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Abstract

Most existing facility location models assume that the facility cost is either a fixed setup

cost or comprised of a fixed setup and a problem-specific concave or submodular cost term.

This structural property plays a critical role in developing fast branch-and-price, Lagrangian

relaxation, constant ratio approximation, and conic IP reformulation approaches for these NP-

hard problems. Many practical considerations and complicating factors, however, can make

the facility cost no longer concave or submodular. By removing this restrictive assumption,

we study a new location model that considers general nonlinear costs to operate facilities in

the facility location framework. The general model does not even admit any approximation

algorithms unless P = NP because it takes the unsplittable hard-capacitated metric facility

location problem as a special case. We first reformulate this general model as a set-partitioning

model and then propose a branch-and-price approach. Although the corresponding pricing

problem is NP-hard, we effectively analyze its structural properties and design an algorithm

to solve it efficiently. The numerical results obtained from two implementation examples of

the general model demonstrate the effectiveness of the solution approach, reveal the managerial

implications, and validate the importance to study the general framework.
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1 Introduction

In recent years, a series of important studies demonstrate that facility location models play impor-

tant roles in strategic supply chain network design. In a comprehensive survey in this area, Melo et

al. (2009) point out that the incorporation of facility location models into the supply chain context

has opened a very interesting and fruitful research area in both operations research and supply

chain management. Over the last couple of decades there is a huge body of literature on location

models; see Drezner (1995), Drezner and Hamacher (2002), Eiselt and Marianov (2011), etc. Here

we focus on the discrete facility location models (cf. Daskin, 1995). We consider a framework of

location-allocation network design and optimization that simultaneously makes the location, trans-

portation, and facility operations decisions. With the aid of this, we can study how the operational

decisions can have significant implications on the strategic location decisions in various scenarios.

The basic model in our framework can be described as follows. We are given a set of retail

outlets and a set of potential facility locations. Each retailer must be served by exactly one facility

to be set up at a potential location. There are three types of costs incurred in this system:

• Fixed cost for opening facilities. This cost is counted on an annual basis.

• Transportation cost. There is a variable cost incurred each time a unit is sent from a facility

to a retailer.

• Facility cost. This general nondecreasing cost function is used to capture the facility cost

associated with the various attributes of the retailers that the facility serves, including the

cost of serving the aggregated demand mean by a facility, the cost incurred by serving the

aggregated demand variance of a facility, the routing cost of serving the retailers assigned to a

facility, the cost of manufacturing a set of products at a facility, the cost of building sufficient

capacity to produce a set of products at a facility, etc.

We would like to determine the optimal locations to set up the facilities, optimally allocate the

retailers to the facilities, and optimize the operations strategies for the facilities. The goal is to

minimize the total systemwide location, transportation, and facility costs.

If we ignore the facility costs in our basic model, then the problem becomes a classical location

problem, which is called the uncapacitated facility location problem (UFLP). The UFLP was origi-

nally formulated by Balinski (1965) and Kuehn and Hamburger (1963). Since then a great amount
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of research has been devoted to this problem; see Cornuéjols et al. (1990) for an excellent review

on this problem.

Our modeling framework also expands the applicability of the joint location-inventory model

(cf. Daskin et al., 2002 and Shen et al., 2003) by optimizing integrated location-inventory network

design for facility operating costs that are general nondecreasing functions of the aggregated demand

mean and variance, respectively. In the joint location-inventory model and a series of its generic

models (Shen, 2005, Shen and Daskin, 2005, Shen, 2006, Shen and Qi, 2007, Snyder et al., 2007,

Sourirajan et al., 2007, Vidyarthi et al., 2007, Naseraldin and Herer, 2008, Mak and Shen, 2009,

Park et al., 2010, Qi et al., 2010, Ağralı et al., 2012), these costs are assumed to be concave in the

aggreated demand mean or variance served by a facility. Given a finite set I, a concave univariate

function g(·), and bi ≥ 0 for all i ∈ I, the set function h(S) = g(
∑

i∈S bi), where S ⊆ I, is

submodular. Thus, the aforementioned costs are submodular functions of the set of retailers the

facility serves. In the other important stream of the location-inventory model (cf. Teo and Shu,

2004 and Shu, 2010) that incorporates the infinite horizon two-echelon inventory cost function into

the UFLP, the facility operating and two-echelon inventory replenishment costs are also shown to

be submodular. The concave and submodular property of these cost functions plays a critical role

in designing fast branch-and-price, Lagrangian relaxation, greedy and primal-dual approximation

algorithms, and conic integer programming (IP) reformulation approaches for solving this stream

of models in the literature.

As shown in Ozsen et al. (2008), however, more realistic consideration, e.g., facility peak level

inventory capacity, can lead to a neither concave nor submodular operating cost function. Lu et

al. (2014) and the references therein also demonstrate that the more realistic cost components

can be non-concave and non-submodular in many important and practical contexts such as facil-

ity capacity and congestion cost consideration, less-than-truckload transportation, and nonnested

batch ordering. In particular, Lu et al. (2014) propose an interesting location model with an in-

verse S-shaped cost function to represent the production cost and outline a fast column generation

heuristic to address it. Furthermore, in a much earlier work, Desrochers et al. (1995) incorporate

a convex congestion cost in a facility location problem. The resulting nonlinear, mixed integer pro-

gram is solved by column generation and branch-and-bound developed based upon the convexity

of the congestion cost. We note that both Lu et al. (2014) and Desrochers et al. (1995) consider

a multi-sourcing network, i.e., each retailer can be served by multiple facilities. This is slightly

different from the single-sourcing strategy assumed in our model, where each retailer can only be
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assigned to one facility. As explained in Section 5, our solution approach can be easily adjusted

to allow multi-sourcing. The algorithm proposed by Lu et al. (2014), however, may be difficult

to be applied to the single-sourcing counterpart. This is because the assignment variables are

continuous for multi-sourcing problems. Lu et al. (2014) use this property along with the inverse

S-shaped cost to derive the master problem for column generation, which cannot be applied to the

single-sourcing counterpart. Also note that neither this master problem nor its dual contains the

assignment variables. Consequently, the proposed algorithm cannot be straightforwardly adapted

to solve the single-sourcing problem either.

This paper further enhances the practicality of facility location models through removing two

restrictions in the literature. First, we relax the concave, submodular, and other problem-specific

structural requirements of the facility operating costs. In contrast, we only assume that they are

nondecreasing. The general nondecreasing cost terms are extremely useful in modeling production

scale-of-(dis)economies, capacity planning costs, inventory costs, and so on. Second, we allow

the facility cost function depending on an arbitrary number of attributes, whereas the existing

works consider either a concave/submodular cost with at most three attributes (Shen and Qi,

2007) or a non-concave cost with a single attribute (Lu et al., 2014 and Desrochers et al., 1995).

Incorporating costs defined by multiple attributes significantly broadens the applicability of our

model for studying, e.g., various multi-product facility location problems with nonsubmodular

cost functions. We will demonstrate the modeling power of the general model using five concrete

applications in Section 2.

Our model is also theoretically very difficult. Assume that the potential facility locations

and the retail outlets are in a common metric space. It is easy to see that the model takes the

unsplittable hard-capacitated metric facility location model as a special case, for which just deciding

whether there exists a feasible solution is NP-complete (cf. Levi et al., 2012) and only bicriteria

approximation exists (cf. Bateni and Hajiaghayi, 2012). This directly means that the basic model

does not even admit any approximation algorithms unless P = NP (cf. Bateni and Hajiaghayi,

2012). Without an effective approach to solve this model, it is almost impossible to gain any

managerial insights on the location and operations decisions in any specific application relevant in

practice.

Given these facts, it is thus interesting to develop an effective approach to address this general

model. To the best of our knowledge, this is the first time that an algorithm is devised for the

general model. Our approach adopts the branch-and-price framework. To be precise, we first recast
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the general model as a set-partitioning model and propose a branch-and-price algorithm to solve

the set-partitioning IP reformulation. We completely characterize the structural properties of the

relaxation of the pricing problem, which leads to fast solution of the relaxation and guarantees that

the pricing problem can be solved rapidly using the branch-and-bound method. We also provide

the computational evidence to demonstrate that the proposed branch-and-price algorithm performs

strongly using two applications.

The remainder of this paper is organized as follows. In Section 2, we introduce the location

model with general nondecreasing cost functions and its reformulation to facilitate a branch-and-

price approach. Section 3 analyzes the structural properties of the pricing problem necessitated by

the branch-and-price algorithm to generate new columns and check optimality, and presents the

solution algorithm for the pricing problem. In Section 4, we numerically study two applications to

demonstrate the effectiveness of the proposed approach. The computational results also shed new

insights on the two applications and verify the importance of considering the general facility costs.

Finally, the paper is concluded in Section 5. Appendix A of the Online Supplement contains all

the proofs.

2 Problem Description and Formulations

In this section, we formally formulate the location model with general nondecreasing facility cost

functions and discuss its reformulations. The general model considers a (finite) set J of potential

facility locations as well as a (finite) set I of geographically dispersed retailers, each of which

faces a customer demand. All the facilities either source the products from an outside supplier or

manufacture them by themselves and the demand of each retailer is fulfilled from a single facility.

The problem is to determine (i) which set of facilities to open, (ii) the assignment of facilities

to retailers (assuming single-sourcing), and (iii) the operations strategy at each facility, so as to

minimize the total systemwide location, transportation, and other operating costs. To facilitate

the model development, we first define the following notation.

Sets

• J : set of potential facility locations

• I: set of retailers, |I| = n

Cost Parameters and Functions
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• Fj : fixed (yearly) cost of operating a facility at location j, ∀j ∈ J

• tij : linear transportation cost to ship to retailer i from facility j, ∀i ∈ I, j ∈ J

• bkij : k-th nonnegative attribute at retailer i if it is served by facility j, ∀i ∈ I, j ∈ J, k ∈

{1, 2, . . . , κ}, which is introduced to model the facility cost. For example, an attribute could

represent the demand mean, the demand variance, the constant demand rate, or the weighted

shipping distance of product k from facility j to retailer i via routing

• Γj

(∑
i∈S b

1
ij ,
∑

i∈S b
2
ij , · · · ,

∑
i∈S b

κ
ij

)
: facility cost incurred by facility j for serving retailers

in S ⊆ I, which is nondecreasing, ∀j ∈ J . It comprises the costs from serving the κ attributes

of the retailers in S

Decision Variables

Xj =

 1, if facility j is open;

0, otherwise,
and Yij =

 1, if retailer i is served by facility j;

0, otherwise.

We are now ready to formulate the location model with general nondecreasing facility cost

functions as follows:

P : min
∑
j∈J

(
FjXj +

∑
i∈I

tijYij + Γj

(∑
i∈I

b1ijYij ,
∑
i∈I

b2ijYij , · · · ,
∑
i∈I

bκijYij

))
s.t.

∑
j∈J

Yij = 1, ∀i ∈ I,

Yij −Xj ≤ 0, ∀i ∈ I, j ∈ J,

Yij ∈ {0, 1}, ∀i ∈ I, j ∈ J,

Xj ∈ {0, 1}, ∀j ∈ J,

where the objective function minimizes the costs of locating facilities, transporting to retailers via

facilities, and serving the retailers. The constraints in P are the standard constraints same as those

in the UFLP. We note that when κ = 1 and Γj(·) is a concave function of the aggregated demand

mean served by facility j, P reduces to the joint location-inventory model that can be rapidly solved,

respectively, by column generation (Shen et al., 2003) and Lagrangian relaxation (Daskin et al.,

2002). When κ = 2 and Γj(·, ·) is a sum of two concave functions of the aggregated demand mean

and variance served by facility j, respectively, P becomes the stochastic transportation-inventory

network design problem (STIND) studied in Shu et al. (2005), in which a fast column generation
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algorithm is developed to address it. In both special cases, P can be viewed as facility location

problems with monotone submodular facility costs. If the set of potential facility locations and the

set of retail outlets are in a common metric space, there also exist strongly polynomial-time greedy

1.861-approximation and primal-dual 3-approximation algorithms for P under these two scenarios,

respectively (cf. Hajiaghayi et al., 2003 and Li et al., 2013). When κ = 2 and Γj(·, ·) is a sum

of square root functions each corresponding to an attribute, Atamtürk et al. (2012) propose a

conic IP approach that can solve P rapidly. These fast solution approaches all rely on the concave

or submodular property of the facility cost functions. As shown in Section 1, many practical

considerations, however, may result in a non-concave or non-submodular Γj . Further complicated

by the arbitrariness of κ, P is significantly more difficult to solve than the previous models.

Model P takes many well-established facility location models as special cases. Obviously, it

is reduced to the UFLP if we remove the terms Γj in P. Some practical applications within the

modeling framework are listed as follows.

Application 1. Capacitated/Congested Facility Location Problem. Let κ = 1 and b1i

represent the constant demand rate of retailer i. The capacitated facility location model corresponds

to the case with

Γj

(∑
i∈S

b1i

)
=


0,

∑
i∈S

b1i ≤ Cj ,

+∞,
∑
i∈S

b1i > Cj ,

where Cj denotes the capacity at facility j. The congested single-sourcing facility problem also

falls into our framework if Γj(
∑

i∈S b
1
i ) is a convex function representing the congestion cost for

facility j to serve the aggregated demand
∑

i∈S b
1
i . For example, in Desrochers et al. (1995), the

congestion cost for facility j to serve a total demand of qj is set to Γj(qj) = fj(qj)× qj , where fj(·)

is a nonnegative, increasing, continuous, and convex function.

Application 2. Joint Location-Inventory Model. Consider the case with κ = 2. Let b1i

and b2i denote the mean and variance of the demand of a single product at retailer i, respectively.

Then the facility cost Γj(·, ·) can be interpreted as the sum of two cost terms, i.e., Γ1
j (
∑

i∈S b
1
i ) and

Γ2
j (
∑

i∈S b
2
i ), determined by the mean and variance of the total demand served by facility j. The

joint location-inventory model (e.g., Daskin et al., 2002, Shen et al., 2003, and Shu et al., 2005)

can be cast into this framework, in which both Γ1
j (·) and Γ2

j (·) are concave. The location-inventory

network design with routing costs proposed by Shen and Qi (2007) is also a special case of model

P with κ = 3, where Γj(·, ·, ·) is a sum of the aforementioned Γ1
j (
∑

i∈S b
1
i ) and Γ2

j (
∑

i∈S b
2
i ) as well
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as another concave cost term Γ3
j (
∑

i∈S b
3
ij). Here b3ij is the third attribute of retailer i defined in a

way such that
∑

i∈S b
3
ij approximates the routing distance from facility j to the set of retailers S

served by facility j. While the previous works all assume the concavity of Γ1
j (·), Γ2

j (·), and Γ3
j (·),

model P allows them being arbitrarily nondecreasing functions, which can easily model additional

practical issues such as peak inventory level capacity (cf. Ozsen et al., 2008) as well as non-concave

routing and congestion costs.

Application 3. Location and Production Model. Consider a multi-product facility location

model where each retailer i faces constant demands of κ types of products and the facilities manu-

facture the κ products to satisfy the demand. Let bki be the demand rate of product k at retailer

i. The cost for facility j to produce qkj units of product k is a general nonlinear function Γkj (q
k
j ).

Then model P with Γj(
∑

i∈S b
1
i ,
∑

i∈S b
2
i , · · · ,

∑
i∈S b

κ
i ) =

∑κ
k=1 Γkj (

∑
i∈S b

k
i ) formulates the facility

location problem to minimize the total cost of location, transportation, and production. The model

studied in Lu et al. (2014) can be viewed as the multi-sourcing counterpart with κ = 1.

Application 4. Location and Capacity Planning Model. Similar to Application 3, we

consider a set of retailers facing demands of m products manufactured by the facilities. Let Dk
i

denote the stochastic demand rate of product k at retailer i. Suppose that the fill rate of each

product at each retailer should be at least 1 − ε, where ε ∈ (0, 1) is a small positive number. In

other words, if facility j serves the set of retailers in S, then its production capacity qkj of product k

should satisfy P (qkj ≥
∑

i∈S D
k
i ) ≥ 1−ε. We can determine the value of qkj under various conditions:

• If the demand rate Dk
i for any i ∈ S follows an independent normal distribution with mean

aki and variance bki , then

qkj =
∑
i∈S

aki + F−1(1− ε)
√∑

i∈S
bki ,

where F−1(·) denotes the inverse of the standard normal cumulative distribution function.

• Suppose that Dk
i for any i ∈ S is independently distributed with mean aki and variance bki .

According to the one-sided Chebyshev’s inequality, we obtain

qkj =
∑
i∈S

aki +

√
1− ε
ε

∑
i∈S

bki .

• Suppose that the demand rate Dk
i for any i ∈ S is independently distributed with mean aki
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and support
[
bki , b

k
i +

√
bki

]
. Hoeffding’s inequality yields that

qkj =
∑
i∈S

aki +

√
− ln ε

2

∑
i∈S

bki .

In the above three cases, we can represent qkj as
∑

i∈S a
k
i +Qkj (

∑
i∈S b

k
i ). Suppose that the cost to

build the capacity qkj for product k at facility j is Γkj (q
k
j ). Then

Γj

(∑
i∈S

a1
i ,
∑
i∈S

b1i ,
∑
i∈S

a2
i ,
∑
i∈S

b2i , · · · ,
∑
i∈S

ami ,
∑
i∈S

bmi

)
=

m∑
k=1

Γkj

(∑
i∈S

aki +Qkj

(∑
i∈S

bki

))

in model P corresponds to the total cost for facility j to get sufficient capacity to serve the retailers

in the set S. In this case, we have κ = 2m as the attributes are aki and bki for all k ∈ {1, ...,m}.

In order to obtain a linearized formulation, P is reformulated as the following set-partitioning

model:

min
∑
j∈J

∑
S⊆I

Cj,SXj,S

s.t.
∑
j∈J

∑
S⊆I:i∈S

Xj,S = 1, ∀i ∈ I,∑
S⊆I

Xj,S = 1, ∀j ∈ J,

Xj,S ∈ {0, 1}, ∀j ∈ J, S ⊆ I.

(1)

Here, Cj,S represents the total location, transportation, and facility cost for facility j to serve the

retailers in S, i.e.,

Cj,S = 1S 6=∅Fj +
∑
i∈S

tij + Γj

(∑
i∈S

b1ij ,
∑
i∈S

b2ij , · · · ,
∑
i∈S

bκij

)
where 1S 6=∅ =


1, if S ⊆ I and S 6= ∅,

0, if S = ∅.

