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With the increasing penetration of intermittent renewable energy and fluctuating electricity loads, power

system operators are facing significant challenges in maintaining system load balance and reliability. In

addition to traditional energy markets that are designed to balance power generation and load, ancillary

service markets have been recently introduced to help manage the considerable uncertainty by reserving

certain generation capacities against unexpected events. In this paper, we develop a multistage stochastic

optimization model for system operators to efficiently schedule power generation assets to co-optimize power

generation and regulation reserve service (a critical ancillary service product) under uncertainty. In addition,

to improve the computational efficiency of the proposed multistage stochastic integer program, we explore

its polyhedral structure by investigating physical characteristics of individual generators, the system-wide

requirements that couple all of the generators, and the scenario tree structure for our proposed multistage

model. We start with the single-generator polytope and provide convex hull descriptions for the two-period

case under different parameter settings. We then provide several families of multi-period strong valid inequal-

ities linking different scenarios and covering decision variables that represent both power generation and

regulation reserve amounts. We further extend our study by exploring the multi-generator polytope and

derive strong valid inequalities linking different generators and covering multiple periods. To enhance com-

putational performance, polynomial-time separation algorithms are developed for the exponential number

of inequalities. Finally, we verify the effectiveness of our proposed strong valid inequalities by applying them

as user cuts under the branch-and-cut scheme to solve multistage stochastic network-constrained power

generation scheduling problems.
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inequalities; convex hull
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1. Introduction

With renewable energy’s continuous penetration and the rapid development of distributed energy

resources, the modern power system is evolving quickly and significantly. Renewable energy compli-

cates the power system substantially by introducing considerable uncertainty due to its intermittent

nature. For instance, the electricity generation from wind and solar energy depends greatly on the

weather, which is uncertain, making scheduling other generators using traditional fuels like coal

and natural gas a huge challenge.

The energy market is already complex because 1) electricity cannot be stored at a very large

scale compared to normal commercial products, as in general, it needs to be consumed immediately

after being generated, 2) the power system is large-scale and geographically distributed, and 3)

the physical characteristics of all of the components in the system are highly complex and coupled.

It is very difficult to maintain an exact match between electricity generation and the load at all

times under uncertainty. To ensure the efficient and reliable operation of the energy market, system

operators are responsible for deciding the power generation schedule to meet the electricity load

and maintain cost-effectiveness. In daily operations, system operators are required to solve a large-

scale security-constrained unit commitment problem to obtain the corresponding power generation

schedule. With the penetration of renewable energy, power system operators are further challenged

to schedule power generation assets and to manage uncertainties.

To meet this challenge, ancillary service markets were recently introduced by different Indepen-

dent System Operators (ISOs) in the wholesale electricity markets to protect the power system

against unexpected fluctuations on both the generation (i.e., supply) and load (i.e., demand) sides.

Ancillary services are mainly provided by the generation side with reserved generator capacities,

although energy storage and demand response can also serve as ancillary services. In current power

systems, there are usually three types of ancillary service products: regulation reserve, spinning

reserve, and supplemental reserve. Regulation reserve is the most commonly used type. It reserves

a certain amount of generation capacity to handle potential future uncertainties like momentary

changes on both the generation and load sides and a sudden loss of a generator or transmission

line. It is maintained for a quick response to automatic generation control signals to balance fluc-

tuations on both the generation and load sides (Zhou et al. 2016). Although ancillary services can

help hedge against uncertainties, there still exist significant difficulties in coordinating traditional

energy markets and new ancillary service markets.

Traditional practices sequentially clear the energy and ancillary service markets, considering

them separately. However, sequential clearing cannot guarantee a globally optimal power genera-

tion schedule coupled with ancillary services (Cheung 2008, Carlson et al. 2012, Zhou et al. 2016).
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To overcome this coordination difficulty and thereby use ancillary services more effectively, a chal-

lenging co-optimization model that considers energy and ancillary services simultaneously needs

to be solved efficiently. The co-optimization model enables a global optimum to schedule gener-

ators for both power generation and ancillary service requirements. As the regulation reserve is

a critical and the most commonly used ancillary service, in this paper, we study the power gen-

eration scheduling model by incorporating both power generation and the regulation reserve for

system operators. Our study leads to a unit commitment (UC) model that co-optimizes power

generation and the regulation reserve. Previous studies on reserve requirements in a traditional UC

model can be found in Li and Shahidehpour (2005), Ostrowski et al. (2012), Morales-España et al.

(2013), and Knueven et al. (2018), among others. For instance, Knueven et al. (2018) incorporate

the spinning reserve requirement by using a variable to represent the maximum power available

from each generator. These studies focus on deterministic models, which have difficulty tackling

renewable energy and electricity load uncertainties. Specifically, it is possible to have too much or

too little reserve committed ahead of time to accommodate volatile renewable generation in the

next operational time horizon (usually 24 hours).

To better handle the significant uncertainties within the power system, we propose a multistage

decision making under uncertainty approach to schedule the generation units and accordingly study

a multistage stochastic UC model that co-optimizes both power generation and the regulation

reserve. Traditional stochastic UC (SUC) was initially proposed by Takriti et al. (1996), Carøe and

Schultz (1998), and Takriti et al. (2000) to tackle electricity load uncertainty. Recently, two-stage

SUC models have been studied extensively by Gröwe et al. (1995), Carøe and Schultz (1998),

Cheung et al. (2015), and others to deal with various uncertainties, while several approaches, such

as decomposition algorithms (Wang et al. 2008, Zheng et al. 2013, Schumacher et al. 2017) and

Lagrangian relaxation (Ozturk et al. 2004, Papavasiliou and Oren 2013), have been proposed to

solve them. Multistage SUC has advantages in incorporating forecasting information with varying

degrees of accuracy and in utilizing realized information accumulated over time (Takriti et al. 1996,

Birge and Louveaux 2011). This enables more efficient decisions based on uncertainty dynamics

and allows us to model renewable generation output and load dependencies among different time

periods by using a scenario tree. The related studies on multistage SUC models can be found

in Wu et al. (2007), Cerisola et al. (2009), among others. However, the scenario tree-based mul-

tistage SUC model is computationally challenging because the size of the scenario tree grows

significantly over time. To address this, stochastic dynamic programming (Nowak and Römisch

2000), approximate dynamic programming (Powell 2007, Zhang and Nikovski 2011), and stochastic

dual dynamic integer programming (Zou et al. 2018, 2019) have been proposed to solve multistage

SUC models. Furthermore, in general, because the multistage SUC model is naturally a stochastic
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integer program (SIP), various algorithms for SIP can be applied to solve the problem, such as

advanced decomposition and Lagrangian relaxation (Carpentier et al. 1996, Nowak and Römisch

2000, Wu et al. 2007, Luedtke 2014, Liu et al. 2016), progressive hedging (Rockafellar and Wets

1991, Løkketangen and Woodruff 1996, Gade et al. 2016), cutting planes (Ahmed et al. 2004, Sen

and Higle 2005, Guan et al. 2006, 2009, Luedtke et al. 2010, Zhang et al. 2014), column generation

(Sen et al. 2006), and the value function approach (Huang and Ahmed 2009).

In this paper, we conduct a comprehensive polyhedral study by deriving strong valid inequali-

ties and convex hull descriptions to improve the computational performance of the corresponding

multistage SUC model that co-optimizes energy generation and the regulation reserve. There are

existing studies on the polyhedral structures of deterministic UC polytopes, such as the convex

hull representation of the minimum-up/-down time and logical constraints (Lee et al. 2004, Rajan

and Takriti 2005), the generation upper/lower bound strengthening constraints (Morales-España

et al. 2013), the convex hull representation of the polytope including generation limits, start-up

and shut-down capabilities, and minimum-up/-down time constraints (Gentile et al. 2017), valid

inequalities for the minimum-up/-down time constraints with multiple generators (Bendotti et al.

2018), strong valid inequalities to strengthen the ramping polytope (Ostrowski et al. 2012, Damcı-

Kurt et al. 2016), perfect formulations for the ramping polytope (Knueven et al. 2018, Guan et al.

