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Abstract 32 

An efficient two-stage heuristic approach is developed for solving the fleet management problem 33 

under time-varying demand. Stage 1 of the approach optimizes the vehicles’ utilization schedule. 34 

Continuous-time approximation is employed to yield a set of near-optimality conditions that can 35 

greatly reduce the solution space of this stage. Stage 2 then optimizes the vehicle purchase and 36 

retirement schedules. Numerical experiments showed that our approach outperformed a number of 37 

previous methods and commercial solvers by large margins in terms of solution quality, 38 

computational efficiency, or both. 39 

 40 

Keywords: vehicle fleet management; two-stage optimization; continuous-time approximation; 41 

first-order condition; time-varying demand 42 

  43 



 3 

1. Introduction 44 

Freight and passenger transport service providers operate vehicle fleets (e.g., trucks, buses, ships and 45 

aircrafts) of variable sizes to serve time-varying demands. Optimal decisions on fleet management are 46 

crucial for those service providers to minimize the overall purchase, operation, maintenance, and 47 

retirement costs of their fleets. These decisions pertain to: (i) when to purchase new vehicles and 48 

retire old ones; and (ii) how to utilize the fleet to meet forecasted demands. 49 

The fleet management problem under demand constraint belongs to the realm of “parallel replacement 50 

problems” in the literature (Vander Veen, 1985; Leung and Tanchoco, 1990; Jones et al., 1991; 51 

Karabakal et al., 1994). This class of problems aim to find the optimal replacement schedules (or 52 

more generally, the purchase and retirement schedules if the number of assets is not fixed) of assets 53 

(in our case, the vehicles) that minimize the total cost over a given planning horizon. The assets 54 

considered in these problems are interdependent due to budget constraints (Karabakal et al., 1994; Lee 55 

and Madanat, 2015; Lee et al., 2016; Zhang et al., 2017), economies of scale (Jones et al., 1991; 56 

Büyüktahtakın et al., 2014), demand constraints (Wu et al., 2003; Wu et al., 2005; Guerrero et al., 57 

2013; Guerrero, 2014; Seif et al., 2019; Shields et al., 2019), or combinations of the above 58 

(Büyüktahtakın and Hartman, 2016; Des-Bordes and Büyüktahtakın, 2017). 59 

The parallel replacement problems are known to be difficult to solve due to the large solution space 60 

(Vander Veen, 1985). As a result, heuristic approaches were often used instead of exact methods (e.g., 61 

Karabakal et al., 2000). Simplifying assumptions were also made to reduce the solution complexity. 62 

Specifically, many works assumed that an asset’s unit operation and maintenance (O&M) cost per 63 

period or per utilization unit (e.g., mile) was a constant (Li et al., 2018), or a function of the asset age 64 

(Wu et al., 2003, 2005; Redmer, 2009; Parthanadee et al., 2012; Yatsenko and Hritonenko, 2015; 65 

Abdi and Taghipour, 2018; Islam and Lownes, 2019) or maintenance type (Ngo et al., 2018). 66 

However, for vehicle assets, empirical studies have shown that their unit O&M costs depend rather on 67 

their cumulative mileages than on the above factors (CARB, 2008; Hartman and Tan 2014). Hence, in 68 

the fleet management problem, the vehicles’ utilization in terms of mileage (which is a continuous 69 

variable), or the mileage-based demand assignment to the vehicles, must be jointly optimized with the 70 

fleet purchase and retirement schedules. This joint optimization problem is nonlinear and has a much 71 

greater solution space. It thus becomes rather difficult to develop an efficient solution method for this 72 

problem. Although some previous studies have also jointly optimized assets’ purchase and retirement 73 

plan together with their utilization schedules, most of those works did not account for the dependency 74 

of unit O&M cost on an asset’s cumulative utilization (e.g., Wu et al., 2003, 2005; Büyüktahtakın and 75 

Hartman, 2016; Des-Bordes and Büyüktahtakın, 2017). Only a handful of those joint optimization 76 

studies considered the impacts of cumulative utilization on the unit O&M cost. Regrettably, some of 77 

them assumed simple, binary utilization variables (Seif et al, 2019; Shields et al., 2019). Others relied 78 

on either a linear modeling approach associated with even larger solution spaces (Hartman, 1999), or 79 

overly-simplified heuristic approaches that may result in poor solution quality (Jin and Kite-Powell, 80 

2000; Guerrero et al., 2013). In short, an efficient approach to solving the fleet management problem 81 

is still lacking. 82 

Of note, some works in the literature also developed useful analytical insights that have practical 83 

implications or can assist in the development of efficient solution methods. For example, Jones et al. 84 

(1991) showed for a replacement problem of single-type assets that two properties, namely the 85 

“no-splitting” property and the “older cluster replacement” property, should hold simultaneously at 86 

optimality. The former means assets of the same age must be replaced at the same time; and the latter 87 
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means old assets should be replaced before new ones. However, these two seemingly intuitive 88 

properties were only proved for cases where the number of assets is fixed (i.e., always a new asset 89 

replacing an old one) and where demand or utilization is not concerned (Tang and Tang, 1993; Hopp 90 

et al., 1993; McClurg and Chand, 2002; Childress and Durango-Cohen, 2005). In the fleet 91 

management problem, however, the optimal fleet size naturally varies in response to the fluctuating 92 

demand. We show by numerical examples that the widely-cited “no-splitting” and “older cluster 93 

replacement” properties cannot both hold at optimality in this case. Thus, those earlier insights also 94 

cannot be applied to solve our joint optimization problem with time-varying demand. 95 

In light of the above, this paper develops an efficient heuristic approach for solving a general fleet 96 

management optimization model. The model is a generalization of the truck fleet optimization model 97 

proposed by Guerrero et al. (2013), which jointly optimized the truck mileages assigned and the 98 

purchase and retirement schedule of multiple types of trucks subject to a time-varying demand 99 

constraint. Our approach solves the problem in two stages. Stage 1 optimizes the vehicle mileage 100 

assignment problem given the vehicle purchase and retirement schedules. Solution at this stage 101 

utilizes an analytical property developed from a continuous-time approximation of the original, 102 

discrete-time nonlinear model. This property indicates that, at the optimality, mileage should be 103 

allocated to those vehicles with the lowest marginal utilization cost. Built upon this property, we 104 

propose a Stage-1 solution approach that can greatly reduce the solution space without notably 105 

compromising the solution quality. Stage 2 employs a tabu search algorithm (Glover and Laguna, 106 

1998) to optimize the fleet purchase and retirement schedule. The benefits of our two-stage approach 107 

are demonstrated through extensive numerical experiments. For cases where the Stage-1 problem is 108 

convex (the simpler case), our approach produced solutions within 0-2% of those developed by a 109 

commercial solver (i.e., CVX in Matlab) using only 0.3-13% of the latter’s runtimes. Even greater 110 

advantages were observed for more general cases with a non-convex Stage-1 problem, where our 111 

approach outperformed previous methods in both solution quality and computational efficiency. 112 

The rest of the paper is organized as follows. Section 2 presents the general problem formulation and 113 

an equivalent two-stage formulation. Section 3 proposes the heuristic approach. The computation time 114 

and solution quality of our approach are tested in Section 4. Numerical case studies are furnished in 115 

Section 5. Section 6 demonstrates the robustness of numerical solutions when some parameter values 116 

contain errors and uncertainties, and when actual vehicle utilizations deviate from the optimal 117 

schedule. Insights and potential extensions are discussed in Section 7. 118 

2. Problem formulations 119 

Section 2.1 presents a general formulation. Section 2.2 presents an equivalent two-stage formulation. 120 

Notations used in this paper are summarized in Appendix A. 121 

2.1. A general formulation 122 

The problem is formulated as [P1] below, where the decision variables are: the number of vehicles 123 

purchased at time 𝑡 (those vehicles are termed cohort 𝑡 from now on), denoted by 𝑃𝑡; the type of 124 

vehicles in cohort 𝑡, 𝛾𝑡; the mileage served at time 𝜏 by a vehicle in cohort 𝑡, 𝑢𝜏,𝑡; and the time 125 

when the vehicles in cohort 𝑡 are retired, 𝑆𝑡. The subscripts in the above notations satisfy 1 ≤ 𝑡 ≤126 

𝜏 ≤ 𝑇, where 𝑇 denotes the planning horizon. The unit of time can be a year, a month, or even a day. 127 

Here we assume that all the vehicles in a specific cohort are of the same type, have the same 128 

utilization plan over their service lives, and retire at the same time. This assumption is consistent with 129 
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the “no-splitting” property specified by Jones et al. (1991), and with those commonly assumed in the 130 

literature (e.g., Parthanadee et al., 2012; Guerrero et al., 2013; Laksuwong et al., 2014). 131 

[P1] 132 

min
𝑃𝑡,𝛾𝑡,𝑆𝑡,𝑢𝜏,𝑡

𝐽 = ∑ 𝐴(𝛾𝑡)𝑃𝑡𝑒−𝑟𝑡𝑇
𝑡=1 + ∑ ∑ 𝑃𝑡𝑢𝜏,𝑡𝑀(𝑦𝜏,𝑡, 𝛾𝑡)𝑒−𝑟𝜏𝑆𝑡

𝜏=𝑡
𝑇
𝑡=1 − ∑ 𝑃𝑡𝐹(𝑦𝑆𝑡,𝑡, 𝛾𝑡)𝑇

𝑡=1 𝑒−𝑟𝑆𝑡  (1a) 133 

subject to: 134 

∑ 𝑃𝑡𝑢𝜏,𝑡𝑡: 1≤𝑡≤𝜏≤𝑆𝑡
= 𝐷𝜏, 1 ≤ 𝜏 ≤ 𝑇                   (1b) 135 

𝑦𝜏,𝑡 = ∑ 𝑢𝑠,𝑡
𝜏
𝑠=𝑡 , and 𝑦𝑡−1,𝑡 = 0, 1 ≤ 𝑡 ≤ 𝜏 ≤ 𝑆𝑡 ≤ 𝑇        (1c) 136 

𝛾𝑡 ∈ 𝐻, 1 ≤ 𝑡 ≤ 𝑇               (1d) 137 

𝑆𝑡 is an integer, 1 ≤ 𝑡 ≤ 𝑆𝑡 ≤ 𝑇            (1e) 138 

𝑃𝑡 is an integer, 𝑃𝑡 ≥ 0, 1 ≤ 𝑡 ≤ 𝑇            (1f) 139 

0 ≤ 𝑢𝜏,𝑡 ≤ 𝑈, 1 ≤ 𝑡 ≤ 𝜏 ≤ 𝑆𝑡 ≤ 𝑇                   (1g)  140 

𝑦𝑆𝑡,𝑡 ≤ 𝑦̅, 1 ≤ 𝑡 ≤ 𝑆𝑡 ≤ 𝑇              (1h) 141 

In the RHS of the objective function (1a), the first term is the total discounted vehicle purchase cost, 142 

where 𝐴(𝛾𝑡) denotes the cost for purchasing a type-𝛾𝑡 vehicle, and 𝑟 the discount rate; the second 143 

term is the total discounted O&M cost, where 𝑀(𝑦𝜏,𝑡 , 𝛾𝑡) denotes the unit O&M cost per vehicle per 144 

mile, and 𝑦𝜏,𝑡 a cohort-𝑡 vehicle’s cumulative mileage at 𝜏; and the last term is the total discounted 145 

salvage value, where 𝐹(𝑦𝑆𝑡,𝑡, 𝛾𝑡) indicates the salvage value of a cohort-𝑡 vehicle that retires at 𝑆𝑡. 146 

The following three assumptions are made for functions 𝑀(∙) and 𝐹(∙): 147 

(i) 𝑀(𝑦𝜏,𝑡 , 𝛾𝑡) > 0 and 
𝜕𝑀

𝜕𝑦𝜏,𝑡
> 0, meaning that the unit O&M cost increases with 𝑦𝜏,𝑡 (CARB, 148 

2008); 149 

(ii) 𝐹(𝑦𝑆𝑡,𝑡, 𝛾𝑡) ≥ 0 and 
𝜕𝐹

𝜕𝑦𝑆𝑡,𝑡
< 0, meaning that the salvage value decreases with 𝑦𝑆𝑡,𝑡; and 150 

(iii) 
𝜕

𝜕𝑦𝑆𝑡,𝑡
(𝑀 −

𝜕𝐹

𝜕𝑦𝑆𝑡,𝑡
 ) > 0, meaning that the utilization cost per mile at a vehicle’s retirement time, 151 

𝑀 −
𝜕𝐹

𝜕𝑦𝑆𝑡,𝑡
, increases with its final mileage 𝑦𝑆𝑡,𝑡.1 152 

Constraint (1b) specifies that a given demand at each time 𝜏, denoted by 𝐷𝜏 (measured by miles), 153 

has to be satisfied. For simplicity, the demand is assumed to be infinitely divisible between vehicles. 154 

Constraint (1c) defines 𝑦𝜏,𝑡 (1 ≤ 𝑡 ≤ 𝜏 ≤ 𝑆𝑡) as the cumulative mileage of a cohort-𝑡 vehicle at 𝜏. 155 