Moreover, Xj,S is the decision variable that equals 1 if facility j serves the retailers in S and

0 otherwise. Consequently, the original nonlinear objective in P is linearized at the expense of

introducing an exponential number of variables (O(2n)), which justifies the use of branch-and-price

to solve (1).

To develop the branch-and-price algorithm, we first construct the pricing problem for the column

generation procedure that solves the linear program (LP) at the root node of the branch-and-price

tree, i.e., the LP relaxation of (1) obtained by relaxing the integrality constraints. Obviously, each

pair of (j, S) corresponds to a decision variable Xj,S and forms a column. Consider the following
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dual of the LP relaxation of (1):

max
∑
i∈I

ξi +
∑
j∈J

ηj

s.t.
∑
i∈S

ξi + ηj ≤ Cj,S , ∀j ∈ J, S ⊆ I,

in which ξi for all i ∈ I and ηj for all j ∈ J denote the dual variables corresponding to the first and

second constraints of (1), respectively. Let (ξ̄i, η̄j ∀i ∈ I, j ∈ J) be the dual solution obtained in

an iteration of the column generation algorithm to solve the LP relaxation of (1). For any column

(j, S), the reduced cost is calculated by

C̄j,S = 1S 6=∅Fj +
∑
i∈S

(tij − ξ̄i) + Γj

(∑
i∈S

b1ij ,
∑
i∈S

b2ij , · · · ,
∑
i∈S

bκij

)
− η̄j .

Consider any given j ∈ J . We would like to know if the reduced costs for all columns (j, S) are

nonnegative. Define

C̄min
j = min

{
Fj + C̄j,∅, min

S⊆I:S 6=∅
C̄j,S

}
. (2)

Suppose that the decision variable Xj,∅ has been considered in the initial columns of the col-

umn generation procedure, which ensures Fj + C̄j,∅ ≥ C̄j,∅ ≥ 0. Then C̄min
j < 0 if and only if

minS⊆I:S 6=∅ C̄j,S < 0. In other words, if C̄min
j ≥ 0, all columns (j, S) have nonnegative reduced

costs; if C̄min
j < 0, there exists a column (j, S∗) with a negative reduced cost, where S∗ 6= ∅ is an

optimal solution to model (2).

Apparently, model (2) is equivalent to the following binary optimization problem SPj :

SPj : min Fj +
∑
i∈I

(tij − ξ̄i)Yij + Γj

(∑
i∈I

b1ijYij ,
∑
i∈I

b2ijYij , · · · ,
∑
i∈I

bκijYij

)
− η̄j

s.t. Yij ∈ {0, 1}, ∀i ∈ I,

which is called the pricing problem for the branch-and-price algorithm at the root node. At any

other node of the branch-and-price tree, the pricing problem is still in the form of SPj as long as

we branch on
∑

S⊆I:i∈S Xj,S for some i ∈ I and j ∈ J , i.e., whether retailer i is served by j. Please

refer to the discussion in Section 4.1.2 of Barnhart et al. (1998) and the references therein. We

also note that Lagrangian relaxation can be employed to solve the formulation P and the same

subproblem SPj must be solved in each iteration. Therefore, the fast implementation of both

branch-and-price and Lagrangian relaxation depends on whether we can solve SPj rapidly.

When κ = 1 and Γj(·) is concave, Shen et al. (2003) propose an O(n log n) algorithm for the

pricing problem. When κ = 2 and Γj(·, ·) is a sum of two single-variate concave functions, Shu et al.

10



(2005) show that the corresponding pricing problem can be solved in O(n2 log n). The concavity of

Γj ensures a parametric linear programming representation of the problem for which optimality can

be attained at an extreme point. This results in an efficient special-purpose strongly polynomial-

time algorithm for such a pricing problem. As a matter of fact, under these special cases, the

pricing problem is a submodular function minimization problem and hence is readily solvable in

polynomial-time. Unfortunately, when the concavity assumption is relaxed, such a property no

longer holds. As shown in the next section, the general problem SPj is NP-hard. However, we can

still exploit structural properties that lead to its fast solution.

Application 5. Pricing Problem Model. Although the pricing problem is derived from the

location model with general facility cost functions, it is likely to have important applications in

other areas as well. Many problems, such as the performance achievability checking problem for

multiclass queueing systems (cf. Federgruen and Groenevelt, 1988), the market selection prob-

lem (cf. Geunes et al., 2004), the operating room scheduling problem (cf. Lamiri et al., 2008),

and the selective newsvendor problem (cf. Strinka et al., 2013), are special cases of the pricing

problem SPj . Although all the aforementioned models possess a submodular structure, a simple

practical consideration, e.g., capacity, may destroy the property. Therefore, there are potentially

many important applications of this work that go well beyond location-allocation network design

modeling.

3 The Pricing Problem

With straightforward changes of notation, we can transform the pricing problem SPj for any j ∈ J

into the following form:

Q : min

{
−

n∑
i=1

aizi + Φ

(
n∑
i=1

bizi

) ∣∣∣∣∣ zi ∈ {0, 1} ∀i ∈ I
}

where the function Φ : Rκ+ 7→ R is assumed to be nondecreasing, i.e., Φ(x) ≤ Φ(x′) for any

0 ≤ x ≤ x′. Here, ai and bi = (b1i , b
2
i , ..., b

κ
i )T are given constants and bi ≥ 0. We can assume

ai > 0 for any i ∈ I without loss of generality, since otherwise such i will correspond to z∗i = 0 in

an optimal solution. Similarly, we can also assume that max{bki : k = 1, ..., κ} > 0, i.e., bi 6= 0, for

each i ∈ I since otherwise an optimal solution should have z∗i = 1.

Q is a very challenging problem as it has a non-convex non-concave objective function and |I|

binary decision variables. As a matter of fact, it is NP-hard even when κ = 1.
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Theorem 1. Q is NP-hard even if κ = 1.

Remark: Theorem 1 directly yields that the pricing problem for the continuous-time single-

sourcing problem proposed in Huang et al. (2005) and the Lagrangian relaxation subproblem for

the capacitated warehouse location problem with risk pooling proposed in Ozsen et al. (2008) are

NP-hard. Both Huang et al. (2005) and Ozsen et al. (2008) prove that a simple greedy allocation

rule can solve the continuous relaxation of Q with κ = 1.

Despite the NP-hardness, any optimal solution of Q has the following property, which could

potentially speed up a branch-and-bound scheme for the solution of Q by fixing certain values of

zi after branching.

Proposition 1. For any optimal solution z∗ to Q, (i) if z∗i∗ = 0 for some i∗ ∈ I, then z∗i = 0 for

any i ∈ I such that ai < ai∗ and bi ≥ bi∗; (ii) if z∗i∗ = 1 for some i∗ ∈ I, then z∗i = 1 for any i ∈ I

such that ai > ai∗ and bi ≤ bi∗.

Furthermore, the relaxation of Q, where the binary constraint is relaxed to zi ∈ [0, 1] for all

i ∈ I, also has very interesting structural properties, which, along with Proposition 1, permit a

rapidly implementable branch-and-bound (B&B) algorithm for solving Q. The remainder of the

section is devoted to the analysis of the relaxation of Q.

3.1 Number of Fractional Components

First of all, we study the number of fractional components in an optimal solution to the relaxation

of Q. Let κ̂ denote the maximum number of linearly independent vectors in the set {bi : i ∈ I},

i.e.,

κ̂ = rank
(

[b1 b2 · · · bn]
)
≤ κ. (3)

Without loss of generality, we assume that the first κ̂ rows of the matrix [b1 b2 · · · bn] are linearly

independent. Then the remaining rows can be represented as a linear combination of the first κ̂

rows. In other words, there exist κ̂ linearly independent vectors in the set{
b̂i ≡ [b1i , b

2
i , ..., b

κ̂
i ]T : i ∈ I

}
. (4)

For any k ∈ {κ̂+ 1, ..., κ}, there exists a vector pk ∈ Rκ̂ such that

bki = pTk b̂i ∀i ∈ I. (5)

Obviously, bi 6= 0 implies b̂i 6= 0 for any i ∈ I.

The following theorem shows that the number of fractional components is at most κ̂.
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Theorem 2. There exists an optimal solution to the relaxation of Q that contains at most κ̂

fractional components.

If Φ(·) is quasi-concave, we can further prove that the relaxation of Q has an optimal solution

with at most one fractional component.

Proposition 2. If Φ(·) is a quasi-concave function, then there exists an optimal solution to the

relaxation of Q that contains at most one fractional component.

Theorem 2 and Proposition 2 show that the relaxation of Q has an optimal solution with a

small number of fractional components. Therefore, as long as the relaxation of Q can be solved

rapidly, a simple B&B algorithm, e.g., Algorithm 3 in Appendix B of the Online Supplement, can

be developed based on Proposition 1 to solve Q rapidly. We study how to solve the relaxation of

Q in Sections 3.2 and 3.3.

3.2 Linear Partitioning of the Retailers

The following proposition presents a neat structural property for any optimal solution to the re-

laxation of Q, which is crucial to rapidly solve the problem.

Proposition 3. For any optimal solution (z∗i ∀i ∈ I) to the relaxation of Q, there exists α ≥ 0 such

that (i) αTbi/ai ≤ 1 for any i such that z∗i = 1, (ii) αTbi/ai = 1 for any i such that z∗i ∈ (0, 1),

and (iii) αTbi/ai ≥ 1 for any i such that z∗i = 0.

To interpret Proposition 3, we can map retailer i with the parameters (ai,bi) to the point bi/ai

in a κ-dimensional space. Any optimal solution to the relaxation of Q corresponds to a partition

of the set I by a hyperplane {x ∈ Rκ : αTx = 1}, where α ≥ 0. Given such a vector α, we can

obtain the following three sets:

S1(α) = {i ∈ I : αTbi/ai < 1}, S0(α) = {i ∈ I : αTbi/ai > 1}, and H(α) = I \ S1(α) \ S0(α).

(6)

The retailers on one side of the hyperplane (not inclusive), i.e., in the set S1(α), should be served,

while those on the other side of the hyperplane (not inclusive), i.e., in the set S0(α), should not be

served. We only need to optimize the values of zi for the retailers on the hyperplane, i.e., in the set

H(α), which could be fractionally served. This observation leads to Algorithm 1 that decomposes

the relaxation of Q to problems with reduced numbers of decision variables.
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Algorithm 1: Solving the relaxation of Q
Data: ai ∈ R+ and bi ∈ Rκ+ for all i ∈ I, κ̂ in (3), and a nondecreasing function

Φ : Rκ+ 7→ R

Result: an optimal solution (z∗i ∀i ∈ I) and the optimal value v∗ of the relaxation of Q

1 let z∗i := 0 for all i ∈ I, v∗ := Φ(0), and A := ∅;

2 foreach T ⊆ I such that |T | = κ̂ and {b̂i : i ∈ T} are linearly independent do

3 let β :=
[
β̂T 0T

]T ∈ Rκ where β̂ satisfies β̂T b̂i/ai = 1 for all i ∈ T ;

4 if β̂ ∈ A then go to Line 13;

5 compute S0(β), S1(β), and H(β) defined in (6);

6 if |H(β)| > κ̂ then A := A ∪ {β̂};

7 if β � 0 then

8 solve the following linear program

P(β) : max
α,ε

εi∀i∈S1(β)
εi∀i∈S0(β)

ε
∣∣∣∣∣∣ α

Tbi/ai + εi = 1 ∀i ∈ S1(β), α ≥ 0,

αTbi/ai − εi = 1 ∀i ∈ S0(β), ε ≤ εi ∀i ∈ S1(β) ∪ S0(β)

 ,

and let ε∗ be the corresponding optimal value;

9 if ε∗ ≤ 0 then go to Line 13;

10 end

11 solve the following optimization problem

R(β) : min

− ∑
i∈H(β)

aizi + Φ

 ∑
i∈H(β)

bizi +
∑

i∈S1(β)

bi

 ∣∣∣∣∣∣ zi ∈ [0, 1] ∀i ∈ H(β)

 ,

and let (z̄i ∀i ∈ H(β)) and v̄ denote its optimal solution and optimal value,

respectively;

12 if v̄ −
∑

i∈S1(β) ai < v∗ then let v∗ := v̄ −
∑

i∈S1(β) ai, z
∗
i := z̄i for all i ∈ H(β), z∗i := 1

for all i ∈ S1(β), and z∗i := 0 for all i ∈ S0(β);

13 end

14 return (z∗i ∀i ∈ I) and v∗;
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Proposition 4. Algorithm 1 solves the relaxation of Q.

The basic idea of Algorithm 1 is to find a partition of I corresponding to an optimal solution

by enumeration. Although any α ≥ 0, of which there are infinitely many, generates a partition, we

can show that it is sufficient to consider the partitioning hyperplanes passing through κ̂ linearly

independent vectors in the set {bi/ai : i ∈ I}, where κ̂ in (3) denotes the number of linearly

independent vectors in {bi : i ∈ I}. These partitions correspond to the vectors β generated in Line

3 of Algorithm 1. Thus, Algorithm 1 enumerates at most C κ̂n number of β and solves P(β) (and

R(β)) for each β. P(β) is a linear program and hence can be solved efficiently. However, R(β)

may remain challenging especially for large |H(β)|. Therefore, in Section 3.3, we further decompose

R(β) to problems with κ̂ decision variables.

3.3 Retailers on the Partitioning Hyperplane

Consider the problem R(β) defined in Line 11 of Algorithm 1. Note that βTbi/ai = 1, i.e.,

ai = βTbi, for all i ∈ H(β). Thus, R(β) can be written as

min

− ∑
i∈H(β)

βTbizi + Φ

 ∑
i∈H(β)

bizi +
∑

i∈S1(β)

bi

 ∣∣∣∣∣∣ zi ∈ [0, 1] ∀i ∈ H(β)

 .

Define Φ̂ : Rκ × Rκ̂+ 7→ R such that

Φ̂(β,x) ≡ Φ

[x1, ..., xκ̂,pTκ̂+1x, ...,p
T
κx
]T

+
∑

i∈S1(β)

bi

− βT [x1, ..., xκ̂,pTκ̂+1x, ...,p
T
κx
]T

(7)

for any β ∈ Rκ and x = (x1, x2, ..., xκ̂)T ∈ Rκ̂+, where pk is introduced in (5). For any set S ⊆ I

and function Ψ : Rκ̂+ 7→ R, we can consider the optimization problem P(S,Ψ(·)) defined as

P(S,Ψ(·)) : min

{
Ψ

(∑
i∈S

b̂izi

) ∣∣∣∣∣ zi ∈ [0, 1] ∀i ∈ S

}
. (8)

Given H(β) in (6) and Φ̂(β, ·) in (7), R(β) is then equivalent to the problem P(H(β), Φ̂(β, ·)).

Obviously, the objective value of P(S,Ψ(·)) is determined by
∑

i∈S b̂izi. The following propo-

sition presents a property regarding
∑

i∈S b̂izi where zi ∈ [0, 1] for all i ∈ S, which can be applied

to decompose P(S,Ψ(·)) into problems with κ̂ decision variables.

Proposition 5. Consider any i∗ ∈ S ⊆ I and z̄i ∈ [0, 1] for all i ∈ S. There exist zi ∈ [0, 1] for all

i ∈ S with
∑

i∈S b̂izi =
∑

i∈S b̂iz̄i, which satisfy at least one of the following two conditions: (i)
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zi∗ = 1; or (ii) there exists θ ∈ Rκ̂ such that θT b̂i∗ > 0, zi = 0 for all i ∈ S \ {i∗} and θT b̂i > 0,

and zi = 1 for all i ∈ S \ {i∗} and θT b̂i < 0.

If b̂i∗ cannot be represented as a linear combination of {b̂i : i ∈ S \ {i∗}}, then there exist

zi ∈ [0, 1] for all i ∈ S with
∑

i∈S b̂izi =
∑

i∈S b̂iz̄i and satisfying the condition (ii).

Remark:
∑

i∈S b̂izi where zi ∈ [0, 1] for all i ∈ S is a special linear combination of {b̂i : i ∈ S}

with interesting applications, e.g., the linear relaxation of the multi-dimensional knapsack problem.

Therefore, Proposition 5 may have other potential applications.

Similar to the interpretation of Proposition 3, we can map any retailer i ∈ S to the point b̂i in

a κ̂-dimensional space. Now consider any feasible solution to P(S,Ψ(·)) and an arbitrary i∗ ∈ S.

According to Proposition 5, it is possible to get an equivalent feasible solution, i.e., one with the

same objective function value, by setting zi∗ = 1. If it is impossible to do so, then we can find a

partitioning hyperplane {x ∈ Rκ̂ : θTx = 0} such that the retailers (except for i∗) on the same side

of the hyperplane as i∗ (not inclusive) should not be served, while those on the other side of the

hyperplane (not inclusive) should be served. An equivalent feasible solution can then be obtained

by adjusting the values of zi for i∗ and the retailers on the hyperplane defined by θ. In short,

Proposition 5 finds equivalent feasible solutions of P(S,Ψ(·)) by fixing zi to 0 or 1 for certain i ∈ S,

i.e., we can get problems equivalent to P(S,Ψ(·)) but with fewer decision variables.

Based on this result, we develop Algorithm 2 that recursively reduces the problem R(β) to

a sequence of problems with κ̂ decision variables. Consider any two sets F,U ⊆ I satisfying the

following conditions:

(C1) The sets {b̂i : i ∈ F} and {b̂i : i ∈ U} contain |F | and κ̂− |F | linearly independent vectors,

respectively.

(C2) Any non-zero linear combination of {b̂i : i ∈ F} is linearly independent of any non-zero linear

combination of {b̂i : i ∈ U}.

For any Ψ : Rκ̂+ 7→ R, the function solveP(F,U,Ψ(·)) in Algorithm 2 returns an optimal solution

(z∗i ∀i ∈ F ∪ U) and the optimal value v∗ of the problem P(F ∪ U,Ψ(·)) defined in (8).