2018), and the convex hull descriptions of three-period polytopes as well as strong valid inequalities

for multi-period versions of the integrated minimum-up/-down time and ramping polytope (Pan

and Guan 2016a) and the corresponding SUC polytope (Pan and Guan 2016b). However, most of

them either do not consider uncertainty or only optimize power generation instead of co-optimizing

power generation and the regulation reserve. For instance, Pan and Guan (2016b) solve a single-

generator self-scheduling problem for an independent power producer, who is the decision maker, to

generate optimal bidding strategies, leading to the maximum profit. Accordingly, the physical con-

straints for a single generator are considered without considering regulation reserve. In contrast, in

this paper, we consider a different problem with multiple generators to satisfy system-wide demand

balance requirements and other physical and network constraints, where the decision maker is a

power system operator who aims to minimize the total cost considering both energy generation

and the regulation reserve. Even for the single-generator part, this paper covers more general

constraints, such as ramping constraints considering start-up/shut-down ramping rates, that are

not considered in Pan and Guan (2016b). As a result, the computational complexity studied in

this paper is largely augmented because of reserve restrictions, the general physical constraints for

each generator, and coupling constraints such as demand balance constraints that link different

generators.
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By investigating the physical characteristics of the multistage stochastic UC polytope (including

the minimum-up/-down time, ramping rate, capacity upper/lower bound, regulation-up/-down

reserves, and load balance requirements) and the scenario tree structure, we explore several families

of strong valid inequalities to strengthen the original formulation. We first investigate the single-

generator polytope and then the multi-generator polytope to derive strong valid inequalities. We

summarize our main contributions as follows:

1. We propose a multistage stochastic programming model for system operators to co-optimize

power generation and the regulation reserve under uncertainty. A scenario tree is utilized to

represent uncertain parameters and capture uncertainty dynamics over time periods.

2. For the single-generator polytope of our proposed model, we first develop convex hull descrip-

tions for certain special cases (e.g., the two-period case), where the number of inequalities

for each convex hull representation is polynomial with respect to the number of scenarios.

These derived inequalities for the convex hull descriptions can also be applied to strengthen

the original formulation. Then, we derive strong valid inequalities covering multiple time peri-

ods and different scenarios and correspondingly develop efficient polynomial-time separation

algorithms to speed up the branch-and-cut algorithm.

3. We extend the study for the multi-generator polytope and derive strong valid inequalities

linking different generators and covering multiple time periods, with efficient polynomial-time

separation algorithms also developed.

4. The final numerical experiments demonstrate that our proposed inequalities can speed up the

branch-and-cut algorithm remarkably, which indicates that they can be used to solve large-

scale problems in industry. Sensitivity analyses are conducted to show the performance of our

proposed inequalities in terms of different levels of regulation reserve requirements.

The remainder of this paper is organized as follows. In Section 2, we describe the multistage SUC

formulation that co-optimizes power generation and the regulation reserve. Convex hull descriptions

for the two-period case under different parameter settings are provided in Section 3. In Section 4,

we derive multi-period strong valid inequalities for the general scenario tree setting, and in Section

5, we derive strong valid inequalities for the multi-generator polytope. In Section 6, we perform

computational experiments to verify the effectiveness of our proposed convex hulls and strong valid

inequalities. We conclude this paper in Section 7.

2. Mathematical Formulation

To describe the mathematical formulation, we first introduce the following notation and then

develop the multistage stochastic network-constrained UC model that co-optimizes power gen-

eration and the regulation reserve (denoted by MSUC-AS) with uncertain net load (i.e., actual

electricity load minus renewable generation).
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Figure 1 Multistage stochastic scenario tree (e.g., Lg = t(j)− t(i))

We use G, B, and E to denote the sets of generators, buses, and transmission lines, respectively,

with |G|=G, |B|=B, and |E|=E. For each bus b∈B, we let Gb ⊆G represent the set of generators

located at bus b. For each transmission line (j,h) ∈ E , we let Cjh denote the line capacity and

Kb
jh denote the line flow distribution factor for the transmission line (j,h) due to the net injection

at bus b, ∀b ∈ B. For each generator g ∈ G, we let Lg(`g) represent its minimum-up (-down) time

limit, C
g
(Cg) its maximum (minimum) generation amount if it is online, V g its ramping-up and

ramping-down rate limit, V
g

its start-up/shut-down ramping rate limit (which usually satisfies

Cg <V
g
<min{Cg+V g,C

g−V g}), Ug(Dg) its start-up (shut-down) cost, RUg(RDg) its regulation-

up (-down) reserve cost, and f g(·), a nondecreasing convex function, the generation cost as a

function of its electricity generation amount and online/offline status.

We consider net load uncertainty and adopt a scenario tree T = (V,A) with T stages, as shown

in Figure 1, to describe the underlying evolving process and possible realizations of the uncertain

net load, with one stage representing one time period and the root node denoted by node 0. Each

node i ∈ V \ {0} has a unique parent i− in the previous period. We denote the period containing

node i by t(i) and use P(i) to represent the set of nodes along the unique path from the root

node to node i. The set of immediate child nodes of node i is denoted by C(i), and the set of all

descendants of node i, including itself, is denoted by V(i). Each node i ∈ V at time t represents a

state of the system that can be distinguished by information available up to time t. We use pi to

denote the absolute probability associated with the state represented by node i. Node i at time

T (i.e., the final period) corresponds to a realization of the uncertain data for the whole planning

horizon, and thus the unique path from the root node to this node i is defined as a scenario. Finally,

we use dbi to denote the net load of bus b at node i in the scenario tree and W+
i (W−

i ) to denote the
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minimum regulation-up (-down) reserve requirement at node i. Note that the decisions at time t

are made after observing the data realization from the first period until t, and thus we associate

the decisions with each node of the scenario tree. It follows that the decisions corresponding to

each node i are nonanticipative with respect to future data realizations.

For the decision variables, corresponding to each node i ∈ V and each generator g ∈ G, we let

the binary variable ygi represent whether generator g is online (i.e., ygi = 1) or offline (i.e., ygi = 0)

at node i, the binary variable ugi whether generator g starts up (i.e., ugi = 1) or not (i.e., ugi = 0),

the continuous variable rgi the generation amount above the minimum generation amount, and the

continuous variable w+g
i (w−gi ) the generation amount reserved from generator g for the regulation-

up (-down) reserve requirement.

Based on the above description, the MSUC-AS formulation can be described as follows:

min
r,w±,y,u

∑
i∈V

pi

(
G∑
g=1

(
Ugugi + Dg

(
yg
i− − y

g
i +ugi

)
+ RUgw+g

i + RDgw−gi + f g (rgi +Cgygi )

))
(1a)

s.t. ygi − y
g

i− ≤ y
g
k, ∀i∈ V \ {0},∀g ∈ G,∀k ∈HLg(i), (1b)

yg
i− − y

g
i ≤ 1− ygk, ∀i∈ V \ {0},∀g ∈ G,∀k ∈H`g(i), (1c)

ugi ≤min{ygi ,1− y
g

i−}, ∀i∈ V \ {0},∀g ∈ G, (1d)

ygi − y
g

i− ≤ u
g
i , ∀i∈ V \ {0},∀g ∈ G, (1e)

rgi −w
−g
i ≥ 0, ∀i∈ V,∀g ∈ G, (1f)

rgi +w+g
i ≤ (C

g −Cg)ygi , ∀i∈ V,∀g ∈ G, (1g)

rgi +w+g
i − r

g

i− ≤ V
g

+ (Cg +V g −V g
)yg
i− −C

gygi , ∀i∈ V \ {0},∀g ∈ G, (1h)

rg
i− − r

g
i +w−gi ≤ V

g
+ (Cg +V g −V g

)ygi −C
gyg
i− , ∀i∈ V \ {0},∀g ∈ G, (1i)

G∑
g=1

(rgi +Cgygi ) =
B∑
b=1

dbi , ∀i∈ V, (1j)

G∑
g=1

w+g
i ≥W+

i , ∀i∈ V, (1k)

G∑
g=1

w−gi ≥W−
i , ∀i∈ V, (1l)

−Cjh ≤
B∑
b=1

Kb
jh

(
Gb∑
g=1

(rgi +Cgygi )− dbi

)
≤Cjh, ∀i∈ V,∀(j,h)∈ E , (1m)

rgi ≥ 0,w+g
i ≥ 0,w−gi ≥ 0, ∀i∈ V,∀g ∈ G, (1n)

ygi ∈ {0,1}, ∀i∈ V, u
g
i ∈ {0,1}, ∀i∈ V \ {0}; ∀g ∈ G, (1o)

where the objective function (1a) is to minimize the total expected cost, including the start-up,

shut-down, regulation reserve, and power generation costs. Constraints (1b) and (1c) represent the
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minimum-up and -down time restrictions, respectively, where Hr(i) = {k ∈ V(i) : 0≤ t(k)− t(i)≤

r − 1} and it collects all of the scenario nodes of a scenario tree with node i as the root node

and having r stages. Note that this scenario tree is a part of the whole scenario tree T in Figure

1. If generator g starts up at node i, then it has to stay online for at least Lg time periods,

and thus it stays online at all of the nodes in HLg(i). Constraints (1d) and (1e) describe the

relationship between online/offline status and start-up decisions. Constraints (1f) and (1g) describe

the regulation-down and regulation-up reserve amount restrictions, respectively, together with the

minimum and maximum generation amount requirements. In particular, at node i, an adequate

amount of generation from generator g should be available when regulation-down reserve (i.e., w−gi )

is required and generator g cannot produce too much generation when regulation-up reserve (i.e.,

w+g
i ) is required. Constraints (1h) and (1i) describe the generator ramping-up and ramping-down

rate restrictions, i.e., the maximum generation increment and decrement, respectively. Note that

the regulation reserve requirements are also considered so that the ramping rate limits can be

satisfied even when providing regulation reserve (Carlson et al. 2012). Constraints (1j) guarantee

the load balance at each node i∈ V. Constraints (1k) and (1l) describe the system-wide regulation-

up and regulation-down reserve requirements at each node i, respectively. Finally, constraints (1m)

describe the capacity limit of each transmission line (j,h).