Constraint (1d) specifies the set of vehicle types, denoted by 𝐻. Constraints (1e-h) are the boundary 156 

and integer constraints for 𝑆𝑡, 𝑃𝑡, 𝑢𝜏,𝑡 and 𝑦𝜏,𝑡, respectively, where 𝑈 is the maximum mileage a 157 

vehicle can serve per unit time, and 𝑦̅ the maximum allowable cumulative mileage. 158 

Program [P1] is a mixed-integer nonlinear program with 
𝑇(𝑇+7)

2
 decision variables. The nonlinearity 159 

is due to the demand constraint (1b) and the O&M cost term in the objective function. It is also 160 

nonconvex in general. Thus, its exact solution is very difficult to obtain when 𝑇 is large. We next 161 

reformulate it as a two-stage problem, for which a heuristic approach will be developed in Section 3. 162 

2.2. The equivalent two-stage formulation 163 

We propose the following two-stage formulation. The Stage-1 problem [P2] optimizes the vehicle 164 

utilization plan, i.e., 𝑢𝜏,𝑡 (1 ≤ 𝑡 ≤ 𝜏 ≤ 𝑆𝑡), for a given set of 𝑃𝑡 , 𝛾𝑡, and 𝑆𝑡 (1 ≤ 𝑡 ≤ 𝑇). The 165 

 
1 Assumption (iii) simplifies our solution approach. However, a similar but moderately more complicated 

solution approach can still be developed if this assumption is relaxed. See Section 3.1.3 for more details. 
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Stage-2 problem [P3] optimizes 𝑃𝑡, 𝛾𝑡, and 𝑆𝑡 (1 ≤ 𝑡 ≤ 𝑇) given that the optimal 𝑢𝜏,𝑡 (1 ≤ 𝑡 ≤166 

𝜏 ≤ 𝑆𝑡) is expressed as a function of 𝑃𝑡, 𝛾𝑡, and 𝑆𝑡 (1 ≤ 𝑡 ≤ 𝑇). 167 

[P2] 168 

min
𝑢𝜏,𝑡

𝐽′ = ∑ ∑ 𝑃𝑡𝑢𝜏,𝑡𝑀(𝑦𝜏,𝑡 , 𝛾𝑡)𝑒−𝑟𝜏𝑆𝑡
𝜏=𝑡

𝑇
𝑡=1 − ∑ 𝑃𝑡𝐹(𝑦𝑆𝑡,𝑡, 𝛾𝑡)𝑇

𝑡=1 𝑒−𝑟𝑆𝑡      (2) 169 

subject to: (1b), (1c), (1g), and (1h) 170 

[P3] 171 

min
𝑃𝑡,𝛾𝑡,𝑆𝑡

𝐽 = ∑ 𝐴(𝛾𝑡)𝑃𝑡𝑒−𝑟𝑡𝑇
𝑡=1 + ∑ ∑ 𝑃𝑡𝑢𝜏,𝑡𝑀(𝑦𝜏,𝑡, 𝛾𝑡)𝑒−𝑟𝜏𝑆𝑡

𝜏=𝑡
𝑇
𝑡=1 − ∑ 𝑃𝑡𝐹(𝑦𝑆𝑡,𝑡, 𝛾𝑡)𝑇

𝑡=1 𝑒−𝑟𝑆𝑡  (3a) 172 

subject to: (1c)-(1f), and 173 

𝑢𝜏,𝑡 = 𝑔𝜏,𝑡
𝑢 ({𝑃𝑡, 𝛾𝑡 , 𝑆𝑡 , 1 ≤ 𝑡 ≤ 𝑇}), 1 ≤ 𝑡 ≤ 𝜏 ≤ 𝑆𝑡 ≤ 𝑇,               (3b) 174 

where 𝑔𝜏,𝑡
𝑢 (∙) denotes the optimal solution of 𝑢𝜏,𝑡 expressed as a function of given 𝑃𝑡, 𝛾𝑡, and 𝑆𝑡 175 

(1 ≤ 𝑡 ≤ 𝑇), which is found by solving [P2]. An optimal solution to [P3] must also be optimal to the 176 

original program [P1] and vice versa. In other words, [P1] an [P3] are equivalent. 177 

We next present the heuristic approach for solving the two-stage formulation. 178 

3. The solution approach 179 

The key element of our approach is a near-optimal solution to the Stage-1 problem [P2], as described 180 

in Section 3.1. Section 3.2 presents the tabu search algorithm for solving the Stage-2 problem [P3]. 181 

3.1. A heuristic solution to [P2] 182 

We first convert the discrete-time formulation [P2] to a continuous-time approximation model [P4], as 183 

presented in Section 3.1.1. An optimality property is developed analytically for [P4] in Section 3.1.2. 184 

Built upon this property, a heuristic solution to [P2] is presented in Section 3.1.3. 185 

3.1.1. The continuous-time approximation model 186 

Continuous-time approximation, or more generally, the continuous approximation technique, was 187 

often used in the literature of pavement management optimizations (Rashid and Tsunokawa, 2012), 188 

supply chain and logistics system optimizations (Tsao and Lu, 2012), and public transportation 189 

network optimizations (Chen et al., 2015; Chen and Nie, 2018; Mei et al., 2020). The technique 190 

approximates numerous discrete variables and parameters by a few continuous functions. The 191 

resulting program becomes parsimonious and can often be tackled using calculus of variations. 192 

Specifically, we approximate [P2] by the following program [P4], where the discrete-time parameters 193 

𝑃𝑡, 𝛾𝑡, 𝑆𝑡, and 𝐷𝜏 (0 < 𝑡, 𝜏 ≤ 𝑇) are replaced by the continuous-time functions 𝑃(𝑡), 𝛾(𝑡), 𝑆(𝑡), 194 

and 𝐷(𝜏) (0 < 𝑡, 𝜏 ≤ 𝑇), and the variables 𝑢𝜏,𝑡 and 𝑦𝜏,𝑡 (0 < 𝑡 ≤ 𝜏 ≤ 𝑆𝑡) by 𝑢(𝜏, 𝑡) and 𝑦(𝜏, 𝑡) 195 

(0 < 𝑡 ≤ 𝜏 ≤ 𝑆(𝑡)), respectively. Note that 𝑃(𝑡) and 𝑢(𝜏, 𝑡) denote the vehicle purchase rate at 𝑡 196 

and the utilization rate at 𝜏 per vehicle of cohort 𝑡, respectively. For simplicity, other notations are 197 

kept unchanged. The relation between 𝑦𝜏,𝑡 and 𝑢𝜏,𝑡, (1c), is now written as a partial differential 198 

equation (4c). The summations in [P2] are replaced by the integrals in [P4]. 199 

[P4] 200 

min 𝐽′ = ∫ ∫ 𝑃(𝑡)𝑢(𝜏, 𝑡)𝑀(𝑦(𝜏, 𝑡), 𝛾(𝑡))
𝑆(𝑡)

𝜏=𝑡 
𝑒−𝑟𝜏𝑑𝜏𝑑𝑡

𝑇

𝑡=0
− ∫ 𝑃(𝑡)𝐹(𝑦(𝑆(𝑡), 𝑡), 𝛾(𝑡))𝑒−𝑟𝑆(𝑡)𝑇

𝑡=0
𝑑𝑡201 

                  (4a) 202 

subject to:  203 
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∫ 𝑃(𝑡)𝑢(𝜏, 𝑡)
𝑡:0≤𝑡≤𝜏≤𝑆(𝑡)

𝑑𝑡 = 𝐷(𝜏), for 𝜏 ∈ (0, 𝑇]         (4b) 204 

𝜕𝑦(𝜏,𝑡)

𝜕𝜏
= 𝑢(𝜏, 𝑡), for 𝑡 ∈ (0, 𝑇], 𝜏 ∈ [𝑡, 𝑆(𝑡)]            (4c) 205 

0 ≤ 𝑢(𝜏, 𝑡) ≤ 𝑈, for 𝑡 ∈ (0, 𝑇], 𝜏 ∈ [𝑡, 𝑆(𝑡)]                 (4d) 206 

𝑦(𝑆(𝑡), 𝑡) ≤ 𝑦̅, for 𝑡 ∈ (0, 𝑇]             (4e) 207 

[P2] asymptotically converges to [P4] when the time interval for decisions approaches zero (i.e., when 208 

the decisions can be made with infinitesimal intervals). Hence, the optimal solution to [P4] should be 209 

close to the optimal solution to [P2], especially when the time interval is small. 210 

3.1.2. An optimality property of the continuous-time model 211 

First, define the z-score of cohort 𝑡 at time 𝜏, 𝑧(𝑦(𝜏, 𝑡), 𝜏, 𝑡) (0 < 𝑡 ≤ 𝜏 ≤ 𝑆(𝑡)), as follows: 212 

𝑧(𝑦(𝜏, 𝑡), 𝜏, 𝑡) ≡ 𝑀(𝑦(𝜏, 𝑡), 𝛾(𝑡)) for 𝜏 ∈ [𝑡, 𝑆(𝑡)), 𝑡 ∈ (0, 𝑇]       (5a) 213 

𝑧(𝑦(𝑆(𝑡), 𝑡), 𝑆(𝑡), 𝑡) ≡ 𝑀(𝑦(𝑆(𝑡), 𝑡), 𝛾(𝑡)) −
𝜕𝐹

𝜕𝑦(𝑆(𝑡),𝑡)
 for 𝑡 ∈ (0, 𝑇].     (5b) 214 

The z-score can be interpreted as the cost for a cohort-𝑡 vehicle to cover an additional mile at 𝜏: for a 215 

non-retiring vehicle at 𝜏 (i.e. a vehicle with 𝑆(𝑡) > 𝜏), the z-score is equal to the unit O&M cost; 216 

while for a retiring vehicle (i.e. one with 𝑆(𝑡) = 𝜏), it is the unit O&M cost minus the marginal 217 

salvage value. In other words, the z-score essentially represents a vehicle’s marginal utilization cost, 218 

accounting for the differences between vehicle types and between non-retiring and retiring vehicles. 219 

We now present the following proposition: 220 

Proposition 1. At the optimality of [P4], if 𝑃(𝑡) ≠ 0 for a 𝑡 ∈ (0, 𝑇], then for any 𝜏 ∈ [𝑡, 𝑆(𝑡)), 221 

one of the following three conditions holds: 222 

𝑢(𝜏, 𝑡) = 0,                (6a) 223 

𝑢(𝜏, 𝑡) = 𝑈, or                (6b) 224 

𝑧(𝑦(𝜏, 𝑡), 𝜏, 𝑡) = 𝜆(𝜏) −
1

𝑟

𝑑𝜆(𝜏)

𝑑𝜏
;             (6c) 225 

and for 𝜏 = 𝑆(𝑡), one of the following four conditions holds: 226 

𝑢(𝑆(𝑡), 𝑡) = 0,                (7a) 227 

𝑢(𝑆(𝑡), 𝑡) = 𝑈,                (7b) 228 

𝑦(𝑆(𝑡), 𝑡) = 𝑦̅, or               (7c) 229 

𝑧(𝑦(𝑆(𝑡), 𝑡), 𝑆(𝑡), 𝑡) = 𝜆(𝜏)              (7d) 230 

where 𝜆(𝜏) (𝜏 ∈ (0, 𝑇]) is the Lagrange multiplier for relaxing constraint (4b). Proof of Proposition 1 231 

employs the first-order necessary conditions of [P4]. The details are relegated to Appendix B. 232 

The first half of Proposition 1 means that, at a given 𝜏, the z-scores of all the non-retiring vehicles, 233 

regardless of their cohorts, should be equal (note that the RHS of (6c) is only a function of 𝜏 but not 234 

of the cohort index 𝑡), if their utilization is neither zero nor 𝑈. This is intuitive from the economic 235 

point of view. Recall that the z-score is the marginal utilization cost. If two non-retiring vehicles with 236 

different z-scores are used at the same time, shifting some demand from the vehicle with a higher 237 

z-score to the other vehicle will reduce the total cost. This kind of demand shift can be carried on 238 

within the fleet until some vehicles have no demand to shift out (i.e., 𝑢(𝜏, 𝑡) = 0), others have 239 

reached the maximum utilization (𝑢(𝜏, 𝑡) = 𝑈), and the remaining vehicles all have the same z-score. 240 

A similar note can be made for retiring vehicles, except that a retiring vehicle’s cumulative mileage is 241 

capped by 𝑦̅. Note that a non-retiring vehicle and a retiring vehicle at the same 𝜏 may not have equal 242 

z-scores. 243 
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Proposition 1 implies that the optimal solution to [P4] can be derived if 𝜆(𝜏) (𝜏 ∈ (0, 𝑇]) is known. 244 

Inspired by this, the discrete-time program [P2] can be solved using a discrete-time analog of 245 

Proposition 1, which is presented next. 246 

3.1.3. A heuristic approach for solving [P2] 247 

The approach is built upon a discrete-time analog of Proposition 1, which is presented below: 248 

