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American Sign Language Recognition and Training Method with Recurrent Neural 1 

Network 2 

 3 

Abstract 4 

Though American sign language (ASL) has gained recognition from the American society, few ASL applications 5 

have been developed with educational purposes. Those designed with real-time sign recognition systems are 6 

also lacking. Leap motion controller facilitates the real-time and accurate recognition of ASL signs. It allows an 7 

opportunity for designing a learning application with a real-time sign recognition system that seeks to improve 8 

the effectiveness of ASL learning. The project proposes an ASL learning application prototype. The application 9 

would be a whack-a-mole game with a real-time sign recognition system embedded. Since both static and 10 

dynamic signs (J, Z) exist in ASL alphabets, Long-Short Term Memory Recurrent Neural Network with k-11 

Nearest-Neighbour method is adopted as the classification method is based on handling of sequences of input. 12 

Characteristics such as sphere radius, angles between fingers and distance between finger positions are extracted 13 

as input for the classification model. The model is trained with 2600 samples, 100 samples taken for each 14 

alphabet. The experimental results revealed that the recognition rate for 26 ASL alphabets yields an average of 15 

99.44% accuracy rate and 91.82% in 5-fold cross-validation with the use of leap motion controller.  16 

 17 

 18 

Keywords: American Sign Language; Leap motion controller; Learning Application; Sign Recognition System 19 
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1. Introduction 1 

1.1. Problem description 2 

Sign languages are natural languages that have been developed through the evolution of contact between the 3 

hearing impaired but not invented by any system (Napier & Leeson, 2016). They differ from spoken languages 4 

in primarily two ways. First, sign languages are natural and mature languages are “articulated in visual-spatial 5 

modality”, unlike spoken ones, that are presented in “oral-aural modality”. Second, Napier and Leeson (2016) 6 

pointed out that sign languages employ two hands, facial muscles, the body and head and sometimes also involve 7 

vocalisation. They are neither universal nor mutually intelligible (Beal-Alvarez, 2014). In other words, a sign 8 

language that is developed in one region is not applicable in other regions and contains non-relevant varieties 9 

that require special methods/techniques of acquisition. Currently, 141 types of sign languages exist worldwide 10 

(Liddell & Johnson, 1989). 11 

 12 

The American sign language (ASL) is the foremost used language for the deaf in the United States and English-13 

speaking regions of Canada (Napier, Leigh, & Nann, 2007). Though increasing recognition for ASL has boosted 14 

confidence among the hearing impaired, the limited resources available has created social and cultural issues 15 

among the hearing impaired communities, compared to the amount of linguistics research despite the amount 16 

of linguistic research carried out in the field (Marschark & Spencer, 2010). In the United States, hearing 17 

impaired and hard-of-hearing students can choose between attending residential (catering to only students who 18 

are hearing impaired or hard-of-hearing) or public schools. As the integration of hearing impaired with peers 19 

without hearing impairment is emphasised, an increasing number of hearing impaired students are enrolling in 20 

public schools. However, they are placed in environments without adequate teaching support in most cases 21 

(Marschark & Spencer, 2010).  22 

 23 

To create an inclusive environment with hearing students and hearing impaired in public schools, promoting 24 

ASL among the hearing public would be effective. With the implementation of ASL in schools, hearing teachers 25 

and students can communicate through both linguistic and non-linguistics ways that can aid in creating an 26 

interactive environment for hearing impaired and hard-of-hearing students and thus enhance the effectiveness 27 

of academic learning. Furthermore, the promotion of ASL helps achieve the inclusion of the hearing impaired 28 

in society through boosting learning motivation with educational applications. Being a feasible and economical 29 

solution, the leap motion controller is commonly used as a device for sign recognition systems (Arsalan, Kim, 30 

Owais, & Park, 2020; Elboushaki, Hannane, Afdel, & Koutti, 2020). However, there exists a research gap on 31 

the adoption of leap motion controller in sign education purposes. A predominant section of the research only 32 

examines the viability of different sign recognition models with the leap motion controller and does not extend 33 

the model into an educational application that aids sign language learning and promotes sign languages. Only 34 

Parreño, Celi, Quevedo, Rivas, and Andaluz (2017) have proposed a didactic game prototype for Ecuadorian 35 

signs. Therefore, there is a paucity of research focusing on the development of educational applications for ASL 36 

with the leap motion controller and investigating the effectiveness of such applications in improving sign 37 
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learning. 1 

 2 

1.2. Contributions of the research 3 

This research seeks to design an ASL learning application in game-learning and develop a real-time sign 4 

recognition system with leap motion controller for the use of the application. The sign recognition environment 5 

starts with identifying and extracting ASL’s sign features and by subsequently developing a suitable algorithm 6 

for the recognition system. After applying the algorithm and training the network architecture, the system gains 7 

the capacity to recognise and classify ASL signs into 26 alphabets. The classification using feature extraction 8 

was processed by long-short term memory recurrent neural network (LSTM-RNN) with k-nearest neighbour 9 

(kNN) method. Finally, the system will be integrated into the game environment in the ASL learning application. 10 

This application is expected to promote ASL among the hearing impaired and the non-hearing impaired, thereby 11 

motivating them to learn ASL by entertainment and engagement provided by the game environment and further 12 

helping the hearing impaired to better integrate into society. Furthermore, it encourages and promotes the use 13 

of ASL as a second language that is worthy of acquiring. 14 

 15 

The contributions of the research can be summarised as follows: 16 

• The proposed LSTM-RNN with kNN method could recognise 26 alphabets with a recognition rate of 17 