For any i ∈ F , the corresponding variable zi is one of the κ̂ decision variables in the decomposed

problems. For any i ∈ U , the function solveP(F,U,Ψ(·)) determines whether zi appears in the

decomposed problems. More specifically, the function solveP(F,U,Ψ(·)) picks a retailer i∗ from

the set U . In order to reduce the number of decision variables, as suggested by Proposition 5, we
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Algorithm 2: Solving R(β) by calling the function solveP(∅, H(β), Φ̂(β, ·))

1 function solveP(F ,U ,Ψ(·))

2 if U = ∅ then solve the problem P(F,Ψ(·)), and return its optimal solution

(z∗i ∀i ∈ F ) and optimal value v∗;

3 let z∗i := 0 for all i ∈ F ∪ U , v∗ := Ψ(0), and A := ∅;

4 choose an arbitrary i∗ ∈ U ;

5 if b̂i∗ can be represented as a linear combination of {b̂i : i ∈ U \ {i∗}} then

6 let Ū := U \ {i∗}, and define Ψ̄(x) := Ψ(b̂i∗ + x) for any x ∈ Rκ̂+;

7 obtain the optimal solution (z̄i ∀i ∈ F ∪ Ū) and optimal value v̄ of the problem

P(F ∪ Ū , Ψ̄(·)) by calling the function solveP(F, Ū , Ψ̄(·));

8 if v̄ < v∗ then let z∗i∗ := 1, z∗i := z̄i for all i ∈ F ∪ Ū , and v∗ := v̄;

9 end

10 foreach Uf ⊆ U \ {i∗} such that |Uf | = κ̂− |F | − 1 and {b̂i : i ∈ Uf ∪ {i∗}} are linearly

independent do

11 find a vector θ such that θT b̂i∗ = 1 and θT b̂i = 0 for all i ∈ F ∪ Uf ;

12 if θ ∈ A then go to Line 17;

13 let F̄ := F ∪ {i∗}, Ū(θ) := {i ∈ U : θT b̂i = 0}, and

Ψ̄(θ,x) := Ψ

x +
∑

i∈U :θT b̂i<0

b̂i


for any x ∈ Rκ̂+;

14 if |Ū(θ)| ≥ κ̂− |F | then let A := A ∪ {θ};

15 obtain an optimal solution (z̄i ∀i ∈ F̄ ∪ Ū(θ)) and the optimal value v̄ of the

problem P(F̄ ∪ Ū(θ), Ψ̄(θ, ·)) by calling the function solveP(F̄ , Ū(θ), Ψ̄(θ, ·));

16 if v̄ < v∗ then let z∗i := z̄i for all i ∈ F̄ ∪ Ū(θ), z∗i := 1 for all {i ∈ U : θT b̂i < 0},

z∗i := 0 for all {i ∈ U \ {i∗} : θT b̂i > 0}, and v∗ := v̄;

17 end

18 return (z∗i ∀i ∈ F ∪ U) and v∗ as an optimal solution and the optimal value of the

problem P(F ∪ U,Ψ(·)), respectively;

19 end
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can set zi∗ to 1 and remove i∗ from U . In the meantime, we also enumerate possible partitions of

the set U \ {i∗}. Similar to Algorithm 1, it is sufficient to consider the partitions defined by i∗,

the retailers in the set F , and κ̂ − |F | − 1 retailers in the set U \ {i∗} (cf. Line 11 of Algorithm

2). Given such a partition, for any retailer i in the set U \ {i∗} that is not on the partition, the

value of zi can be fixed according to Proposition 5. Then i∗ is added to the set F and the set U is

updated to the retailers in U \ {i∗} on the partitioning hyperplane. By calling solveP(F,U,Ψ(·))

recursively, we eventually obtain κ̂ retailers in F and reduce U to an empty set. In this case, the

κ̂ retailers in F yields a κ̂-variable problem in the form of P(S,Ψ(·)).

Proposition 6. The function solveP(∅, H(β), Φ̂(β, ·)) defined in Algorithm 2 solves R(β) for any

β constructed in Line 3 of Algorithm 1, by decomposing it into at most C κ̂|H(β)| problems in the

form of P(S,Ψ(·)) with κ̂ decision variables.

We also note that R(β) can be solved by enumerating all possible subsets of H(β) whose

corresponding values of zi could be fractional. According to Theorem 2, as an optimal solution has

at most κ̂ fractional components, H(β) has C κ̂|H(β)| subsets to be potentially fractionally served,

each of which has κ̂ retailers. Given such a subset S, whether to serve a retailer in H(β) \ S is

unknown. As their corresponding values of zi can only be 0 or 1, the best we can do is to enumerate

all possible 0-1 assignments for the |H(β)|− κ̂ retailers, which yields 2|H(β)|−κ̂ combinations. Based

on the binary assignment for retailers in H(β) \ S, we can then determine the values of zi for the

retailers in S by solving a problem in the form of P(S,Ψ(·)). As a result, if R(β) is to be solved by

enumeration, then C κ̂|H(β)|×2|H(β)|−κ̂ κ̂-variable problems in the form of P(S,Ψ(·)) must be solved.

In contrast, Proposition 6 shows that Algorithm 2 only needs to solve C κ̂|H(β)| such problems,

which clearly has a better performance. This comparison also suggests that Algorithm 2 may still

enumerate all subsets of H(β) with κ̂ retailers. However, by choosing the right order to enumerate

these subsets, we can apply Proposition 5 to decide whether to serve a retailer not contained in the

fractionally served subset. This eliminates the enumeration of the 0-1 assignments for integrally

served retailers and leads to Algorithm 2 that only solves C κ̂|H(β)| problems with κ̂ decision variables.

3.4 Solving the Relaxation of Q

According to Propositions 4 and 6, the relaxation of Q can be solved by Algorithm 1, which calls the

function solveP(∅, H(β), Φ̂(β, ·)) in Line 11 to solve the problem R(β). Through this approach,

the relaxation of Q is decomposed into at most C κ̂n problems with κ̂ decision variables.
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Theorem 3. The relaxation of Q can be decomposed into at most C κ̂n problems in the form of

P(S,Ψ(·)) with κ̂ decision variables.

Note that C κ̂n is in the order of O(nκ̂), which is polynomial in the number of retailers n. For

most applications, κ̂� n is a small integer. Based on the KKT conditions, optimizing a κ̂-variable

P(S,Ψ(·)) can often be further reduced to subproblems whose solutions are either obtained in a

closed form or computed by standard numerical methods for solving equation systems, e.g., the

algorithms used by the commercial software package Mathematica. For illustration, we show in

Appendix C of the Online Supplement how to solve the decomposed problems with κ̂ variables

for the two applications considered in Section 4 for numerical study. Furthermore, when Φ(·) is

quasi-concave, Proposition 2 shows that there exists an optimal solution with at most one fractional

component. Thus, each κ̂-variable problem can be further decomposed into κ̂×2κ̂−1 single-variable

problems. As a result, the relaxation of Q can be solved rapidly for small κ̂.

Observe that Algorithms 1 and 2 enumerate potential partitioning hyperplanes in Lines 2 and

10, respectively. This idea has been exploited in the joint location-inventory literature to solve the

subproblems obtained from Lagrangian relaxation or column generation. These subproblems can

be viewed as special cases of Q where Φ(·) is a univariate concave function with κ = 1 (Daskin et

al., 2002 and Shen et al., 2003), a sum of two such functions with κ = 2 (Shu et al., 2005), or a sum

of three such functions with κ = 3 (Shen and Qi, 2007). In their algorithms, the vectors bi/ai for

all i ∈ I are sorted before starting the enumeration of hyperplanes so as to speed up the evaluation

of the objective function value corresponding to each hyperplane. This pre-sorting technique can

also be adopted in Algorithms 1 and 2 to sort bi/ai and b̂i, respectively. It is capable to reduce

the computation of
∑

i∈S1(β) bi in Line 11 of Algorithm 1 to O(κ), that of
∑

i∈S1(β) ai in Line 12

of Algorithm 1 to O(1), and that of
∑

i∈U :θT b̂i<0 b̂i in Line 13 of Algorithm 2 to O(κ̂). This would

significantly improve the performance of Algorithms 1 and 2 when the κ̂-variable problems in the

form of P(S,Ψ(·)) can be solved very efficiently.

As the concluding remark of this section, we would like to compare the proposed approach

to solve the relaxation of Q (and Q itself) with the existing approaches for some special cases.

In many cases, with the aid of the pre-sorting technique, our approach is as efficient as the best

known algorithm. For example, the relaxation of Q for the capacitated facility location problem in

Application 1 can be written as

min

{
−

n∑
i=1

aizi

∣∣∣∣∣
n∑
i=1

b1i zi ≤ C, zi ∈ [0, 1] ∀i ∈ I

}
.
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Solving the above LP requires sorting ai/b
1
i for all i and the computational complexity is O(n log n).

In the meantime, if we adopt Algorithm 1 and pre-sort b1i /ai before the enumeration in Line 2, it is

easy to see that computational complexity of Algorithm 1 is dominated by sorting b1i /ai and hence

it is O(n log n) as well.

This observation also applies to the subproblems arising from the uncapacitated location-

inventory models. As Φ(·) is concave in these models, Q and its relaxation are equivalent. Further-

more, the κ̂-variable problem in the form of P(S,Ψ(·)) must have an optimal solution in {0, 1}κ̂,

so it can be solved by evaluating the optimal values of the 2κ̂ solutions in {0, 1}κ̂. If we pre-sort

the vectors bi/ai as in Daskin et al. (2002), Shen et al. (2003), Shu et al. (2005), and Shen

and Qi (2007), Algorithm 1 essentially reduces to the corresponding algorithms in the aforemen-

tioned literature that solves the instances of Q with concave objective functions and κ = 1, 2, 3,

respectively.

For the capacitated location-inventory problem studied in Ozsen et al. (2008), the subproblem

yielded by Lagrangian relaxation is in the form of

min

{
−

n∑
i=1

aizi + Φ

(
n∑
i=1

b1i zi

) ∣∣∣∣∣
n∑
i=1

b1i zi ≤ C, zi ∈ {0, 1} ∀i ∈ I

}
, (9)

where Φ(·) is a nondecreasing function. We note that the original constraint considered in Ozsen

et al. (2008) is f(
∑n

i=1 b
1
i zi) ≤ C̃ for an increasing function f(·), which, due to the monotonicity

of f(·), is equivalent to
∑n

i=1 b
1
i zi ≤ C for some C. They first consider the relaxation of (9), which

allows zi ∈ [0, 1] for all i ∈ I, and then obtain an integral solution to (9) by branch-and-bound.

Again, by pre-sorting b1i /ai, Algorithm 1 reduces to the approach adopted by Ozsen et al. (2008)

to solve the relaxation of (9). In other words, our proposed approach to solve (9) is equivalent to

that in Ozsen et al. (2008).

In the meantime, we acknowledge that Algorithm 1, targeting to solve a very generic problem

without assuming any problem-specific property, may fail to be the most efficient algorithm for some

special cases. For example, Desrochers et al. (1995) consider the column generation algorithm for

the congested multi-sourcing facility location problem. The corresponding pricing problem is an

instance of the relaxation of Q with convex Φ(·) and κ = 1, which is a convex optimization problem.

Finding its optimal solution could require Algorithm 1 to solve n univariate problems in the form

of P(S,Ψ(·)). Desrochers et al. (1995) utilize the property that a local optimum to a convex

optimization problem must be a global optimum and propose an algorithm for the pricing problem

based on Fibonacci’s search, which reduces the times of solving the univariate P(S,Ψ(·)) problems.
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As a result, the approach by Desrochers et al. (1995) should be more efficient than Algorithm 1

if the univariate problems are hard to solve. However, if the univariate problems can be solved in

O(1), e.g., when Φ(·) is a quadratic function, Algorithm 1 would perform as well as the approach

by Desrochers et al. (1995). In this case, the computational complexity of Algorithm 1 with pre-

sorting b1i /ai is O(n log n), whereas the complexity of the approach by Desrochers et al. (1995) is

at least O(n log n) because it requires sorting ai. We also note that it is difficult to generalize the

approach by Desrochers et al. (1995) to the instances with convex Φ(·) and κ > 1.

4 Computational Study

In this section, we implement the facility location and production/capacity planning models with

economies and diseconomies of scale, which, respectively, correspond to Applications 3 and 4 in

Section 2, to establish the effectiveness of the proposed solution approach, understand the manage-

rial implications, and demonstrate the importance of incorporating the general facility costs. The

algorithm is coded in C++. All experiments are conducted on a Dell desktop with 3.20 GHz Intel

i7 CPU and 16 GB memory running the Windows operating system (64-bit). The data sets are

provided in the online supplements.

Throughout the computational study, the initial columns at the root node of the branch-and-

price tree consist of the columns of (j, ∅) for all j ∈ J and those corresponding to an optimal

solution to the problem that only considers the linear cost components in the instance. At any

other node of the tree, the initial columns are obtained from the final master problem of its parent

node. All the master problems are solved by the CPLEX Academic Initiative Edition 12.5 (64-bit)

solver in its default environment. When solving the pricing problem, we first employ a heuristic

inspired by Algorithm 1, which enumerates the partitioning hyperplanes as in Algorithm 1. For

each hyperplane containing a small number (e.g., κ̂) of retailers, it assigns 0-1 values to the retailers

not on the hyperplane according to Algorithm 1 and enumerates all possible binary assignments

for the retailers on the hyperplane. The branch-and-bound procedure for the pricing problem (see

Algorithm 3 in Appendix B of the Online Supplement) is applied only when the heuristic fails to

find a column with a negative reduced cost. The branch-and-bound procedure in Algorithm 3 is

also terminated as long as an integral solution with a negative reduced cost is identified. Numerical

experiments verify that this column generation strategy is superior to the one that always solves

the pricing problem to optimality.
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4.1 Facility Location and Production

We first consider the facility location and production problem with economies and diseconomies

of scale, which corresponds to Application 3. Following the notation in Application 3, bki for all

k ∈ {1, ..., κ} denote the constant demand rates of product k at retailer i, respectively. If a facility

at site j is set up, the production cost for facility j to serve the retailers in the set S is defined

as Γj(
∑

i∈S b
1
i , ...,

∑
i∈S b

κ
i ) =

∑κ
k=1 Γkj (

∑
i∈S b

k
i ). Moreover, for any k ∈ {1, ..., κ}, let ckij be the

transportation cost to send one unit of product k from facility j to retailer i. Then the linear

transportation cost from facility j to retailer i is tij =
∑κ

k=1 c
k
ijb

k
i .

For κ ∈ {2, 3, 4}, we test on the random instances with |J |, |I| ∈ {20, 40, 60, 80, 100}, which

denote the numbers of the potential facility locations and the retailers, respectively. Given a

combination of κ, |J |, and |I|, 20 instances are generated randomly by the following procedure. The

locations of the potential facilities and the retailers are uniformly distributed over [0, 10]× [0, 10].

For any retailer i and product k, the demand rate bki is randomly generated in [10, 50]. The

transportation cost parameters, i.e., ckij for all k ∈ {1, ..., κ}, are set to the Euclidean distance

between i and j times a factor for each product that is generated uniformly in [50, 100]. The fixed

location cost Fj for any facility j is randomly generated in [500, 1500].

To model the economies and diseconomies of scale in production, the production costs are set

to inverse S-shaped functions of the production quantities. In particular, given the production

quantity qkj of product k at facility j, the production cost is Γkj (q
k
j ) = 10−3(qkj − ekj )3 + 10−3(ekj )

3

with ekj uniformly generated in [100, 500]. Obviously, Γkj (q
k
j ) is strictly increasing in qkj . It is a

concave function when qkj ≤ ekj and a convex function when qkj ≥ ekj . In other words, economies of

scale exist when the production quantity is less than ekj , whereas diseconomies of scale take place

when the production quantity exceeds ekj . Consequently, ekj is referred to as the economic point.

Figure 1 illustrates the inverse S-shaped production cost functions under different economic points.

Note that the production cost functions are the same as the cubic functions used in Lu et al. (2014)

except that the function values are enlarged by 10 times. Furthermore, this implementation example

can be viewed as a variation of the model in Lu et al. (2014) in a κ-product single-sourcing setting.

Although Lu et al. (2014) consider a capacitated model, we note that the capacitated version is no

harder than the uncapacitated one used in our experiments.

Tables 1, 2, and 3 demonstrate the computational effectiveness of our approach applied to the

facility location and production problem with κ = 2, 3, 4, respectively. The first two columns “|J |”

and “|I|” show the input size of each instance class, i.e., the numbers of potential facility locations
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Figure 1: Inverse S-Shaped Production Costs

and retailers, respectively. The columns “B&P nodes,” “Iter.,” “Col.,” “B&B nodes,” and “Sub-

prob.” report the averages of nodes in the branch-and-price trees, times that the master problems

are solved, columns added, nodes explored by the B&B procedure for solving the pricing problems,

and κ-variable decomposed subproblems in the form of P(S,Ψ(·)) solved for solving the pricing

problems, respectively. The columns titled “Time” display the minimal, average, and maximal

CPU times in seconds taken to solve the randomly generated instances of each input size. The

column “Fac. open” gives the average number of facilities open in the optimal binary solutions

obtained by the branch-and-price algorithm. The last column “Cost” reports the average of the

corresponding optimal values in thousands, respectively.

As shown in Table 1, when κ = 2, the proposed branch-and-price algorithm can be applied to

solve instances with up to 100 potential facilities and 100 retailers within moderate CPU times.

The average CPU times are always bounded by 15 minutes. Furthermore, the solution difficulty

increases with the number of retailers, but it is rather insensitive to the number of potential facilities.