Proposition 2. A near-optimal solution to [P2] can be developed to satisfy the following conditions: if 249 

𝑃𝑡 ≠ 0 for a 𝑡 ∈ {1,2, … , 𝑇}, then for any 𝜏 ∈ {𝑡, 𝑡 + 1, … , 𝑆𝑡 − 1}, one of the following three 250 

conditions holds: 251 

𝑢𝜏,𝑡 = 0                 (8a) 252 

𝑢𝜏,𝑡 = 𝑈                 (8b) 253 

𝑧𝜏,𝑡(𝑦𝜏,𝑡) ≡ 𝑀(𝑦𝜏,𝑡 , 𝛾𝑡) = 𝜆𝜏 −
1

𝑟
(𝜆𝜏+1 − 𝜆𝜏)          (8c) 254 

and for 𝜏 = 𝑆𝑡, one of the following three conditions holds: 255 

𝑢𝑆𝑡,𝑡 = 𝑈                 (9a) 256 

𝑦𝑆𝑡,𝑡 = 𝑦̅                 (9b) 257 

𝑧𝑆𝑡,𝑡(𝑦𝑆𝑡,𝑡) ≡ 𝑀(𝑦𝑆𝑡,𝑡, 𝛾𝑡) −
𝜕𝐹

𝜕𝑦𝑆𝑡,𝑡
= 𝜆𝜏            (9c) 258 

where 𝑧𝜏,𝑡(𝑦𝜏,𝑡) is the z-score at 𝜏 for a cohort-𝑡 vehicle, 1 ≤ 𝑡 ≤ 𝜏 ≤ 𝑆𝑡; and 𝜆𝜏 (𝜏 ∈ {1,2, … , 𝑇}) 259 

the Lagrange multiplier for relaxing (1b). Note that (7a) in Proposition 1 is dropped in the 260 

discrete-time case because, if 𝑢𝑆𝑡,𝑡 = 0, then cohort 𝑡 should retire at 𝑆𝑡 − 1 instead of 𝑆𝑡. 261 

Proposition 2 does not guarantee global optimality2. However, since Proposition 2 and [P2] are 262 

discrete-time analogs of Proposition 1 and [P4], respectively, and Proposition 1 states the optimality 263 

conditions of [P4], we believe a solution developed using Proposition 2 would be near-optimal. We 264 

next show how such a solution can be developed. 265 

The solution will be derived in an iterative fashion. First, when 𝜏 = 1, we have 𝑢1,1 =
𝐷1

𝑃1
 (without 266 

loss of generality, we assume 𝐷1 > 0 and thus 𝑃1 > 0). Now suppose cohort 1 does not retire at 267 

𝜏 = 1. Then (8c) holds at 𝜏 = 1, i.e., 𝑧1,1(𝑦1,1) = 𝑀(𝑦1,1, 𝛾1) = 𝜆1 −
1

𝑟
(𝜆2 − 𝜆1). If 𝜆1 is given 268 

exogenously, then 𝜆2 can be derived from the above equation. 269 

Now suppose 𝜆𝜏 is already known, allocate the demand 𝐷𝜏 among the existing fleet as follows: 270 

(i) For a retiring cohort 𝑡 (i.e., 𝜏 = 𝑆𝑡), calculate 𝑦̂𝑆𝑡,𝑡 = 𝑧𝑆𝑡,𝑡
−1 (𝜆𝜏) from (9c), where 𝑧𝑆𝑡,𝑡

−1 (∙) is 271 

the inverse function of 𝑧𝑆𝑡,𝑡(∙). Note that assumption (iii) in Section 2.1 means 
𝑑𝑧𝑆𝑡,𝑡

𝑑𝑦𝑆𝑡,𝑡
> 0, and 272 

this results in a single-valued 𝑦̂𝑆𝑡,𝑡. The 𝑦𝑆𝑡,𝑡 is then calculated as 𝑦𝑆𝑡,𝑡 = min{𝑦̂𝑆𝑡,𝑡, 𝑦𝑆𝑡−1,𝑡 +273 

𝑈, 𝑦̅}. This means that, if a retiring cohort’s cumulative mileage cannot reach 𝑦̂𝑆𝑡,𝑡, it must be 274 

equal to 𝑦𝑆𝑡−1,𝑡 + 𝑈 or 𝑦̅, whichever is lower. One can easily verify that the above 𝑦𝑆𝑡,𝑡 275 

satisfies (9a-c). The 𝑢𝑆𝑡,𝑡 can be calculated as 𝑦𝑆𝑡,𝑡 − 𝑦𝑆𝑡−1,𝑡. 276 

(ii) After allocating the demand to all the retiring cohorts, calculate the remaining demand. The 277 

remaining demand will be first allocated to the non-retiring cohort(s) with the lowest z-score. 278 

When that lowest z-score increases and catches up with a previously higher z-score, the demand 279 

 
2 The optimality property of [P2] that are similar to Proposition 1 cannot be developed because the first-order 

conditions of [P2] are more complicated and cannot be simplified in a way similar to Appendix B. In other 

words, equal z-score (i.e., (8c) and (9c)) is not an optimality property for the discrete-time model. 
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will also be allocated to the cohorts that have that previously higher z-score (this is like flooding 280 

a staircase step by step with water). If a cohort’s mileage per vehicle reaches 𝑈, no more 281 

demand will be fed to this cohort. The process ends when no more demand is left. Then 282 

calculate 𝑢𝜏,𝑡 for all the non-retiring cohorts. 283 

(iii) Calculate the highest z-score of all the non-retiring cohorts that have received demand in step 284 

(ii). Use that z-score and (8c) to calculate 𝜆𝜏+1. (The highest z-score is associated with the last 285 

non-retiring cohort(s) that receives demand before the process in step (ii) ends.) 286 

Pseudo code of the above approach is summarized in Appendix C.1. Note, however, that the above 287 

process can be iterated only if there exists at least one non-retiring cohort that receives some demand 288 

at each time 𝜏. If at a certain 𝜏 there is no non-retiring cohort, steps (ii-iii) cannot be executed and 289 

𝜆𝜏+1 cannot be derived. In this case, 𝜆𝜏+1 needs to be given exogenously so that the iteration 290 

process can resume. We term the time 𝑖  (1 ≤ 𝑖 ≤ 𝑇) when a new 𝜆𝑖  needs to be specified 291 

exogenously as a “breakpoint”. (The first breakpoint is the start time, 𝑖 = 1.) The 𝜆𝑖’s associated 292 

with breakpoints can be optimized using some derivative-free gradient or subgradient search methods 293 

(see, e.g., Rios and Sahinidis, 2013).3 Appendix C.2 furnishes a derivative-free approximate gradient 294 

algorithm for optimizing these 𝜆𝑖’s. 295 

Of a related note, if assumption (iii) in Section 2.1 is relaxed, then 𝑦̂𝑆𝑡,𝑡 = 𝑧𝑆𝑡,𝑡
−1 (𝜆𝜏) may be 296 

multi-valued in the above step (i). If 𝑧𝑆𝑡,𝑡
−1 (𝜆𝜏) returns a small finite set of values (which is usually the 297 

case), then the Stage-1 problem can still be solved by a modified approach in which all possible 298 

values of 𝑦̂𝑆𝑡,𝑡  are enumerated. However, this modified approach would exhibit a greater 299 

computational complexity. 300 

3.2. A tabu-search method for solving [P3] 301 

The first step of the tabu search method is to obtain a feasible initial solution to [P3]. This solution, 302 

denoted by 𝒙0 ≡ {𝑃𝑡
0, 𝛾𝑡

0, 𝑆𝑡
0: 𝑡 = 1,2, … , 𝑇}, is generated by a greedy heuristic algorithm. Pseudo 303 

code of this greedy heuristic algorithm is provided in Appendix C.3. 304 

We now describe the tabu search algorithm. The description is kept short in the interest of brevity 305 

because the algorithm is only a standard practice of the tabu search method. For more details on the 306 

theory of tabu search, please refer to Glover and Laguna (1998). 307 

Define a move as a change from a feasible solution 𝒙 to a new feasible solution, where the change 308 

can be one of the following: (i) 𝑃𝑡 → 𝑃𝑡 + 1 or 𝑃𝑡 − 1 (if 𝑃𝑡 > 0) for a certain 𝑡; (ii) 𝛾𝑡 switches 309 

to another value in 𝐻 for a certain 𝑡; and (iii) 𝑆𝑡 → 𝑆𝑡 + 1 (if 𝑆𝑡 < 𝑇) or 𝑆𝑡 − 1 (if 𝑆𝑡 > 𝑡) for a 310 

certain 𝑡. At each move, the heuristic approach presented in Section 3.1.3 is executed to find the 311 

vehicle utilization schedule, and the discounted total cost 𝐽 is calculated. If no feasible utilization 312 

schedule is obtained, 𝐽 is set to infinity. Define the neighborhood of 𝒙, 𝒩(𝒙), as the set of feasible 313 

solutions that can be obtained by making one move from 𝒙. Further define the tabu list, 𝑇𝐿, as the 314 

list of inverse moves of those most recent moves performed. The maximum length of tabu list is 315 

denoted as 𝑡𝑎𝑏𝑢_𝑠𝑖𝑧𝑒. In each iteration, a move is made according to one of the following two rules: 316 

(i) If no move in 𝒩(𝒙) can produce a lower total cost as compared to the best solution so far, set 317 

the current move to the one in 𝒩(𝒙)\𝑇𝐿 that produces the lowest total cost. Following this rule, 318 

a move is made even if it produces a higher cost than the best solution so far. 319 

 
3 The number of breakpoints is generally small. For most numerical instances in this paper, 𝜆1 is the only 

Lagrange multiplier that needs to be optimized via search methods. 
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(ii) If a move in 𝒩(𝒙) ∩ 𝑇𝐿 produces a lower total cost than the best solution so far, set the current 320 

move to the lowest-cost move in 𝒩(𝒙). 321 

The tabu list 𝑇𝐿 is updated after each iteration. It is used to prevent the algorithm from returning to a 322 

solution attained in a previous iteration. Rule (i) finds the best neighboring solution that is generated 323 

not from any move in the tabu list. However, if a move in the tabu list can yield a better solution than 324 

the best one so far, that move is still selected according to rule (ii). The algorithm ends when no better 325 

solution is found after 𝑚𝑎𝑥_𝑛𝑢𝑚_𝑡𝑏 consecutive iterations. The pseudo code of this algorithm is 326 

provided in Appendix C.4. 327 

4. Performance of the two-stage approach 328 

Section 4.1 presents the cost functions and parameter values used in numerical experiments. Section 329 

4.2 evaluates the solution quality and computational efficiency of our approach. All the numerical 330 

instances were carried out via Matlab R2016b on an HP 3.20GHz personal computer with 4GB RAM. 331 

4.1. Cost functions and parameter values 332 

We first consider a special case with cost functions borrowed from Guerrero et al. (2013) for a truck 333 

fleet management problem. They are presented as follows: 334 

𝐴(𝛾𝑡) = 𝐴𝑝 +
𝑘1𝛾𝑡

2

𝑘2−𝛾𝑡
               (10a) 335 

𝑀(𝑦𝜏,𝑡 , 𝛾𝑡) = 𝜃𝑀 + 𝑘0 + (𝜃𝐹 + 𝑝𝐹)(1 − 𝛾𝑡)𝑓 + (𝑘𝑚0 + 𝛽𝛾𝑡)𝑦𝜏,𝑡       (10b) 336 

𝐹(𝑦𝑆𝑡,𝑡, 𝛾𝑡) = 𝐴(𝛾𝑡)𝑘𝑑(1 − 𝑘𝑥𝑦𝑆𝑡,𝑡)            (10c) 337 

𝑦̅ = 1/𝑘𝑥                (10d) 338 

where 𝐴𝑝, 𝑘1, 𝑘2, 𝜃𝑀 , 𝑘0, 𝜃𝐹 , 𝑝𝐹 , 𝑓, 𝑘𝑚0, 𝛽, 𝑘𝑑 and 𝑘𝑥 are constant parameters, whose definitions and 339 

values are summarized in Table 1. Those values were also borrowed from Guerrero et al. (2013)4. 340 

Here 𝛾𝑡 represents the fuel-saving efficiency of cohort-𝑡 trucks. A larger 𝛾𝑡 renders a lower unit 341 