99.44% accuracy and 91.82% in 5-fold cross-validation using leap motion controller. The proposed 18 

method outperforms other well-known algorithms in the literature. 19 

• Leap motion controller is a monochromatic-IR-cameras and three-infrared-LEDs based sensor to track 20 

the 3D motion of hand gesture, including Palm centre, fingertip position, sphere radius and finger bone 21 

positions for every 200 frames collected. Given that those data are available using a leap motion 22 

controller, we could further extract the feature for the classification of ASL, which an application in our 23 

study. 24 

• The programming flow of the proposed model was designed as a learning-based program. A game 25 

module and recognition module are performed in real-time. We aim at promoting ASL in a learning-26 

based environment as our application. 27 

 28 

1.3. The organisation of the paper 29 

The rest of this article is organised as follows. Section 2 describes the literature review and section 3 illustrates 30 

the proposed framework for the ASL learning application, including the game module and real-time recognition 31 

system. Section 4 presents the validation results and analyses the performance of the proposed recognition 32 

system. Section 5 summarises the research, including the conclusion, research contributions, limitations and 33 

future development. 34 

 35 
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2. Literature review 1 

2.1. Learning application 2 

In terms of educational technology, knowledge acquisition in students can be improved through the fusion of 3 

academic activities with interactive, collaborative and immersive technologies (Souza, 2015). Notably, several 4 

studies have proposed new approaches that stimulate sign language mastering and knowledge acquisition by 5 

promoting motivation and excitement in pedagogical activities. Parreño, et al. (2017) suggested that an 6 

intelligent sign learning game-based system is more effective in the improvement of sign language skills. Pontes, 7 

Duarte, and Pinheiro (2018) have also proposed an education digital game with the provision of a modular 8 

software architecture that acts as a motivator in the Brazilian Sign Language learning process. Notably, modular 9 

software architectures can allow adjustments to accommodate other sign languages (Rastgoo, Kiani, & Escalera, 10 

2020). Furthermore, it is suggested that engagement is ensured when students concentrate and enjoy sign 11 

learning via the game, which eventually improves learning performance among students (Kamnardsiri, Hongsit, 12 

Khuwuthyakorn, & Wongta, 2017). In summary, educational games are proven to be effective tools in learning 13 

sign languages and are further supported by the engagement, motivation and entertainment they warrant. 14 

 15 

2.2. The comparison of sign recognition methods 16 

Past research has suggested several methods for the recognition of ASL, including the usage of motion gloves, 17 

Kinect Sensor, image processing with cameras and leap motion controllers. Oz and Leu (2011) developed an 18 

artificial neural network model to track the 3D motion for 50 ASL words. Motion gloves for ASL recognition 19 

are more expensive, have higher restrictions in terms of hand anatomy and are less comfortable for users 20 

compared to vision-based methods. Moreover, it is time-consuming and may result in imprecise calibrations 21 

caused by the wear and tear from repeated use of the gloves (Huenerfauth & Lu, 2010; Luzanin & Plancak, 22 

2014; Oz & Leu, 2007). Due to sign complexities, constant finger occlusions, high interclass similarities and 23 

significant interclass variations, the recognition of ASL signs is still remains a challenging task for Kinect 24 

sensors used in isolation (Sun, Zhang, Bao, Xu, & Mei, 2013; Tao, Leu, & Yin, 2018). Furthermore, the 25 

calibration of the sensory data are is also important. Several studies have focused on the measurement of angular 26 

positions to predict the motion gestures (Fujiwara, Santos, & Suzuki, 2014). Tubaiz, Shanableh, and Assaleh 27 

(2015) and Aly, Aly, and Almotairi (2019) suggested that an ASL recognition system could can be developed in 28 

a user-dependent mode and proposed a modified kNN approach. Readers can refer to the review article on 29 

sensory gloves for sign language recognition (Ahmed, Zaidan, Zaidan, Salih, & Lakulu, 2018). The sensing 30 

board and wearable application for ASL recognition have been also been extensively studied in the literature (B. 31 

G. Lee & Lee, 2018; Paudyal, Lee, Banerjee, & Gupta, 2019; Jian Wu & Jafari, 2017; J. Wu, Sun, & Jafari, 32 

2016; J. Wu, Tian, Sun, Estevez, & Jafari, 2015). 33 

 34 

Among all vision-based sign recognition methods, image processing is a low-cost, widely accessible and 35 

effective option (Ciaramello & Hemami, 2011; Starner, Weaver, & Pentland, 1998); however, it requires a long 36 

calculation to recognise hand and fingers, which results in a long interval before projecting the recognition result 37 
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(Khelil, et al., 2016). Furthermore, skin colour and lightning conditions are critical factors that severely affect 1 

and hinder data accuracy (Bheda & Radpour, 2017). However, the leap motion controller in palm-size is a more 2 

economical and portable solution than motion gloves or Kinect sensors discussed above (Chuan, Regina, & 3 

Guardino, 2014). Fast processing, robustness and requirement of less memory are additional advantages for the 4 

leap motion controller (Naglot & Kulkarni, 2016). However, the controller has an inconsistent sampling 5 

frequency. It requires post-processing to reduce its effect on real-time recognition systems (Guna, Jakus, 6 

Pogačnik, Tomažič, & Sodnik, 2014). The comparison of glove-based and vision-based methods of gesture 7 

recognition application are shown in Table 1. 8 

 9 

Table 1  10 

Comparison between glove-based and vision-based methods 11 

Factors Motion Gloves Vision-based Methods 

User comfort Less High 

Portability Lower Higher 

Cost Higher Lower 

Hand Anatomy Low High 

Calibration Critical Not Critical 

 12 

2.3. Structure and Recognition Framework of leap motion controller 13 

The controller, comprised of infrared cameras and optical sensors, is used for sensing hand and finger 14 

movements in 3D space. According to the sensor’s coordinate system, the position and speed of the palm and 15 

fingers can be recognised with infrared imaging (Khelil, et al., 2016). The controller employs a right-handed 16 

Cartesian coordinate system, which has the XYZ axes intersecting in the centre of the sensor as shown in Fig. 17 

1. The controller can be programmed through the leap motion application programming interface (API). 18 

Positioning and speed data are mentioned above and can be obtained through API.  19 

 20 

 21 

Fig. 1. Orientation of leap motion controller 22 

 23 

General sign recognition system with leap motion controller consists of the following essential steps: data 24 

acquisition, feature extraction, classification and validation. Basically, a general recognition would start with a 25 
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sign recognised by the leap motion controller and then the data is sent for pre-processing. In the stage of data 1 

acquisition, hand palm data and finger data can be acquired from the API. For the feature extraction, different 2 

studies have defined and extracted features for sign recognition that proposed numerous methods to compute 3 

feature vectors for further processing (Chong & Lee, 2018; Chuan, et al., 2014; Khelil, et al., 2016). Furthermore, 4 

the classification and validation techniques used in the literature on sign recognition systems with leap motion 5 