Remark 1. The consideration of ancillary services together with energy power generation leads

to significantly increased complexity in scheduling both power generation and regulation-up/-down

reserves in terms of each generator’s online/offline status, generation amount, and reserve amount.

More importantly, the computational difficulty due to coupling constraints such as (1j) - (1m)

is augmented by the introduction of ancillary services. Technically, the inclusion of additional

continuous variables (e.g., w+g
i and w−gi ) challenges power system operators when solving the

resulting mixed-integer programming model. In the following, we use a small example to further

show that the inclusion of ancillary services also leads to the change in the optimal integer solution

(corresponding to the binary decision variables ygi and ugi ).

Example 1. We consider two generators (i.e., G= 2) at the same bus without a transmission

line (i.e., B = 1) and a scenario tree with T = 3, where each node in the first and second periods

has two child nodes corresponding to the same conditional probability, leading to seven scenario

nodes in total. It follows that V = {0,1, . . . ,6} with root node 0, 1− = 2− = 0, 3− = 4− = 1, and

5− = 6− = 2. The generator data are listed in Table 1, where ag, bg, and cg are the coefficients of the

generation cost function f g(rgi +Cgygi ) = ag(rgi +Cgygi )
2 +bg(rgi +Cgygi )+cgygi , ∀i∈ V, g= 1,2. The

loads at each node are d0 = 10.8, d1 = 15.7, d2 = 9.5, d3 = 24.5, d4 = 33.3, d5 = 27.8, d6 = 21.2, and

W+
i =W−

i = 0.1di, ∀i∈ V. By solving Problem (1) under two cases, i.e., without and with reserve
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Table 1 Example 1 Generator Data

Generator C
g
Cg V g V

g
Lg `g Ug Dg RUg RDg ag bg cg

g= 1 45 6 7.5 9.75 1 1 180 0 56.2 56.2 0.0697 26.2438 31.6700
g= 2 60 9.3 10 14.3 1 1 350 0 46.61 46.61 0.0098 22.9422 58.8101

requirements, we obtain the corresponding optimal online/offline decisions (i.e., ygi ) as shown in

Figures 2 and 3, respectively. The two numbers in brackets are the values of [y1
i , y

2
i ],∀i∈ V.

[0,1]

[0,1]

[1,1]

[1,1]

[0,1]

[1,1]

[0,1]

Figure 2 Without Reserve Requirements

[1,0]

[1,0]

[1,1]

[1,1]

[1,0]

[1,1]

[1,1]

Figure 3 With Reserve Requirements

As we can observe from Figures 2 and 3, adding reserve requirements, together with regulation-

up/-down reserve variables, results in a different generator online/offline schedule compared to the

case without reserve requirements and thus without regulation-up/-down reserve variables. The

reasons for this difference are multi-fold because of the complex physical and network characteris-

tics. For example, these two generators have to coordinate with each other to satisfy the load and

reserve requirements. Note that each generator has its own minimum generation output restriction

and that if both generators are online, then the minimum generation output of the whole system

will be equal to C1 + C2 = 15.3, which is larger than d0 and d2, i.e., the loads at nodes 0 and

2. It follows that at these two nodes, only one generator can be online because of load balance

constraints (1j). Because of Generator 2’s low generation cost, it is naturally chosen to be online

in the case without reserve requirements. However, adding reserve requirements changes the choice

of generators to be online. That is, if Generator 2 is online at node 2 again in the case with reserve

requirements, then by the load balance equation, we have r2
2 = d2−C2 = 9.5− 9.3 = 0.2, which is

less than the regulation-down requirement (i.e., W−
2 = 0.1d2 = 0.95). Thus, Generator 2 cannot be

online at node 2 because it fails to satisfy the restriction r2
2 ≥ w−2

2 . This is the reason why only

Generator 1 is online at node 2 in the case with reserve requirements.

Therefore, in this paper, we study how we can improve the computational efficiency of solving

Problem (1) by investigating the polyhedral structure induced by the constraints therein. Our

derived valid inequalities are applied to strengthen the formulation and improve the computational
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performance through our derived branch-and-cut scheme. By approximating the generation cost

function f g(·) with a piecewise linear function (Carrión and Arroyo 2006), we reformulate MSUC-

AS as a mixed-integer linear program and provide the corresponding strong formulations. More

specifically, we perform the polyhedral study in two steps. First, we explore all of the physical

constraints of a single generator in Sections 3 – 4. Second, we extend our study to consider the

polytope that includes the physical constraints of all of the generators and the coupling constraints

in Section 5.

Before closing this section, we describe the single-generator polytope (i.e., conv(P )) for the first

step mentioned above, by omitting the superscript g for each decision variable and parameter and

defining conv(P ) to represent the convex hull of set P , where B := {0,1} and

P :=
{

(r,w+,w−, y, u)∈R|V|+ ×R|V|+ ×R|V|+ ×B|V|×B|V|−1 :

yi− yi− ≤ yk, ∀i∈ V \ {0},∀k ∈HL(i), (2a)

yi− − yi ≤ 1− yk, ∀i∈ V \ {0},∀k ∈H`(i), (2b)

ui ≤min{yi,1− yi−}, ∀i∈ V \ {0}, (2c)

yi− yi− ≤ ui, ∀i∈ V \ {0}, (2d)

ri−w−i ≥ 0, ∀i∈ V, (2e)

ri +w+
i ≤ (C −C)yi, ∀i∈ V, (2f)

ri +w+
i − ri− ≤ V + (C +V −V )yi− −Cyi, ∀i∈ V \ {0}, (2g)

ri− − ri +w−i ≤ V + (C +V −V )yi−Cyi− , ∀i∈ V \ {0}
}
. (2h)

In Sections 3 and 4, strong valid inequalities to strengthen P will be derived and the corresponding

properties will be described in detail.

Remark 2. Note that the strong valid inequalities derived for conv(P ) can be used to tighten

any other problems with P embedded. Thus, the improvement made for polytope conv(P ) can also

benefit other operations in the power system.

3. Convex Hulls for Special Cases

In this section, we strengthen the single-generator formulation and derive tighter constraints by

investigating a special case of polytope conv(P ), i.e., a polytope based on a two-period scenario

tree with a root node in the first period followed by several scenario nodes in the second period.

One significant advantage here is that the strong valid inequalities derived for this two-period case

can be applied to any two consecutive time periods of polytope conv(P ). Accordingly, they can help

ideally formulate some original physical requirements, such as capacity and ramping constraints.
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For the two-period case, without loss of generality, we assume the minimum-up/-down time limit to

be 1. We collect all of the leaf nodes in the scenario tree in set N with |N |= n, i.e., n scenario nodes

in the second period. The corresponding original constraint set (denoted by P2) can be described

as follows:

P2 :=
{

(r,w+,w−, y, u)∈Rn+1×Rn+1×Rn+1×Bn+1×Bn :

ui− yi ≤ 0, ∀i∈N , (3a)

ui + yi− ≤ 1, ∀i∈N , (3b)

yi−ui ≤ yi− , ∀i∈N , (3c)

w+
i ≥ 0, w−i ≥ 0, ∀i∈N ∪{i−}, (3d)

w−i ≤ ri, ∀i∈N ∪{i−}, (3e)

ri− +w+
i− ≤ (C −C)yi− , (3f)

ri +w+
i ≤ (C −C)yi, ∀i∈N , (3g)

ri +w+
i − ri− ≤ V + (C +V −V )yi− −Cyi, ∀i∈N , (3h)

ri− − ri +w−i ≤ V + (C +V −V )yi−Cyi− , ∀i∈N
}
. (3i)

By considering the minimum-up/-down time, ramping constraints, and regulation-up/-down

restrictions together, we can tighten the right-hand side (RHS) of each ramping constraint. That

is, by considering when to start up/shut down the generator and the regulation reserve restrictions,

we can further shrink the range of generation amounts, which are shown as tighter RHSs of the

corresponding constraints. We first show that the following inequalities are valid and facet-defining

for conv(P2) in Propositions 1 and EC.2, respectively, and then provide the corresponding convex

hull representation with a detailed proof in Theorem 1.