Theorem 2 shows that the number of fractional components in an optimal solution of the

relaxation of the pricing problem increases in κ, which should make it harder for the B&B algorithm

to find an integral solution (“B&B nodes”). According to Theorem 3, to solve the relaxation of

the pricing problem, we need to solve a series of κ-variable decomposed subproblems in the form of

P(S,Ψ(·)), whose number (“Sub-prob.”) may grow exponentially in κ. Consequently, the pricing

problem would get much more difficult as κ increases. Nevertheless, the proposed algorithm is still

capable of solving practical-scale instances with up to 80 and 60 potential facilities and retailers for

κ equal to 3 and 4, respectively. Also note that the decisions of the facility location and production
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Table 1: Algorithmic Performance for Facility Location and Production Problems with κ = 2

|J | |I|
B&P

Iter. Col.
B&B Sub- Time Fac. Cost

nodes nodes prob. Min Avg Max open (×103)

20 20 1 11 2871 24 28 0 0 1 5 257.54

20 40 7 63 19615 146 2743 1 4 25 6 480.72

20 60 16 210 58004 320 33424 6 47 356 7 705.29

20 80 20 359 96674 402 51721 38 154 479 9 892.35

20 100 79 1200 188361 1578 312198 58 864 2957 10 1115.07

40 20 1 9 2426 40 8 0 0 1 6 228.20

40 40 2 34 17038 96 1213 1 3 12 8 422.15

40 60 22 161 54354 860 24149 6 44 305 9 597.96

40 80 45 448 106505 1812 113485 27 294 2075 10 734.35

40 100 24 356 154919 976 82907 86 428 1178 12 919.15

60 20 1 8 2271 66 0 0 0 1 7 211.85

60 40 2 24 13771 102 245 1 2 4 9 374.55

60 60 9 100 45473 552 7590 7 24 102 10 538.12

60 80 17 190 90419 996 53910 27 133 903 12 679.61

60 100 35 397 149850 2124 120885 67 486 1740 14 827.59

80 20 1 8 2118 80 0 0 1 1 8 197.57

80 40 3 28 14196 248 328 1 3 6 9 356.80

80 60 6 61 41818 440 4312 7 19 41 11 510.34

80 80 18 140 78767 1416 27796 27 98 586 13 637.03

80 100 54 438 139363 4344 160839 84 534 1812 14 788.40

100 20 1 7 1971 100 0 0 1 1 8 191.09

100 40 2 24 12585 240 162 1 3 7 10 339.86

100 60 5 56 38601 480 3243 12 20 56 12 484.56

100 80 13 121 76283 1260 30784 18 90 513 14 614.35

100 100 24 219 123516 2440 81051 85 270 1726 16 753.12
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Table 2: Algorithmic Performance for Facility Location and Production Problems with κ = 3

|J | |I|
B&P

Iter. Col.
B&B Sub- Time Fac. Cost

nodes nodes prob. Min Avg Max open (×103)

20 20 1 11 3203 20 180 0 7 40 5 441.41

20 40 6 74 27065 124 18086 15 760 7320 6 794.58

20 60 5 104 73928 94 52709 213 2463 14830 7 1124.45

20 80 13 212 140566 256 209968 878 11130 51895 8 1443.16

40 20 1 9 2474 44 8 0 1 7 6 372.78

40 40 2 32 18992 76 3040 4 155 1081 7 669.94

40 60 7 93 61465 284 45026 179 2446 15917 8 948.74

40 80 9 134 114595 368 115875 290 6124 36582 10 1229.35

60 20 1 8 2042 60 0 0 0 1 7 345.65

60 40 4 33 16134 228 4888 4 247 1434 9 629.45

60 60 5 68 50311 276 17806 192 1026 2928 9 890.89

60 80 12 126 99654 702 126248 626 6906 70968 11 1100.84

80 20 1 7 1850 80 0 0 0 1 7 329.97

80 40 1 21 13271 96 926 4 55 259 9 596.42

80 60 5 57 44023 368 12823 117 772 3330 10 838.13

80 80 5 91 91370 408 54431 611 3339 10594 12 1063.27
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Table 3: Algorithmic Performance for Facility Location and Production Problems with κ = 4

|J | |I|
B&P

Iter. Col.
B&B Sub- Time Fac. Cost

nodes nodes prob. Min Avg Max open (×103)

20 20 1 12 3685 20 283 0 174 906 4 608.96

20 40 2 46 29529 46 19493 831 14736 60493 6 1085.70

20 60 1 77 82617 28 62311 13035 45901 153500 7 1516.16

40 20 1 9 2554 44 66 0 41 409 6 533.88

40 40 2 36 21972 92 13355 321 10167 47632 7 977.29

40 60 2 64 67023 64 47734 7717 36529 101717 8 1369.79

60 20 1 8 2118 78 116 0 73 521 6 511.46

60 40 2 28 17835 114 7163 324 5411 25500 8 932.25

60 60 2 58 61050 96 38531 3116 27139 68448 9 1277.42

problem, i.e., location and retailer-facility assignment, have a very long-term impact and are made

very infrequently. Although the average computational time could be 1.9 hours for instances with

κ = 3 and |I| = 80 and 10.1 hours for instances with κ = 4 and |I| = 60, the proposed algorithm

remains practical as it is very likely that such a strategic decision problem will only be solved once

in every few years.

We also observe from Tables 1, 2, and 3 that compared with the number of columns generated

(“Col.”), the number of column generation iterations (“Iter.”) is rather small. This is because

we add almost all columns identified with a negative reduced cost to the master problem in each

column generation iteration. This strategy is advantageous since the LP master problems can be

solved very efficiently, while solving the pricing problems could be potentially time consuming.

Moreover, as aforementioned, we implement a heuristic to search for an integral solution for the

pricing problem and terminate the B&B algorithm whenever a column with a negative reduced cost

is identified. Consequently, only a small number of B&B nodes are enumerated when solving the

pricing problems (“B&B nodes”). Also note that when solving the pricing problem to optimality,

we choose to enumerate all possible integral solutions when the number of decision variables in the

pricing problem (or the problem at a B&B node) is small (see Line 5 of Algorithm 3 in Appendix

B of the Online Supplement). This explains why we solve a very small number of κ-variable
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decomposed subproblems in the form of P(S,Ψ(·)) (“Sub-prob.”) when |I| = 20. There are also

several instance classes where no such problems are solved at all.

As expected, Tables 1, 2, and 3 show that the optimal cost (“Cost”) increases in the number of

products κ and the number of retailers |I|, while it decreases in the number of potential facilities

|J |. The number of open facilities (“Fac. open”) then increases in both |I| and |J |. It is also noted

that the number of open facilities is insensitive to κ. This is mainly because at any facility, the

total facility cost is defined as the sum of the facility costs for individual products.

In order to investigate the impact of the economic points on the algorithmic performance as

well as the model solution, we consider the case with two products, i.e., κ = 2. Two basic instances

with |J | = |I| = 40 and |J | = |I| = 100 are generated by uniformly choosing b1i and b2i for all i

in [10, 20] and [20, 50], respectively. Variant instances are then obtained by setting the economic

points at any potential facility, i.e., (e1
j , e

2
j ) for all j ∈ J , to a specific combination chosen from

e1
j , e

2
j ∈ {0, 50, 100, 200, 500}. In addition, all the facility candidates have a fixed location cost of

10000 so as to eliminate the influence of the location costs on the location decisions. The results are

summarized in Table 4. The columns “e1
j” and “e2

j” show the different economic point combinations

for the two products at all potential facilities. The columns “Time,” “Fac. open,” and “Cost”

display the computational time to solve the instance, the optimal number of facilities open, and

the optimal value. For the purpose of comparison, we also solve the corresponding uncapacitated

facility location problem (UFLP) of each instance, i.e., the problem without the terms Γj in model

P. Note that the economic points have no impact on the optimal UFLP solution, which has 10

and 17 facilities open for all instances with |J | = |I| = 40 and |J | = |I| = 100, respectively. As

the optimal UFLP solution is also feasible to model P, we can evaluate its corresponding objective

value of model P. The columns “Reduct.” present how much cost can be saved in percentage if

we implement our solution to model P instead of the optimal UFLP solution. We also compare

the facilities open in the solutions of model P and the UFLP, and report in the columns “Open in

both” the numbers of facilities open in both solutions.

Based on Table 4, we first examine the impact of the economic points on the number of facilities

open in model P.

Observation 1. The number of facilities open is generally nonincreasing with the increase of the

economic points.

This observation results from the trade-off between economies-of-scale and diseconomies-of-scale

in the inverse S-shaped facility cost functions. When the economic points are close to zero, the
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Table 4: Impact of Economic Points

e1
j e2

j

|J | = |I| = 40, 10 facilities open in UFLP |J | = |I| = 100, 17 facilities open in UFLP

Time
Fac.

open

Cost

(×103)

Reduct.

(%)

Open

in both
Time

Fac.

open

Cost

(×103)

Reduct.

(%)

Open

in both

0 0 3 13 295.99 4.42 10 190 26 588.81 18.94 11

0 50 1 11 277.32 2.52 9 64 24 535.65 13.97 12

0 100 2 10 279.59 0.55 9 58 20 526.78 7.94 13

0 200 1 8 335.18 1.43 5 590 15 621.34 1.56 14

0 500 872 2 759.23 27.10 0 15544 6 1490.84 28.58 2

50 0 4 12 295.97 3.93 9 187 25 586.25 18.07 10

50 50 1 11 276.78 2.16 9 156 24 531.93 13.06 12

50 100 2 10 278.36 0.43 9 59 20 519.79 7.41 13

50 200 2 8 332.46 1.77 5 423 14 608.01 1.99 10

50 500 679 2 737.66 29.06 0 9138 6 1437.65 30.77 2

100 0 2 11 304.42 3.44 9 178 24 605.27 16.75 12

100 50 1 11 285.00 1.74 9 115 23 550.26 11.71 13

100 100 1 10 285.88 0.29 9 51 20 535.08 6.59 13

100 200 1 8 338.48 2.07 4 547 14 615.84 2.53 10

100 500 342 2 724.80 30.77 0 6974 6 1407.56 32.59 2

200 0 2 11 347.12 2.45 9 148 24 709.37 13.15 13

200 50 2 11 327.70 0.89 9 62 21 648.61 9.04 13

200 100 4 10 327.11 0.06 9 462 20 632.52 4.54 13

200 200 3 7 375.74 2.71 3 1063 13 696.08 3.54 8

200 500 32 2 725.34 33.31 0 9378 5 1409.28 35.29 2

500 0 4 10 684.64 0.46 9 304 21 1544.92 4.70 13

500 50 4 9 661.35 0.19 9 698 20 1473.71 2.88 12

500 100 5 8 653.08 0.94 8 1806 15 1437.45 2.01 10

500 200 10 6 686.31 4.44 4 4360 11 1437.28 5.81 5

500 500 19 2 936.96 33.99 0 5931 5 1910.63 35.93 2
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effect of diseconomies-of-scale dominates, due to which demand pooling is less cost efficient and

the optimal network design solution tends to open more facilities. In contrast, with the increase of

the economic points, the effect of economies-of-scale starts to take over gradually, which leads to

network consolidation. Furthermore, the phenomenon is much more significant for the economic

point of product 2, because the demand rates of product 2 generated in [20, 50] is much higher than

that of product 1 generated in [10, 20].

We also observe how the supply chain cost changes with respect to the economic points.

Observation 2. The supply chain cost first decreases and then increases with the increase of the

economic points.

For any given qkj , the first derivative of the inverse S-shaped facility cost function Γkj (q
k
j ) with

respect to ekj shows that Γkj (q
k
j ) decreases in ekj if 2ekj < qkj and increases in ekj if 2ekj > qkj . When

the economic point ekj is low, e.g., ekj = 0, the production quantity qkj at any of the open facilities is

much higher than 2ekj . In this case, if we keep the supply chain configuration and slightly increase

ekj , the total supply chain cost decreases as the production cost Γj(q
k
j ) decreases in ekj . Under the

increased economic point, the supply chain cost can be further reduced by optimizing the supply

chain configuration. Similarly, if ekj is high, e.g., ekj = 500, it is very unlikely for the production

quantity qkj at an open facility to exceed 2ekj , which implies that the production cost Γj(q
k
j ) increases

in ekj . Therefore, when we decrease ekj , the supply chain cost is reduced under the same network

configuration, and can be further improved by solving model P using the lowered ekj . As a result,

we obtain Observation 2.

Table 4 shows that most of the instances are solved in less than 20 minutes. For the three

instances requiring more than 2 hours to solve, i.e., the instances with |I| = |J | = 100, e1
j ∈

{0, 50, 200}, and e2
j = 500, the long CPU time is mainly caused by the large number of branch-

and-price nodes explored to obtain an integral solution, which are 311, 197, and 83, respectively.

Moreover, it reveals that the computational time shares the same trend as the supply chain cost

under varying economic points.

Observation 3. Generally speaking, the solution difficulty first decreases and then increases with

the increase of the economic points.

The increase of the economic points makes the facility cost functions dominated by the concave

segments, which, intuitively, should reduce the solution difficulty of the problem. However, as

shown in the explanation of Observation 2, the production cost at each open facility first decreases
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and then increases in the economic points. When the production costs are low, model P focuses on

decreasing the location and transportation costs. When the production costs are high, it is more

important to reduce the production costs, which, due to the nonlinearity of the production cost

functions, is more difficult than cutting the location and transportation costs. Consequently, we

observe shorter CPU times for moderate economic points.

Next, we compare the solutions of model P and the UFLP. In 94% of all instances, the number

of facilities opened by both model P and the UFLP, which is shown in the columns “Open in

both,” is strictly less than the minimum of the numbers of facilities opened by these two models,

respectively. We obtain the following implication.

Observation 4. If model P (resp. the UFLP) opens no more facilities than the UFLP (resp.

model P), the set of facilities opened by model P (resp. the UFLP) may not be a subset of that by

the UFLP (resp. model P).

Observation 4 can be interpreted by the property that the optimal set of facilities open in a p-median

problem may not be a subset of that in the corresponding p′-median problem, where p < p′. The

observation implies that the optimal solution of model P cannot be easily obtained from that of

the UFLP counterpart, which demonstrates the necessity of solving model P efficiently. One may

notice that when the number of open facilities in model P is very close to that in the UFLP, the

two solutions may share a large set of open facilities. However, as the number of open facilities

cannot be predicted without solving model P, it is still important to obtain the solution of model

P.

The ultimate test of the necessity to study model P is how much cost it saves. Table 4 shows

that model P reduces the supply chain cost by 10.41% on average and the reduction can easily

exceed 25% when e2
j = 500. Therefore, we obtain the following observation indicating that model

P can yield significant cost savings.

Observation 5. Compared with the UFLP, model P leads to a solution that significantly reduces

the systemwide cost of location, transportation, and facility operation.

4.2 Facility Location and Capacity Planning

Here we use a single-product location and capacity planning model, i.e., Application 4 with m = 1

and κ = 2, to implement model P. The notation is adopted from Application 4 except that

the superscript k is dropped for simplicity as we only consider one product. The random test
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instances are generated as follows. The locations of the potential facilities and the retailers are

uniformly distributed over [0, 10] × [0, 10]. For any potential facility j, the fixed location cost

Fj is randomly generated in [1000, 3000]. Similar to Section 4.1, the capacity cost is modeled as

Γj(qj) = 10−3(qj − ej)3 + 10−3e3
j , where ej is the economic point uniformly generated in [100, 150].

Moreover, we assume the demand rate follows an independent normal distribution for any retailer i.

The mean demand rate ai and variance bi are randomly generated in [10, 20] and [5, 10], respectively.

We choose ε = 0.025, which corresponds to a 97.5% service level, and so F−1(1 − ε) = 1.96. The

linear transportation cost tij from facility j to retailer i is set to the Euclidean distance between i

and j multiplied by the expected demand rate ai and a parameter uniformly generated in [50,100].

Similar to Table 1, we consider 25 test classes by setting the numbers of potential facilities

and retailers, i.e., |J | and |I|, to any combination of |J |, |I| ∈ {20, 40, 60, 80, 100} and generate

20 random instances for each class. The computational results are summarized in Table 5, which

resemble those in Table 1. In particular, the proposed branch-and-price approach can solve all the

instances within moderate CPU times. There is only one instance class, i.e., the one with |J | = 20

and |I| = 100, that requires an average CPU time slightly more than half an hour. All other

instance classes can be solved in less than 10 minutes on average.

We next study the impact of the service level ε and the economic point ej on the algorithmic

performance and the model output. As in Table 4, two basic instances with |J | = |I| = 40 and

|J | = |I| = 100, respectively, are generated in the same manner as those in Table 5 except that the

fixed location costs of all potential facilities are set to 1500 and the demand variance bi are drawn

uniformly in the interval [50, 100]. Note that bi is enlarged to amplify the impact of the service

level ε. The variant instances are then obtained by considering any ε ∈ {0.2, 0.1, 0.025, 0.005} and

setting ej for all j to any value in the set {0, 50, 100, 200, 300}. We also consider the solutions

optimal to the UFLP counterparts, and compare the corresponding costs and open facilities with

those obtained by solving model P with the nonlinear capacity cost Γj . The results are displayed

in Table 6.

First, we have Observations 1 and 2 for Table 6, which reveal how the number of facilities open

and the supply chain cost change with respect to the economic point ej , respectively. Moreover,

both the number of facilities open and the supply chain cost are nonincreasing with the increase of

ε. This observation is rather straightforward. Since 1− ε represents the service level of the supply

chain, we need more capacity as ε decreases, which leads to more open facilities and higher supply

chain cost. In addition, all instances in Table 6 are solved within reasonable computational time.
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Table 5: Algorithmic Performance for Facility Location and Capacity Planning Problems

|J | |I|
B&P

Iter. Col.
B&B Sub- Time Fac. Cost

nodes nodes prob. Min Avg Max open (×103)

20 20 1 8 1210 24 0 0 0 1 6 50.20

20 40 1 19 10997 22 26 0 7 38 8 86.76

20 60 3 48 36113 60 381 2 106 625 9 121.78

20 80 2 65 65439 42 719 18 209 719 11 148.52

20 100 8 147 108709 168 7015 115 2022 8266 12 178.35

40 20 1 8 1177 52 0 0 0 1 6 45.49

40 40 2 18 8798 60 36 0 10 66 9 77.83

40 60 2 36 32352 60 104 2 32 315 11 108.27

40 80 3 60 63835 120 597 4 172 640 13 132.30

40 100 4 95 127755 168 1596 71 505 1727 15 157.73

60 20 1 7 1148 78 0 0 0 1 7 42.82

60 40 1 14 8095 72 0 0 1 2 10 73.22

60 60 2 34 29694 114 67 2 22 141 12 100.95

60 80 3 55 61851 192 452 6 135 659 14 126.21

60 100 5 96 135420 276 1305 20 431 1456 16 149.74

80 20 2 7 1188 152 0 0 0 1 7 41.47

80 40 1 14 7171 96 0 1 1 1 10 70.92

80 60 2 35 27920 192 120 2 37 262 12 96.91

80 80 2 50 62402 152 279 8 89 493 14 121.68

80 100 4 85 128438 288 969 20 334 2905 16 143.64

100 20 2 7 1108 160 0 0 0 1 7 40.25

100 40 2 17 7608 230 0 0 2 5 11 69.22

100 60 3 32 26030 270 43 3 17 154 13 95.00

100 80 2 45 57668 170 189 7 64 586 15 117.94

100 100 3 79 126863 280 565 36 220 1273 17 140.69
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Table 6: Impact of Service Level and Economic Point

ε ej

|J | = |I| = 40, 6 facilities open in UFLP |J | = |I| = 100, 7 facilities open in UFLP

Time
Fac.

open

Cost

(×103)

Reduct.