Controller are compared and the results are shown in Table 2. 6 

 7 

Table 2 8 

Comparison of sign recognition systems with leap motion controller on classification and validation techniques 9 

Ref. Number of Gestures Classifier Validation Accuracy 

(%) 

(Danilo Avola, Bernardi, Cinque, Foresti, 

& Massaroni, 2018) 

30 ASL gestures  

(12 dynamic signs and 18 

static signs) 

RNN Not mentioned 96.41 

(Chong & Lee, 2018) 26 ASL gestures (A-Z) DNN Leave-one-subject-out 

cross- 

validation 

93.81 

36 ASL gestures (A-Z, 0-9) 88.79 

(Chuan, et al., 2014) 26 ASL gestures (A-Z) SVM 4 fold cross-validation 79.83 

(Du, Liu, Feng, Chen, & Wu, 2017) 10 selected gestures SVM 80% training set and 20% 

testing set 

83.36 

(Khelil, et al., 2016) 10 ASL gestures (0-9) SVM Not mentioned 91.30 

 10 

It is observed that the support vector machine (SVM) has been a popular classification method used over the 11 

years in sign recognition systems with leap motion, and the use of neural network would be a newer 12 

classification method (H. Lee, Li, Rai, & Chattopadhyay, 2020; Valente & Maldonado, 2020). Moreover, 13 

different types of cross-validation techniques are used in model validation as well. Neural network, also called 14 

deep neural network (DNN), is a type of deep learning and is commonly used for classification or regression 15 

with success in different areas (Akyol, 2020; Zhong, et al., 2020). The predominant reason for neural networks 16 

outperforming SVMs is the former’s ability to learn important features from any data structure and to handle 17 

multiclass classification with a single neural network structure (Rojas, 1996). Artificial neural network is the 18 

most commonly used type of neural network while recurrent neural network (RNN) is one of its categories, 19 

whose connections between nodes would form a directed graph along temporal sequences (Asghari, Leung, & 20 

Hsu, 2020; Jeong, et al., 2019; Liu, Yu, Yu, Chen, & Wu, 2020; Rojas, 1996). It demonstrates a temporal 21 

dynamic behaviour that implies the function is time dependent. However, classic RNN is not able to handle a 22 

long-time frame. long-short term memory (LSTM) is a special type of RNN that addresses the limitations of 23 

classic RNN (Hochreiter & Schmidhuber, 1997). LSTM is effective in learning long-term dependencies. It is 24 

suggested that constant error backpropagation within internal states contributes to its ability to bridge long time 25 

lags (Hochreiter & Schmidhuber, 1997). Noise, continuous values and distributed representations can be 26 

handled effectively by LSTM. 27 
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 1 

3. Methodology 2 

The system conceptual framework is shown in Fig. 2 and consists of two running modules - game module and 3 

the real-time sign recognition system. The proposed learning application is fundamentally, a special Whack-A-4 

Mole game. Rather than mouse-clicking, a question pertaining to ASL signs has to be accurately answered in 5 

order to strike the mole. Each mole would come up from 7 holes randomly holding a stick, on which 1 out of 6 

the 26 English alphabets is randomly printed. In the meantime, the appropriate hand configuration for the 7 

corresponding ASL alphabet is shown on the upper left-hand corner as a hint. Users have to make the ASL sign 8 

through the leap motion controller. Subsequently, real-time sign recognition also occurs. The real-time sign 9 

recognition system is comprised of three phases: data acquisition, feature extraction and classification. First, 10 

data acquisition happens with data that is directly extracted from the leap motion API. Next, some data has to 11 

be further processed as features. Following this, the structured data can be input into the pre-trained 12 

classification model for real-time recognition. Gestures would be classified into 1 of the 26 classes. If the 13 

classification result matches with what is on the stick, accuracy is shown on the game interface. The mole would 14 

be struck and a point would be added only if the accuracy rate is 80 or above. Otherwise, a miss would be 15 

recorded. The time limit for each question would be half a minute and each trial of the game ends after 5 16 

questions, which means that the steps in the conceptual framework are gone through 5 times. Fig. 3 illustrates 17 

a scene in the game when a question is answered correctly through the leap motion controller. 18 

 19 

The designed programming flow is shown in Fig. 4 and primarily consists of two scripts running synchronously, 20 

i.e. Real-time Recorder and Gaming. When the application is initialised, the Real-time Recorder first creates a 21 

file in the CSV format and initialises the real-time listener. The real-time listener continuously collects data 22 

from the leap motion API. The sign language includes state and dynamic signs. Furthermore, leap motion is 23 

sensitive to hand gesture motion and slightly motion change may be captured. Therefore, 30 features extraction 24 

for 200 frames are considered to accommodate the hand gesture motion change and the nature of state and 25 

dynamic signs of ASL. For every 200 frames collected, they are passed to RNN classifier for classification. The 26 

classification results would be sent back to the Real-time Recorder for saving into the CSV file. On the other 27 

hand, Game is synchronously running. When a mole comes up, it would continuously take the latest 28 

classification result from the CSV file to determine whether the mole would be hit and to show the accuracy 29 

score. 30 

 31 
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 1 

Fig. 2. Conceptual framework of the game modular based ASL recognition 2 

 3 

 4 

Fig. 3. Questions answered correctly in the application developed 5 

 6 

 7 

Fig. 4. Designed programming flow 8 

 9 
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 1 

3.1. Data Acquisition for ASL Recognition Using leap motion controller 2 

A general recognition would start with a sign recognised by the leap motion controller; subsequently, data is 3 

sent for pre-processing. Hand palm data, hand sphere radius and finger data are acquired. This is demonstrated 4 

in Fig. 5. 5 

 6 

Hand palm data includes unit vector of palm, position of palm centre, velocity of palm and palm normal (Naidu 7 

& Ghotkar, 2016). In the meantime, hand palm sphere radius, grab strength and pinch strength can be obtained. 8 