Proposition 1. The inequalities

ri− ≤ (V −C)yi− + (C −V )(yi−ui), ∀i∈N , (4a)

ri +w+
i ≤ (V +V −C)yi−V ui + (C −V −V )(yj −uj), ∀i, j ∈N , (4b)

w+
i +w−i ≤ (V +V −C)yi−V ui + (C +V −V )(yj −uj), ∀i, j ∈N , (4c)

ri +w+
i − ri− ≤ V yi− (C +V −V )ui, ∀i∈N , (4d)

ri− − ri +w−i ≤ (V −C)yi− + (C +V −V )(yj −uj), ∀i, j ∈N , (4e)

ri +w+
i − rj +w−j ≤ (V +V −C)yi−V ui + (C +V −V )(yk−uk), ∀i, j, k ∈N , i 6= j, (4f)

are valid for conv(P2) when C −C − 2V ≥ 0 and C −V −V ≥ 0.
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Proof. See Online Supplement EC.1.1 for the detailed proof. �

We can observe that for each scenario node i ∈ N , the inequalities in Proposition 1 provide

explicit upper bounds for various combinations of continuous variables by utilizing the generator

status in node i and other nodes (e.g., j) in N . For instance, inequalities (4a) provide explicit upper

bounds for individual power generation (i.e., ri−), inequalities (4b) provide explicit upper bounds

for the aggregation of power generation and the regulation reserve (i.e., ri + w+
i ), inequalities

(4c) provide explicit upper bounds for the summation of two types of regulation reserves (i.e.,

w+
i +w−i ), and inequalities (4d) and (4e) provide explicit upper bounds for the ramping-up/-down

rates. Meanwhile, we develop a family of strong valid inequalities (4f) to link the power generation

and regulation reserve at two different scenario nodes in the second period, whereas this type

of cross-scenario relationship is not indicated in the original set P2. Note that the insights from

generating these inequalities will help develop strong valid inequalities for more complex cases,

such as three-period and multi-period polytopes. In addition, by adding minimum-up/-down time

constraints and other nonnegativity restrictions, we have a compact polytope Q2.

Q2 :=
{

(r,w+,w−, y, u)∈R5n+4 : (3a)− (3f), (4a)− (4f),

ui ≥ 0, ∀i∈N
}
. (5)

Because inequalities (4a) through (4f) are valid for conv(P2), we can conclude that conv(P2)⊆Q2.

In the following, we show that Q2 represents the convex hull of P2 by proving that a) Q2 is full-

dimensional, as shown in Proposition EC.1 in Online Supplement EC.1.2, b) all of the inequalities

in Q2 are facet-defining for conv(P2), as shown in Proposition EC.2 in Online Supplement EC.1.3,

c) all of the inequalities in P2 are dominated by those in Q2, as shown in Proposition EC.3 in

Online Supplement EC.1.4, and d) all of the extreme points of Q2 are integral in y and u, as shown

in Proposition EC.4 in Online Supplement EC.1.6.

Theorem 1. When C −C − 2V > 0 and C −V −V > 0, we have Q2 = conv(P2).

Proof. As polytope Q2 is compact and full-dimensional, as shown in Proposition EC.1, we

conclude that conv(P2)⊆Q2 from Propositions 1 and EC.2. In addition, based on the dominance

relationship described in Proposition EC.3 and the integral extreme points of Q2 described in

Proposition EC.4, we have Q2 = conv(P2). �

Remark 3. In Theorem 1, we present the convex hull representation of P2 under the condi-

tion that C −C − 2V > 0 and C − V − V > 0. We can also derive convex hull representations of

P2 under other conditions, which are constructed by a subset of inequalities in Q2. In particu-

lar, when C − C − 2V ≤ 0 and C − V − V > 0, the corresponding convex hull representation is
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conv(P2) = {(r,w+,w−, y, u) ∈R5n+4 : (3a)− (3f), (4a), (4b), (4d), (4e), (5)}, and when C −V −V ≤

0, the corresponding convex hull representation is conv(P2) = {(r,w+,w−, y, u) ∈ R5n+4 : (3a) −

(3f), (4a), (4b) with j = i, (4d), (4e), (5)}.

Remark 4. In addition to the two-period case studied in this section, we also derive convex

hull descriptions for three-period cases, i.e. T = 3 in P . See Online Supplement EC.2 for detailed

results. Note that both two- and three-period cases consider the basic structures of the complete

scenario tree, as shown in Figure 1, and thus the corresponding convex hulls and strong valid

inequalities can be applied to strengthen the general multi-period formulation. Meanwhile, we can

observe that the number of derived inequalities in each convex hull is a polynomial function of the

input size of the scenario tree.

4. Multi-Period Strong Valid Inequalities

In this section, we derive several families of strong valid inequalities covering multi-period scenario

nodes to further strengthen the formulation. We first derive strong valid inequalities by consid-

ering a special multi-period structure case. We then extend the study to consider the most gen-

eral scenario tree setting. For notational brevity, we define
∑n

h=m ri−
h

=
∑n

h=mw
+

i−
h

=
∑n

h=mw
−
i−
h

=∑n

h=m yi−
h

=
∑n

h=m ui−
h

= 0 if n<m, where i−h is the h-fold parent of node i, with i−0 = i and i−1 = i−.

4.1. Scenario Tree Substructure Case

In this subsection, we derive strong valid inequalities covering scenario nodes in a substructure

of the complete scenario tree. In this substructure, the uncertain parameters are realized in the

first through (T −1)th time periods (leading to T −1 scenario nodes), and multiple scenario nodes

(collected in set N ) are explored in the T th period. That is, all of the sample paths considered in

this substructure differ only in the final stage. Without loss of generality, we label each node in N

(i.e., all the leaf nodes of this substructure) from 1 to n, i.e., N = {1, . . . , n}, and thus we have n

scenarios (or paths) and n+T − 1 scenario nodes in total in this substructure.

First, we derive inequalities by considering the power generation and regulation reserve amounts

at node i−, i.e., the shared parent node of each node i in N . The power generation at node i−

is affected not only by the generator status at this node, but also by the status at other nodes

along the unique path from i− to the root node, as illustrated by inequality (6). Furthermore, the

amount (e.g., w+
i−) committed to the regulation-up requirement depends on the available generation

capacity when power generation ri− is committed. It follows that the summation of the power

generation and the regulation-up reserve at node i−, which will be the highest possible power

output in the real-time operation, will also be affected by the generator status along the path from

i− to the root node, as illustrated by inequality (7).
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Proposition 2. For each i∈N when C −V − (L− 2)V > 0, the inequality

ri− ≤ (V −C)yi− + (C −V )

(
yi−

L−1∑
h=0

ui−
h

)
+
L−1∑
h=1

(h− 1)V ui−
h

(6)

is valid and facet-defining for conv(P ).

Proof. See Online Supplement EC.3.1 for the detailed proof. �

Proposition 3. For each i∈N when L≥ 3 and C −V −LV > 0, the inequality

ri−+w+
i− ≤ (V −C)yi−+2V

(
yi− −

L−1∑
h=1

ui−
h

)
+(C−V −2V )

(
yi−

L−1∑
h=0

ui−
h

)
+
L−1∑
h=1

(h−1)V ui−
h

(7)

is valid and facet-defining for conv(P ).

Proof. The proof is similar to that of Proposition 2 and thus is omitted here. �

From inequalities (6) and (7), we can observe that the generation status at node i− relates to

all of its child nodes directly, and thus there are |N | inequalities in total for each.

Second, we derive inequalities to tighten the upper bounds of the power generation and regulation

reserve amounts at each leaf node i in N . Although the original constraints in P indicate that the

power generation at each leaf node is only decided by the generator status at this node (through

capacity upper bound constraints) and its parent node (through ramping constraints), the generator

status at any two leaf nodes (e.g., i ∈N and j ∈N ) are correlated with each other through their

shared parent (e.g., i− = j−). We further explore this finding to derive two families of strong

valid inequalities to provide better upper bounds to limit the summation of power generation and

regulation-up amounts and the summation of the two types of regulation reserves at each leaf node

in inequalities (8) and (9), respectively.

Proposition 4. For each pair (i, j)∈N , when k= min{b(C −V )/V c,L− 1}, the inequality

ri +w+
i ≤ (V +V −C)yi−V ui + (C −V −V )

(
yj −

k∑
h=0

uj−
h

)
+

k∑
h=1

hV uj−
h

(8)

is valid and facet-defining for conv(P ).

Proof. See Online Supplement EC.3.2 for the detailed proof. �

Proposition 5. For each pair (i, j)∈N , when k= min{b(C −V )/V c,L− 1}, the inequality

w+
i +w−i ≤ (V +V −C)yi−V ui + (C +V −V )

(
yj −

k∑
h=0

uj−
h

)
+

k∑
h=1

hV uj−
h

(9)

is valid and facet-defining for conv(P ).

Proof. The proof is similar to that of Proposition 4 and thus is omitted here. �
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In contrast to inequalities (6) and (7), inequalities (8) and (9) provide the upper bounds for the

generation amount at any leaf node i ∈N while considering its siblings, e.g., node j ∈N (j 6= i).

Therefore, the number of inequalities here is in the order of |N |2, i.e., O(|N |2).

Third, we derive inequalities to tighten the generation difference (i.e., the ramping-up bound)

between two scenario nodes on the same path (i.e., the same scenario). The inequalities incorporate

the generation status of the other scenario nodes on this path.