O&M cost, but a higher purchase cost. Note that assumptions (i-iii) specified in Section 2.1 are all 342 

satisfied here. Values of 𝐷𝜏 (1 ≤ 𝜏 ≤ 𝑇) are specified for each numerical instance separately, as 343 

described in the following sections. 344 

Table 1. Parameter definitions and values 345 

Parameter Notation Value Unit 

Fixed truck purchase cost 𝐴𝑝  1.3E5 $/truck 

Coefficient for the variable truck purchase cost  𝑘1 3.8E5 $/truck 

Coefficient for the variable truck purchase cost 𝑘2 0.6 - 

Baseline toll 𝜃𝑀 0 $/mile 

Fixed operating cost 𝑘0 0.647 $/mile 

Baseline fuel tax 𝜃𝐹 0 $/gallon 

Fuel price 𝑝𝐹  4 $/gallon 

Baseline fuel efficiency 𝑓 0.169 gallons/mile 

Fixed maintenance cost coefficient 𝑘𝑚0 1.85E-7 $/mile 

Variable maintenance cost coefficient 𝛽 2.57E-7 $/mile 

Instantaneous depreciation for the salvage value 𝑘𝑑 0.75 - 

Mileage depreciation for the salvage value 𝑘𝑥 9.77E-7 mile-1 

Maximum mileage served per truck per unit time 𝑈 1E5 mile 

 
4 The only exception is that the value of 𝑘1 is different. If the original value was used, type-II trucks would be 

too advantageous over type-I trucks, and would be the only truck type selected in a solution. 
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Discount rate (when the time unit is one year) 𝑟 0.07 if the time unit is a year; 

0.07/12 if that is a month 

- 

Set of truck types 𝐻 {0, 0.3} - 

Planning horizon 𝑇 5-50 year 

Note under this special case that the Stage-1 problem [P2] happens to be convex. Hence, its optimal 346 

solution can be obtained via gradient search methods or commercial solvers such as the CVX solver 347 

(Boyd and Vandenberghe, 2004), which will be used as a benchmark method for comparison against 348 

our approach. 349 

To examine the performance of our approach for the more general non-convex Stage-1 problems, we 350 

also conduct numerical tests using a second set of cost models, where (10b) is replaced by: 351 

𝑀(𝑦𝜏,𝑡 , 𝛾𝑡) = 𝜃𝑀 + 𝑘0 + (𝜃𝐹 + 𝑝𝐹)(1 − 𝛾𝑡)𝑓 + (𝑘𝑚0 + 𝛽𝛾𝑡)𝑦𝜏,𝑡
2 .      (11) 352 

This renders a non-convex Stage-1 problem. All the other cost models and parameter values are the 353 

same as in the convex cost models. 354 

4.2 Performance of our heuristic approach 355 

We tested totally 9 batches of numerical instances. For the first 7 batches, we set 𝑇 =356 

5, 6, 10, 20, 30, 40, 50  years, respectively; and for the last 2 batches, 𝑇 = 60, 120  months, 357 

respectively, to reflect finer planning time intervals. Each batch includes 10 instances with 𝐷𝜏 (𝜏 ∈358 

{1,2, … , 𝑇}) randomly generated from a uniform distribution: over the support [2.0E6, 2.8E6] miles 359 

for the first 7 batches, and [
2.0E6

12
,

2.8E6

12
] miles for the last 2 batches. 360 

We first use the convex cost functions given by (10a-d). For the tabu search algorithm for [P3], 361 

different values of 𝑡𝑎𝑏𝑢_𝑠𝑖𝑧𝑒 were used for problems of different sizes. This is because a too small 362 

𝑡𝑎𝑏𝑢_𝑠𝑖𝑧𝑒 will render the search process easily trapped around a local minimum, while a too large 363 

𝑡𝑎𝑏𝑢_𝑠𝑖𝑧𝑒 may prevent the algorithm from finding a better solution (Glover and Laguna, 1998). The 364 

2nd column of Table 2 shows the 𝑡𝑎𝑏𝑢_𝑠𝑖𝑧𝑒 found by trial and error for the 9 batches of numerical 365 

instances (the same 𝑡𝑎𝑏𝑢_𝑠𝑖𝑧𝑒 can often be used for problems of similar sizes). The parameter 366 

𝑚𝑎𝑥_𝑛𝑢𝑚_𝑡𝑏 was set to 15. 367 

Solutions and computation times of our approach are compared against three benchmark approaches. 368 

The first one is the heuristic approach proposed in Guerrero et al. (2013), where the trucks’ utilization 369 

plan and retirement schedules were optimized separately using a simplified time-invariant model. The 370 

second benchmark approach is borrowed from Hartman (1999), where the original non-linear model 371 

[P1] is linearized by discretizing the vehicle mileage using an interval 𝕦. The resulting mixed integer 372 

linear program (MILP) is then solved by CPLEX. The details of this approach and the MILP model 373 

are furnished in Appendix D. In the third benchmark approach, CVX is employed to solve [P2] to 374 

global optimality; exhaustive search (for smaller instances with 𝑇 = 5 and 6) and the tabu search 375 

method described in Section 3.2 (for larger-scale instances with 𝑇 ≥ 10) are used to solve [P3]. Note 376 

that exhaustive search would fail for larger-scale instances due to the curse of dimensionality. Global 377 

optima are thus obtained only for smaller instances. 378 

We calculate the following three relative errors between the solutions produced by our approach and 379 

the three benchmark approaches: 380 

𝜀𝐺𝑢𝑒𝑟𝑟𝑒𝑟𝑜 =
[minimum cost of Guerrero′s approach]−[minimum cost of our approach]

[minimum cost of our approach]
;  381 

𝜀𝐻𝑎𝑟𝑡𝑚𝑎𝑛 =
[minimum cost of Hartman′s approach]−[minimum cost of our approach]

[minimum cost of our approach]
; 382 
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𝜀𝐶𝑉𝑋 =
[minimum cost of CVX−based approach]−[minimum cost of our approach]

[minimum cost of our approach]
; 383 

The means of 𝜀𝐺𝑢𝑒𝑟𝑟𝑒𝑟𝑜, 𝜀𝐻𝑎𝑟𝑡𝑚𝑎𝑛, and 𝜀𝐶𝑉𝑋 for each of the 9 batches of instances are presented in 384 

columns 3-6 of Table 2. The mean of 𝜀𝐻𝑎𝑟𝑡𝑚𝑎𝑛 is presented for two different values of 𝕦: 5 × 104 385 

and 5 × 103 miles. A positive error indicates that our solution is better than the corresponding 386 

benchmark. We also present the minima of 𝜀𝐶𝑉𝑋 errors in the 7th column of the table, which indicates 387 

the maximum gaps between our solutions and the CVX-based ones (which are better). We further 388 

show the mean runtimes for the four solution approaches in the last five columns of the table. 389 

Table 2. Relative cost errors and runtimes for the four solution approaches when [P2] is convex 390 

𝑻 
Tabu 

size 

Mean 

𝜺𝑮𝒖𝒆𝒓𝒓𝒆𝒓𝒐 

 Mean 𝜺𝑯𝒂𝒓𝒕𝒎𝒂𝒏  𝜺𝑪𝑽𝑿  Mean runtime (sec) 

 𝕦 =5E4 𝕦 =5E3 
 

Mean Min 
 

Our  

approach 

Guerrero’s 

approach 

Hartman’s 

approach 
CVX-based 

approach 
 𝕦 =5E4 𝕦 =5E3 

5 8 12.13%  11.48% 0.79%  -0.32% -0.60%  3.68 4.31 29.51 17879.01 357.13 

6 10 17.00%  12.30% 0.75%  -0.43% -0.54%  8.03 5.15 40.52 24018.04 2590.79 

10 20 16.33%  12.45% 0.78%  -0.35% -0.55%  20.36 22.35 126.21 81754.78 179.23 

20 25 15.36%  12.63% 4.97%  -0.37% -0.62%  46.20  88.23 582.79 86400* 405.12 

30 60 16.48%  11.48% 6.12%  -0.31% -0.43%  167.12  98.93 2150.77 86400* 1335.15 

40 125 14.63%  13.09% 7.09%  -0.27% -0.36%  274.78  104.08 7981.26 86400* 2229.23 

50 210 15.65%  11.67% 7.37%  -0.31% -0.45%  503.25  149.51 48931.07 86400* 4827.69 

60 300 13.77%  13.98% 8.45%  -0.47% -0.58%  1365.79 237.81 86400* 86400* 10729.87 

120 500 15.52%  14.22% 8.90%  -1.13% -1.57%  3198.34 634.09 86400* 86400* 27802.14 

* For these instances, Hartman’s approach did not converge after 24 hours (86400 seconds). Thus, only the best solutions 391 
recorded in 24 hours were used here. 392 

Comparison against each benchmark approach unveils distinct results. First, column 3 of the table 393 

shows that our approach produced costs that are on average 12-17% lower than Guerrero’s approach, 394 

showing the advantage of our approach over Guerrero’s despite the lower runtimes of the latter 395 

approach (see columns 8 and 9). This is because the overly-simplified utilization optimization model 396 

in Guerrero’s approach significantly undermined the solution quality. 397 

Columns 4 and 5 show that our approach also outperformed Hartman’s linear modeling approach by a 398 

large margin in terms of solution quality, especially when 𝑇 ≥ 20. Although Harman’s approach can 399 

attain the global optimum when the discretization interval 𝕦 approaches zero, a large 𝕦 such as 400 

those used in the above tests can render considerable errors. This is why it loses to our heuristic 401 

approach even in terms of solution quality. On the other hand, further decreasing 𝕦 does not improve 402 

the solution quality of Harman’s approach, since the runtime increases exponentially with 𝑇 and 403 

soon becomes prohibitively high (e.g., over 24 hours); see columns 10-11 of the table. 404 

Finally, comparison against the CVX-based approach unveils that our approach produced costs that 405 

are very close to the latter approach, with a gap less than 1% for most cases; see columns 6 and 7. On 406 

the other hand, our average runtime is only 0.3-13% of the CVX-based approach; see the last column. 407 

(Closer investigation unveils that for each instance of 𝑇 ≥ 10, the numbers of tabu search iterations 408 

executed in Stage 2 are similar between our approach and the CVX-based one, meaning that the 409 

runtime saving is mainly attributed to our heuristic method for solving the Stage-1 problem [P2].) In 410 

short, results in Table 2 indicate that our approach performed very good in both solution quality and 411 

computational efficiency. 412 

Note that the benefits of our approach are limited when [P2] is convex, because a convex [P2] can be 413 

efficiently solved to global optimality. However, such a convexity is not guaranteed for the general 414 
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case. We next show that our approach would perform even better when a non-convex [P2] is used (i.e., 415 

when (10b) is replaced by (11)). For the non-convex case, we employ two commonly used solvers as 416 

benchmark approaches for solving [P2]: the “fmincon” solver in Matlab using the sequential quadratic 417 

programming algorithm (Osorio and Bierlaire, 2013), and the SCIP solver (Wei et al., 2014). Tabu 418 

search is still used in both benchmark approaches to solve [P3]. Hartman’s linear modeling approach 419 

is still used as the third benchmark. In addition to 𝜀𝐻𝑎𝑟𝑡𝑚𝑎𝑛, the following error terms are calculated: 420 

𝜀𝑓𝑚𝑖𝑛𝑐𝑜𝑛 =
[minimum cost of  fmincon−based approach]−[minimum cost of our approach]

[minimum cost of our approach]
  421 

𝜀𝑆𝐶𝐼𝑃 =
[minimum cost of  scip−based approach]−[minimum cost of our approach]

[minimum cost of our approach]
  422 

Means of these error terms are presented in columns 3-6 of Table 3, and the runtimes of the four 423 

approaches are presented in columns 7-11 of that table. These values show that, for every value of 𝑇 424 

examined, our approach always outperformed all the three benchmark methods in terms of both 425 

solution quality and computational cost. The advantage increased with the problem size. When 𝑇 =426 

120, the cost reductions as compared to the benchmark approaches are 6-14%. Also note for 𝑇 ≥ 30 427 

that the benchmark approaches often failed to attain convergence within 24 hours, while our approach 428 

still found solutions within 1 hour. We believe these results have compellingly demonstrated the 429 

benefits of our solution approach. 430 

Table 3. Relative cost errors and runtimes for the four solution approaches when [P2] is non-convex 431 

𝑻 
Tabu 

size 

Mean 

𝜺𝒇𝒎𝒊𝒏𝒄𝒐𝒏 
 

Mean 

𝜺𝑺𝑪𝑰𝑷 

 Mean 𝜺𝑯𝒂𝒓𝒕𝒎𝒂𝒏  Mean runtime (sec) 

𝕦 =5E4 𝕦 =5E3 
 

Our 

approach 

fmincon-based 

approach 

SCIP-based 

approach 

Hartman’s 

approach 

 𝕦 =5E4 𝕦 =5E3 

10 20 1.81%  0.87%  11.30% 0.91%  25.03 402.09 1944.09 157.21 8027.78 

20 25 2.26%  0.65%  11.69% 5.13%  50.87  2960.32 14691.22 607.91 86400* 

30 60 1.70%  1.06%  12.57% 5.92%  145.87  20604.11 86400* 1848.60 86400* 

40 125 4.04%  2.39%  12.70% 7.38%  259.04  86400* 86400* 8110.33 86400* 

50 210 4.84%  3.44%  13.31% 7.95%  483.91  86400* 86400* 49902.08 86400* 

60 300 5.67%  3.56%  13.88% 8.61%  1507.05 86400* 86400* 86400* 86400* 

120 500 6.30%  6.17%  13.94% 9.27%  3409.61 86400* 86400* 86400* 86400* 

* For these instances, the corresponding approaches did not converge after 24 hours. Thus, only the best solutions recorded 432 
in 24 hours were used for each instance. 433 