(%)

Open

in both
Time

Fac.

open

Cost

(×103)

Reduct.

(%)

Open

in both

0.2 0 53 11 33.3 21.92% 6 459 26 80.96 69.80% 5

0.2 50 13 9 24.28 7.05% 5 109 21 54.75 63.92% 3

0.2 100 27 6 24.51 1.83% 6 113 14 54.57 48.76% 3

0.2 200 103 3 42.85 30.52% 2 737 6 99.43 5.86% 2

0.2 300 260 2 75.76 50.36% 0 8778 4 171.15 23.78% 1

0.1 0 68 12 41.61 30.97% 6 781 32 95.78 71.91% 5

0.1 50 13 10 26.69 21.11% 6 212 24 66.28 74.46% 5

0.1 100 27 6 27.07 3.56% 6 174 16 65.89 63.25% 5

0.1 200 78 3 47.38 26.93% 2 673 8 107.99 12.45% 3

0.1 300 705 2 77.24 49.13% 0 2674 5 188.50 16.07% 2

0.025 0 130 16 60 43.33% 6 1502 42 148.14 72.86% 5

0.025 50 26 13 34.8 40.21% 6 490 34 85.35 75.30% 4

0.025 100 26 10 35.75 16.14% 5 291 22 80.58 73.09% 4

0.025 200 81 4 57.72 15.56% 1 1138 10 129.37 28.60% 4

0.025 300 276 3 109.28 38.52% 2 2977 6 214.73 8.62% 3

0.005 0 134 20 78.33 50.3% 6 1565 50 192.00 77.12% 6

0.005 50 65 15 46.63 51.63% 6 960 42 113.19 83.32% 5

0.005 100 53 11 41.31 33.13% 5 566 26 104.19 79.93% 5

0.005 200 63 5 67.8 6.03% 3 1291 13 158.66 46.53% 5

0.005 300 285 3 108.52 37.88% 2 2025 7 265.32 10.02% 2
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Observation 3 explains the impact of the economic point ej on the solution difficulty. We also note

that there is no clear pattern regarding how the computational time varies with respect to ε.

Comparing the sets of facilities open in model P and the UFLP, we find that Observation 4 still

holds for Table 6, i.e., between these two sets, the one with less members may not be a subset of

the other. In the instance with |J | = |I| = 100, ε = 0.05, and ej = 300, although both model P and

the UFLP have 7 open facilities, model P merely chooses 2 among the 7 facilities opened by the

UFLP. Furthermore, as shown in Observation 5, Table 6 also demonstrates that model P achieves

very significant savings in the supply chain cost, where the average and maximum percentage cost

reduction reach 39.54% and 83.32%, respectively. This verifies the necessity of considering model

P and obtaining its solution for the location and capacity planning problem.

5 Conclusions

In this paper, we devise a branch-and-price approach to study the facility location problem with

general nondecreasing facility cost terms. This model provides a unified framework to study more

general integrated supply chain design, nonlinear single-sourcing assignment, and many other loca-

tion problems. By removing the restrictive assumption on the facility cost functions to be concave

or submodular in the literature, the general model does not even admit any approximation algo-

rithms unless P = NP . The traditional branch-and-price, Lagrangian relaxation, and conic IP

reformulation approaches no longer work for this general model either. It is thus of interest to

develop an effective approach to address it. To the best of our knowledge, this is the first time that

an algorithm is proposed for the facility location problem with general nondecreasing facility cost

functions.

We solve the general model using branch-and-price by recasting it as a set-partitioning problem.

We show that the pricing problem, which must be solved in each iteration of the column generation

procedure for every node on the branch-and-price tree, is NP-hard. By exploiting certain special

structures, an optimal solution to the continuous relaxation of the pricing problem is shown to

contain at most κ̂ fractional components, where κ̂ represents the number of linearly independent

attributes of all retailers. In particular, there exists an optimal solution with at most one fractional

component if the facility costs are quasi-concave functions. We further study how to identify the κ̂

variables that may have fractional values and how to determine the binary values for other decision

variables. These properties yield a fast implementation of the B&B procedure to obtain an optimal
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integral solution to the pricing problem. We conduct extensive computational experiments based

on the facility location and production/capacity planning models with economies and diseconomies

of scale. The computational results establish the effectiveness of the proposed branch-and-price

approach, lead to important implications for practice, and demonstrate the importance of studying

the general model. The proposed approach thus tackles the computational challenge and facilitates

the practical decision making when facing difficult problems that fall into this framework.

Although our model considers the single-sourcing strategy, i.e., each retailer can only be served

by one facility, this assumption can be easily relaxed to allow multi-sourcing, where a retailer can

be served by multiple facilities. In particular, the proposed algorithm for the relaxation of Q can be

easily applied to obtain a fast solution algorithm for the multi-sourcing counterpart. For instance,

Desrochers et al. (1995) develop an approach based on column generation and branch-and-bound

for the congested multi-sourcing facility location problem. This column generation and branch-

and-bound framework can be applied to the multi-sourcing counterpart of our general model as

long as the corresponding pricing problems are solved by our algorithm designed for the relaxation

of Q. Note that the existing works considering non-concave facility costs, e.g., Desrochers et al.

(1995) and Lu et al. (2014), mainly focus on multi-sourcing. The algorithm in Desrochers et al.

(1995) can be applied to the congested single-sourcing location problem if a branch-and-bound

scheme is adopted to obtain integral assignments when solving the pricing problems. For the

column generation heuristic proposed by Lu et al. (2014) for a location problem with an inverse

S-shaped cost, the master problem is derived utilizing the multi-sourcing property and hence could

be challenging to be adapted to solve the single-sourcing counterpart.
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Appendix A. Proofs

This section provides the proofs of all the theorems and propositions in this paper.

A.1 Proof of Theorem 1

Consider the knapsack problem

max

{
n∑
i=1

aizi

∣∣∣∣∣
n∑
i=1

bizi ≤W, zi ∈ {0, 1}, ∀i ∈ I

}

where ai, bi, and W are positive integers. Define an instance of Q with κ = 1 and

Φ(x) =

 0, if x ∈ [0,W ]

(
∑n

i=1 ai + 1) (x−W ), if x > W
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for any x ≥ 0. Consider a feasible solution z to Q such that
∑n

i=1 bizi > W . Because bi, zi, and W

are integers, we have
∑n

i=1 bizi −W ≥ 1 and hence

−
n∑
i=1

aizi + Φ

(
n∑
i=1

bizi

)
= −

n∑
i=1

aizi +

(
n∑
i=1

ai + 1

)(
n∑
i=1

bizi −W

)

≥ −
n∑
i=1

aizi +

(
n∑
i=1

ai + 1

)
≥ 1.

Note that the solution z̄ where z̄i = 0 for any i ∈ I is also feasible to Q and its corresponding

objective value is zero. Therefore, any solution z such that
∑n

i=1 bizi > W is not optimal to Q,

and hence this instance of Q is equivalent to

min

{
−

n∑
i=1

aizi + Φ

(
n∑
i=1

bizi

) ∣∣∣∣∣
n∑
i=1

bizi ≤W, zi ∈ {0, 1} ∀i ∈ I

}

Because Φ(
∑n

i=1 bizi) = 0 if
∑n

i=1 bizi ≤W , it is straightforward that this problem is equivalent to

the knapsack problem, which proves the NP-hardness of Q.

A.2 Proof of Proposition 1

Consider i∗, i′ ∈ I such that ai′ < ai∗ and bi′ ≥ bi∗ . Assume for contradiction that there exists an

optimal solution z∗ to Q such that z∗i∗ = 0 and z∗i′ = 1. Define z̄ such that z̄i∗ = 1, z̄i′ = 0, and

z̄i = z∗i for all i ∈ I \ {i∗, i′}. Then

−
n∑
i=1

aiz̄i + Φ

(
n∑
i=1

biz̄i

)
= −

n∑
i=1

aiz
∗
i + ai′ − ai∗ + Φ

(
n∑
i=1

biz
∗
i − bi′ + bi∗

)

< −
n∑
i=1

aiz
∗
i + Φ

(
n∑
i=1

biz
∗
i

)

where the equality follows from the definition of z̄ and the inequality follows from ai′ < ai∗ , bi′ ≥ bi∗ ,

and the property that Φ(·) is nondecreasing. This contradicts the optimality of z∗ and hence part

(i) must be true. Part (ii) can be obtained by a similar argument.

A.3 Proof of Theorem 2

Suppose that (z∗i ∀i ∈ I) is an optimal solution to the relaxation of Q. Consider the following linear

programming problem:

PI : max

{∑
i∈I

aizi

∣∣∣∣∣ ∑
i∈I

b̂izi =
∑
i∈I

b̂iz
∗
i , zi ∈ [0, 1] ∀i ∈ I

}
.
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Obviously, (z∗i ∀i ∈ I) is feasible to PI . As the feasible region of PI is bounded, PI has an optimal

extreme point (z̄i ∀i ∈ I). Note that PI has κ̂ equality constraints, which means that at least |I|− κ̂

of the zi ∈ [0, 1] constraints must be tight at (z̄i ∀i ∈ I). Therefore, the set {i ∈ I : z̄i ∈ {0, 1}} has

at least |I| − κ̂ members, i.e., (z̄i ∀i ∈ I) has at most κ̂ fractional components.

Also note that (z̄i ∀i ∈ I) is feasible to the relaxation of Q. Since (z̄i ∀i ∈ I) is optimal to PI

whereas (z∗i ∀i ∈ I) is feasible to PI , we have
∑

i∈I aiz̄i ≥
∑

i∈I aiz
∗
i . The feasibility of (z̄i ∀i ∈ I)

to PI implies that
∑

i∈I b
k
i z̄i =

∑
i∈I b

k
i z
∗
i for any k ∈ {1, ..., κ̂}. For any k ∈ {κ̂ + 1, ..., κ}, (5)

yields

∑
i∈I

bki z̄i =
∑
i∈I

(
pTk b̂i

)
z̄i = pTk

(∑
i∈I

b̂iz̄i

)
= pTk

(∑
i∈I

b̂iz
∗
i

)
=
∑
i∈I

(
pTk b̂i

)
z∗i =

∑
i∈I

bki z
∗
i .

Therefore, (z̄i ∀i ∈ I) is also optimal to the relaxation of Q.

A.4 Proof of Proposition 2

WLOG, suppose that (z∗i ∀i ∈ I) is an optimal solution to the relaxation of Q, where z∗1 , z
∗
2 ∈ (0, 1).

It suffices to show that the relaxation of Q has an optimal solution (z̄i ∀i ∈ I) such that (i) z̄i = z∗i

for all i ∈ I \ {1, 2} and (ii) either z̄1 or z̄2 is integral.

Define

Φ1,2(z1, z2) ≡ Φ

b1z1 + b2z2 +
∑

i∈I\{1,2}

biz
∗
i

 .

For any (ż1, ż2), (z̈1, z̈2) ∈ R2 and λ ∈ [0, 1],

Φ1,2

(
λż1 + (1− λ)z̈1, λż2 + (1− λ)z̈2

)
= Φ

 2∑
i=1

bi

(
λżi + (1− λ)z̈i

)
+

∑
i∈I\{1,2}

biz
∗
i


= Φ

λ
 2∑
i=1

biżi +
∑

i∈I\{1,2}

biz
∗
i

+ (1− λ)

 2∑
i=1

biz̈i +
∑

i∈I\{1,2}

biz
∗
i


≥ min

Φ

 2∑
i=1

biżi +
∑

i∈I\{1,2}

biz
∗
i

 ,Φ

 2∑
i=1

biz̈i +
∑

i∈I\{1,2}

biz
∗
i


= min

{
Φ1,2(ż1, ż2),Φ1,2(z̈1, z̈2)

}
,

where the inequality follows from the quasi-concavity of Φ(·). Therefore, the function Φ1,2(·) is also

quasi-concave. Furthermore, as bi ≥ 0 for i ∈ {1, 2}, the monotonicity of Φ(·) yields that Φ1,2(·) is

increasing in z1 and z2 in [0, 1], respectively.
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Consider the following problem:

P1,2 : v∗1,2 = max
z1,z2

{
a1z1 + a2z2 : Φ1,2(z1, z2) ≤ Φ1,2(z∗1 , z

∗
2), z1 ∈ [0, 1], z2 ∈ [0, 1]

}
.

Let (z̄1, z̄2) be an optimal solution to P1,2. Set z̄i = z∗i for all i ∈ I \ {1, 2}. As (z∗1 , z
∗
2) is feasible

to P1,2 and (z̄1, z̄2) is optimal to P1,2, we have

−
n∑
i=1

aiz̄i + Φ

(
n∑
i=1

biz̄i

)
= −

a1z̄1 + a2z̄2 +
∑

i∈I\{1,2}

aiz
∗
i

+ Φ1,2(z̄1, z̄2)

≤−

a1z
∗
1 + a2z

∗
2 +

∑
i∈I\{1,2}

aiz
∗
i

+ Φ1,2(z∗1 , z
∗
2) = −

n∑
i=1

aiz
∗
i + Φ

(
n∑
i=1

biz
∗
i

)
.

Obviously, (z̄i ∀i ∈ I) is feasible to the relaxation of Q. Thus, (z̄i ∀i ∈ I) is also optimal to the

relaxation of Q. As a result, we can complete the proof by showing that P1,2 has an optimal

solution with at most one fractional component.

WLOG, we assume Φ1,2(1, 0) ≤ Φ1,2(0, 1). The monotonicity of Φ1,2(·) implies Φ1,2(0, 0) ≤

Φ1,2(1, 0) ≤ Φ1,2(0, 1) ≤ Φ1,2(1, 1). Also note that z∗1 , z
∗
2 ∈ (0, 1), which yields Φ1,2(0, 0) ≤

Φ1,2(z∗1 , z
∗
2) ≤ Φ1,2(1, 1). It is sufficient to consider the following four cases:

Case 1. Suppose Φ1,2(z∗1 , z
∗
2) = Φ1,2(1, 1). Then Φ1,2(z1, z2) ≤ Φ1,2(z∗1 , z

∗
2) for all z1, z2 ∈ [0, 1].

The problem P1,2 is reduced to max{a1z1 + a2z2 : z1 ∈ [0, 1], z2 ∈ [0, 1]}. Therefore, the set

{(0, 0), (1, 0), (0, 1), (1, 1)} must contain an optimal solution of P1,2.

Case 2. Suppose Φ1,2(0, 1) ≤ Φ1,2(z∗1 , z
∗
2) < Φ1,2(1, 1). According to the monotonicity of Φ1,2(·),

we can define

z̄1 = max{z1 : Φ1,2(z1, 1) ≤ Φ1,2(z∗1 , z
∗
2)} ∈ [0, 1)

z̄2 = max{z2 : Φ1,2(1, z2) ≤ Φ1,2(z∗1 , z
∗
2)} ∈ [0, 1).

(10)

Let Z and CH(Z) denote the set {(0, 0), (1, 0), (1, z̄2), (z̄1, 1), (0, 1)} and the convex hull constructed

by the points in Z, respectively (cf. Case 2 of Figure 2). Consider any (z1, z2) ∈ [0, 1]2\CH(Z). As

shown in Case 2 of Figure 2, it can be represented by a convex combination of {(z′1, 1), (1, 1), (1, z′2)},

where z′1 ∈ (z̄1, 1] and z′2 ∈ (z̄2, 1]. Applying the quasi-concavity of Φ1,2(·), we have

Φ1,2(z1, z2) ≥ min
{

Φ1,2(z′1, 1),Φ1,2(1, z′2),Φ1,2(1, 1)
}
.

According to the definition of z̄1 and z̄2, as z′1 ∈ (z̄1, 1] and z′2 ∈ (z̄2, 1], we obtain Φ1,2(z′1, 1) >

Φ1,2(z∗1 , z
∗
2) and Φ1,2(1, z′2) > Φ1,2(z∗1 , z

∗
2) because Φ1,2(·) is an increasing function. Combining with

Φ1,2(z∗1 , z
∗
2) < Φ1,2(1, 1), we have

Φ1,2(z1, z2) > Φ1,2(z∗1 , z
∗
2) ∀(z1, z2) ∈ [0, 1]2 \ CH(Z),
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i.e., {
(z1, z2) : Φ1,2(z1, z2) ≤ Φ1,2(z∗1 , z

∗
2), z1 ∈ [0, 1], z2 ∈ [0, 1]

}
⊆ CH(Z).

Hence,

v∗1,2 ≤ max
z1,z2

{
a1z1 + a2z2 : (z1, z2) ∈ CH(Z)

}
= max

z1,z2

{
a1z1 + a2z2 : (z1, z2) ∈ Z

}
,

where the equality is obtained as a1z1 + a2z2 is linear in (z1, z2) and CH(Z) is the convex hull

of Z. Note that all the points in Z are feasible to P1,2. Therefore, an optimal solution to P1,2 is

contained in Z, whose members have at most one fractional component.

Figure 2: Optimal Solution to the Problem P1,2

Case 3. Suppose Φ1,2(1, 0) ≤ Φ1,2(z∗1 , z
∗
2) < Φ1,2(0, 1). Consider z̄2 defined in (10) and define

z̃2 = max{z2 : Φ1,2(0, z2) ≤ Φ1,2(z∗1 , z
∗
2)} ∈ [0, 1). (11)

Let Z and CH(Z) denote the set {(0, 0), (1, 0), (1, z̄2), (0, z̃2)} and the convex hull constructed

by the points in Z, respectively (cf. Case 3 of Figure 2). Any (z1, z2) ∈ [0, 1]2 \ CH(Z) can

be represented by a convex combination of {(1, z′2), (1, 1), (0, 1), (0, z′′2 )}, where z′2 ∈ (z̄2, 1] and

z′′2 ∈ (z̃2, 1]. Combining with the definitions of z̄2 and z̃2, the quasi-concavity and monotonicity of

Φ1,2(·) yield

Φ1,2(z1, z2) ≥ min
{

Φ1,2(1, z′2),Φ1,2(1, 1),Φ1,2(0, 1),Φ1,2(0, z′′2 )
}
> Φ1,2(z∗1 , z

∗
2).

By the same argument in Case 2, we can establish that P1,2 has an optimal solution in Z with at

most one fractional component.