Proposition 6. For each i∈N and k ∈ [2, T − 1]Z such that C −V − kV > 0, the inequality

ri +w+
i − ri−

k
≤ kV yi−

min{k−1,L−1}∑
h=0

(
C + (k−h)V −V

)
ui−

h
(10)

is valid and facet-defining for conv(P ).

Proof. See Online Supplement EC.3.3 for the detailed proof. �

Finally, we derive inequalities to tighten the ramping-up bounds by incorporating scenario nodes

on different paths or scenarios, e.g., nodes i−k (= j−k ), i∈N , and j ∈N .

Proposition 7. For each pair (i, j)∈N and each k ∈ [2, T − 1]Z such that C−V −kV > 0, the

inequality

ri +w+
i − ri−

k
+w−

i−
k

≤(V +V −C)yi−V ui + (C + (k+ 1)V −V )

(
yj −

min{k−1,L−1}∑
h=1

uj−
h

)

+

min{k−1,L−1}∑
h=1

(h− 1)V uj−
h

(11)

is valid and facet-defining for conv(P ).

Proof. The proof is similar to that of Proposition 6 and thus is omitted here. �

The intuition for inequality (11) can be shown as follows. The generation status at node i is

affected by the status at its siblings, e.g., j without loss of generality and j 6= i, because node j influ-

ences the status at node j−, which is also the parent of node i. That is, the generation/regulation

reserve status and amount at node i are affected by its siblings (e.g., node j) through their shared

parent j−. In particular, if the generator is offline at node j, then rj− will be at most V −C because

of the ramping-down constraint, and therefore ri will be bounded from above by V +V −C because

of the ramping-up constraint.

Remark 5. Because the number of derived inequalities (6) – (11) corresponds to the number

of different pairs (i, j)∈N and k≤min{T −2, b(C−V )/V c} is a bounded parameter, we conclude

that the number of derived inequalities above is polynomial in the number of nodes in the scenario

tree in the order of |N |2, i.e., O(|N |2).
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4.2. General Scenario Tree Structure Case

In this subsection, we explore the polyhedral structure for the general scenario tree structure (i.e.,

T ) by deriving inequalities covering all possible scenario nodes in V in Figure 1. Thus, our derived

inequalities are applicable to cases where t(i) 6= t(j) for any two nodes i and j in V. Here, we let

N be the set of leaf nodes of the general scenario tree, i.e., the scenario nodes at time T .

We focus on deriving strong valid inequalities that incorporate the power generation and regu-

lation reserve amounts at the scenario nodes on different paths (scenarios). Similar to the analyses

in Section 4.1, we find that power generation amounts, regulation-up reserve, and regulation-down

reserve at the scenario nodes on different paths (i.e., cross-scenario nodes) are actually affected by

each other, although their cross-scenario relationships are not explicitly represented by the original

constraints in P . To better illustrate our derived strong valid inequalities that incorporate these

relationships, we define the following notation. For any two nodes, e.g., nodes i and j, in the scenario

tree as shown in Figure 4, we use dist(i, j) to denote the distance between them. We define the path

between nodes i and p as P(i, p) =P(i)\P(p) and dist(i, j) = |P(i, p)|+ |P(j, p)|, where node p is the

shared ancestor of nodes i and j at the largest time period, i.e., p= argmax{t(n) : n∈P(i)∩P(j)}.

Accordingly, we derive strong valid inequalities that incorporate the generation/regulation reserve

differences between nodes i and j in the following propositions.

0 p

j−h

j− j

i−h−1

i

Figure 4 General Multi-Period Scenario Tree
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Proposition 8. For each pair (i, j)∈ V with i and j on different paths, the inequality

ri +w+
i − rj +w−j ≤ kV yi−

min{L−1,k−1}∑
h=0

(
C + (k−h)V −V

)
ui−

h
(12)

is valid and facet-defining for conv(P ) when C −V − kV > 0 with k= dist(i, j).

Proof. See Online Supplement EC.3.4 for the detailed proof. �

Proposition 9. For each pair (i, j)∈N with i− and j on different paths, the inequality

ri− − rj +w−j ≤ (V −C)yi− + (C+kV −V )

(
yi−

min{L−1,k−1}∑
h=0

ui−
h

)
+

min{L−1,k−1}∑
h=1

(h− 1)V ui−
h

(13)

is valid and facet-defining for conv(P ) when C −V − kV > 0 with k= dist(i−, j).

Proof. The proof is similar to that of Proposition 8 and thus is omitted here. �

Proposition 10. For each pair (i, j)∈N with i− and j on different paths, the inequality

ri− +w+
i− − rj +w−j ≤(V −C)yi− + (k− 1)V (yi−ui)−

min{L−1,k−1}∑
h=1

(k−h)V ui−
h

+ (C +V −V )

(
yj −

L−1∑
h=0

uj−
h

)
(14)

is valid and facet-defining for conv(P ) when C −V − kV > 0 with k= dist(i−, j).

Proof. The proof is similar to that of Proposition 8 and thus is omitted here. �

Note that in inequalities (12) through (14), we generalize the basic idea of inequality (11) for

the substructure case in Section 4.1 to that for the complete scenario tree structure here, which

leads to more complicated forms. The condition C −V − kV > 0 is required to guarantee that the

generator is able to ramp up (resp. ramp down) k1 times along the path from nodes p to i (or

i−) as well as ramp down (resp. ramp up) k2 times along the path from node p to node j with

k= k1 +k2, where node p is the shared ancestor of nodes i (or i−) and j at the largest time period.

Proposition 11. For each pair (i, j)∈N with i− and j− on different paths, when C−V −kV >

0 with k= dist(i−, j−) and L≤ 3, the inequalities

ri− − rj− + rj +w+
j ≤(V −C)yi− + (C + kV −V )

(
yi−

min{L−1,k−1}∑
h=0

ui−
h

)
+ (V +V −C)yj

−V uj − (V −C)uj− + (C −V − 2V )

(
yn−

min{L−1,k−1}∑
h=0

un−
h

)
, (15)

ri− − rj− +w+
j +w−j ≤(V −C)yi− + (C + kV −V )

(
yi−

min{L−1,k−1}∑
h=0

ui−
h

)
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+ 2V yj − (C + 2V −V )uj −V uj− (16)

are valid and facet-defining for conv(P ), where node n has the same parent as node j.

Proof. The proof is similar to that of Proposition 8 and thus is omitted here. �

All of the proposed inequalities above in this section are in polynomial size in terms of the input

size of the scenario tree and are at most in the order of |V|2, i.e., O(|V|2). In the following, we

derive a family of more general inequalities in exponential size to bound from above the generation

difference between two cross-scenario nodes in V plus the regulation-down reserve amount at one

of them to further strengthen the original formulation.

Proposition 12. For each pair (i, j) ∈ N such that i−k and j are on different paths and k =

dist(i−k , j)∈ {[2,2T − 2]Z :C −C − kV > 0}, if min{t(i−k ), t(j)} ≥ 2, then the inequality

ri−
k
− rj +w−j ≤ (V −C)yi−

k
+V

∑
n∈S0

(
yi−

k−n
−

min{L−1,n+ω}∑
m=0

ui−
k−n+m

)

+V
∑

n∈S∪{n̂}

(
gn−n

)(
yi−

k−n
−

L−1∑
m=0

ui−
k−n+m

)
+ψ(y,u) +φ(u) (17)

is valid and facet-defining for conv(P ), where S0 = [1, n̂ − 1]Z and S ⊆ [n̂ + 1, k − 1]Z with n̂ =

min{t(i−k )− 2,L− 2} if min{t(i−k )− 2,L− 2} ≥ 2 and n̂ = max{1,L+ 1− t(i−k )} otherwise, gn =

min{a ∈ S ∪ {k} : a > n}, ω is a nonnegative integer such that t(i−k+ω) = 2, ψ(y,u) = (C + V −

V )(yi−
∑L−1

m=0 ui−m) or (C+V −V )(yj −
∑L−1

m=0 uj−m), and φ(u) = V
∑

m:m≥1,t(i−
k+m

)≥T−L+1mui−
k+m

+

V
∑
{∀m:2≤t(i−

k+m
)≤T−L,m≤L−1}min{L− 1−m,m}ui−

k+m
.

Proof. See Online Supplement EC.3.5 for the detailed proof. �

(Separation) Because the number of inequalities (17) is exponential in terms of the input size of

the scenario tree, we develop a separation scheme to find the most violated inequality in polynomial

time. For any given point (r̂, ŵ+, ŵ−, ŷ, û) ∈ R5|V|−1
+ , to find the most violated inequality in (17)

corresponding to each combination of (i, j, k), we propose a shortest path problem on a directed

acyclic graph G= (V,A), as shown in Figure 5, where the node and arc sets are defined as follows:

1. Node set V = {s, t} ∪ V′, where s is the source node, t is the destination node, and V′ =

{n̂, n̂+ 1, . . . , k− 1, k} corresponding to nodes from i−k−n̂ to i along the same path.