5. Numerical case studies 434 

To examine the optimal fleet management plans, in this section we present solutions of numerical 435 

instances with 𝑇 = 20 years under three demand patterns: a constant demand (Section 5.1), a 436 

linearly increasing demand (Section 5.2) and a demand pattern with a demand drop in middle years 437 

(Section 5.3). The convex cost models and parameter values in Section 4.1 are used. 438 

5.1. Constant demand pattern 439 

First assume 𝐷𝜏 = 2.45E6 miles, ∀𝜏 ∈ {1, … , 𝑇}. The optimal truck purchase plan and fleet size 440 

over the planning horizon are plotted as the solid and dashed curves, respectively, in Figure 1a. The 441 

figure shows that two equal-sized cohorts are purchased in years 1 and 11, and each cohort contains 442 

25 type-II trucks (i.e., 𝛾𝑡 = 0.3) with 10-year service lives. Figure 1b plots the cumulative mileage 443 

trajectories for the two cohorts as solid curves. These linear trajectories reveal that each truck in the 444 

two cohorts serves a fixed annual mileage (0.98E5 miles), which is only slightly below 𝑈 = 1E5 445 

miles. This indicates that only the minimum number of trucks required (i.e., ⌈
𝐷𝜏

𝑈
⌉ = 25) are purchased 446 
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for each cohort, and that each truck is almost fully utilized every year until its cumulative mileage is 447 

close to the limit 𝑦̅ (as marked by the dashed horizontal line in Figure 1b). This periodic truck 448 

purchase and utilization plan is a natural result of the constant demand. Only type-II trucks are used in 449 

this plan because, when a truck is nearly fully utilized, a type-II truck’s cost per mile served is lower 450 

despite its higher purchase cost. This periodic solution pattern was consistently observed when the 451 

constant demand 𝐷𝜏 took other values, and when 𝑇 was an integer multiple of 10 years. Note that 452 

10 years is the maximum service life of a fully-utilized truck before its cumulative mileage reaches 𝑦̅. 453 

Results are a little different when 𝑇 is not an integer multiple of 10 years. Figures 2a and b show the 454 

optimal truck purchase plan and cumulative mileage trajectories, respectively, for an instance with 455 

𝑇 = 45 years and the same constant demand 𝐷𝜏 = 2.45E6 miles, ∀𝜏 ∈ {1, … , 𝑇}. Five equal-sized 456 

cohorts, each containing 25 type-II trucks, are purchased at year 1, 9, 17, 26, and 36. Note that the 457 

service lives of the three early cohorts are less than 10 years. It is more economical to shorten the 458 

lives of earlier cohorts since their salvage values are less discounted. 459 

 
(a) truck purchase plan and fleet size 

 
(b) trucks’ cumulative mileage trajectories 

Figure 1. Optimal truck management plan for 𝐷𝜏 = 2.45E6 miles, 𝜏 ∈ {1, … ,20}. 460 

 
(a) truck purchase plan and fleet size 

 
(b) trucks’ cumulative mileage trajectories 

Figure 2. Optimal truck management plan for 𝐷𝜏 = 2.45E6 miles, 𝜏 ∈ {1, … ,45} 461 

 462 

 463 
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5.2. Linearly increasing demand pattern 464 

Now assume a linearly increasing demand as described by 𝐷𝜏 = (1.4 + 0.1𝜏)E6 miles (1 ≤ 𝜏 ≤ 𝑇). 465 

The optimal truck purchase plan and cumulative mileage trajectories are plotted in Figures 3a and b, 466 

respectively. The figures unveil a number of findings regarding the optimal fleet management plan. 467 

Note first that the truck purchase plan is no longer periodic under this time-varying demand. In fact, 468 

cohorts of different sizes and types are purchased in 15 of the 20 years. The largest two cohorts still 469 

appear in years 1 and 11, each consists of 15 type-II trucks. The other 13 cohorts are much smaller: 470 

they collectively consist of 28 trucks. This is intuitive: 15 trucks are needed to meet 𝐷1, and they also 471 

serve the majority of demand in years 2-10; small cohorts of 1-2 trucks are purchased over those years 472 

to serve the demand increments. In year 11, cohort 1 is near 𝑦̅ and thus replaced by cohort 11. 473 

Smaller cohorts are again added over the following years to serve the incremental demand. The fleet 474 

size curve in Figure 3a shows that although demand increases over time, the optimal fleet size is not 475 

always increasing. In addition, type-I trucks are purchased in the last 5 years, rendering a mixed fleet. 476 

This is because trucks purchased near the end of planning horizon will serve less mileage in their 477 

short service lives, and thus cheaper type-I trucks are preferred. Furthermore, some cohorts (i.e., 478 

cohorts 2, 9, 13, 16-20) are retired far before reaching their mileage limit to save the cost. This is 479 

again due to the time-varying demand. Finally, this solution violates the “older cluster replacement” 480 

property of Jones et al. (1991); see that cohort 1 is retired in year 13 while cohorts 2 and 3 are retired 481 

in years 10 and 12, respectively. This occurs mainly because cohorts are not equal-sized due to the 482 

time-varying demand, and thus the retirement decision is also affected by cohort sizes, in addition to 483 

each cohort’s cumulative mileage (and age). 484 

 
(a) truck purchase plan and fleet size 

 
(b) trucks’ cumulative mileage trajectories 

Figure 3. Optimal truck management plan for 𝐷𝜏 = (1.4 + 0.1𝜏)E6 miles, 𝜏 ∈ {1, … ,20} 485 

We further examined more instances under linear demands with different annual increments. The 486 

demands are denoted by 𝐷𝜏 = (1.4 + 𝛽𝜏)E6 miles (1 ≤ 𝜏 ≤ 𝑇) for 𝛽 ∈ [0.05,0.3]. Figure 4 shows 487 

how the optimal cost 𝐽 (the solid line with circular markers) and the total number of trucks (the 488 

dashed line with diamond markers) vary with 𝛽. It unveils that the total cost increases linearly with 489 

𝛽, and the total number of trucks increases faster than the cost. The latter is also expected: when the 490 

demand becomes more uneven, more trucks will retire before being fully utilized, and thus more 491 

trucks are needed to serve the demand. 492 

 493 
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5.3. A demand pattern with a drop in middle years 494 

For the last numerical instance, a demand pattern as shown in Figure 5 is used. This demand pattern 495 

contains a sharp drop in year 5 (e.g., due to an economic recession or the appearance of a business 496 

competitor); the demand then stays low for years 5-9 and recovers gradually from year 10 on. We 497 

examine this instance to learn how the optimal fleet management plan, especially the purchase and 498 

retirement plan, varies in response to an expected demand drop. The optimal truck purchase plan, fleet 499 

size, and the cumulative mileage trajectories are plotted against time in Figures 6a and b, respectively. 500 

The figures show that totally 12 cohorts of trucks are used, with the largest cohorts being purchased in 501 

years 1 and 12. Compared to the previous instances, the solution of this instance features a “more 502 

mixed” fleet of different truck types. In particular, the earlier cohorts are of type-I, probably because 503 

they are expected to retire earlier due to the forecasted demand drop. The optimal fleet size stays 504 

roughly invariant over the demand “valley”, since a later demand recovery is also expected. Cohorts 2 505 

and 4 retire earlier than cohort 1, indicating again a violation of the “older cluster replacement” 506 

property. This is because cohort 1 is much larger and is better retained for serving the recovered 507 

demand after year 9. 508 

 509 
Figure 4. Optimal cost and total number of trucks versus 𝛽 for 𝐷𝜏 = (1.4 + 𝛽𝜏)E6 miles, 𝜏 ∈ {1, … ,20} 510 

 511 
Figure 5. A demand pattern with a demand drop in middle years 512 
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(a) truck purchase plan and fleet size 

 
(b) trucks’ cumulative mileage trajectories 

Figure 6. Optimal truck management plan for the demand with a drop in middle years 513 

6. Robustness of the optimal solutions 514 

In real practice, many operating parameter values are subject to estimation errors and uncertainties. In 515 

addition, actual vehicle utilizations can also deviate from the optimal plan. This section shows that the 516 

optimal fleet management plan is robust to these errors and deviations. 517 

In our first batch of robustness tests, we study how an “optimal” plan developed using inaccurate 518 

parameter estimates performs in the true environment. To this end, we first examine a scenario where 519 

the discount rate estimate contains an error. We assume the estimated discount rate is 𝑟(1 + 𝜀), 520 

where 𝑟 is the true value and 𝜀 is the relative estimation error. We use randomly generated demand 521 

patterns for 𝑇 = 20 years, the convex Stage-1 formulation, and the parameter values given in Table 522 

1. We evaluate: (i) the true total cost, 𝐽, if the “optimal” plan developed by using the inaccurate 523 

estimate 𝑟(1 + 𝜀) is implemented in the true environment; and (ii) the optimal total cost, 𝐽∗, for the 524 

optimal plan developed by using the true parameter 𝑟. We find that the difference between 𝐽 and 𝐽∗ 525 

(averaged across 10 numerical instances) is consistently below 0.2% for any given 𝜀 satisfying |𝜀| ≤526 

15%. This indicates that the estimation error in discount rate would not significantly undermine the 527 

performance of our solution. Similar results were also found for other model parameters, including the 528 

O&M cost parameters and the salvage value function parameters. 529 

In addition, we consider a scenario where future demand estimates are inaccurate, and the accurate 530 

demands are known when they are realized. (A similar scenario is where some vehicles’ utilization 531 

trajectories unexpectedly deviate from an optimal plan, and the deviations are known when they 532 

occur.) Thus, we can re-optimize the fleet management plan when the accurate information is known. 533 

To see how this re-optimization approach performs, we examine a 20-year instance where the 534 

estimated demand in year 5 contains an error. This demand is represented by 𝐷5(1 + 𝜀), where 𝐷5 535 

is the true value and 𝜀 is the estimation error. In year 1, the fleet management plan is optimized using 536 

the estimated demand for years 1-20 (the same parameter values as the last batch of tests are used). 537 

Then in year 5, after knowing the true demand 𝐷5, we re-optimize the plan for years 5-20.5 Thus, the 538 

original plan was implemented in years 1-4 and the updated one in the remaining years. The total cost 539 

 
5 The re-optimization problem involves an initial fleet consisting of cohorts that were purchased (and not retired) 

by year 4. Although [P1] did not consider any initial fleet, it can be easily modified to model one. Our solution 

approach, including the demand allocation rule and the tabu search algorithm can be readily applied. 
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is calculated and compared against the optimal cost developed by assuming that the accurate demand 540 

𝐷5 was known in the beginning of planning horizon. We find for |𝜀| ≤ 30% that the error between 541 

the two cost values never exceeded 1.5%. 542 

The above results revealed that moderately inaccurate parameter values would not undermine the 543 

quality of our solution. They verified the practicality of our model and solution approach. 544 

7. Conclusions 545 

A two-stage approach is proposed for solving the discrete-time fleet management problem under 546 

time-varying demand. By exploiting a set of near-optimal conditions developed from a 547 

continuous-time approximation of the original formulation, the number of decision variables is 548 

reduced from 
𝑇(𝑇+7)

2
 to 3𝑇 + 𝑛, where 𝑛 is the number of breakpoints and is small in most cases 549 

(see Section 3.1.3). Numerical experiments showed that our approach outperformed existing solution 550 

approaches in terms of solution quality or computational efficiency, and oftentimes both, by 551 

significant margins. The advantage is greater for problems with a non-convex Stage-1 formulation, 552 

and for problems of larger sizes. The results manifested that our approach is an important 553 

improvement over the existing ones despite its heuristic nature, since exact solutions to the fleet 554 

management problem are unavailable for large-scale instances. 555 

Thanks to the above advantages, the proposed approach can be used to solve larger-scale problems 556 

with longer planning horizons or more vehicle types, and problems with a finer decision-making time 557 

scale (e.g., a month or a week instead of a year). The generality of our problem formulation also 558 

allows it to be applied to the management of various fleet types, including coach buses and aircrafts. 559 

Our work also demonstrated the potential of using continuous-time approximation for efficiently 560 

solving asset management problems with large numbers of variables. The key insight unveiled by this 561 

method, i.e., that the marginal utilization costs of distinct assets at a given time tend to be equal, is 562 

consistent with economic intuition. This insight and the resulting demand allocation rule (see again 563 

Section 3.1.3) can be potentially extended to solve more realistic problems such as: (i) problems with 564 

indivisible demands, e.g., containerized cargo with multiple origins and destinations; and (ii) 565 

problems with stochastic demand and operating conditions6. Works in the above directions are under 566 

investigation now. 567 

Our numerical results also show that the widely-cited “older cluster replacement” does not hold in an 568 

optimal fleet management plan. This, however, could possibly be a consequence of our assumption of 569 

the “no-splitting” property, meaning that the two seemingly intuitive properties cannot both hold at 570 

the optimality. In the future work we also plan to explore more realistic scenarios where the 571 