Hand palm sphere radius measures a sphere that matches the curvature of the hand. The line connecting the red 9 

dots in Fig. 6. illustrates the diameter of the sphere and hence, half of it would be the radius. The grab strength 10 

refers to the strength of showing a grab hand pose; for it, the value 0 represents an open hand and the value 1 11 

represents a grab hand pose. Similarly, pinch strength lies between 0 and 1, where 0 means an open hand detected 12 

and 1 means pinch hand pose recognised. Pinching can be done with the thumb and any other finger.  13 

 14 

 15 

Fig. 5. Palm centre and fingertip position 16 

 17 
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 1 

Fig. 6. Sphere radius 2 

 3 

Fig. 7. Finger bone positions 4 

 5 

The finger data carries the direction and length of each finger, tip velocity and position of joints as stated in Fig. 6 

7. Other than fingertip positions, the positions of joints between the distal bones, intermediate bones, proximal 7 

bones and metacarpal bones can be obtained (Khelil, et al., 2016). 8 

 9 

We referred to the feature extraction methods for leap motion controller proposed by Chong and Lee (2018). 10 

The following features extracted are used to describe palm flexion, hand movement, relation of palm and 11 

fingertips, as well as the relation between fingertips. 12 

 13 

The standard deviation of palm position (S) can be calculated using (1), where P represents the position of the 14 

palm centre and N denotes the size of the dataset. 15 

 16 
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S = √
1

n − 1
(∑(Pi − P)2

n

i=1

) (1) 

 1 

Palm sphere radius (R) can be computed as shown in Equation (2), where Fi represents the positions of the 2 

fingertips, i ∈ {1,2,3,4,5} represent thumb, index, middle, ring and little fingers respectively. 3 

 4 

DFP = √(Fix − Px)2 + (Fiy − Py)2 + (Fiz − Pz)2 (2) 

 5 

The angles between 2 adjacent fingers (A) can be calculated with Equation (3). Note that the angle between the 6 

thumb and the little finger is excluded due to the inclusiveness of palm curliness, which is included in R. 7 

 8 

AaFi =
Fi − Fi+1

π
 (3) 

 9 

Distance between all the fingers (L), with 2 in a group in a total of 10 groups, is computed according to (4). i 10 

and j represents all fingertips 1 to 5, while i ≠  j. 11 

 12 

LFF = √(Fix − Fjx)2 + (Fiy − Fjy)2 + (Fiz − Fjz)2 (4) 

 13 

3.2. Training of Sign Recognition Model by Feature Extraction 14 

Real-time sign recognition requires a pre-trained classification model. First, the data samples should be taken 15 

as input for the training of the model. Thus, model training would commence by collecting raw data from the 16 

leap motion API. Since ASL signs are featured by relative positions and angles between the palm and fingers, 17 

both palm and finger data are vital. Thus, data in Table 3 was collected for the proposed work. The front and 18 

rear views of ASL on leap motion are presented in Fig. 8 and Fig. 9, respectively. 19 

 20 

Table 3 21 

Data extracted in proposed work 22 

Data Details 

(a) Position of palm centre  X, Y and Z coordinates of the palm centre are extracted as 3 separate data. 
(b) Unit vector of palm normal A vector pointing perpendicular to the palm direction 

(c) Sphere radius 
The radius of the sphere that matches curvature of a hand 

(d) Grab strength Strength of being a grab hand pose [0,1] 
(e) Pinch strength Strength of being a pinch hand pose [0,1] 

(f) Fingertip positions  Positions of thumb, index, middle, ring and little fingertips are extracted in radian. 

(g) Fingertip directions  Directions of thumb, index, middle, ring and little fingertips are extracted in radian. 
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 1 

 2 

Fig. 8. Front view of American sign language on leap motion 3 

 4 
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 1 

Fig. 9. Rear view of American sign language on leap motion 2 

 3 

For feature extraction, some raw data was directly used as features such as (a), (c), (d) and (e). The others were 4 

further processed into features. Finally, 30 features were generated, as shown in Table 4. A total of 2600 data 5 

samples were collected, among which 100 samples for each of the 26 alphabets were collected for training the 6 

model. Each sample is constituted of 200 frames of these 30 features. Only right-hand samples were collected. 7 

Since the frame rate varies based on the different computing resources and activities performed, 110 frames 8 

were collected in this work in a second with the computing resources and the environment by approximation. 9 

Subsequently, the 2600 data samples were piled into a file in npy format of sizes of (2600, 200, 30). A set of 10 

labels was also created for identifying data samples’ classes. This is an npy file of size (2600, 26). 11 

 12 

 13 
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Table 4 1 

Features extracted for model training 2 

1 Palm centre position X 2 Palm centre position Y 

3 Palm centre position Z 4 Sphere radius (mm) 

5 Grab strength [0,1] 6 Pinch strength [0,1] 

7 Distance between palm centre position and thumb tip position  8 Distance between palm centre position and index tip position 

9 Distance between palm centre position and middle tip position 10 Distance between palm centre position and ring tip position 

11 Distance between palm centre position and little tip position 12 The angle between thumb normal and thumb tip direction (radian) 

13 The angle between thumb normal and index tip direction (radian) 14 The angle between thumb normal and middle tip direction (radian) 

15 The angle between thumb normal and ring tip direction (radian) 16 Angle between thumb normal and little tip direction (radian) 

17 Distance between thumb tip position and index tip position 18 Distance between thumb tip position and middle tip position 

19 Distance between thumb tip position and ring tip position 20 Distance between thumb tip position and little tip position 

21 Distance between index tip position and middle tip position 22 Distance between index tip position and ring tip position 

23 Distance between index tip position and little tip position 24 Distance between middle tip position and ring tip position 

25 Distance between middle tip position and little tip position 26 Distance between ring tip position and little tip position 

27 The angle between thumb tip direction and index tip direction 

(radian) 

28 The angle between index tip direction and middle tip direction 

(radian) 

29 The angle between middle tip direction and ring tip direction 

(radian) 

30 The angle between ring tip direction and little tip direction (radian) 

 3 

The proposed model consists of 3 layers after the input layer as shown in Fig. 10.  4 

 5 

 6 

Fig. 10. Proposed classifier model 7 

 8 

First, the LSTM layer is selected due to its capability for handling data in a long-time frame that is constituted 9 

of 28 neurons. For the algorithmic structure of LSTM, the readers can refer to the work by Goyal, Pandey, and 10 