2. Arc set A = {asn̂, akt} ∪A′, where A′ =
⋃
n̂≤n1≤n2≤k an1n2 . Accordingly, we define the cost ωij

of arc (i, j) for all possible (i, j)’s as follows:

(a) ωsn̂ = (V −C)ŷi−
k

+V
∑

n∈S0(ŷi−
k−n
−
∑min{L−1,n+ω}

m=0 ûi−
k−n+m

)− r̂i−
k

+ r̂j − ŵ−j ;

(b) ωn1n2 = V (n2−n1)(ŷi−
k−n1

−
∑L−1

j=0 ûk−n1−j);

(c) ωkt =ψ(ŷ, û) +φ(û).
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s n̂ n1 n2 k t
ωsn̂ ωkt

ωn̂n1

ωn̂n2

ωn̂k

ωn1n2

ωn1k

ωn2k

Figure 5 Acyclic Digraph of the Separation Scheme for Inequalities (17)

The shortest path from source s to destination t corresponds to one of the inequalities (17) with

maximum violation if the objective value is negative, and the nodes on the shortest path determine

the set S corresponding to this inequality. As the numbers of arcs and nodes for this shortest path

problem are O(T 2) and O(T ), respectively, we can use the topological sorting algorithm to solve the

shortest path problem in O(T 2) time for each combination of (i, j, k). Note that k = dist(i−k , j) is

bounded by b(C−V )/V c. Therefore, there is an O(|V|2T 2)-time algorithm to solve the separation

problem for all (i, j) with dist(i−k , j) = k.

Proposition 13. Given any point (r̂, ŵ+, ŵ−, ŷ, û)∈R5|V|−1
+ , there exists a polynomial-time sep-

aration algorithm running in O(|V|2T 2) time to find the most violated inequality (17), if any.

5. Multi-Generator Strong Valid Inequalities

In this section, we extend our study to consider multiple generators together in an integrated poly-

tope. Different from a power generation scheduling problem that considers only a single generator

or one that is separable in terms of each individual generator, the co-optimization model MSUC-AS

couples multiple generators through system-wide requirements. To further strengthen the MSUC-

AS formulation, we derive strong valid inequalities linking different generators by exploring both

physical characteristics and load balance requirements. That is, we study the multi-generator poly-

tope conv(Ψ), where Ψ includes all of the physical constraints of each single generator and the load

balance constraints linking all of them together, i.e.,

Ψ :=
{

(r,w+,w−, y, u)∈R|G||V|+ ×R|G||V|+ ×R|G||V|+ ×B|G||V|×B|G|(|V|−1) : (1b)− (1j)
}
.

Note that (1b) - (1i) enforce physical constraints on each individual generator in G and that the

load balance constraints (1j) couple all of the generators in G together. For notational brevity, for

each i∈ V, we denote
∑B

b=1 d
b
i by Di. For simplicity, we assume that Ψ is not empty (i.e., Problem
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(1) is feasible) and full-dimensional. We aim to derive several families of strong valid inequalities

for conv(Ψ).

First, we derive strong valid inequalities by focusing on a subset of generators (e.g., S) in G. We

mainly explore the load balance requirements at different scenario nodes, e.g., i− and i, together

with the start-up/shut-down actions, ramping rate limits, generation capacity limits, and regula-

tion reserve requirements emphasized in Sections 3 and 4 to provide tighter upper bounds for the

power generation amounts and/or regulation reserve amounts. For instance, we provide an explicit

upper bound for the total summation over a subset of generators in terms of the power genera-

tion difference at two consecutive time periods and the regulation-up/-down reserve amounts, as

illustrated by inequality (18).

Proposition 14. For each S ⊆ G and i∈ V \ {0}, the inequality∑
g∈S

(
rgi +w+g

i − r
g

i−

)
+
∑
g∈G

w−gi ≤Di−Di− +
∑
g∈S

(
Cgyg

i− +
(

2V g −Cg
)
ygi −

(
Cg + 2V g −V g

)
ugi

)
+
∑
g∈G\S

(
V
g
yg
i− −C

gygi +
(
V g +Cg −V g

)(
ygi −u

g
i

))
(18)

is valid for conv(Ψ). Furthermore, it is facet-defining for the two-period case of conv(Ψ).

Proof. See Online Supplement EC.4.1 for the detailed proof. �

(Separation) Because the number of inequalities (18) is exponential in terms of the number

of generators, we develop a separation scheme to find the most violated inequality in polynomial

time. For any given point (r̂, ŵ+, ŵ−, ŷ, û) ∈R|G|(5|V|−1)
+ , to find the most violated inequalities (18)

corresponding to each i∈ V \ {0}, we propose a shortest path problem on a directed acyclic graph

G= (V,A), as shown in Figure 6, where the node and arc sets are defined as follows:

1. Node set V = {s, t} ∪ V1 ∪ V2, where s is the source node, t is the destination node, V1 =

{1,2, · · · , |G|} with each number corresponding to each individual generator in G, and V2 =

{|G|+ 1, |G|+ 2, · · · ,2|G|} with each individual number also corresponding to the same set of

generators in G. Thus, each generator g ∈ G is labeled by two numbers, and these two numbers’

difference is |G|.

2. Arc set A = {as1, as(|G|+1), a|G|t, a(2|G|)t} ∪A1 ∪A2, where A1 =
⋃

1≤n≤|G|−1{an(n+1), an(n+|G|+1)}

and A2 =
⋃
|G|+1≤n≤2|G|−1{an(n+1), an(n−|G|+1)}. Any arc that goes to a node n with 1≤ n≤ |G| is

illustrated as a dashed arc. Any arc that goes to a node n with |G|+ 1≤ n≤ 2|G| is illustrated

as a solid arc. These two arcs that go to destination node t are illustrated as dotted arcs.

Accordingly, we define the cost ωij of arc (i, j) for all possible (i, j)’s as follows:

(a) If 1≤ j ≤ |G|, then ωij = r̂gi + ŵ+g
i − r̂

g

i−+ ŵ−gi −C
gŷg
i−−(2V g−Cg)ŷgi +(Cg+2V g−V g

)ûgi ,

where generator g is labeled by number j;



Huang, Pan, and Guan: Multistage Stochastic Power Generation Scheduling
Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2018-03-OA-029 21

(b) If |G|+ 1 ≤ j ≤ 2|G|, then ωij = ŵ−gi − V
g
ŷg
i− + Cgŷgi − (V g + Cg − V g

)(ŷgi − û
g
i ), where

generator g is labeled by number j;

(c) ω|G|t = ω(2|G|)t =Di− −Di.

s

1

|G|+ 1

2
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3
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Figure 6 Acyclic Digraph of the Separation Scheme for Inequalities (18)

The shortest path from source s to destination t corresponds to one of the inequalities (18)

with the maximum violation if the objective value is positive, and the nodes on the shortest path

determine set S corresponding to this inequality. As the numbers of arcs and nodes for this shortest

path problem are 4|G| and 2|G| + 2, respectively, we can use the topological sorting algorithm

to solve the shortest path problem in O(|G|) time for each i ∈ V \ {0}. Therefore, there is an

O(|V||G|)-time algorithm to solve the separation problem for all i∈ V \ {0}.

Proposition 15. Given any point (r̂, ŵ+, ŵ−, ŷ, û)∈R|G|(5|V|−1)
+ , there exists a polynomial-time

separation algorithm running in O(|V||G|) time to find the most violated inequality (18), if any.

Proposition 16. For each i∈ V \ {0}, the inequality

∑
g∈S

rgi ≥

(
Di− −

∑
g∈S

(
V
g

+Cg
))1−

∑
g∈G\S

(
ygi −u

g
i

) (19)

is valid for conv(Ψ), where S ⊆ G such that Di−−
∑

g∈S(V g+Cg)≥ 0 and Di−Di− ≥
∑

g∈G\S V
g−∑

g∈S V
g. Furthermore, it is facet-defining for the two-period case of conv(Ψ) if

∑
g∈S C

g +C
ḡ

+∑
g∈G\{S∪{ḡ}} V

g ≥Di and
∑

g∈S(Cg+V g)+C
ḡ ≥Di−, where generator ḡ is the one with the highest

capacity upper bound.

Proof. See Online Supplement EC.4.2 for the detailed proof. �

Similar to Proposition 15, we can also derive polynomial-time separation algorithms for inequality

(19) and the following inequality (21), and thus we omit them.

Second, we focus on the online/offline status of each generator. Whether a generator is required

to be online is determined by several factors, including its physical characteristics, the load require-

ment at the current time period, and whether this generator is required to be online or offline
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in the last and/or next time period. Based on this insight, we derive inequality (20) to enforce a

minimum number of generators that have to be online at each node i∈ V.