“no-splitting” assumption is relaxed, i.e., where vehicles in the same cohort can have different 572 

utilizations and retirement times. 573 
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Appendix A. List of notations 578 

Table A1. List of notations 579 

Notation Description Notation Description 

Decision variables 

𝑃𝑡 Number of vehicles purchased at time 𝑡 𝑃(𝑡) Continuous-time form of 𝑃𝑡 

𝛾𝑡 Type of vehicles in cohort 𝑡 𝛾(𝑡) Continuous-time form of 𝛾𝑡 

𝑢𝜏,𝑡 Mileage served at 𝜏 by a cohort-𝑡 vehicle 𝑢(𝜏, 𝑡) Continuous-time form of 𝑢𝜏,𝑡 

𝑦𝜏,𝑡 Cumulative mileage at 𝜏 of a cohort-𝑡 vehicle 𝑦(𝜏, 𝑡) Continuous-time form of 𝑦𝜏,𝑡 

𝑆𝑡 Time when cohort-𝑡 vehicles are retired 𝑆(𝑡) Continuous-time form of 𝑆𝑡 

𝑃𝑡,𝛾 Number of type-𝛾 vehicles purchased at 𝑡 𝑄𝑡,𝛾 Equals 1 if type-𝛾 vehicles are purchased 

at time 𝑡, and 0 otherwise 

𝑋(𝑢𝑙)𝑦,𝑤,𝑡,𝛾 Number of type-𝛾  vehicles in use at time 𝑡 

with utilization 𝑢𝑙 , age 𝑤 , and cumulative 

utilization 𝑦 

𝑍(𝑢𝑙)𝑦,𝑤,𝑡,𝛾 Equals 1 if type-𝛾 vehicles with age 𝑤 

and cumulative utilization 𝑦 are used at 

level 𝑢𝑙 at time 𝑡, and 0 otherwise 

𝑆𝑦,𝑤,𝑡,𝛾 Number of type-𝛾 vehicles retired at time 𝑡, 

with age 𝑤 and cumulative utilization 𝑦 

𝑊𝑦,𝑤,𝑡,𝛾 Equals 1 if type-𝛾 vehicles with age 𝑤 

and cumulative utilization 𝑦 are retired 

at time 𝑡, and 0 otherwise 

Parameters and other variables 

𝐷𝜏 Demand at 𝜏 𝐷(𝜏) Continuous-time form of 𝐷𝜏 

𝑈 Maximum mileage per vehicle in a unit time 𝐻 Set of vehicle types 

𝑦̅ Maximum allowable cumulative mileage 𝐴(∙) Unit purchase cost per vehicle 

𝑀(∙) Unit operating and maintenance cost per mile 𝐹(∙) Salvage value of a vehicle 

𝑇 Planning horizon 𝑟 Discount rate 

𝜆(𝜏) Lagrange multiplier for relaxing constraint (4b) 𝑧(∙) z-score 

𝜆𝜏 Lagrange multiplier for relaxing constraint (1b) 𝑧𝜏,𝑡(∙) Discrete-time form of 𝑧(∙) 

𝐹𝑦,𝑤,𝑡,𝛾 Salvage value of a cohort-𝑡 vehicle of type 𝛾, 

age 𝑤 with cumulative mileage 𝑦 

𝑔𝜏,𝑡
𝑢 (∙) Optimal solution for 𝑢𝜏,𝑡 under a given 

vehicle purchase and retirement plan 

𝑀(𝑢𝑙)𝑦,𝑤,𝑡,𝛾 O&M cost of a cohort-𝑡 vehicle of type 𝛾, age 

𝑤  with cumulative utilization 𝑦  and current 

utilization level 𝑢𝑙 

𝑀̅ A sufficiently large number 

Appendix B. Proof of Proposition 1 580 

Introduce Lagrange multipliers 𝜆(𝜏)  ( 𝜏 ∈ (0, 𝑇] ), 𝜇(𝜏, 𝑡) , 𝜑1(𝜏, 𝑡) , 𝜑2(𝜏, 𝑡)  and 𝜔(𝑡)  ( 𝑡 ∈581 

(0, 𝑇], 𝜏 ∈ (𝑡, 𝑆(𝑡)]) to relax the constraints (4b)-(4e) of [P4], respectively (where 𝜑1(𝜏, 𝑡) and 582 

𝜑2(𝜏, 𝑡) are used to relax the right and left inequalities of (4d), respectively). The Lagrange function 583 

is presented as: 584 

𝐿 = ∫ ∫ 𝑃(𝑡)𝑢(𝜏, 𝑡)𝑀(𝑦(𝜏, 𝑡), 𝛾(𝑡))
𝑆(𝑡)

𝜏=𝑡 
𝑒−𝑟𝜏𝑑𝜏𝑑𝑡

𝑇

𝑡=0
− ∫ 𝑃(𝑡)𝐹(𝑦(𝑆(𝑡), 𝑡), 𝛾(𝑡))𝑒−𝑟𝑆(𝑡)𝑇

𝑡=0
𝑑𝑡 +585 

∫ 𝜆(𝜏) (𝐷(𝜏) − ∫ 𝑃(𝑡)𝑢(𝜏, 𝑡)
𝑡:0≤𝑡≤𝜏≤𝑆(𝑡)

) 𝑒−𝑟𝜏𝑇

𝜏=0
𝑑𝜏 + ∫ ∫ 𝜇(𝜏, 𝑡)

𝑆(𝑡)

𝜏=𝑡
(𝑢(𝜏, 𝑡) −

𝑇

𝑡=0
586 

𝜕𝑦(𝜏,𝑡)

𝜕𝜏
) 𝑒−𝑟𝜏𝑑𝜏𝑑𝑡 + ∫ ∫ 𝜑1(𝜏, 𝑡)

𝑆(𝑡)

𝜏=𝑡
(𝑢(𝜏, 𝑡) − 𝑈)𝑒−𝑟𝜏𝑑𝜏𝑑𝑡

𝑇

𝑡=0
− ∫ ∫ 𝜑2(𝜏, 𝑡)

𝑆(𝑡)

𝜏=𝑡
𝑢(𝜏, 𝑡)𝑒−𝑟𝜏𝑑𝜏𝑑𝑡

𝑇

𝑡=0
+587 

∫ 𝜔(𝑡)(𝑦(𝑆(𝑡), 𝑡) − 𝑦̅)
𝑇

𝑡=0
𝑒−𝑟𝑆(𝑡)𝑑𝑡  588 

= ∫ ∫ 𝑃(𝑡)𝑢(𝜏, 𝑡)𝑀(𝑦(𝜏, 𝑡), 𝛾(𝑡))
𝑆(𝑡)

𝜏=𝑡 
𝑒−𝑟𝜏𝑑𝜏𝑑𝑡

𝑇

𝑡=0
− ∫ 𝑃(𝑡)𝐹(𝑦(𝑆(𝑡), 𝑡), 𝛾(𝑡))𝑒−𝑟𝑆(𝑡)𝑇

𝑡=0
𝑑𝑡 +589 
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∫ 𝜆(𝜏)𝐷(𝜏)𝑒−𝑟𝜏𝑇

𝜏=0
𝑑𝜏 − ∫ ∫ 𝜆(𝜏)𝑃(𝑡)𝑢(𝜏, 𝑡)𝑒−𝑟𝜏𝑑𝜏𝑑𝑡

𝑆(𝑡)

𝜏=𝑡

𝑇

𝑡=0
+ ∫ ∫ (𝜇(𝜏, 𝑡)𝑢(𝜏, 𝑡) +

𝑆(𝑡)

𝜏=𝑡

𝑇

𝑡=0
590 

𝑦(𝜏, 𝑡) (
𝜕𝜇(𝜏,𝑡)

𝜕𝜏
− 𝑟𝜇(𝜏, 𝑡))) 𝑒−𝑟𝜏𝑑𝜏𝑑𝑡 − ∫ 𝜇(𝑆(𝑡), 𝑡)𝑦(𝑆(𝑡), 𝑡)𝑒−𝑟𝑆(𝑡)𝑑𝑡

𝑇

𝑡=0
+591 

∫ ∫ 𝜑1(𝜏, 𝑡)
𝑆(𝑡)

𝜏=𝑡
(𝑢(𝜏, 𝑡) − 𝑈)𝑒−𝑟𝜏𝑑𝜏𝑑𝑡

𝑇

𝑡=0
− ∫ ∫ 𝜑2(𝜏, 𝑡)

𝑆(𝑡)

𝜏=𝑡
𝑢(𝜏, 𝑡)𝑒−𝑟𝜏𝑑𝜏𝑑𝑡

𝑇

𝑡=0
+592 

∫ 𝜔(𝑡)(𝑦(𝑆(𝑡), 𝑡) − 𝑦̅)
𝑇

𝑡=0
𝑒−𝑟𝑆(𝑡)𝑑𝑡            (B1) 593 

For the second equality above, 594 

∫ ∫ 𝜇(𝜏, 𝑡)
𝑆(𝑡)

𝜏=𝑡
(𝑢(𝜏, 𝑡) −

𝜕𝑦(𝜏,𝑡)

𝜕𝜏
) 𝑒−𝑟𝜏𝑑𝜏𝑑𝑡

𝑇

𝑡=0
= ∫ ∫ (𝜇(𝜏, 𝑡)𝑢(𝜏, 𝑡) + 𝑦(𝜏, 𝑡) (

𝜕𝜇(𝜏,𝑡)

𝜕𝜏
−

𝑆(𝑡)

𝜏=𝑡

𝑇

𝑡=0
595 

𝑟𝜇(𝜏, 𝑡))) 𝑒−𝑟𝜏𝑑𝜏𝑑𝑡 − ∫ 𝜇(𝑆(𝑡), 𝑡)𝑦(𝑆(𝑡), 𝑡)𝑒−𝑟𝑆(𝑡)𝑑𝑡
𝑇

𝑡=0
  596 

results from integration by parts. 597 

Take the partial derivatives of (B1) with respect to 𝑢(𝜏, 𝑡) and 𝑦(𝜏, 𝑡), part of the first-order 598 

conditions for optimality are: 599 

(i) Stationarity: 
𝜕𝐿

𝜕𝑢(𝜏,𝑡)
= 0, 

𝜕𝐿

𝜕𝑦(𝜏,𝑡)
= 0          (B2) 600 

(ii) Complementary slackness: 601 

𝜑1(𝜏, 𝑡)(𝑢(𝜏, 𝑡) − 𝑈) = 0,   for 𝑡 ∈ (0, 𝑇], 𝜏 ∈ [𝑡, 𝑆(𝑡)]        (B3a) 602 

𝜑2(𝜏, 𝑡)𝑢(𝜏, 𝑡) = 0,   for 𝑡 ∈ (0, 𝑇], 𝜏 ∈ [𝑡, 𝑆(𝑡)]         (B3b) 603 

𝜔(𝑡)(𝑦(𝑆(𝑡), 𝑡) − 𝑦̅) = 0,    for 𝑡 ∈ (0, 𝑇]          (B3c) 604 

and (iii) Dual feasibility: 605 

𝜑1(𝜏, 𝑡), 𝜑2(𝜏, 𝑡), 𝜔(𝑡) ≥ 0, for 𝑡 ∈ (0, 𝑇], 𝜏 ∈ [𝑡, 𝑆(𝑡)]       (B4) 606 

Note that not all the first-order conditions are presented here because some of them will not be used in 607 

the following derivation. Nevertheless, (B2)-(B4) are still necessary conditions of the optimality. 608 

Equations (B2) lead to the following (B5a-c): 609 

𝑃(𝑡)𝑀(𝑦(𝜏, 𝑡), 𝛾(𝑡)) − 𝑃(𝑡)𝜆(𝜏) + 𝜇(𝜏, 𝑡) + 𝜑1(𝜏, 𝑡) − 𝜑2(𝜏, 𝑡) = 0      (B5a) 610 

𝑃(𝑡)𝑢(𝜏, 𝑡)
𝜕𝑀

𝜕𝑦(𝜏,𝑡)
+

𝜕𝜇(𝜏,𝑡)

𝜕𝜏
− 𝑟𝜇(𝜏, 𝑡) = 0 for 𝜏 < 𝑆(𝑡)        (B5b) 611 

𝑃(𝑡)
𝜕𝐹

𝜕𝑦(𝑆(𝑡),𝑡)
+ 𝜇(𝑆(𝑡), 𝑡) − 𝜔(𝑡) = 0            (B5c) 612 

Take the partial derivative of both sides of (B5a) with respect to 𝜏: 613 

𝑃(𝑡)
𝜕𝑀

𝜕𝑦(𝜏,𝑡)

𝜕𝑦(𝜏,𝑡)

𝜕𝜏
− 𝑃(𝑡)

𝑑𝜆(𝜏)

𝑑𝜏
+

𝜕𝜇(𝜏,𝑡)

𝜕𝜏
+

𝜕𝜑1(𝜏,𝑡)