Jain (2018). Three parameters are to be determined: batch size, number of epochs and units for LSTM. Batch 11 

size refers to number of samples for training each time. Apparently, larger batch size results in a model with 12 
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lower accuracy while smaller batch size requires much more training time which would not be efficient enough. 1 

Number of epochs represents number of passes over the entire dataset. After each epoch, evaluation is made 2 

and weights in neural network are updated. With more epochs trained, the model should be more accurate. 3 

However, model with too many epochs trained would appear to be overfitting. Overfitting appears when the 4 

model predicts data in an unnecessarily complicated way. In other words, it fits known data well yet is less 5 

successful in fitting subsequent data than a simpler model. For units in LSTM, it refers to the dimensionality of 6 

LSTM output space. It can also be seen as number of neurons in the layer. It is hard to determine whether larger 7 

or smaller size of units would be better. Every model with different features is optimised by differing number 8 

of units.  9 

 10 

The final step before model training would be the selection of model parameters. Three parameters are to be 11 

determined: batch size, number of epochs and number of units for LSTM. Batch size refers to the number of 12 

samples for training each time, whereas the number of epochs represents the number of passes over the entire 13 

dataset. For units in LSTM, it refers to the dimensionality of LSTM output space. It can also be considered as 14 

the number of neurons in the layer. To determine the most effective parameters, “gridsearchCV” function from 15 

“sklearn” library in Python was used. It is observed that the units of LSTM, batch size and number of epochs 16 

are selected between 28 and 30, 32 and 64, 30 and 40 respectively. Table 5 shows a model grid created after 17 

applying function (5).  18 

 19 

yk(x) =
exp(ak)

∑ exp (aj)j
 (5) 

 20 

Table 5 21 

Model grid for selection of parameters 22 

 Units: 28 Units: 30 

 Batch size Batch size 

Number of epochs 32 64 32 64 

30 0.094 0.098 0.091 0.077 

40 0.135 0.100 0.120 0.101 

 23 

It is illustrated that units of 28, batch size of 32 and number of epochs of 40 would be the best parameters 24 

optimising model performance. Hence, epochs of 80 times are selected for the final model to improve the 25 

accuracy. The selected model parameters were also input. Finally, the model is trained and was output in h5 26 

format for use in real-time sign recognition.  27 

 28 

After selecting the above parameters, the loss function should be selected for compiling the model to optimise 29 

its performance. Categorical cross-entropy, a multi-class logarithmic loss, is selected. For the proposed model, 30 

it was created based on the training set. Categorical cross-entropy was measured on the test set to evaluate the 31 
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accuracy of the model in the predictions. Cross-entropy, used as an alternative to squared error, is an error 1 

measure intended for network with output representing independent hypotheses and node activations 2 

representing a probability of each hypothesis being true. In the case, output vector is a probability distribution 3 

and cross-entropy is used as an indication of distance between what the network predicts for the result of the 4 

distribution and the “actual answer” for the distribution. The equation for categorical cross-entropy in Keras is 5 

suggested below (Gulli & Pal, 2017). 6 

 7 

Li = − ∑ Tij log (Pij)
j

 (6) 

,where Tij is the target and Pij refers to the prediction. 8 

 9 

Another parameter to be selected in compiling the model is the optimiser. The selected optimiser, Adam, is a 10 

gradient-based optimisation of stochastic objective functions. It functions on the basis of lower-order moment 11 

estimation. It is different from classical ones by maintaining a single learning rate for all weight adjustments 12 

during the entire training process (Kingma & Ba, 2014). However, the method adapts different learning rates 13 

for different parameter selections by estimation of first and second moments of gradient. Kingma and Ba (2014) 14 

also suggested that Adam combines the advantages of Adaptive Gradient Algorithm and Root Mean Square 15 

Propagation. Adaptive Gradient Algorithm is great in handling sparse gradient problems while Root Mean 16 

Square Propagation does well on non-stationary problems. Adam possesses both of the advantages. Adam is the 17 

most appropriate choice of optimiser for the proposed model due to the following reasons. It is computationally 18 

efficient and hence has a low memory requirement. It is well-designed for handling problems with large amounts 19 

of data. Finally, it is capable of managing dynamic objectives as well as problems with lots of noise. 20 

 21 

Besides, the Lambda layer in the middle would be a K-means clustering layer. The algorithm proposed by 22 

Vassilvitskii (2007) would assign N data points into 1 of the K clusters. The pseudo-code of the K-mean 23 

clustering algorithm is shown in (Vassilvitskii, 2007). K-mean clustering is opted for the second layer since it 24 

is an efficient clustering method for handling multi-class classification. With supervised and unsupervised 25 

learning in the same model, the model would optimise advantages from both sides. Furthermore, the k-mean 26 

clustering compressed the 200 frames to obtain the centre point of feature extracted for model training 27 

mentioned in Table 4. This can accommodate different hand size and motion changes in the 200 frames, 28 

especially the relative coordinates between finger, distal, intermediate, proximal and metacarpal.  29 

 30 

Third, the final layer before the output of the result would be a Dense layer, which is a classic fully connected 31 

layer. A Softmax function, which is logistic regression, is often used as the output function of the network. The 32 

log odd ratios calculated would be the probabilities of each class in multiclass classification. The Dense layer 33 

is selected as the final layer to transform group predictions into class probabilities for output. 34 
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 1 

Algorithm 1 2 

Algorithm of k-mean clustering (Aly, et al., 2019) 3 

1. Randomly chose k initial centres C = {c1, … , ck} 

2. Repeat 

3. For each i ∈ {1, … , k} set Ci  to be the set of points in X that are 

closer to ci  

than cj for any j ≠ i. {Assignment Step} 

4. For each i ∈ {1, … , k} set ci =
1

|Ci|
∑ xx∈Ci

 {Means Step} 

5. Until C does not change 

 4 

 5 

3.3. Model validation 6 

Cross-validation, a method that separates the dataset into S folds, is selected. Since data in the proposed model 7 

is neither scarce nor expensive in extraction, general 5-fold cross-validation was used. 80% and 20% of the 8 

dataset would be used for training and validating respectively in each trial (Refaeilzadeh, Tang, & Liu, 2009). 9 