Case 4. Suppose Φ1,2(0, 0) ≤ Φ1,2(z∗1 , z
∗
2) < Φ1,2(1, 0). Consider z̃2 defined in (11) and define

z̃1 = max{z1 : Φ1,2(z1, 0) ≤ Φ1,2(z∗1 , z
∗
2)} ∈ [0, 1).

Let Z be the set {(0, 0), (0, z̃2), (z̃1, 0)} (cf. Case 4 of Figure 2). Similar to Cases 2 and 3, we can

show that Z contains an optimal solution to P1,2 with at most one fractional component.
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A.5 Proof of Proposition 3

It is equivalent to show that P 6= ∅ where

P =

α ≥ 0

∣∣∣∣∣∣ α
Tbi/ai ≤ 1 ∀ i such that z∗i > 0

αTbi/ai ≥ 1 ∀ i such that z∗i < 1

 .

According to Farkas’ Lemma, exactly one of the following two statements is true: (i) P 6= ∅ or (ii)

D 6= ∅ where

D =

 λ̂i ≥ 0 ∀ i such that z∗i > 0

µ̂i ≥ 0 ∀ i such that z∗i < 1

∣∣∣∣∣∣
∑

i:z∗i >0 λ̂i −
∑

i:z∗i <1 µ̂i < 0∑
i:z∗i >0

bi
ai
λ̂i −

∑
i:z∗i <1

bi
ai
µ̂i ≥ 0

 .

Therefore, it suffices to prove D = ∅. Let us assume for contradiction that there exists some

(λ̂, µ̂) ∈ D. Consider (λ̃, µ̃) such that λ̃i = λ̂i for any i such that z∗i = 1, µ̃i = µ̂i for any i such

that z∗i = 0, and

λ̃i = max{λ̂i − µ̂i, 0} and µ̃i = max{µ̂i − λ̂i, 0} (12)

for any i such that z∗i ∈ (0, 1). Obviously, λ̃, µ̃ ≥ 0. Also note that∑
i:z∗i >0

λ̂i −
∑
i:z∗i <1

µ̂i =
∑
i:z∗i =1

λ̂i +
∑

i:z∗i ∈(0,1)

(λ̂i − µ̂i)−
∑
i:z∗i =0

µ̂i

=
∑
i:z∗i =1

λ̃i +
∑

i:z∗i ∈(0,1)

(λ̃i − µ̃i)−
∑
i:z∗i =0

µ̃i =
∑
i:z∗i >0

λ̃i −
∑
i:z∗i <1

µ̃i,

∑
i:z∗i >0

bi
ai
λ̂i −

∑
i:z∗i <1

bi
ai
µ̂i =

∑
i:z∗i =1

bi
ai
λ̂i +

∑
i:z∗i ∈(0,1)

bi
ai

(λ̂i − µ̂i)−
∑
i:z∗i =0

bi
ai
µ̂i

=
∑
i:z∗i =1

bi
ai
λ̃i +

∑
i:z∗i ∈(0,1)

bi
ai

(λ̃i − µ̃i)−
∑
i:z∗i =0

bi
ai
µ̃i

=
∑
i:z∗i >0

bi
ai
λ̃i −

∑
i:z∗i <1

bi
ai
µ̃i,

which indicates that (λ̃, µ̃) ∈ D. Consider the following two cases:

Case 1. Suppose that
∑

i:z∗i >0 λ̃i = 0, which implies that λ̃i = 0 for any i such that z∗i > 0. The

definition of D yields that
∑

i:z∗i <1
bi
ai
µ̃i = 0, i.e.,

∑
i:z∗i <1

bki
ai
µ̃i = 0 for all k = 1, ..., κ, implying

∑
i:z∗i <1

∑κ
k=1 b

k
i

ai
µ̃i =

∑
i:z∗i <1

κ∑
k=1

bki
ai
µ̃i =

κ∑
k=1

∑
i:z∗i <1

bki
ai
µ̃i = 0.

Recall that ai > 0, bi ≥ 0, and max{bki : k = 1, ..., κ} > 0 for all i. We have µ̃i = 0 for any i such

that z∗i < 1 and so
∑

i:z∗i <1 µ̃i = 0, which contradicts the first constraint in the definition of D.
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Case 2. Suppose that
∑

i:z∗i >0 λ̃i > 0, which, by the first constraint in the definition of D, yields∑
i:z∗i <1 µ̃i > 0. Let

λi =
λ̃i∑

i′:z∗
i′>0 λ̃i′

∀ i such that z∗i > 0 and µi =
µ̃i∑

i′:z∗
i′<1 µ̃i′

∀ i such that z∗i < 1.

(12) yields that either λi = 0 or µi = 0 for any i such that z∗i ∈ (0, 1). Therefore, we can define

S1 = {i : λi > 0, z∗i > 0} and S0 = {i : µi > 0, z∗i < 1} where S1 ∩ S0 = ∅. Obviously,

∑
i∈S1

λi =
∑
i:z∗i >0

λi =
∑
i:z∗i >0

λ̃i∑
i′:z∗

i′>0 λ̃i′
= 1 and

∑
i∈S0

µi =
∑
i:z∗i <1

µi =
∑
i:z∗i <1

µ̃i∑
i′:z∗

i′<1 µ̃i′
= 1,

(13)

which also suggests S0, S1 6= ∅.

The feasibility of (λ̃, µ̃) yields

∑
i:z∗i >0

bi
ai
λ̃i −

∑
i:z∗i <1

bi
ai
µ̃i ≥ 0.

Applying the definitions of λ and µ, we obtain

∑
i:z∗i >0

bi
ai

 ∑
i′:z∗

i′>0

λ̃i′λi

−∑
i:z∗i <1

bi
ai

 ∑
i′:z∗

i′<1

µ̃i′µi

 ≥ 0 ⇒
∑
i:z∗i >0

bi
ai
λi ≥

∑
i′:z∗

i′<1 µ̃i′∑
i′:z∗

i′>0 λ̃i′

∑
i:z∗i <1

bi
ai
µi.

As (λ̃, µ̃) ∈ D, the first constraint in the definition of D implies that

∑
i:z∗i >0

λ̃i −
∑
i:z∗i <1

µ̃i < 0 ⇒
∑

i:z∗i <1 µ̃i∑
i:z∗i >0 λ̃i

> 1.

Note that λ̃, µ̃ ≥ 0 implies λ,µ ≥ 0. Also recall that ai > 0 and bi ≥ 0 for all i. Combining with

the definitions of S1 and S0, we obtain

∑
i∈S1

bi
ai
λi =

∑
i:z∗i >0

bi
ai
λi ≥

∑
i:z∗i <1

bi
ai
µi =

∑
i∈S0

bi
ai
µi ≥ 0

and ∑
i∈S1

bki
ai
λi >

∑
i∈S0

bki
ai
µi ∀ k ∈ {1, ..., κ} such that

∑
i∈S0

bki
ai
µi > 0.

To simplify the notation, let

x1 ≡
∑
i∈S1

bi
ai
λi and x0 ≡

∑
i∈S0

bi
ai
µi. (14)
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As ai > 0 and bi 6= 0 for all i, µi > 0 for all i ∈ S0, and S0 6= ∅, there exists at least one

k ∈ {1, ..., κ} such that xk0 6= 0. The above analysis then yields that x1 ≥ x0 ≥ 0 and xk1 > xk0 > 0

for some k ∈ {1, ..., κ}. Let

ε ≡ max

{
xk0
xk1

: xk1 > 0, k = 1, ..., κ

}
∈ [0, 1).

Furthermore, define

δ ≡ min

{
min

{
ai
λi
z∗i : i ∈ S1

}
,min

{
ai
µi

(1− z∗i ) : i ∈ S0

}}
.

The definitions of S1 and S0 imply that δ ∈ (0,+∞).

Consider the solution (z̄i ∀i ∈ I) such that z̄i = z∗i −
λi
ai
εδ for any i ∈ S1, z̄i = z∗i + µi

ai
δ for any

i ∈ S0, and z̄i = z∗i for any i /∈ S1 ∪ S0. Applying the definitions of ε and δ, it is straightforward to

verify that (z̄i ∀i ∈ I) is feasible to the relaxation of Q. Note that∑
i∈I

aiz̄i =
∑
i∈S1

ai

(
z∗i −

λi
ai
εδ

)
+
∑
i∈S0

ai

(
z∗i +

µi
ai
δ

)
+

∑
i/∈S1∪S0

aiz
∗
i

=
∑
i∈I

aiz
∗
i −

∑
i∈S1

λiεδ +
∑
i∈S0

µiδ =
∑
i∈I

aiz
∗
i − εδ + δ >

∑
i∈I

aiz
∗
i ,

where the third equality follows from (13) and the inequality follows from δ > 0 and 0 ≤ ε < 1.

For any k ∈ {1, ..., κ},∑
i∈I

bki z̄i =
∑
i∈S1

bki

(
z∗i −

λi
ai
εδ

)
+
∑
i∈S0

bki

(
z∗i +

µi
ai
δ

)
+

∑
i/∈S1∪S0

bki z
∗
i

=
∑
i∈I

bki z
∗
i −

∑
i∈S1

bki
ai
λiεδ +

∑
i∈S0

bki
ai
µiδ =

∑
i∈I

bki z
∗
i − xk1εδ + xk0δ,

where the third equality follows from (14). If xk1 = 0, then xk0 = 0 as xk0 ≤ xk1 and hence −xk1εδ +

xk0δ = 0; otherwise, the definition of ε yields

−xk1εδ + xk0δ ≤ −xk1
xk0
xk1
δ + xk0δ = 0.

Thus, we obtain
∑

i∈I b
k
i z̄i ≤

∑
i∈I b

k
i z
∗
i for all k ∈ {1, ..., κ}. Applying the monotonicity of Φ(·), we

can show that (z̄i ∀i ∈ I) has a smaller objective value than that of (z∗i ∀i ∈ I), which contradicts

the optimality of (z∗i ∀i ∈ I).

A.6 Proof of Proposition 4

According to Proposition 3, it is sufficient to show that for any α ≥ 0, there exists some β

considered in Line 11 of Algorithm 1 such that S1(β) ⊆ S1(α), S0(β) ⊆ S0(α), and H(β) ⊇ H(α),

where S1(·), S0(·), and H(·) are defined in (6).
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For any γ = [γ1, γ2, ..., γκ]T , let γ̂ = [γ1, γ2, ..., γκ̂]T . Applying (5), we have

γTbi = γ̂T b̂i +
κ∑

k=κ̂+1

γkbki = γ̂T b̂i +
κ∑

k=κ̂+1

γkpTk b̂i =

(
γ̂ +

κ∑
k=κ̂+1

γkpk

)T
b̂i for all i ∈ I. (15)

Consider any arbitrary α = [α1, α2, ..., ακ]T ≥ 0. According to (15), β =
[
β̂T 0T

]T
∈ Rκ

satisfies S1(β) ⊆ S1(α), S0(β) ⊆ S0(α), and H(β) ⊇ H(α) if

β̂ ∈ P (α) =
{
β̂
∣∣∣ β̂T b̂i/ai ≤ 1 ∀i ∈ S1(α), β̂T b̂i/ai ≥ 1 ∀i ∈ S0(α), β̂T b̂i/ai = 1 ∀i ∈ H(α)

}
.

Obviously, α̂ +
∑κ

k=κ̂+1 α
kpk ∈ P (α), where α̂ = [α1, α2, ..., ακ̂]T . Consider any β̂ ∈ P (α) and

d ∈ Rκ̂ such that β̂ + λd ∈ P (α) for all λ ∈ R, i.e.,

β̂T b̂i/ai + λdT b̂i/ai ≤ 1 ∀i ∈ S1(α),

β̂T b̂i/ai + λdT b̂i/ai ≥ 1 ∀i ∈ S0(α),

β̂T b̂i/ai + λdT b̂i/ai = 1 ∀i ∈ H(α),

for all λ ∈ R. Thus, we have dT b̂i/ai = 0 for all i ∈ I, which yields d = 0 as the set {b̂i : i ∈ I}

contains κ̂ linearly independent members. As a result, the polyhedron P (α) does not contain a line.

Recall that P (α) 6= ∅. Therefore, it must have an extreme point. Let β̂ ∈ P (α) be an extreme point

of P (α). Among the constraints defining P (α), there must be κ̂ linearly independent constraints

tight at β̂. In other words, there exists T ⊆ I such that β̂T b̂i/ai = 1 for all i ∈ T , |T | = κ̂, and

{b̂i/ai : i ∈ T} are linearly independent. Thus, Line 5 in Algorithm 1 considers some β such that

S1(β) ⊆ S1(α), S0(β) ⊆ S0(α), and H(β) ⊇ H(α).

Also note that for some β considered in Line 5, there may not exist α ≥ 0 such that S1(β) ⊆

S1(α), S0(β) ⊆ S0(α), and H(β) ⊇ H(α), i.e.,

P ′(β) =
{
α ≥ 0

∣∣∣ αTbi/ai < 1 ∀i ∈ S1(β), αTbi/ai > 1 ∀i ∈ S0(β)
}

= ∅.

Obviously, P ′(β) = ∅ if and only if the linear program P(β), defined in Line 8 of Algorithm 1, has

a non-positive optimal value. Proposition 3 shows that there is no need to consider any β with

P ′(β) = ∅, which explains Line 9 in Algorithm 1.

A.7 Proof of Proposition 5

WLOG, suppose i∗ = 1. Consider the following linear programming problem

PS : max

{
z1

∣∣∣∣∣ ∑
i∈S

b̂izi =
∑
i∈S

b̂iz̄i, zi ∈ [0, 1], ∀i ∈ S

}
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and the corresponding dual

DS : min

θ
T

(∑
i∈S

b̂iz̄i

)
+
∑
i∈S

ϑi

∣∣∣∣∣∣∣∣∣
θT b̂1 + ϑ1 ≥ 1

θT b̂i + ϑi ≥ 0 ∀i ∈ S \ {1}

ϑi ≥ 0 ∀i ∈ S

 .

Obviously, (z̄i ∀i ∈ S) is a feasible solution to PS and the feasible region of PS is bounded. There-

fore, there exists an optimal solution (z∗i ∀i ∈ S) to PS . If z∗1 = 1, we obtain a solution (z∗i ∀i ∈ S)

satisfying the condition (i).

Suppose that z∗1 < 1. According to the complementary slackness conditions, there exists an

optimal solution (θ∗, ϑ∗i ∀i ∈ S) to DS such that

(1− z∗1)ϑ∗1 = 0, z∗1(θ∗T b̂1 + ϑ∗1 − 1) = 0, (1− z∗i )ϑ∗i = 0, and z∗i (θ∗T b̂i + ϑ∗i ) = 0 ∀i ∈ S \ {1}.

Therefore, z∗1 < 1 implies ϑ∗1 = 0. The first constraint of DS yields θ∗T b̂1 ≥ 1 > 0. For any

i ∈ S \ {1} and θ∗T b̂i > 0, the second and third constraints of DS yields θ∗T b̂i +ϑ∗i > 0 and hence

z∗i = 0 by the complementary slackness condition. Similarly, for any i ∈ S \ {1} and θ∗T b̂i < 0,

the second constraint of DS implies ϑ∗i > 0 and z∗i = 1 follows from the complementary slackness

condition. As a result, we have (z∗i ∀i ∈ S) and θ∗ satisfying the condition (ii).

Now, consider the case that b̂1 cannot be represented as a linear combination of {b̂i : i ∈ S\{1}}.

Let κ̃ denote the number of linearly independent vectors in {b̂i : i ∈ S}, i.e., κ̃ = rank(MS) ≤ κ̂,

where MS is the κ̂×|S|matrix each column of which corresponds to a distinct vector in {b̂i : i ∈ S}.

WLOG, assume the first κ̃ rows of MS are linearly independent. Let b̃i = [b1i , b
2
i , ..., b

κ̃
i ]T for all

i ∈ S. Then for any k ∈ {κ̃ + 1, ..., κ̂}, there exists p̃k ∈ Rκ̃ such that bki = p̃Tk b̃i for all i ∈ S.

Furthermore, we have κ̃ linearly independent vectors in the set {b̃i : i ∈ S}.

Assume for contradiction that {b̃i : i ∈ S \ {1}} have κ̃ linearly independent vectors. Then b̃1

can be presented as a linear combination of {b̃i : i ∈ S \ {1}}, i.e., there exist some xi ∈ R for all

i ∈ S \ {1} such that b̃1 =
∑

i∈S\{1} b̃ixi. For any k ∈ {κ̃+ 1, ..., κ̂}, bki = p̃Tk b̃i for all i ∈ S yields

bk1 = p̃Tk b̃1 = p̃Tk

 ∑
i∈S\{1}

b̃ixi

 =
∑

i∈S\{1}

(
p̃Tk b̃i

)
xi =

∑
i∈S\{1}

bki xi.

Therefore, b̂1 can be represented as a linear combination of {b̂i : i ∈ S \ {1}}, which results in a

contradiction.

Thus, the number of linearly independent vectors in {b̃i : i ∈ S \{1}} must be strictly less than

κ̃, which implies the existence of x ∈ Rκ̃ \ {0} such that xT b̃i = 0 for all i ∈ S \ {1}. Recall that
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{b̃i : i ∈ S} contains κ̃ linearly independent vectors. Therefore, if yT b̃i = 0 for all i ∈ S, then

y = 0. As a result, we have xT b̃1 6= 0. Let θ = [xT 0T ]T ∈ Rκ̂ if xT b̃1 > 0 and θ = [−xT 0T ]T ∈ Rκ̂

if xT b̃1 < 0. It is straightforward that (z̄i ∀i ∈ S) and θ satisfy the condition (ii).

A.8 Proof of Proposition 6

We prove the result through the following four steps.

Step 1 shows that solveP(F,U,Ψ(·)) is well-defined and terminates for any (F,U) satisfying

the conditions (C1) and (C2). A sufficient condition for solveP(F,U,Ψ(·)) to terminate is

(T) |Ū | < |U | for any Ū used in Line 7 and |Ū(θ)| < |U | for any Ū(θ) used in Line 15.

As a majority of lines in Algorithm 2 are straightforward, we focus on the following lines:

Line 2. The condition (C1) asserts that {b̂i : i ∈ F} have |F | linearly independent vectors,

which implies |F | ≤ κ̂. If |F | = κ̂, according to the condition (C1), there is no linearly independent

vector in {b̂i : i ∈ U}, and hence U = ∅. As a result, Lines 3 to 18 are executed only when |F | < κ̂.