𝜕𝜏
−

𝜕𝜑2(𝜏,𝑡)

𝜕𝜏
         614 

= 𝑃(𝑡)𝑢(𝜏, 𝑡)
𝜕𝑀

𝜕𝑦(𝜏,𝑡)
− 𝑃(𝑡)

𝑑𝜆(𝜏)

𝑑𝜏
+

𝜕𝜇(𝜏,𝑡)

𝜕𝜏
+

𝜕𝜑1(𝜏,𝑡)

𝜕𝜏
−

𝜕𝜑2(𝜏,𝑡)

𝜕𝜏
= 0       (B6) 615 

Subtract (B5b) from (B6): 616 

𝜇(𝜏, 𝑡) =
1

𝑟
(𝑃(𝑡)

𝑑𝜆(𝜏)

𝑑𝜏
−

𝜕𝜑1(𝜏,𝑡)

𝜕𝜏
+

𝜕𝜑2(𝜏,𝑡)

𝜕𝜏
)            (B7) 617 

Then plug (B7) into (B5a): 618 

𝑃(𝑡)𝑀(𝑦(𝜏, 𝑡), 𝛾(𝑡)) = 𝜆(𝜏)𝑃(𝑡) −
1

𝑟
(𝑃(𝑡)

𝑑𝜆(𝜏)

𝑑𝜏
−

𝜕𝜑1(𝜏,𝑡)

𝜕𝜏
+

𝜕𝜑2(𝜏,𝑡)

𝜕𝜏
) − 𝜑1(𝜏, 𝑡) + 𝜑2(𝜏, 𝑡)(B8a) 619 

On the other hand, subtract (B5c) from (B5a) for 𝜏 = 𝑆(𝑡): 620 

𝑃(𝑡)𝑀(𝑦(𝑆(𝑡), 𝑡), 𝛾(𝑡)) − 𝑃(𝑡)
𝜕𝐹

𝜕𝑦(𝑆(𝑡),𝑡)
= 𝑃(𝑡)𝜆(𝑆(𝑡)) − 𝜑1(𝑆(𝑡), 𝑡) + 𝜑2(𝑆(𝑡), 𝑡) − 𝜔(𝑡)(B8b) 621 
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Equations (B8a) and (B8b) apply to the cases of 𝜏 < 𝑆(𝑡) and 𝜏 = 𝑆(𝑡), respectively. In the former 622 

case, by examining (B8a) and the values of 𝜑1(𝜏, 𝑡) and 𝜑2(𝜏, 𝑡) for any given 𝜏 and 𝑡, we find 623 

that one of the following three cases will arise: 624 

(i) When 𝜑1(𝜏, 𝑡) = 𝜑2(𝜏, 𝑡) = 0 , constraint (4d) is unbinding; i.e., 0 < 𝑢(𝜏, 𝑡) < 𝑈 . Since 625 

𝜑1(𝜏, 𝑡), 𝜑2(𝜏, 𝑡) ≥ 0 (see (B4)), we have 
𝜕𝜑1(𝜏,𝑡)

𝜕𝜏
=

𝜕𝜑2(𝜏,𝑡)

𝜕𝜏
= 0. (Note that this relies on an 626 

implicit assumption that 𝜑1(𝜏, 𝑡) and 𝜑2(𝜏, 𝑡) are continuous and differentiable with respect 627 

to 𝜏, which has been used in other similar studies, e.g., Jin and Kite-Powell, 2000). Hence, (B8a) 628 

can be re-arranged as: 629 

𝑃(𝑡) ∙ [𝑀(𝑦(𝜏, 𝑡), 𝛾(𝑡)) − (𝜆(𝜏) −
1

𝑟

𝑑𝜆(𝜏)

𝑑𝜏
)] = 0         (B9) 630 

(ii) When 𝜑1(𝜏, 𝑡) = 0 but 𝜑2(𝜏, 𝑡) ≠ 0, we have 𝑢(𝜏, 𝑡) = 0. 631 

(iii) Lastly, when 𝜑1(𝜏, 𝑡) ≠ 0 but 𝜑2(𝜏, 𝑡) = 0, we have 𝑢(𝜏, 𝑡) = 𝑈. 632 

Note that at least one of 𝜑1(𝜏, 𝑡) and 𝜑2(𝜏, 𝑡) must be zero, because the left and right inequalities 633 

of (4d) cannot be binding simultaneously. 634 

A similar reasoning applies to (B8b). Specifically, one of the following four cases will arise: 635 

(i) When 𝜑1(𝑆(𝑡), 𝑡) = 𝜑2(𝑆(𝑡), 𝑡) = 𝜔(𝑡) = 0, both constraints (4d) and (4e) are unbinding; i.e., 636 

0 < 𝑢(𝜏, 𝑡) < 𝑈 and 𝑦(𝑆(𝑡), 𝑡) < 𝑦̅. Then we have: 637 

𝑃(𝑡) ∙ [𝑀(𝑦(𝑆(𝑡), 𝑡), 𝛾(𝑡)) −
𝜕𝐹

𝜕𝑦(𝑆(𝑡),𝑡)
− 𝜆(𝑆(𝑡))] = 0       (B10) 638 

(ii) When 𝜔(𝑡) ≠ 0, we have 𝑦(𝑆(𝑡), 𝑡) = 𝑦̅. 639 

(iii) When 𝜔(𝑡) = 𝜑1(𝑆(𝑡), 𝑡) = 0 but 𝜑2(𝑆(𝑡), 𝑡) ≠ 0, we have 𝑢(𝑆(𝑡), 𝑡) = 0. 640 

(iv) Lastly, when 𝜔(𝑡) = 𝜑2(𝑆(𝑡), 𝑡) = 0 but 𝜑1(𝑆(𝑡), 𝑡) ≠ 0, 𝑢(𝑆(𝑡), 𝑡) = 𝑈. 641 

By rearranging the above results, we have Proposition 1.        ◼ 642 

Appendix C. Solution algorithms 643 

C.1 The solution algorithm for solving [P2] 644 

Algorithm 1: Finding optimal 𝒖𝝉,𝒕 for 𝟏 ≤ 𝒕 ≤ 𝝉 ≤ 𝑺𝒕, given 𝑷𝒕, 𝜸𝒕, 𝑺𝒕 (𝟏 ≤ 𝒕 ≤ 𝑻) , and 𝝀𝒊’s 

at all breakpoints 𝒊 ∈ {𝟏, 𝟐, … , 𝑻} 

Initialize 𝑢𝜏,𝑡 = 𝑦𝜏,𝑡 = 0 for 1 ≤ 𝑡 ≤ 𝜏 ≤ 𝑆𝑡. 645 

Find the first cohort, 𝑡̃, whose service life is longer than one time unit. Since 𝑡̃ is a breakpoint, 𝜆𝑡̃ is 646 

given by the condition of the algorithm. 647 

For all 𝜏 ∈ {1, ⋯ , 𝑡̃}: if 𝑃𝜏 > 0, set 𝑢𝜏,𝜏 =
𝐷𝜏

𝑃𝜏
, 𝑦𝜏,𝜏 = 𝑢𝜏,𝜏. 648 

Set λ𝑡̃+1 = (1 + 𝑟)𝜆𝑡̃ − 𝑟𝑧𝑡̃,𝑡̃(𝑦𝑡̃,𝑡̃), where 𝑧𝑡̃,𝑡̃(𝑦𝑡̃,𝑡̃) is calculated by (8c). 649 

For 𝜏 = 𝑡̃ + 1, …, 𝑇: 650 

For each retiring cohort 𝑡 at 𝜏: 651 

Set 𝑦𝜏,𝑡 = min{ 𝑧𝜏,𝑡
−1(𝜆𝜏), 𝑦𝜏−1,𝑡 + 𝑈, 𝑦̅}, where 𝑧𝜏,𝑡

−1(𝜆𝜏) is the inverse function of (9c); 652 

and 𝑢𝜏,𝑡 = 𝑦𝜏,𝑡 − 𝑦𝜏−1,𝑡. 653 

End For 654 

If there exists at least one non-retiring cohort at 𝜏 and 𝐷𝜏 − ∑ 𝑃𝑡𝑢𝜏,𝑡𝑡:𝑡≤𝜏≤𝑆𝑡
> 0: 655 

Do: 656 

Allocate the remaining demand to the non-retiring cohort 𝑡 with the lowest z-score 657 

unless 𝑢𝜏,𝑡 reaches 𝑈; keep 𝑧𝜏,𝑡 and 𝑢𝜏,𝑡 updated. 658 

         Until 𝐷𝜏 − ∑ 𝑃𝑡𝑢𝜏,𝑡𝑡:𝑡≤𝜏≤𝑆𝑡
= 0 (i.e., all the demand has been allocated) 659 
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         Set 𝜆𝜏+1 = (1 + 𝑟)𝜆𝜏 − 𝑟 ∙ [
maximum z-score among all the non-

retiring cohorts receiving demand at 𝜏
]. 660 

     Else: 661 

         𝜏 + 1 is a breakpoint, and thus 𝜆𝜏+1 is given by the condition of the algorithm. 662 

     End If 663 

End For 664 

Output 𝒖𝝉,𝒕 for 𝟏 ≤ 𝒕 ≤ 𝝉 ≤ 𝑺𝒕 and 𝑱′ calculated using (2). 

C.2 The derivative-free approximate gradient algorithm for optimizing 𝝀𝒊’s at breakpoints 665 

The following pseudo code optimizes 𝜆1 only, assuming that it is the only breakpoint. If there are 666 

more breakpoints, they will be optimized with embedded iteration loops. 667 

Algorithm 2: Finding optimal 𝝀𝟏, given 𝑷𝒕, 𝜸𝒕, and 𝑺𝒕 (𝟏 ≤ 𝒕 ≤ 𝑻) 

Randomly initialize 𝜆1
(0)

 and 𝜆1
(1)

 using a predefined range Ω; calculate the optimal total cost of [P2] 668 

using Algorithm 1, i.e., 𝐽′(𝜆1
(0)

) and  𝐽′(𝜆1
(1)

).  669 

Define 𝜆1
∗  as the value of 𝜆1 that attains the lowest 𝐽′ so far. 670 

Do: 671 

Let 𝜆1
(𝑘)

= 𝜆1
(𝑘−1)

− 𝛼𝑘−1

𝐽′(𝜆1
(𝑘−1)

)−𝐽′(𝜆1
(𝑘−2)

)

𝜆1
(𝑘−1)

−𝜆1
(𝑘−2) , where 𝛼𝑘−1 is a positive step size. 672 

Calculate 𝐽′ (𝜆1
(𝑘)

) and update 𝜆1
∗ . 673 

Set 𝑘 ← 𝑘 + 1. 674 

Until 𝜆1
∗  has not been changed for 𝑚𝑎𝑥_𝑛𝑢𝑚1 steps 675 

Output 𝜆1
∗  and 𝐽′(𝜆1

∗ ). 

In our numerical case studies presented in Sections 4 and 5, we set Ω = [5,10], 𝑚𝑎𝑥_𝑛𝑢𝑚1 = 10, 676 

and 𝛼𝑘 = 2 × 10−6, ∀𝑘.  677 

C.3 The greedy heuristic algorithm for developing an initial solution to [P3] 678 

At each present time 𝑖 (𝑖 progresses from 1 to 𝑇), the greedy heuristic determines 𝑃𝑖 and 𝛾𝑖 as 679 

follows:  680 

(i) For the present time 𝑖 and all the future times, purchase the minimum number of vehicles 681 

required to meet the demand, assuming that all these vehicles retire at 𝑇 and have the same type 682 

𝛾 ∈ 𝐻; and find the 𝛾 that minimizes the cost. 683 

(ii) Examine if retiring an existing cohort at the present time 𝑖 will reduce the cost. 684 

The algorithm is detailed as follows. 685 

Algorithm 3: Finding an initial [P3] solution 𝒙𝟎 

For 𝑖 = 1, ⋯ , 𝑇:      //𝑖 represents the present time 686 

For 𝑗 = 0, ⋯ , 𝑖 − 1: //𝑗 is used to examine if retiring an existing cohort before the present 687 

time 𝑖 can reduce cost 688 

//Examine the case where cohort 𝑗 retires right before the present time. 689 

If 𝑗 ≥ 1, 𝑃𝑗 > 0 and 𝑆𝑗 > 𝑖 − 1: set 𝑆̃𝑗 = 𝑆𝑗, 𝑆𝑗 = 𝑖 − 1. 690 

For each 𝛾 ∈ 𝐻: 691 

For all the future times 𝜏 = 𝑖, ⋯ , 𝑇: 692 
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Set 𝑃𝜏 to the minimum number of vehicles required to satisfy the demand 693 

constraint; set 𝑆𝜏 = 𝑇, 𝛾𝜏 = 𝛾. 694 

Continuously allocate 𝐷𝜏  to the vehicles with the lowest z-score, while 695 

satisfying boundary constraints (1g-h). 696 

End For 697 

Calculate cost 𝐽 using (3a); record the lowest-cost solution so far as {𝑃𝑡, 𝛾𝑡 , 𝑆𝑡: 𝑡 =698 

1,2, … , 𝑇}. 699 

End For 700 

If 𝑆𝑗 = 𝑖 − 1: set 𝑆𝑗 = 𝑆̃𝑗.  //Revert 𝑆𝑗. 701 

End For 702 

End For 703 

Output 𝒙𝟎 = {𝑷𝒕, 𝜸𝒕, 𝑺𝒕: 𝒕 = 𝟏, 𝟐, … , 𝑻}. 