Proposition 17. For each i∈ V, the inequality∑
g∈G

ygi ≥ qi + 1 (20)

is valid for conv(Ψ), where qi is a nonnegative integer satisfying the condition that∑|G|
g=|G|−qi+2C

[g]
<di ≤

∑|G|
g=|G|−qi+1C

[g]
,
∑|G|

g=|G|−qi+1C
[g]

+ν < dj <
∑|G|

g=|G|−qi
C

[g]
for j = i− or j− =

i, C
[1] ≤C [2] ≤ . . .≤C [|G|]

is a sorted nondecreasing order of {Cg
: g ∈ G}, and ν = max{V g

: g ∈ G}

with ν <C
[1]

. Furthermore, it is facet-defining for the two-period case of conv(Ψ).

Proof. See Online Supplement EC.4.3 for the detailed proof. �

Finally, we conduct a further study to consider not only multiple generators but also multiple

time periods, leading to inequality (21), which provides an upper bound for the summation over a

subset of generators in terms of the power generation difference at nodes i−k and i.

Proposition 18. For each S ⊆ G, k ∈ {s∈ [1, T −1]Z :C
g−Cg−sV g > 0, ∀g ∈ G \S}, and i∈ V

such that t(i)≥ k+ 1, the inequality∑
g∈S

(
rg
i−
k

− rgi
)

+
∑
g∈G\S

w+g
i ≤Di−

k
−Di +

∑
g∈G

(
Cgygi −C

gyg
i−
k

)

+
∑
g∈G\S

kV gygi −
min{k−1,Lg−1}∑

m=0

(
Cg + (k−m)V g −V g

)
ug
i−m


−

{
Γ−

(
Di−

∑
g∈S

Cg

)}(
1−

∑
g∈S

(
yg
i− − y

g
i +ugi

))
(21)

is valid for conv(Ψ), where Di ≥max{
∑

g∈G C
g,
∑

g∈S C
g
,
∑

g∈G\S C
g}, and Γ = min{

∑
g∈G\S{(C

g+

kV g)ygi − w
+g
i −

∑min{k−1,Lg−1}
m=0 (Cg + (k −m)V g − V g

)ug
i−m
} :
∑

g∈G\S x
g
i = Di −

∑
g∈S C

g, Cgygi ≤

xgi ≤C
g
ygi , (2a)− (2d),∀g ∈ G \S}.

Proof. See Online Supplement EC.4.4 for the detailed proof. �

6. Computational Experiments

In this section, we test the performance of our proposed strong valid inequalities presented in

Sections 3 – 5 by solving randomly generated instances. All of the numerical experiments were

performed on a computer node with two AMD Opteron 2378 Quad Core Processors at 2.4GHz

and 8GB memory. IBM ILOG CPLEX 12.3 with a single thread is utilized as the MIP solver. The

running time limit is set as one hour and the optimality gap is set as 0.05%. All of the experiments

were coded in C++.
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6.1. Problem Setting

We perform computational experiments on a multistage stochastic network-constrained UC model

for co-optimizing power generation and regulation reserve, with the instances modified based on the

IEEE 118-bus system available at motor.ece.iit.edu/data/SCUC_118. The test system contains

118 buses, 186 transmission lines, 54 thermal generators, and 91 load buses. We assume that

the system net load is stochastic and varies within the interval [0,2N̄ ], where N̄ is the nominal

value of the system net load. The system-wide regulation requirements at each scenario node, i.e.,

(W+
i ,W

−
i ) for i∈ V, are set as a proportion of the system-wide total load at this node. We define

ρ to represent this proportion and let W+
i =W−

i = ρ
∑B

b=1 d
b
i , ∀i∈ V. Here, we let ρ= 10% to show

the performance of our proposed inequalities, and we discuss different levels of reserve requirements

in Section 6.3. In the experiments, we first consider different numbers of generators in the system.

We create six groups of instances by taking subsets of the 54 thermal generators so that we have

15, 20, 25, 30, 35, and 40 generators in the six groups, respectively. Next, we use K to denote the

number of branches for each non-leaf node in the underlying scenario tree, and we consider three

different types of scenario tree structures, i.e., K = 2, 3, and 4. We use T to denote the number of

time periods and set T ∈ {8,9} when K = 2, T ∈ {5,6} when K = 3, and T ∈ {4,5} when K = 4.

Based on these settings, the numbers of the scenario tree nodes of each combination (G,K,T ) are

comparable. For example, there are 121 nodes for combination (G,K,T ) = (15,3,5) and 85 nodes

for combination (G,K,T ) = (15,4,4). Thus, we have created 54 combinations of G, K, and T with

different numbers of generators, scenario tree structures, and time periods. For each combination,

we test three randomly generated instances1, and we provide the average result over these three

instances in the following subsection.

6.2. Computational Results

Our proposed inequalities are added as cutting planes in the branch-and-cut algorithm, and we

present the computational results from two perspectives: the strength of the problem formulation

and the algorithm performance (see Tables 2 and 3). To highlight our focus on co-optimizing energy

generation and the regulation reserve, here we only use the inequalities in Sections 3 – 5 that

include regulation-up/-down reserve variables (i.e., w+
i and w−i for i ∈ V). Most of the derived

inequalities satisfy this requirement. For instance, in Section 4, only inequality (6) does not include

regulation-up/-down reserve variables.

In addition, some families of strong valid inequalities are added in whole and some are not. First,

for a family of inequalities whose size is a polynomial function of the input size of the scenario

tree, specifically including inequalities (4a) - (4f), (6) - (16), and (20), they are added as a whole.

For instance, inequalities (4a) in the two-period convex hull representation are applied to every

motor.ece.iit.edu/data/SCUC_118
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scenario node in the scenario tree except root node 0. Second, for a family of inequalities whose size

is an exponential function of the input size of the scenario tree, specifically including inequalities

(17) - (19) and (21), we limit the number of inequalities added by using an offline selection process.

It is well known that adding too many inequalities will potentially increase the computational time

because the resulting model will become increasingly large. From each family of exponential-sized

inequalities, we select a subset of them by heuristically restricting the validity condition to a small

region where the validity condition is more restrictive (i.e., harder to satisfy) than the rest of

the region. For instance, for inequalities (17), we select those satisfying k ∈ [3, b(C −C)/V c]Z by

removing those satisfying k = 2. Note that inequalities (17) that satisfy k = 2 will be the same as

inequalities (4e). For inequalities (18), we select those satisfying |S| ∈ [2,5]Z because of their good

performance. For inequalities (19), we select all of them because the total number of inequalities

in this family is not large due to the relatively strong condition. For inequalities (21), we select

those satisfying |S| ∈ [2,5]Z and k ∈ [3, b(C −C)/V c]Z because of their good performance. Third,

for those inequalities in the three-period convex hulls, e.g., (EC.5a) through (EC.5v), because they

are polynomial-sized, we add all of them as user cuts by applying them to every scenario node in

the scenario tree whenever appropriate.

Table 2 Root Node Results

G=15 G=20
K T LP Gap (%) Cut Gap (%) Percentage (%) LP Gap (%) Cut Gap (%) Percentage (%)
2 8 2.049 0.106 94.825 0.780 0.063 91.940

9 2.028 0.064 96.849 0.738 0.044 94.022
3 5 1.800 0.111 93.857 0.725 0.090 87.546

6 2.213 0.343 84.508 0.765 0.071 90.672
4 4 0.518 0.050 90.369 0.417 0.141 66.240

5 1.500 0.038 97.478 0.589 0.069 88.278
G=25 G=30

K T LP Gap (%) Cut Gap (%) Percentage (%) LP Gap (%) Cut Gap (%) Percentage (%)
2 8 0.757 0.023 96.958 0.712 0.015 97.921

9 0.723 0.027 96.206 0.720 0.020 97.288
3 5 0.621 0.043 93.156 0.652 0.041 93.778

6 0.686 0.014 97.890 0.685 0.028 95.853
4 4 0.315 0.049 84.406 0.231 0.030 86.897

5 0.526 0.040 92.339 0.538 0.025 95.371
G=35 G=40

K T LP Gap (%) Cut Gap (%) Percentage (%) LP Gap (%) Cut Gap (%) Percentage (%)
2 8 0.695 0.018 97.367 0.686 0.017 97.488

9 0.693 0.023 96.697 0.696 0.025 96.462
3 5 0.622 0.023 96.262 0.625 0.030 95.191

6 0.655 0.023 96.527 0.746 0.033 95.515
4 4 0.193 0.023 88.302 0.192 0.017 91.261

5 0.539 0.024 95.526 0.586 0.027 95.398
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In Table 2, we show the effectiveness of our proposed strong valid inequalities in tightening

the LP relaxation at the root node. The column labeled “LP Gap (%)” represents the relative

LP relaxation gap of the original formulation with respect to the best integer solution that we

can find from the default CPLEX and our branch-and-cut scheme. “LP Gap (%)” is defined as

(ZMILP −ZLP)/ZMILP, where ZLP is the objective value of the LP relaxation and ZMILP represents

the objective value of the MSUC-AS problem with the best integer solution. The column labeled

“Cut Gap (%)” is the LP relaxation gap after adding our strong valid inequalities in Sections 3 – 5.