First, the data set was divided into 5 groups (folds), and a total of 5 trials is conducted. For each trial, one of the 10 

folds was assigned as the testing set, while the rest were assigned as the training sets. Subsequently, the model 11 

was trained with the training sets and validation took place in the testing set. For validation in each trial, the 12 

overall accuracy and a confusion matrix for 26 classes were extracted. The 26-class confusion matrix is further 13 

produced into another matrix containing true positive (TP), true negative (TN), false positive (FP) and false 14 

negative (FN), as explained in Table VII. 15 

 16 

TP, TN, FP and FN calculated for each class can be used for generating accuracy (ACC), sensitivity (Se) and 17 

specificity (Sp) for each class. Accuracy refers to the ability of the model to correctly identify instances. 18 

Sensitivity is the proportion of “real” positives that are accurately identified as positives, while specificity is the 19 

proportion of “real” negatives that are correctly identified as negatives by the model. The equations of accuracy, 20 

sensitivity and specificity are expressed in terms of TP, TN, FP and FN as follows. TP, TN, FP and FN can also 21 

be used for generating the Matthews correlation coefficient (MCC) (Boughorbel, Jarray, & El-Anbari, 2017), 22 

Fowlkes-Mallows index (FM) (Campello, 2007) and Bookmaker informedness (BM) (Fluss, Faraggi, & Reiser, 23 

2005) for proving each class statistical significance. MCC is used for measuring the observed and predicted 24 

binary classification (Boughorbel, et al., 2017). FM is used for measuring the similarity between the observed 25 

and predicted binary classification (Campello, 2007). BM is used for estimating the probability of an informed 26 

decision (Fluss, et al., 2005). 27 

 28 

ACC =  
TP + TN

TP + TN + FP + FN
 (7) 

Se =  
TP

TP + FN
 (8) 
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Sp =  
TN

TN + FP
 (9) 

MCC =  
(TP × TN) − (FP × FN)

√(TP + FP)(TP + FN)(TN + FP)(TN + FN)
 (10) 

FM =  √
TP

TP + FP
×

TP

TP + FN
 (11) 

BM =  Se + Sp − 1 (12) 

 1 

3.4. Dataset and experimental environment 2 

Since there are no public datasets available for ASL training under a gaming environment, we recruited 100 3 

participants to train the algorithms. 63 females and 37 males are recruited aged 20 to 30 years, and all 4 

participants declared that they are right-handed people. The dataset composed of 26 alphabet data and 100 5 

sample size for each alphabet from 100 participants. Therefore, 2600 sample size for 26 alphabet data are 6 

obtained. As the gaming environment targets for ASL learning, the 100 participants do not have any formal 7 

training of ASL before. Before the data collection, an ASL experienced person will present the right ASL hand 8 

gesture to the participant several time. If the participants can present the right ASL hand gesture for 26 alphabets 9 

after the learning stage, the participants will present their ASL and the leap motion will collect their hand gesture 10 

data at the same time.  11 

 12 

4. Results and discussion 13 

With cross-validation, the comprehensive performance of the model can be evaluated before the output as the 14 

real-time sign recognition module of the game. In this session, 5-fold cross-validation was performed and the 15 

overall accuracy of the model is estimated to be 91.8%, averaging the 5 trials. The result is shown in Table 6. 16 

 17 

Table 6 18 

Model accuracy 19 

Accuracy (%) Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 AVG STDEV 

92.88 92.88 91.15 90.96 91.15 91.80 0.99 

 20 

Meanwhile, 26-class confusion matrices for the 5 trials were generated and were further transformed into 21 

matrices of TP, TN, FP and FN. Accuracy, sensitivity and specificity were calculated as a result. To accurately 22 

analyse the results, an average of over 5 trials were taken for accuracy, sensitivity and specificity for each 23 

alphabet as shown in Table 7. Per-class accuracy and specificity for the model were calculated to be over 98%, 24 

which implies that the model has a high probability incorrectly identifying negative results in each of the 26 25 

classes; the proportion of accurately identified instances would be high as a result. Sensitivity only attains over 26 
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80%, except for the alphabet signs for M, N and S. It shows that the model has relatively poor chances of 1 

identifying positive results. We also compare the results with other well-known methods in ASL classification, 2 

including LSTM, SVM and RNN. Readers can refer to the algorithmic structures of LSTM (D. Avola, Bernardi, 3 

Cinque, Foresti, & Massaroni, 2019), SVM (Chong & Lee, 2018) and RNN (Danilo Avola, et al., 2018). All the 4 

algorithms in the numerical experiments achieve better accuracy results in the class F, K, V, W and Y. The 5 

proposed method in predicting other classes outperforms LSTM, SVM and RNN. The average accuracy of the 6 

proposed method, LSTM, SVM and RNN is 99.44%, 98.36%, 97.23% and 96.83%, respectively. The proposed 7 

method obtained a fair good prediction statistically of the two-class classification, a greater similarity between 8 

the observed and predicted binary classifications and higher probability of estimating an informed decision 9 

comparing to LSTM, SVM and RNN. The statistical significance is introduced in Table 8. Therefore, we can 10 

conclude that the proposed method outperforms LSTM, SVM and RNN in the numerical analysis. 11 

 12 

Table 7 13 

Average accuracy, sensitivity and specificity for 26 classes 14 

 Proposed method LSTM SVM RNN 

Class ACC Se Sp ACC Se Sp ACC Se Sp ACC Se Sp 

A 99.92% 100.00% 99.92% 97.96% 83.00% 98.56% 98.35% 80.00% 99.08% 98.19% 84.00% 98.76% 

B 99.96% 100.00% 99.96% 97.96% 64.00% 99.32% 97.42% 78.00% 98.20% 97.12% 66.00% 98.36% 

C 99.73% 95.00% 99.92% 97.85% 88.00% 98.24% 97.46% 62.00% 98.88% 97.08% 64.00% 98.40% 

D 99.42% 89.00% 99.84% 97.85% 56.00% 99.52% 97.58% 76.00% 98.44% 96.96% 70.00% 98.04% 

E 99.85% 99.00% 99.88% 97.73% 85.00% 98.24% 95.73% 63.00% 97.04% 95.19% 69.00% 96.24% 

F 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 96.38% 58.00% 97.92% 96.00% 40.00% 98.24% 