C.4 The tabu search algorithm for solving [P3] 704 

Algorithm 4: Finding a heuristic solution 𝒙∗ ≡ {𝑷𝒕
∗, 𝜸𝒕

∗, 𝑺𝒕
∗: 𝒕 = 𝟏, 𝟐, … , 𝑻} 

Initialize 𝒙 = 𝒙0 using Algorithm 3, 𝑇𝐿 = ∅, and 𝒙∗ = 𝒙; 705 

Do: 706 

Find the best move in 𝒩(𝒙) ∩ 𝑇𝐿 that yields the lowest cost 𝐽; denote the solution as 𝒙̃. 707 

If 𝐽(𝒙̃) < 𝐽(𝒙∗): 708 

Set 𝒙∗ = 𝒙 = 𝒙̃; 709 

         Update 𝑇𝐿. 710 

    Else: 711 

         Find the best move in 𝒩(𝒙)\𝑇𝐿 that yields the lowest 𝐽; denote the solution as 𝒙̃. 712 

        Set 𝒙 = 𝒙̃; 713 

        Update 𝑇𝐿. 714 

    End If 715 

Until 𝒙∗ has not been changed for 𝑚𝑎𝑥_𝑛𝑢𝑚_𝑡𝑏 steps 716 

Output 𝒙∗. 

Appendix D. Formulation using Hartman’s linear modeling approach 717 

To convert [P1] to a linear program following Hartman’s approach (1999), we discretize the demand 718 

and utilization values using an interval 𝕦 > 0. Thus, vehicle utilization levels in a period can only 719 

take values from a finite set, i.e., 𝑢𝑙 ∈ {0, 𝕦, 2𝕦, … , 𝑢𝑚𝑎𝑥}. Decision variables of the linearized 720 

problem are defined as follows: 721 

𝑃𝑡,𝛾: number of type-𝛾 vehicles purchased at time 𝑡, 1 ≤ 𝑡 ≤ 𝑇, 𝛾 ∈ 𝐻; 722 

𝑄𝑡,𝛾: binary variable that equals 1 if type-𝛾 vehicles are purchased at time 𝑡, and 0 otherwise, 1 ≤723 

𝑡 ≤ 𝑇, 𝛾 ∈ 𝐻; 724 

𝑋(𝑢𝑙)𝑦,𝑤,𝑡,𝛾: number of type-𝛾 vehicles in use at time 𝑡 with utilization 𝑢𝑙, age 𝑤, and cumulative 725 

utilization 𝑦, 0 ≤ 𝑢𝑙 ≤ 𝑢𝑚𝑎𝑥, 0 ≤ 𝑦 ≤ 𝑦̅, 1 ≤ 𝑤, 𝑡 ≤ 𝑇, 𝛾 ∈ 𝐻; 726 

𝑍(𝑢𝑙)𝑦,𝑤,𝑡,𝛾: binary variable that equals 1 if type-𝛾 vehicles with age 𝑤 and cumulative utilization 727 

𝑦 are used at level 𝑢𝑙 at time 𝑡, and 0 otherwise, 0 ≤ 𝑢𝑙 ≤ 𝑢𝑚𝑎𝑥, 0 ≤ 𝑦 ≤ 𝑦̅, 1 ≤ 𝑤, 𝑡 ≤ 𝑇; 728 

𝑆𝑦,𝑤,𝑡,𝛾: number of type-𝛾 vehicles retired at time 𝑡, with age 𝑤 and cumulative utilization 𝑦, 0 ≤729 

𝑦 ≤ 𝑦̅, 1 ≤ 𝑤, 𝑡 ≤ 𝑇; 730 
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𝑊𝑦,𝑤,𝑡,𝛾: binary variable that equals 1 if type-𝛾 vehicles with age 𝑤 and cumulative utilization 𝑦 731 

are retired at time 𝑡, and 0 otherwise, 0 < 𝑦 ≤ 𝑦̅, 1 ≤ 𝑤, 𝑡 ≤ 𝑇. 732 

[P1] is then reformulated as: 733 

min ∑ ∑ 𝐴(𝛾)𝑃𝑡,𝛾𝑒−𝑟𝑡
𝛾

𝑇
𝑡=1 + ∑ ∑ ∑ ∑ ∑ 𝑀(𝑢𝑙)𝑦,𝑤,𝑡,𝛾𝑋(𝑢𝑙)𝑦,𝑤,𝑡,𝛾𝑒−𝑟𝑡

𝛾
𝑢𝑚𝑎𝑥
𝑢𝑙=0

𝑦̅
𝑦=0

𝑇
𝑤=1

𝑇
𝑡=1 −734 

∑ ∑ ∑ ∑ 𝐹𝑦,𝑤,𝑡,𝛾𝑆𝑦,𝑤,𝑡,𝛾𝑒−𝑟𝑡
𝛾

𝑦̅
𝑦=0

𝑇
𝑤=1

𝑇
𝑡=1            (D1) 735 

subject to:  736 

∑ ∑ ∑ ∑ 𝑋(𝑢𝑙)𝑦,𝑤,𝑡,𝛾𝑢𝑙𝛾
𝑢𝑚𝑎𝑥
𝑢𝑙=0

𝑦̅
𝑦=0

𝑇
𝑤=1 ≥ 𝐷𝑡   ∀ 1 ≤ 𝑡 ≤ 𝑇       (D2) 737 

𝑃𝑡,𝛾 − ∑ 𝑋(𝑢𝑙)0,1,𝑡,𝛾
𝑢𝑚𝑎𝑥
𝑢𝑙=0 = 0,   ∀ 1 ≤ 𝑡 ≤ 𝑇, 𝛾 ∈ 𝐻        (D3) 738 

𝑃𝑡,𝛾 ≥ 𝑄𝑡,𝛾 ,   ∀ 1 ≤ 𝑡 ≤ 𝑇, 𝛾 ∈ 𝐻            (D4) 739 

𝑃𝑡,𝛾 ≤ 𝑀̅𝑄𝑡,𝛾 ,   ∀ 1 ≤ 𝑡 ≤ 𝑇, 𝛾 ∈ 𝐻           (D5) 740 

∑ 𝑄𝑡,𝛾𝛾 ≤ 1,   ∀ 1 ≤ 𝑡 ≤ 𝑇             (D6) 741 

∑ 𝑋(𝑢𝑙)𝑦,𝑤,1,𝛾
𝑢𝑚𝑎𝑥
𝑢𝑙=0 = 0, ∀0 ≤ 𝑦 ≤ 𝑦̅, 2 ≤ 𝑤 ≤ 𝑇, 𝛾 ∈ 𝐻 and ∀0 < 𝑦 ≤ 𝑦̅, 1 ≤ 𝑤 ≤ 𝑇, 𝛾 ∈ 𝐻 742 

(D7) 743 

∑ 𝑋(𝑢𝑙)𝑦−𝑢𝑙,𝑤−1,𝑡−1,𝛾
𝑢𝑚𝑎𝑥
𝑢𝑙=0 − 𝑆𝑦,𝑤−1,𝑡−1,𝛾 − ∑ 𝑋(𝑢𝑙)𝑦,𝑤,𝑡,𝛾

𝑢𝑚𝑎𝑥
𝑢𝑙=0 = 0,   ∀0 < 𝑦 ≤ 𝑦̅, 2 ≤ 𝑤 ≤ 𝑡 ≤ 𝑇,744 

𝛾 ∈ 𝐻                 (D8) 745 

∑ 𝑋(𝑢𝑙)𝑦−𝑢𝑙,𝑤,𝑇,𝛾
𝑢𝑚𝑎𝑥
𝑢𝑙=0 − 𝑆𝑦,𝑤,𝑇,𝛾 = 0,   ∀0 < 𝑦 ≤ 𝑦̅, 1 ≤ 𝑤 ≤ 𝑇, 𝛾 ∈ 𝐻     (D9) 746 

∑ 𝑍(𝑢𝑙)𝑦,𝑤,𝑡,𝛾
𝑢𝑚𝑎𝑥
𝑢𝑙=0 + 𝑊𝑦,𝑤−1,𝑡−1,𝛾 ≤ 1,   ∀0 < 𝑦 ≤ 𝑦̅, 2 ≤ 𝑤 ≤ 𝑡 ≤ 𝑇, 𝛾 ∈ 𝐻     (D10) 747 

∑ ∑ 𝑍(𝑢𝑙)0,1,1,𝛾𝛾
𝑢𝑚𝑎𝑥
𝑢𝑙=0 = 1              (D11) 748 

𝑋(𝑢𝑙)𝑦,𝑤,𝑡,𝛾 ≥ 𝑍(𝑢𝑙)𝑦,𝑤,𝑡,𝛾 ,   ∀0 ≤ 𝑢𝑙 ≤ 𝑢𝑚𝑎𝑥, 0 ≤ 𝑦 ≤ 𝑦̅, 1 ≤ 𝑤 ≤ 𝑡 ≤ 𝑇, 𝛾 ∈ 𝐻     (D12) 749 

𝑋(𝑢𝑙)𝑦,𝑤,𝑡,𝛾 ≤ 𝑀̅𝑍(𝑢𝑙)𝑦,𝑤,𝑡,𝛾 ,   ∀0 ≤ 𝑢𝑙 ≤ 𝑢𝑚𝑎𝑥, 0 ≤ 𝑦 ≤ 𝑦̅, 1 ≤ 𝑤 ≤ 𝑡 ≤ 𝑇, 𝛾 ∈ 𝐻  (D13) 750 

𝑆𝑦,𝑤,𝑡,𝛾 ≥ 𝑊𝑦,𝑤,𝑡,𝛾 ,   ∀0 < 𝑦 ≤ 𝑦̅, 1 ≤ 𝑤 ≤ 𝑡 < 𝑇, 𝛾 ∈ 𝐻       (D14) 751 

𝑆𝑦,𝑤,𝑡,𝛾 ≤ 𝑀̅𝑊𝑦,𝑤,𝑡,𝛾 ,   ∀0 < 𝑦 ≤ 𝑦̅, 1 ≤ 𝑤 ≤ 𝑡 < 𝑇, 𝛾 ∈ 𝐻       (D15) 752 

𝑄𝑡,𝛾 ∈ {0,1},   ∀1 ≤ 𝑡 ≤ 𝑇, 𝛾 ∈ 𝐻            (D16) 753 

𝑊𝑦,𝑤,𝑡,𝛾 ∈ {0, 1},   ∀0 < 𝑦 ≤ 𝑦̅, 1 ≤ 𝑤 ≤ 𝑡 < 𝑇, 𝛾 ∈ 𝐻         (D17) 754 

𝑍(𝑢𝑙)𝑦,𝑤,𝑡,𝛾 ∈ {0,1},   ∀0 ≤ 𝑢𝑙 ≤ 𝑢𝑚𝑎𝑥, 0 ≤ 𝑦 ≤ 𝑦̅, 1 ≤ 𝑤 ≤ 𝑡 ≤ 𝑇, 𝛾 ∈ 𝐻    (D18) 755 

𝑃𝑡,𝛾 ∈ ℤ,   ∀ 1 ≤ 𝑡 ≤ 𝑇, 𝛾 ∈ 𝐻            (D19) 756 

The objective function (D1) consists of the vehicle purchase cost, O&M cost, and salvage value, where 757 

𝐴(𝛾) is the purchase cost of a type-𝛾 vehicle; 𝑀(𝑢𝑙)𝑦,𝑤,𝑡,𝛾 the O&M cost of a type-𝛾 vehicle with 758 

age 𝑤, cumulative utilization 𝑦, and present utilization level 𝑢𝑙; and 𝐹𝑦,𝑤,𝑡,𝛾 the salvage value of a 759 

type-𝛾 vehicle with age 𝑤 and cumulative mileage 𝑦. Constraint (D2) specifies that all the demand 760 

must be met. (D3-15) are flow conservation constraints, where 𝑀̅ is a sufficiently large number. 761 

Constraints (D16-18) define 𝑄𝑡,𝛾 , 𝑊𝑦,𝑤,𝑡,𝛾  and 𝑍(𝑢𝑙)𝑦,𝑤,𝑡,𝛾  as binary variables. Constraint (D19) 762 

stipulates that 𝑃𝑡,𝛾 is integer-valued. The definitions of all the other parameters, including 𝐻 and 𝑟, 763 

are given in Table 1. Discrete values of 𝑀(𝑢𝑙)𝑦,𝑤,𝑡,𝛾 and 𝐹𝑦,𝑤,𝑡,𝛾 can be calculated using cost 764 

models presented in Section 4.1. 765 
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