
, if s̃n

uv ≤ snM
uv ,

ηn
uv + 1−‖ηn‖1

PnT
snM
uv −snL

uv

snU
uv −snL

uv
, if s̃n

uv > snM
uv .

Because ‖ηn‖1 =
∑Pn

i=1

∑T
t=1 ηn

it ≤ 1 by the definition in (15), we have αn
uvw ≥ 0, ∀u =
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1, 2, . . . , Pn, v = 1, 2, . . . , T, w = 1, 2. Furthermore,

Pn∑

u=1

T∑

v=1

2∑

w=1

αn
uvw =

Pn∑

u=1

T∑

v=1

(αn
uv1 + αn

uv2)

=
Pn∑

u=1

T∑

v=1

(
ηn

uv +
1− ‖ηn‖1

PnT

(
snU
uv − snM

uv

snU
uv − snL

uv

+
snM
uv − snL

uv

snU
uv − snL

uv

))

=
Pn∑

u=1

T∑

v=1

(
ηn

uv +
1− ‖ηn‖1

PnT

)
= 1

For any i ∈ Pn, t ∈ T , by the definition of snuvw, we have snit1
it = snL

it , snit2
it = snU

it , and

snuvw
it = snM

it , for any u 6= i, v 6= t. Therefore,

Pn∑

u=1

T∑

v=1

2∑

w=1

αn
uvwsnuvw

it = αn
it1s

nL
it + αn

it2s
nU
it + (1− αn

it1 − αn
it2)s

nM
it

= αn
it1s

nL
it + αn

it2s
nU
it + (1− ηn

it − 1−‖ηn‖1
PnT )snM

it .

If s̃n
it ≤ snM

it , adopting ηn
it = (s̃n

it − snM
it )/(snL

it − snM
it ), we have

2∑

w=1

Pn∑

u=1

T∑

v=1

αn
uvwsnuvw

it

=
(

ηn
it + 1−‖ηn‖1

PnT
snU
it −snM

it

snU
it −snL

it

)
snL
it + 1−‖ηn‖1

PnT
snM
it −snL

it

snU
it −snL

it
snU
it +

(
1− ηn

it − 1−‖ηn‖1
PnT

)
snM
it

= ηn
its

nL
it + 1−‖ηn‖1

PnT

(
snU
it −snM

it

snU
it −snL

it
snL
it + snM

it −snL
it

snU
it −snL

it
snU
it

)
+

(
1− ηn

it − 1−‖ηn‖1
PnT

)
snM
it

= ηn
its

nL
it + 1−‖ηn‖1

PnT snM
it +

(
1− ηn

it − 1−‖ηn‖1
PnT

)
snM
it

= ηn
its

nL
it + (1− ηn

it)s
nM
it

= s̃n
it−snM

it

snL
it −snM

it
snL
it + snL

it −s̃n
it

snL
it −snM

it
snM
it = s̃n

it.

Similarly, we can also obtain

2∑

w=1

Pn∑

u=1

T∑

v=1

αn
uvwsnuvw

it = s̃n
it, if s̃n

it > snM
it .

To this end, we have shown that any s̃n ∈ U∫n can be represented as a convex combination of

{snuvw : u = 1, 2, . . . , Pn, v = 1, 2, . . . , T, w = 1, 2}. We next show that any convex combination

of {snuvw : u = 1, 2, . . . , Pn, v = 1, 2, . . . , T, w = 1, 2} is in the set U∫n .

Consider αn
uvw ≥ 0 for any u = 1, 2, . . . , Pn, v = 1, 2, . . . , T, w = 1, 2 such that

∑2
w=1

∑Pn
u=1

∑T
v=1 αn

uvw =

1. Let s̃n =
∑2

w=1

∑Pn
u=1

∑T
v=1 αn

uvwsnuvw. For any i ∈ Pn, t ∈ T , the definition of snuvw gives rise

to
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s̃n
it =

Pn∑

u=1

T∑

v=1

2∑

w=1

αn
uvwsnuvw

it = αn
it1s

nL
it + αn

it2s
nU
it + (1− αn

it1 − αn
it2)s

nM
it .

If s̃n
it ≤ snM

it , (15) gives rise to

ηn
it = s̃n

it−snM
it

snL
it −snM

it
= αn

it1snL
it +αn

it2snU
it −(αn

it1+αn
it2)snM

it

snL
it −snM

it

<
αn

it1snL
it +αn

it2snL
it −(αn

it1+αn
it2)snM

it

snL
it −snM

it
= αn

it1 + αn
it2,

where the inequality follows from snL
it < snU

it and snL
it − snM

it < 0. Similarly, if s̃n
it > snM

it , we have

ηn
it = s̃n

it−snM
it

snU
it −snM

it
= αn

it1snL
it +αn

it2snU
it −(αn

it1+αn
it2)snM

it

snU
it −snM

it

<
αn

it1snU
it +αn

it2snU
it −(αn

it1+αn
it2)snM

it

snU
it −snM

it
= αn

it1 + αn
it2.