Line 7. Note that Ū ⊂ U . It is straightforward that (F, Ū) satisfies the condition (C2). Since

b̂i∗ can be represented as a linear combination of {b̂i : i ∈ U \ {i∗}}, the number of linearly

independent vectors in {b̂i : i ∈ U \ {i∗}} is the same as that in {b̂i : i ∈ U}, which equals to

κ̂− |F | by the condition (C1) for (F,U). As Ū = U \ {i∗}, (F, Ū) also satisfies the condition (C1).

Therefore, it is legitimate to call the function solveP(F, Ū , Ψ̄(·)). Furthermore, the condition (T)

is also satisfied as |Ū | = |U | − 1.

Line 11. Consider xi ∈ R for all i ∈ F ∪ {i∗} ∪ Uf such that∑
i∈F

b̂ixi + b̂i∗xi∗ +
∑
i∈Uf

b̂ixi = 0.

Note that cF ≡
∑

i∈F b̂ixi and cU ≡ b̂i∗xi∗ +
∑

i∈Uf b̂ixi are linear combinations of {b̂i : i ∈ F}

and {b̂i : i ∈ U}, respectively. According to (C2), if cF 6= 0 and cU 6= 0, cF and cU are linearly

independent and hence it is impossible to obtain cF + cU = 0. Therefore, we have cF = cU = 0.

As the set {b̂i : i ∈ F} has |F | independent vectors, cF = 0 implies xi = 0 for all i ∈ F . Note that

cU can also be viewed as a linear combination of the set {b̂i : i ∈ Uf ∪ {i∗}}, which, according to

Line 10, contains κ̂ − |F | = |Uf | + 1 linearly independent vectors. Consequently, cU = 0 implies

xi = 0 for all i ∈ Uf ∪ {i∗}. Therefore, the vectors in {b̂i : i ∈ F ∪ {i∗} ∪ Uf} are all linearly

independent, and hence θ in Line 11 is well-defined.

Line 15. The following arguments establish that (F̄ , Ū(θ)) satisfies the condition (C1):
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• The analysis for Line 11 shows that the vectors in {b̂i : i ∈ F ∪ {i∗} ∪ Uf} are all linearly

independent. Therefore, there are |F |+ 1 linearly independent vectors in {b̂i : i ∈ F̄}.

• The analysis for Line 11 also yields that the set {b̂i : i ∈ F ∪ {i∗} ∪ Uf} includes κ̂ linearly

independent vectors. Thus, for any ι ∈ Ū(θ)\Uf , b̂ι can be represented as a linear combination

of {b̂i : i ∈ F ∪ {i∗} ∪ Uf}, i.e., there exist xi ∈ R for all i ∈ F ∪ {i∗} ∪ Uf such that

∑
i∈F

b̂ixi +
∑

i∈Uf∪{i∗}

b̂ixi − b̂ι = 0.

cF ≡
∑

i∈F b̂ixi and cU ≡
∑

i∈Uf∪{i∗} b̂ixi − b̂ι are linear combinations of {b̂i : i ∈ F} and

{b̂i : i ∈ U}, respectively. Applying the condition (C2) for (F,U), cF +cU = 0 yields cU = 0,

i.e., b̂ι =
∑

i∈Uf∪{i∗} b̂ixi and hence

θT b̂ι = θT

 ∑
i∈Uf∪{i∗}

b̂ixi

 =
∑

i∈Uf∪{i∗}

θT b̂ixi. (16)

According to the definitions of θ and Ū(θ) in Lines 11 and 13, θT b̂ι = 0, θT b̂i = 0 for

all i ∈ Uf , and θT b̂i∗ = 1. Therefore, (16) yields xi∗ = 0 and so b̂ι =
∑

i∈Uf b̂ixi, which

implies the number of linearly independent vectors in {b̂i : i ∈ Ū(θ)} is equal to that in

{b̂i : i ∈ Uf}. Recall that all the vectors in {b̂i : i ∈ Uf} are linearly independent. Hence,

the set {b̂i : i ∈ Ū(θ)} contains |Uf | = κ̂− |F | − 1 linearly independent vectors.

To show that (F̄ , Ū(θ)) satisfies (C2), assume for contradiction that there exist linearly de-

pendent cF̄ and cŪ , which are non-zero linear combinations of {b̂i : i ∈ F̄} and {b̂i : i ∈ Ū(θ)},

respectively. Let cF̄ ≡
∑

i∈F̄ b̂ixi where xi ∈ R for all i ∈ F̄ = F ∪ {i∗} and cŪ ≡
∑

i∈Ū(θ) b̂ixi

where xi ∈ R for all i ∈ Ū(θ). As cF̄ and cŪ are linearly dependent, there exists some λ 6= 0 such

that

0 = cF̄ + λcŪ =
∑
i∈F̄

b̂ixi + λ
∑
i∈Ū(θ)

b̂ixi =
∑
i∈F

b̂ixi + b̂i∗xi∗ + λ
∑
i∈Ū(θ)

b̂ixi = dF + dU ,

where dF ≡
∑

i∈F b̂ixi and dU ≡ b̂i∗xi∗ + λ
∑

i∈Ū(θ) b̂ixi. According to the condition (C2) for

(F,U), dF and dU are linearly independent as long as dF 6= 0 and dU 6= 0. Therefore, dF +dU = 0

implies dF = dU = 0. The definitions of cF̄ and dF yields

cF̄ = dF + b̂i∗xi∗ = b̂i∗xi∗ ,

50



which implies xi∗ 6= 0 as cF̄ 6= 0. Applying dU = 0, we obtain b̂i∗ = − λ
xi∗

∑
i∈Ū(θ) b̂ixi. Recall

that θT b̂i = 0 for all i ∈ Ū(θ). Thus,

θT b̂i∗ = θT

− λ

xi∗

∑
i∈Ū(θ)

b̂ixi

 = − λ

xi∗

∑
i∈Ū(θ)

θT b̂ixi = 0,

which contradicts θT b̂i∗ = 1 in Line 11.

To sum up, (F̄ , Ū(θ)) satisfies the conditions (C1) and (C2), so it is legitimate to call the

function solveP(F̄ , Ū(θ), Ψ̄(θ, ·)) in Line 15. Furthermore, we have Ū(θ) ⊆ U \ {i∗} and hence

|Ū(θ)| ≤ |U | − 1, which satisfies the condition (T).

Step 2 shows that the function solveP(F,U,Ψ(·)) solves P(F∪U,Ψ(·)) for any (F,U) satisfying

the conditions (C1) and (C2). According to Line 2, this statement is trivially true when |U | = 0.

Assume that the statement holds for any (F,U) satisfying (C1), (C2), and |U | ≤ µ, where µ is a

nonnegative integer less than |I|. By mathematical induction, it suffices to prove the statement

when |U | = µ+ 1.

Let (z∗i ∀i ∈ F ∪ U) be an optimal solution to P(F ∪ U,Ψ(·)). Consider i∗ ∈ U picked in Line

4. According to Proposition 5, it is sufficient to consider the following two cases:

Case 1 in Step 2. Suppose that b̂i∗ can be represented as a linear combination of {b̂i : i ∈

F ∪ U \ {i∗}} and there exist z̃i ∈ [0, 1] for all i ∈ F ∪ U with
∑

i∈F∪U b̂iz̃i =
∑

i∈F∪U b̂iz
∗
i and

satisfying the condition (i) in Proposition 5, i.e., z̃i∗ = 1.

As b̂i∗ is a linear combination of {b̂i : i ∈ F ∪U \{i∗}}, there exist xi ∈ R for all i ∈ F ∪U \{i∗}

such that ∑
i∈F

b̂ixi +
∑

i∈U\{i∗}

b̂ixi − b̂i∗ = 0.

The condition (C2) for (F,U) yields
∑

i∈U\{i∗} b̂ixi − b̂i∗ = 0, i.e., b̂i∗ can be represented as a

linear combination of {b̂i : i ∈ U \ {i∗}}. Therefore, the condition in Line 5 is satisfied.

According to the induction assumption, Line 7 finds an optimal solution (z̄i ∀i ∈ F ∪ U \ {i∗})

to the problem

P(F ∪ Ū , Ψ̄(·)) : min

Ψ

b̂i∗ +
∑

i∈F∪U\{i∗}

b̂izi

 ∣∣∣∣∣∣ zi ∈ [0, 1] ∀i ∈ F ∪ U \ {i∗}

 .

Note that (z̃i ∀i ∈ F ∪ U \ {i∗}) is a feasible solution to P(F ∪ Ū , Ψ̄(·)). Therefore, we obtain

Ψ

b̂i∗ +
∑

i∈F∪U\{i∗}

b̂iz̄i

 ≤ Ψ

b̂i∗ +
∑

i∈F∪U\{i∗}

b̂iz̃i

 = Ψ

( ∑
i∈F∪U

b̂iz̃i

)
= Ψ

( ∑
i∈F∪U

b̂iz
∗
i

)
,

(17)
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where the two equalities follow from z̃i∗ = 1 and
∑

i∈F∪U b̂iz̃i =
∑

i∈F∪U b̂iz
∗
i , respectively.

Let z̄i∗ = 1. Consider the problem P(F ∪ U,Ψ(·)) in (8). Obviously, (z̄i ∀i ∈ F ∪ U) is feasible

to P(F ∪ U,Ψ(·)). As (z∗i ∀i ∈ F ∪ U) is its optimal solution, (17) implies that (z̄i ∀i ∈ F ∪ U) is

also optimal to P(F ∪ U,Ψ(·)). Line 8 suggests that solveP(F,U,Ψ(·)) solves P(F ∪ U,Ψ(·)).

Case 2 in Step 2. Suppose that there exist z̃i ∈ [0, 1] for all i ∈ F ∪ U with
∑

i∈F∪U b̂iz̃i =∑
i∈F∪U b̂iz

∗
i and satisfying the condition (ii) in Proposition 5, i.e., we can obtain some ϑ such that

ϑT b̂i∗ > 0, z̃i = 0 for all i ∈ F ∪ U \ {i∗} and ϑT b̂i > 0, and z̃i = 1 for all i ∈ F ∪ U \ {i∗} and

ϑT b̂i < 0.

According to the condition (C1), we can choose Uind ⊆ U and |Uind| = κ̂ − |F | such that

{b̂i : i ∈ Uind} are linearly independent. Consider xi ∈ R for all i ∈ F ∪ Uind such that

∑
i∈F

b̂ixi +
∑
i∈Uind

b̂ixi = 0.

The condition (C2) for (F,U) yields
∑

i∈F b̂ixi =
∑

i∈Uind b̂ixi = 0. The condition (C1) implies

all the vectors in {b̂i : i ∈ F} are linearly independent. Also note that {b̂i : i ∈ Uind} are linearly

independent. Therefore, we have xi = 0 for all i ∈ F ∪ Uind, i.e., {b̂i : i ∈ F ∪ Uind} are linearly

independent. The condition (C2) also implies F ∩ U = ∅ and hence |F ∪ Uind| = κ̂. As a result,

there are κ̂ linearly independent vectors in {b̂i : i ∈ F ∪ U}.

To simplify the notation, let T0 ≡ {i ∈ F ∪ U \ {i∗} : ϑT b̂i > 0}, T1 ≡ {i ∈ F ∪ U \ {i∗} :

ϑT b̂i < 0}, and Tf ≡ F ∪ U \ {i∗} \ T0 \ T1. Define

P ≡

θ
∣∣∣∣∣∣ θ

T b̂i∗ = 1, θT b̂i ≥ 0 ∀i ∈ T0,

θT b̂i ≤ 0 ∀i ∈ T1, θT b̂i = 0 ∀i ∈ Tf

 .

Consider any θ ∈ P and d ∈ Rκ̂ such that θ + λd ∈ P for all λ ∈ R, i.e.,

θT b̂i∗ + λdT b̂i∗ = 1, θT b̂i + λdT b̂i ≥ 0 ∀i ∈ T0,

θT b̂i + λdT b̂i ≤ 0 ∀i ∈ T1, θT b̂i + λdT b̂i = 0 ∀i ∈ Tf ,

for all λ ∈ R. It immediately implies dT b̂i = 0 for all i ∈ {i∗} ∪ T0 ∪ T1 ∪ Tf = F ∪ U . Recall that

there are κ̂ linearly independent vectors in {b̂i : i ∈ F ∪ U}. We obtain d = 0. Also note that

ϑ/(ϑT b̂i∗) ∈ P . The polyhedron P must has an extreme point.

Consider an extreme point θ̄ of P . Define T ⊆ F ∪ U \ {i∗} such that the tight constraints

at θ̄ are θT b̂i∗ = 1 and θT b̂i = 0 for all i ∈ T . Note that there are κ̂ linearly independent tight

constraints at θ̄. The set {b̂i : i ∈ T ∪ {i∗}} must have κ̂ linearly independent vectors. Assume for
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contradiction that there exists some ι ∈ F \ T . Then the number of linearly independent vectors

in {b̂i : i ∈ T ∪ {i∗}} is no greater than that of {b̂i : i ∈ F ∪ U \ {ι}}. The number of linearly

independent vectors in {b̂i : i ∈ F ∪ U \ {ι}} is less than the sum of (a) the number of linearly

independent vectors in {b̂i : i ∈ F \ {ι}} and (b) the number of linearly independent vectors in

{b̂i : i ∈ U}. The term (a) is at most |F \ {ι}| = |F | − 1, while the term (b) is κ̂ − |F | by the

condition (C1). Consequently, the number of linearly independent vectors in {b̂i : i ∈ T ∪ {i∗}} is

no greater than κ̂− 1, which results in a contradiction.

The analysis in the previous paragraph indicates that the constraints θT b̂i∗ = 1 and θT b̂i = 0

for all i ∈ F are tight at any extreme point of P . Combining with the analysis for Line 11 in Step

1, we obtain that any extreme point of P must be considered in Line 13.

Let θ denote an extreme point of P considered in Line 13. Consider the problem P(F̄ ∪

Ū(θ), Ψ̄(θ, ·)) solved in Line 15:

P(F̄ ∪ Ū(θ), Ψ̄(θ, ·)) : min

Ψ

 ∑
i∈F̄∪Ū(θ)

b̂izi +
∑

i∈U :θT b̂i<0

b̂i

 ∣∣∣∣∣∣ zi ∈ [0, 1] ∀i ∈ F̄ ∪ Ū(θ)

 .

Note that (z̃i ∀i ∈ F̄ ∪ Ū(θ)) is feasible to P(F̄ ∪ Ū(θ), Ψ̄(θ, ·)) and the corresponding objective

function value is

Ψ

 ∑
i∈F̄∪Ū(θ)

b̂iz̃i +
∑

i∈U :θT b̂i<0

b̂i

 = Ψ

 ∑
i∈F∪{i∗}

b̂iz̃i +
∑

i∈U :θT b̂i=0

b̂iz̃i +
∑

i∈U :θT b̂i<0

b̂i

 .

For any i ∈ U such that θT b̂i < 0, the definitions of P and T1 yield i ∈ T1 = {i ∈ F ∪ U \ {i∗} :

ϑT b̂i < 0}, which implies z̃i = 1 by the condition (ii). Similarly, for any i ∈ U \ {i∗} such that

θT b̂i > 0, the definitions of P and T0 yield i ∈ T0 = {i ∈ F ∪ U \ {i∗} : ϑT b̂i > 0}, which implies

z̃i = 0. Therefore, we obtain

Ψ

 ∑
i∈F̄∪Ū(θ)

b̂iz̃i +
∑

i∈U :θT b̂i<0

b̂i

 = Ψ

( ∑
i∈F∪U

b̂iz̃i

)
= Ψ

( ∑
i∈F∪U

b̂iz
∗
i

)
,

where the last equality follows from
∑

i∈F∪U b̂iz̃i =
∑

i∈F∪U b̂iz
∗
i .

Now consider the solution (z̄i ∀i ∈ F̄ ∪ Ū(θ)) obtained in Line 15. Note that Ū(θ) ⊆ U and

i∗ ∈ U \ Ū(θ) as θT b̂i∗ = 1, implying |Ū(θ)| ≤ |U | − 1 ≤ µ. By the induction assumption,

(z̄i ∀i ∈ F̄ ∪ Ū(θ)) is optimal to P(F̄ ∪ Ū(θ), Ψ̄(θ, ·)). We have

Ψ

 ∑
i∈F̄∪Ū(θ)

b̂iz̄i +
∑

i∈U :θT b̂i<0

b̂i

 ≤ Ψ

 ∑
i∈F̄∪Ū(θ)

b̂iz̃i +
∑

i∈U :θT b̂i<0

b̂i

 = Ψ

( ∑
i∈F∪U

b̂iz
∗
i

)
. (18)
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Set z̄i = 1 for all {i ∈ U : θT b̂i < 0} and z̄i = 0 for all {i ∈ U \ {i∗} : θT b̂i > 0}. We obtain

Ψ

 ∑
F̄∪Ū(θ)

b̂iz̄i +
∑

i∈U :θT b̂i<0

b̂i

 = Ψ

( ∑
i∈F∪U

b̂iz̄i

)
.

Obviously, (z̄i ∀i ∈ F ∪ U) is feasible to P(F ∪ U,Ψ(·)). (18) and the optimality of (z∗i ∀i ∈

F ∪ U) yield that (z̄i ∀i ∈ F ∪ U) is also optimal to P(F ∪ U,Ψ(·)). Line 16 ensures that we solve

P(F ∪ U,Ψ(·)) to optimality.

Step 3 shows that solveP(F,U,Ψ(·)) decomposes the problem P(F ∪U,Ψ(·)) into a sequence of

κ̂-variable problems in the form of P(S,Ψ(·)), where S is distinct for all the decomposed problems.

The function solveP(F,U,Ψ(·)) solves the problem P(F ∪ U,Ψ(·)) by recursively comparing

the optimal values of the problems solved in Line 2 of Algorithm 2. Formally, let ωF,U denote the

total number of the problems in Line 2 solved when executing the function solveP(F,U,Ψ(·)). The

wth problem solved is denoted by P(SwF,U ,Ψ
w
F,U (·)). The sequence of the problems solved when

executing solveP(F,U,Ψ(·)) is then denoted by

SF,U =
[
P(S1

F,U ,Ψ
1
F,U (·)), ...,P(S

ωF,U
F,U ,Ψ

ωF,U
F,U (·))

]
. (19)

Note that Line 2 is executed only when the second input argument of the function solveP(·, ·, ·)

is an empty set. Therefore, for any w ∈ {1, ..., ωF,U}, we solve the problem P(SwF,U ,Ψ
w
F,U (·)) in Line

2 by calling solveP(SwF,U , ∅,Ψw
F,U (·)). According to the condition (C1), we have |SwF,U | = κ̂, i.e.,

P(SwF,U ,Ψ
w
F,U (·)) has κ̂ decision variables. Furthermore, the condition (C1) also implies that there

are κ̂ linearly independent vectors in the set {b̂i : i ∈ SwF,U}.