G 99.77% 100.00% 99.76% 97.73% 56.00% 99.40% 96.69% 40.00% 98.96% 96.62% 56.00% 98.24% 

H 99.81% 98.00% 99.88% 97.85% 83.00% 98.44% 97.54% 76.00% 98.40% 96.19% 45.00% 98.24% 

I 99.89% 97.00% 100.00% 97.85% 61.00% 99.32% 96.96% 63.00% 98.32% 96.62% 56.00% 98.24% 

J 99.89% 100.00% 99.88% 97.88% 81.00% 98.56% 97.04% 50.00% 98.92% 96.88% 56.00% 98.52% 

K 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 96.00% 68.00% 97.12% 96.38% 57.00% 97.96% 

L 99.39% 93.00% 99.64% 97.77% 88.00% 98.16% 97.00% 50.00% 98.88% 96.65% 48.00% 98.60% 

M 98.35% 71.00% 99.44% 97.77% 54.00% 99.52% 96.77% 48.00% 98.72% 97.00% 49.00% 98.92% 

N 98.08% 68.00% 99.28% 97.88% 64.00% 99.24% 97.15% 45.00% 99.24% 96.38% 38.00% 98.72% 

O 99.27% 92.00% 99.56% 97.88% 83.00% 98.48% 97.31% 86.00% 97.76% 96.73% 73.00% 97.68% 

P 99.85% 98.00% 99.92% 97.88% 62.00% 99.32% 97.35% 73.00% 98.32% 96.73% 57.00% 98.32% 

Q 99.35% 88.00% 99.80% 97.85% 82.00% 98.48% 97.15% 48.00% 99.12% 97.19% 62.00% 98.60% 

R 98.77% 69.00% 99.96% 97.85% 62.00% 99.28% 97.12% 80.00% 97.80% 96.19% 71.00% 97.20% 

S 98.50% 78.00% 99.32% 97.88% 81.00% 98.56% 97.23% 55.00% 98.92% 96.38% 43.00% 98.52% 

T 98.08% 87.00% 98.52% 97.88% 64.00% 99.24% 97.85% 65.00% 99.16% 96.58% 51.00% 98.40% 

U 98.69% 98.00% 98.72% 98.04% 74.00% 99.00% 98.00% 80.00% 98.72% 96.81% 48.00% 98.76% 

V 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 97.19% 67.00% 98.40% 96.27% 54.00% 97.96% 

W 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 97.46% 59.00% 99.00% 96.35% 54.00% 98.04% 

X 99.54% 99.00% 99.56% 98.04% 75.00% 98.96% 97.31% 62.00% 98.72% 98.00% 69.00% 99.16% 

Y 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 97.27% 63.00% 98.64% 98.50% 79.00% 99.28% 

Z 99.92% 99.00% 99.96% 100.00% 100.00% 100.00% 98.62% 68.00% 99.84% 98.69% 71.00% 99.80% 

Avg 99.44% 93.00% 99.72% 98.36% 78.69% 99.15% 97.23% 63.96% 98.56% 96.83% 58.85% 98.35% 

StdEv 0.64% 10.26% 0.39% 0.92% 15.76% 0.63% 0.62% 12.41% 0.64% 0.78% 12.10% 0.67% 