Therefore, we have ηn
it < αn

it1 + αn
it2 for any i ∈ Pn, t ∈ T . Because ηn

it ≥ 0 for any i ∈ Pn

and t ∈ T , it follows immediately that ‖ηn‖1 =
∑Pn

i=1

∑T
t=1 ηn

it <
∑Pn

i=1

∑T
t=1 αn

it1 + αn
it2 =

∑Pn
i=1

∑T
t=1

∑2
w=1 αn

itw = 1, which implies that s̃n ∈ U∫n .

So far we have shown that the uncertainty set U∫n is the convex hull of {snuvw : u = 1, 2, . . . , Pn, v =

1, 2, . . . , T, w = 1, 2}. We now proceed to show that {snuvw : u = 1, 2, . . . , Pn, v = 1, 2, . . . , T, w =

1, 2} are the extreme points of U∫n .

We note that snL
it < snM

it < snU
it for all i ∈ Pn and t ∈ T . Any snuvw where u = 1, 2, . . . , Pn, v =

1, 2, . . . , T, w = 1 cannot be represented as a convex combination of {snu′v′w : u′ = 1, 2, . . . , Pn, v′ =

1, 2, . . . , T, w = 1, 2, u′ 6= u, v′ 6= v}, because snuv1
uv = snL

uv < snM
uv ≤ snuvw for any u′ 6= u, v′ 6= v.

Similarly, any snuvw where u = 1, 2, . . . , Pn, v = 1, 2, . . . , T, w = 2 cannot be represented as a

convex combination of {snu′v′w : u′ = 1, 2, . . . , Pn, v′ = 1, 2, . . . , T, w = 1, 2, u′ 6= u, v′ 6= v}
either, so we complete the proof.

A.4 Proof of Theorem 3

Proof: In (19), if the value of λn is given, max{(s̃n − An
2x)T λn|s̃n ∈ U∫n , BnT λn ≤ cn

2} becomes

an LP. The optimal solution to this maximization problem can be attained at an extreme point of

U∫n , which is given by Proposition 1. Therefore, (19) with the uncertainty set U∫n is equivalent to

max cT
1 x−∑N

n=1 zn

s.t. A1x ≤ b1,

zn ≥ max
{

(snuvw −An
2x)T λn

∣∣BnT λn ≤ cn
2

}
, ∀u ∈ Pn, n ∈ N , v ∈ T , w = 1, 2,

x ∈ Z+.

(25)
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Moreover, the dual of max
{

(snuvw −An
2x)T λn

∣∣BnT λn ≤ cn
2

}
is

min cn
2

T ynuvw

s.t. An
2x + Bnynuvw = snuvw,

ynuvw ≥ 0.

Substituting into (25), we can obtain the linear MIP equivalence of (19) with the uncertain set U∫n

as (20).

According to the max-min approach, this model protects any change inside the uncertainty set

U∫n for all n ∈ N . That is, the total profit will never be below the optimal value of (20) as long as

s̃n ∈ U∫n for all n ∈ N .

A.5 Proof of Theorem 4

Proof: For any given s̃n ∈ U∫n , we have

Qn(x, s̃n) = cn
2

T yn

if yn and λn are feasible to the primal and dual problems, respectively, i.e.,

An
2x + Bnyn = s̃n, yn ≥ 0, and BnT λn ≤ cn

2 ,

and satisfy the complementary slackness conditions, i.e.,

(cn
2 −Bn

k
T λn)yn

k = 0, ∀k ∈ {1, 2, . . . , Kn}.

Let ζn
k be a binary variable such that ζn

k = 1 if and only if yn
k = 0. Then the complementary

slackness conditions can be written as

cn
2 −Bn

k
T λn ≤ Mζn

k and yn
k ≤ M(1− ζn

k ), ∀k ∈ {1, 2, . . . , Kn}.

Thus, Qn(x, s̃n) is equal to cn
2

T yn given that

An
2x+Bnyn = s̃n, 0 ≤ cn

2−Bn
k

T λn ≤ Mζn
k , 0 ≤ yn

k ≤ M(1−ζn
k ), and ζn

k ∈ {0, 1}, ∀k ∈ {1, 2, . . . , Kn}.

Also note that U∫n in (21) can be equivalently defined as

U∫n =





s̃n ∈ RPn×T

∣∣∣∣∣∣∣∣∣

ηn
it ≥ (snM

it − s̃n
it)/(snM

it − snL
it ), ∀i ∈ Pn, t ∈ T ,

ηn
it ≥ (s̃n

it − snM
it )/(snU

it − snM
it ), ∀i ∈ Pn, t ∈ T ,

s̃n
it ∈ [snL

it , snU
it ] ∀i ∈ Pn, t ∈ T ,

∑
i∈Pn

∑
t∈T ηn

it ≤ Γ





.

This immediately yields the desired result.
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