Next, we would like to show that

(P) SwF,U 6= Sw
′

F,U for any w 6= w′ and w,w′ ∈ {1, ..., ωF,U}.

If U = ∅, then we only solve one problem in Line 2, i.e., P(F,Ψ(·)), so the property (P) is

trivially true. Assume for induction that the property (P) holds for all given F,U ⊆ I with

|U | ≤ µ ∈ {0, 1, ..., |I| − 1} and satisfying the conditions (C1) and (C2). Consider an arbitrary

F,U ⊆ I with |U | = µ + 1 and satisfying (C1) and (C2). Note that the sequence SF,U can be

partitioned into the subsequences of

(a) SF,Ū for the problem P(F ∪ Ū , Ψ̄(·)) solved in Line 7;

(b) SF̄ ,Ū(θ) for the problem P(F̄ ∪ Ū(θ), Ψ̄(θ, ·)) solved in Line 15 corresponding to any θ con-

sidered in Line 13.
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As |Ū | < |U | and |Ū(θ)| < |U | for any Ū and Ū(θ) used in Lines 7 and 15, the induction assumption

immediately yields that any subsequence SF,Ū or SF̄ ,Ū(θ) in parts (a) or (b) satisfies the property

(P). It is sufficient to consider the following two cases:

Case 1 in Step 3 shows that SwF,U 6= Sw
′

F,U for any w and w′ such that P(SwF,U ,Ψ
w
F,U (·)) and

P(Sw
′

F,U ,Ψ
w′
F,U (·)) belong to the subsequences SF,Ū in part (a) and SF̄ ,Ū(θ) in part (b), respectively.

The subsequence SF,Ū in part (a) corresponds to the problem P(F ∪ Ū , Ψ̄(·)) solved in Line

7. Note that i∗ /∈ F ∪ Ū . Hence, we have i∗ /∈ SwF,U for any P(SwF,U ,Ψ
w
F,U (·)) in the subsequence

SF,Ū . On the other hand, the subsequence SF̄ ,Ū(θ) in part (b) corresponds to the problem P(F̄ ∪

Ū(θ), Ψ̄(θ, ·)) solved in Line 15. It is straightforward that i∗ ∈ F̄ ⊆ Sw
′

F,U for any P(Sw
′

F,U ,Ψ
w′
F,U (·))

in the subsequence SF̄ ,Ū(θ). As a result, we obtain SwF,U 6= Sw
′

F,U .

Case 2 in Step 3 shows that SwF,U 6= Sw
′

F,U for any w and w′ such that P(SwF,U ,Ψ
w
F,U (·)) and

P(Sw
′

F,U ,Ψ
w′
F,U (·)) belong to the subsequences SF̄ ,Ū(θ) and SF̄ ,Ū(θ′) in part (b), respectively, where θ

and θ′ are two distinct vectors generated by Line 11 in different iterations.

Consider P(SwF,U ,Ψ
w
F,U (·)) in the subsequence SF̄ ,Ū(θ), which corresponds to the problem P(F̄ ∪

Ū(θ), Ψ̄(θ, ·)) solved in Line 15. We have i∗ ∈ SwF,U ⊆ (F∪{i∗}∪Ū(θ)). According to the definitions

of θ and Ū(θ) in Lines 11 and 13, we obtain

θT b̂i∗ = 1 and θT b̂i = 0 for all i ∈ SwF,U \ {i∗}. (20)

Recall that there are κ̂ linearly independent vectors in {b̂i : i ∈ SwF,U}. Therefore, θ is the unique

solution to the linear equations in (20).

Symmetrically, we have i∗ ∈ Sw′F,U ⊆ (F ∪{i∗}∪ Ū(θ′)) and θ′ is the unique solution to the linear

equations θ′T b̂i∗ = 1 and θ′T b̂i = 0 for all i ∈ Sw′F,U \ {i∗}. Therefore, θ 6= θ′ implies SwF,U 6= Sw
′

F,U .

Step 4 completes the proof by establishing the legitimacy of calling solveP(∅, H(β), Φ̂(β, ·)).

The condition (C2) holds trivially as the first input argument is an empty set. For any β constructed

in Line 3 of Algorithm 1, there exist β̂ ∈ Rκ̂ and T ⊆ I such that β =
[
β̂T 0T

]T
, β̂T b̂i/ai = 1

for all i ∈ T , |T | = κ̂, and {b̂i : i ∈ T} are linearly independent. Applying the definition of H(β)

in (6), it is straightforward that T ⊆ H(β). Therefore, there are κ̂ linearly independent vectors in

{b̂i : i ∈ H(β)}, which satisfies the condition (C1).

According to Step 2, solveP(∅, H(β), Φ̂(β, ·)) returns the optimal solution of P(H(β), Φ̂(β, ·)),

which is equivalent to R(β). Step 3 immediately yields that solveP(∅, H(β), Φ̂(β, ·)) solves at most

C κ̂|H(β)| problems with κ̂ variables in the form P(S,Ψ(·)).
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A.9 Proof of Theorem 3

Consider β̂ 6= β̂′ generated by Line 3 in two iterations of Algorithm 1. We have β 6= β′ where

β =
[
β̂T 0T

]T
and β′ =

[
β̂′T 0T

]T
. The corresponding problems R(β) and R(β′) in Line 11

are equivalent to P(H(β), Φ̂(β, ·)) and P(H(β′), Φ̂(β′, ·)), respectively, which can be solved by

solveP(∅, H(β), Φ̂(β, ·)) and solveP(∅, H(β′), Φ̂(β′, ·)) in Algorithm 2. Adopting the notations in

(19), P(H(β), Φ̂(β, ·)) and P(H(β′), Φ̂(β′, ·)) are decomposed into the problems in the sequences

S∅,H(β) =
[
P
(
S1
∅,H(β),Ψ

1
∅,H(β)(·)

)
, ...,P

(
S
ω∅,H(β)

∅,H(β) ,Ψ
ω∅,H(β)

∅,H(β) (·)
)]

S∅,H(β′) =
[
P
(
S1
∅,H(β′),Ψ

1
∅,H(β′)(·)

)
, ...,P

(
S
ω∅,H(β′)
∅,H(β′) ,Ψ

ω∅,H(β′)
∅,H(β′) (·)

)]
,

respectively. Similar to Step 3 in the proof of Proposition 6, it suffices to show that

Sw∅,H(β) 6= Sw
′

∅,H(β′) for any w ∈
{

1, ..., ω∅,H(β)

}
and w′ ∈

{
1, ..., ω∅,H(β′)

}
.

Consider P
(
Sw∅,H(β),Ψ

w
∅,H(β)(·)

)
in the sequence S∅,H(β). We have Sw∅,H(β) ⊆ H(β). The defi-

nition of H(β) in (6) yields βTbi/ai = 1 for all i ∈ Sw∅,H(β). As β =
[
β̂T 0T

]T
, the definition of

b̂i in (4) implies β̂T b̂i/ai = 1 for all i ∈ Sw∅,H(β). Recall that the set {b̂i : i ∈ Sw∅,H(β)} contains κ̂

linearly independent vectors. β̂ is the unique vector satisfying the linear equations β̂T b̂i/ai = 1

for all i ∈ Sw∅,H(β).

Similarly, we can show that β̂′ is the unique vector satisfying the linear equations β̂′T b̂i/ai = 1

for all i ∈ Sw′∅,H(β′). Therefore, β̂ 6= β̂′ yields Sw∅,H(β) 6= Sw
′

∅,H(β′).

Appendix B. Branch-and-Bound Algorithm for Q

Algorithm 3 adopts the branch-and-bound paradigm to find an optimal integral solution of Q. At

each node of the branch-and-bound tree, we need to solve an optimization problem in the form of

min

{
−
∑
i∈S

aizi + Φ

(∑
i∈S

bizi + b̃

) ∣∣∣∣∣ zi ∈ [0, 1] ∀i ∈ S

}
,

where S ⊆ I and b̃ ∈ Rκ+. Obviously, this problem has the same structure as the relaxation of

Q and can be readily solved by Algorithm 1. Also note that Proposition 1 is utilized to fix some

values of zi in Line 13.
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Algorithm 3: Solving Q
Data: ai ∈ R+ and bi ∈ Rκ+ for all i ∈ I, and a nondecreasing function Φ : Rκ+ 7→ R

Result: an optimal solution (z∗i ∀i ∈ I) and the optimal value v∗ of Q

1 let z∗i := 0 for all i ∈ I, v∗ :=∞, m := 1, S0
0 := ∅, and S1

0 := ∅;

2 if |I \ S0
m \ S1

m| > 10 then

3 use Algorithm 1 to solve the following problem

min

− ∑
i∈I\S0

m\S1
m

aizi + Φ

 ∑
i∈I\S0

m\S1
m

bizi +
∑
i∈S1

m

bi

 ∣∣∣∣∣∣ zi ∈ [0, 1] ∀i ∈ I \ S0
m \ S1

m

 ,

and let (z̄i ∀i ∈ I \ S0
m \ S1

m) and v̄ denote its optimal solution and optimal value,

respectively;

4 else

5 solve

min

− ∑
i∈I\S0

m\S1
m

aizi + Φ

 ∑
i∈I\S0

m\S1
m

bizi +
∑
i∈S1

m

bi

 ∣∣∣∣∣∣ zi ∈ {0, 1} ∀i ∈ I \ S0
m \ S1

m

 ,

by enumerating all z ∈ {0, 1}|I\S0
m\S1

m|, and let (z̄i ∀i ∈ I \ S0
m \ S1

m) and v̄ denote its

optimal solution and optimal value, respectively;

6 end

7 if v̄ −
∑

i∈S1
m
ai ≥ v∗ then let m := m− 1 and go to Line 14;

8 if z∗i ∈ {0, 1} for all i ∈ I \ S0
m \ S1

m then

9 let v∗ := v̄ −
∑

i∈S1
m
ai, z

∗
i := 0 for all i ∈ S0

m, z∗i := 1 for all i ∈ S1
m, and z∗i := z̄i for all

i ∈ I \ S0
m \ S1

m;

10 let m := m− 1 and go to Line 14;

11 end

12 let i∗ be some i ∈ I \ S0
m \ S1

m such that z̄i∗ ∈ (0, 1);

13 let S0
m+1 := S0

m, S1
m+1 := S1

m ∪ {i∗} ∪ {i ∈ I : ai > ai∗ , bi ≤ bi∗},

S0
m := S0

m ∪ {i∗} ∪ {i ∈ I : ai < ai∗ , bi ≥ bi∗}, and m := m+ 1;

14 if m > 0 then go to Line 2;

15 return (z∗i ∀i ∈ I) and v∗;
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Appendix C. Solving the κ̂-Variable Problems Decomposed from

the Relaxation of Q

According to the proofs of Proposition 6 and Theorem 3, solving the relaxation of Q boils down to

solving at most C κ̂n problems in the form of P(S,Ψ(·)) defined in (8), where |S| = κ̂ and b̂i for all

i ∈ S are linearly independent. In this section, we show how to solve these decomposed problems

for the two applications implemented in Section 4.

C.1 Facility Location and Production in Section 4.1

For the κ-product facility location and production model, we have κ = κ̂. Given the cubic produc-

tion cost function, the decomposed problem with κ decision variables can be written as

min
z∈[0,1]κ

−
κ∑
i=1

aizi +
κ∑
k=1

(
κ∑
i=1

bki zi +Bk

)3
 , (21)

where ai > 0, bki ≥ 0, and Bk ∈ R for any i, k ∈ {1, ..., κ}. Furthermore, bi for all i ∈ {1, ..., κ} are

linearly independent. According to the KKT conditions, a solution z∗ ∈ [0, 1]κ is optimal only if

there exist ui, vi ≥ 0 for all i ∈ {1, ..., κ} such that

−ai +
κ∑
k=1

3bki

(
κ∑
i=1

bki z
∗
i +Bk

)2

+ ui − vi = 0, ui(z
∗
i − 1) = 0, and viz

∗
i = 0.

Therefore, an optimal solution to (21) must belong to the set

⋃
S0,S1⊆{1,...,κ},

S0∩S1=∅

Z(S0, S1),

where

Z(S0, S1) =

z∗ ∈ [0, 1]κ

∣∣∣∣∣∣∣∣
z∗i = 0 ∀i ∈ S0, z∗i = 1 ∀i ∈ S1,

−ai +

κ∑
k=1

3bki

(
κ∑
i=1

bki z
∗
i +Bk

)2

= 0 ∀i /∈ S0 ∪ S1

 .

Next, we show how to obtain Z(S0, S1) for any S0, S1 ⊆ {1, ..., κ} and S0 ∩ S1 = ∅ through the

following cases based on the value of |S0|+ |S1|.

Case 1. Suppose that |S0|+ |S1| = κ, i.e., {1, ..., κ} \ S0 \ S1 = ∅. It is straightforward that

Z(S0, S1) = {z∗ ∈ [0, 1]κ | z∗i = 0 ∀i ∈ S0, z
∗
i = 1 ∀i ∈ S1}.
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Case 2. Suppose that |S0| + |S1| = κ −m ∈ {1, ..., κ − 1}, i.e., m ∈ {1, ..., κ − 1}. WLOG, let

{1, ..., κ} \ S0 \ S1 = {1, ...,m}. We have

Z(S0, S1) =

z∗ ∈ [0, 1]κ

∣∣∣∣∣∣∣∣∣
z∗i = 0 ∀i ∈ S0, z∗i = 1 ∀i ∈ S1,

−ai +
κ∑
k=1

3bki

 m∑
i=1

bki z
∗
i +

∑
j∈S1

bkj +Bk

2

= 0 ∀i ∈ {1, ...,m}

 .

Obviously, {z∗1 , ..., z∗m} can be obtained by solving a system of m quadratic equations. If m = 1, z∗1

is a root of a quadratic function and has a closed-form solution. If m ∈ {2, ..., κ− 1}, the equation

system can be easily solved by standard numerical methods. In our computational experiments, its

numerical solutions are computed by calling the corresponding Mathematica function from C++

platform.

Case 3. Suppose that |S0|+ |S1| = 0, i.e., S0 = S1 = ∅. Then

Z(S0, S1) =

z∗ ∈ [0, 1]κ

∣∣∣∣∣∣ −ai +

κ∑
k=1

3bki

(
κ∑
i=1

bki z
∗
i +Bk

)2

= 0 ∀i ∈ {1, ..., κ}

 .

Define

xk =
κ∑
i=1

bki z
∗
i +Bk ∀k ∈ {1, ..., κ},

i.e., x = Mz∗ + B, where z∗ = [z∗1 , z
∗
2 , ..., z

∗
κ]T , x = [x1, x2, ..., xκ]T , M = [b1 b2 · · · bκ], and

B = [B1, B2, ..., Bκ]T . Recall that bi for all i ∈ {1, ..., κ} are linearly independent. Thus, M is

invertible and z∗ = M−1(x−B). Then Z(S0, S1) is equivalent to

Z(S0, S1) =

{
z∗ ∈ [0, 1]κ

∣∣∣∣∣ z∗ = M−1(x−B), −ai +
κ∑
k=1

3bki x
2
k = 0 ∀i ∈ {1, ..., κ}

}
.

Furthermore, let yk = x2
k for all k ∈ {1, ..., κ}. The constraints −ai +

∑κ
k=1 3bki x

2
k = 0 for all

i ∈ {1, ..., κ} can be written as 3My = a, where y = [y1, y2, ..., yκ]T and a = [a1, a2, ..., aκ]T , which

yields y = M−1a/3. As a result, Z(S0, S1) can be computed as

Z(S0, S1) =
{
z∗ ∈ [0, 1]κ

∣∣ z∗ = M−1(x−B), y = M−1a/3, xk ∈ {
√
yk,−

√
yk} ∀i ∈ {1, ..., κ}

}
.

C.2 Facility Location and Capacity Planning in Section 4.2

In this example, we have κ = κ̂ = 2. The decomposed problems can be written as follows:

min
z1,z2∈[0,1]

{
−

2∑
i=1

aizi + Φ

(
2∑
i=1

bizi,

2∑
i=1

cizi

)}
, (22)
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where ai > 0 and bi, ci ≥ 0 for i = 1, 2 and

Φ(x, y) =
(
B + x+

√
C + y

)3

with C ≥ 0.

For any x1, x2, y1, y2 ≥ 0 and λ ∈ [0, 1], let x = λx1 + (1 − λ)x2 and y = λy1 + (1 − λ)y2. As

the square root function is concave, we have

B + x+
√
C + y ≥ λ

(
B + x1 +

√
C + y1

)
+ (1− λ)

(
B + x2 +

√
C + y2

)
≥ min

{
B + x1 +

√
C + y1, B + x2 +

√
C + y2

}
.

The monotonicity of the cubic function immediately yields

Φ(x, y) =
(
B + x+

√
C + y

)3
≥ min

{(
B + x1 +

√
C + y1

)3
,
(
B + x2 +

√
C + y2

)3
}

= min
{

Φ(x1, y1),Φ(x2, y2)
}
,

implying that Φ(x, y) is a quasi-concave function. Applying Proposition 2, the problem in (22) has

an optimal solution with at most one fractional component. Therefore, it can be reformulated as

min
i∈{1,2},δ∈{0,1}

{f(i, δ)} ,

where

f(i, δ) = min
zi∈[0,1]

{
−aizi − a3−iδ +

(
B + bizi + b3−iδ +

√
C + cizi + c3−iδ

)3
}
.

According to the KKT conditions, an optimal solution to this optimization problem can only be 0,

1, or some z∗ ∈ (0, 1) satisfying

−ai + 3
(
B + biz

∗ + b3−iδ +
√
C + ciz∗ + c3−iδ

)2
(
bi +

ci

2
√
C + ciz∗ + c3−iδ

)
= 0.

Obviously, the above equation is equivalent to a univariate polynomial equation and can be easily

solved numerically. In our computational experiments, we obtain its numerical solutions by calling

the corresponding Mathematica function from C++ platform.
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