 15 
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Table 8 1 

Statistical Significance for 26 classes 2 

 Proposed method LSTM SVM RNN 

Class MCC FM BM MCC FM BM MCC FM BM MCC FM BM 

A 98.97% 99.00% 96.12% 75.05% 76.09% 81.56% 77.97% 78.83% 79.08% 77.41% 78.33% 82.76% 

B 99.48% 99.50% 96.12% 70.09% 71.11% 63.32% 69.03% 70.33% 76.20% 62.31% 63.80% 64.36% 

C 96.32% 96.46% 91.08% 75.55% 76.59% 86.24% 64.05% 65.35% 60.88% 61.24% 62.76% 62.40% 

D 92.07% 92.37% 85.07% 66.90% 67.91% 55.52% 69.62% 70.87% 74.44% 62.61% 64.17% 68.04% 

E 97.70% 97.78% 95.34% 73.72% 74.84% 83.24% 51.68% 53.82% 60.04% 51.76% 54.04% 65.24% 

F 100.00% 100.00% 96.15% 100.00% 100.00% 100.00% 53.42% 55.30% 55.92% 41.59% 43.64% 38.24% 

G 97.22% 97.33% 95.62% 65.37% 66.46% 55.40% 47.63% 49.24% 38.96% 54.24% 56.00% 54.24% 

H 97.34% 97.44% 94.09% 74.06% 75.14% 81.44% 69.30% 70.56% 74.40% 45.73% 47.70% 43.24% 

I 98.35% 98.41% 93.19% 68.00% 69.07% 60.32% 59.90% 61.48% 61.32% 54.24% 56.00% 54.24% 

J 99.25% 99.32% 91.54% 73.80% 74.88% 79.56% 55.49% 56.98% 48.92% 56.46% 58.07% 54.52% 

K 100.00% 100.00% 96.15% 100.00% 100.00% 100.00% 55.48% 57.47% 65.12% 52.97% 54.85% 54.96% 

L 91.60% 91.92% 88.74% 74.94% 76.02% 86.16% 55.10% 56.61% 48.88% 50.98% 52.69% 46.60% 

M 76.17% 77.01% 66.62% 65.44% 66.47% 53.52% 52.03% 53.67% 46.72% 54.71% 56.21% 47.92% 

N 72.35% 73.33% 63.46% 69.18% 70.25% 63.24% 54.91% 56.25% 44.24% 43.63% 45.42% 36.72% 

O 90.27% 90.65% 87.73% 74.39% 75.45% 81.48% 70.89% 72.17% 83.76% 62.14% 63.78% 70.68% 

P 97.81% 97.89% 94.16% 68.70% 69.76% 61.32% 66.71% 68.07% 71.32% 55.59% 57.29% 55.32% 

Q 90.83% 91.16% 83.88% 73.76% 74.86% 80.48% 55.98% 57.37% 47.12% 61.49% 62.95% 60.60% 

R 81.93% 82.47% 65.12% 68.24% 69.32% 61.28% 67.43% 68.85% 77.80% 57.91% 59.79% 68.20% 

S 79.25% 80.03% 73.50% 73.80% 74.88% 79.56% 59.33% 60.74% 53.92% 46.24% 48.08% 41.52% 

T 76.98% 77.93% 81.64% 69.18% 70.25% 63.24% 68.99% 70.09% 64.16% 51.69% 53.46% 49.40% 

U 86.21% 86.83% 92.76% 73.35% 74.37% 73.00% 74.56% 75.59% 78.72% 52.39% 54.00% 46.76% 

V 100.00% 100.00% 96.15% 100.00% 100.00% 100.00% 63.31% 64.77% 65.40% 50.76% 52.70% 51.96% 

W 100.00% 100.00% 96.15% 100.00% 100.00% 100.00% 63.08% 64.37% 58.00% 51.31% 53.21% 52.04% 

X 93.77% 94.00% 94.92% 73.61% 74.63% 73.96% 62.55% 63.95% 60.72% 71.70% 72.73% 68.16% 

Y 100.00% 100.00% 96.15% 100.00% 100.00% 100.00% 62.55% 63.97% 61.64% 79.43% 80.21% 78.28% 

Z 99.03% 99.07% 94.88% 100.00% 100.00% 100.00% 79.51% 80.14% 67.84% 80.83% 81.44% 70.80% 

Avg 92.80% 93.07% 88.71% 77.97% 78.78% 77.84% 62.71% 64.11% 62.52% 57.36% 58.97% 57.20% 

 3 

On the other hand, model accuracy was assumed to be significantly below the expectation for 40 epochs of 4 

training and thus 80 times of training was selected. To evaluate the suitability of selection, a graph was plotted 5 

on model accuracy over epochs, as shown in Fig. 11. As can be observed, the accuracy of the model increases 6 

with the increased number of epochs and the graph for testing set eventually goes flat between the 70th and 80th 7 

epochs. Contrarily, model loss decreased significantly in the first 20 epochs and subsequently decreases in loss 8 

narrows but continues as shown in Fig. 12. The graph of loss for the testing set eventually goes flat just before 9 

80th epoch. Thus, 80 epochs for training the model is shown to be optimising. 10 

 11 
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 1 

Fig. 11. Model accuracy over Epochs 2 

 3 

 4 

Fig. 12. Model loss over Epochs 5 

 6 

The proposed work using RNN with 26 alphabets is compared with other literature proposing sign recognition 7 

systems with leap motion controller. First, it is observed that the proposed work has generally stronger 8 

performance than those that previously employed SVM. Compared to other models that proposed employing 9 

the neural network, this undertaking has slightly higher accuracy. It specifically outperforms those that 10 

employed SVM as their classification method; this can probably be attributed to neural network’s higher ability 11 

to handle large datasets. 12 

 13 

In this research, we considered the leap motion controller for ASL recognition. Compared to image processing 14 

approach, the Leap Motion controller offers a quick hand gesture detection and captures the change of hand 15 

gestures in real-time with less computational power. Image processing using conventional cameras may require 16 

a high-level computer specification. In contrast, Leap Motion Control does not require a high-level computer 17 

specification, and most of the hand gestures and motion are detected using Infrared LEDs and cameras and 18 
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output to the computer units for secondary processing. The primary restriction of leap motion controller is the 1 

exposed regions is from frog’s eye view, as the leap motion controller must place on a surface. One may consider 2 

the integrated approach using leap motion controller and conventional cameras from different angles to achieve 3 

better accuracy of classification using agent-based modelling.   4 

 5 

 6 

5. Concluding remarks 7 

Sign recognitions in real-life applications are challenging due to the requirements of accuracy, robustness and 8 

efficiency. This project explored the viability of a real-time sign recognition system embedded in an ASL 9 

learning application. The proposed system involves the classification of 26 ASL alphabets and 30 selected 10 

features for the training of the model. The RNN model is selected since dynamic signs J and Z require the 11 

process of sequences of input. The overall accuracy of the model in the proposed work is 91.8%, which would 12 

sufficiently indicate the reliability of the approach for American Sign Language recognition. On the other hand, 13 

the Leap Motion Controller is a feasible and accurate method for ASL sign recognition. A significant amount of 14 

previous research has proposed sign recognition systems that utilise Leap Motion Controller; however, very few 15 

of them have further developed these systems into educational applications. This work fills this research gap 16 

and can subsequently open up more opportunities in the form of teaching other sign languages as well. 17 

Furthermore, the learning application can help promote ASL with its attractiveness in interactions and 18 

entertainment. In particular, the use of the application in sign instructions in schools is expected to enhance the 19 

learning motivation of hearing students in ASL and stimulate communication between hearing and hearing 20 

impaired/ hard-of-hearing students. Several suggestions are made regarding potential areas of research. A more 21 

mature application model can be produced by collecting samples from ASL users and developing more features 22 

for training the model in order to accurately classify the signs M, N and S, thereby addressing the low sensitivity 23 

of the 3 alphabets caused by thumb features. Replace if applicable to ensure clarity  24 

 25 

The study has several limitations. First, the position, angle, and number of users of leap motion will affect the 26 

accuracy of the model. The leap motion controller can detect several hand gestures, but the proposed method is 27 

restricted to recognise only one hand gesture. The leap motion controller must keep flat in order to recognise 28 

the ASL. Second, the present prototype only considers and is trained with samples from the right hand. The 29 

samples are expected to be extended to include the left hand, so that the application can also be utilised by the 30 

left-handed.  31 

 32 

Several future works are presented to foster the relevant studies in ASL recognition. First, readers may consider 33 

the modification of the algorithmic structure, such as different types of SoftMax function, different classifiers 34 

in ASL recognition. Second, the current method is limited to leap motion controller. Readers may realise other 35 

ASL recognition methods, including image processing, video processing and deep learning approaches. The 36 

integrated approach with leap motion controller could achieve better computational accuracy using agent-based 37 
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modelling. Third, the non-contactless approaches using hand gesture and motion detection can also be extended 1 

to other expert system and engineering applications in interaction design. 2 

  3 
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