These two columns indicate the significant decrease in LP relaxation gap as shown in Table 2. We

use the column labeled “Percentage (%)” to show how much the LP relaxation gap is decreased

based on “LP Gap (%),” i.e., Percentage (%) = (LP Gap (%) − Cut Gap (%))/LP Gap (%). As

we can observe from Table 2, adding our proposed strong valid inequalities can help close most

of the LP relaxation gap. In particular, in terms of instances with longer and denser (i.e., more

stages and more branches) scenario trees and instances with more generators in the problem, the

LP relaxation gap can be reduced by around 90%.

In Table 3, we present the average performance of our proposed strong valid inequalities in the

branch-and-cut scheme by comparing the performance of our approach with that of the default

CPLEX. The derived inequalities are added as user cuts in our branch-and-cut scheme following

the selection process mentioned above. In the table, for each combination (G,K,T ), the column

labeled “Gap (%)” indicates the average terminating gaps over the instances solved to feasible

solutions but not solved to default optimality when reaching the time limit. Each pair of numbers

in the square bracket, e.g., [a, b], represent the number of instances (e.g., a) (out of three) not

solved to a feasible solution and the number of instances (e.g., b) solved to feasible solutions but

not solved to our predefined optimality within the time limit, respectively. Thus, when this square

bracket is indicated, there are 3− a− b instances (out of three) solved to the optimality within

the time limit. For each combination (G,K,T ), the average running time over those instances

leading to optimality is reported in the column labeled “CPU secs,” where 3600 is given if all three

instances cannot be solved to the default optimality or feasibility. The column labeled “# of Nodes”

provides the number of branch-and-bound nodes that CPLEX explored and the column labeled “#

of Cuts” gives the number of our derived inequalities used in the branch-and-cut scheme to solve

the instances. As shown in Table 3, our approach performs better than the default CPLEX does

for every case. Specifically, 1) some instances cannot be solved to feasibility by the default CPLEX

but can be solved to feasibility by our approach, 2) some instances cannot be solved to optimality

by the default CPLEX but can be solved to optimality by our approach, 3) our approach spends

less time finding the optimal solution if both approaches can find optimal solutions within the time

limit, and 4) our approach leads to a smaller optimality gap within the time limit if neither of the

approaches can find an optimal solution within the time limit.
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Table 3 Branch-and-Cut Scheme Results

Default CPLEX Branch-and-Cut
G K T Gap(%) CPU secs # of Nodes Gap(%) CPU secs # of Nodes # of Cuts
15 2 8 0.00 1656 5506 0.00 547 1543 259

9 0.00 2397 2981 0.00 312 696 150
3 5 0.00 175 2838 0.00 77 1610 109

6 0.29[2, 1] 3600 6873 0.27[0, 3] 3600 10722 595
4 4 0.00 7 53 0.00 4 68 98

5 0.00 2033 9193 0.00 781 5324 380
20 2 8 0.00 886 2732 0.00 622 3944 446

9 0.00 2524 3143 0.00 438 774 465
3 5 0.00 86 971 0.00 40 571 145

6 0.08[0, 2] 3495 7301 0.00 2789 10114 962
4 4 0.00 74 1573 0.00 24 391 360

5 0.00 2562 9229 0.00 1937 10113 704
25 2 8 0.00 396 1069 0.00 240 889 420

9 0.00 805 924 0.00 298 496 583
3 5 0.00 43 384 0.00 17 175 127

6 0.00[1, 0] 3368 10044 0.00 2145 10157 1210
4 4 0.00 32 607 0.00 27 291 428

5 0.00 926 2265 0.00 441 1336 508
30 2 8 0.00 546 1511 0.00 229 564 423

9 0.00 1212 1216 0.00 946 1086 554
3 5 0.00 136 1516 0.00 17 104 151

6 0.59[0, 1] 2863 5706 0.00 2433 6780 1050
4 4 0.00 20 321 0.00 7 0 224

5 0.06[0, 1] 2728 6022 0.00 1260 4300 671
35 2 8 0.00 639 1373 0.00 359 794 440

9 0.00 461 408 0.00 139 302 441
3 5 0.00 139 1042 0.00 61 426 93

6 0.00 1931 4566 0.00 1328 3697 831
4 4 0.00 7 0 0.00 4 0 76

5 0.44[0, 1] 2094 4746 0.00 1138 1590 359
40 2 8 0.00 222 515 0.00 201 383 433

9 0.00 746 602 0.00 454 500 486
3 5 0.00 91 468 0.00 18 70 111

6 0.08[0, 1] 2537 2805 0.00 1547 3623 1174
4 4 0.00 4 0 0.00 3 0 74

5 0.40[0, 1] 2964 5805 0.00 1394 3405 423

6.3. Sensitivity Analysis

In this subsection, we perform a sensitivity analysis to illustrate the effectiveness of our proposed

inequalities corresponding to different reserve requirement levels. We test randomly generated

instances by considering three different reserve requirement levels (i.e., ρ= 3%, 5%, and 10%) that

follow common practices in industry as indicated by ISO New England (2019) and Ma et al. (2013).

We follow the same settings described in Sections 6.1 and 6.2 to randomly generate instances and

to apply the branch-and-cut scheme, respectively. To show the main insights, we focus on two
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performance indicators: (1) how our proposed inequalities tighten the LP relaxation problem, which

is defined as Percentage (%) = (LP Gap (%)−Cut Gap (%))/LP Gap (%) in Table 2 and is also

labeled in Table 4, and (2) how many inequalities are used by CPLEX, which is labeled as “# of

Cuts” in Table 4. We consider three different combinations of (G,K,T ) in terms of the number of

generators, scenario tree structures, and time periods, namely (15,2,8), (15,3,5), and (15,4,4). For

each combination of (G,K,T ), we randomly generate 10 test cases for a given reserve requirement

level (which is labeled as “Reserve Rate(%)” in Table 4) and report the average results.

Table 4 Sensitivity Analysis Results, G= 15

K T Reserve Rate(%) Percentage(%) # of Cuts
2 8 3 80.82 285

5 82.07 284
10 98.25 205

3 5 3 59.25 126
5 58.78 136
10 93.29 100

4 4 3 62.54 140
5 71.69 161
10 91.98 127

From Table 4, we can observe that the root node gap improvement (i.e., Percentage (%)) becomes

more significant when the reserve requirement level (i.e., ρ) increases. It indicates that when ρ

increases, our proposed inequalities become more effective in tightening the original formulation.

Meanwhile, the number of inequalities used by CPLEX is fairly stable when comparing the cases

using different levels of reserve requirements.

7. Conclusions

The recent introduction of ancillary service market, which helps manage significant uncertainties

brought by increasing renewable energy, has presented power system operators with a huge chal-

lenge in coordinating the traditional energy market and the new ancillary service market under

uncertainty. To overcome this challenge, in this paper, we proposed a multistage stochastic opti-

mization model for system operators to schedule power generation assets under uncertainty so that

the power generation and regulation reserve service are co-optimized, which has received limited

attention in the literature. Our approach utilized a multi-period scenario tree to describe the net

load uncertainty and incorporated the physical constraints for each generator and the network

constraints (e.g., demand and reserve requirements) that couple all of the generators, leading to a

large-scale deterministic equivalent formulation. To efficiently solve the resulting large-scale mixed-

integer program, we explored the polyhedral structure of the proposed model by taking advantage
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of the scenario tree structure, the physical characteristics of the individual generators, and the

system-wide requirements that couple all of the generators to derive strong valid inequalities. First,

we considered the single-generator polytope, for which we derived convex hull descriptions for cer-

tain special cases. For the general multi-period cases, we derived facet-defining inequalities linking

different scenarios, with both power generation and regulation-up/-down reserves simultaneously

considered in every inequality. Next, we considered the multi-generator polytope and derived strong

valid inequalities linking different generators and covering multiple time periods. For the exponen-

tial number of inequalities in this paper, we proposed corresponding polynomial time separation

algorithms. Finally, the computational experiments demonstrated the effectiveness of our proposed

strong valid inequalities, which are embedded in the branch-and-cut framework as user cuts.
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Endnotes

1. All the instance data are available for download at https://drive.google.com/file/d/

1RotIkF_AbmdXdCbtPwWsYgOROqvQEkUf/view.
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Online Supplement for “Multistage Stochastic Power
Generation Scheduling Co-Optimizing Energy and Ancillary
Services”

The detailed proofs for the theoretical results in Sections 3 – 5 are provided in this online

supplement as follows.

EC.1. Proofs for Two-Period Formulations
EC.1.1. Proof for Proposition 1

Proof. Inequality (4a). Inequality (4a) for each i is clearly valid when yi− = 0 since ri− = 0

due to constraints (3g) and yi − ui ≥ 0 due to constraints (3a). Thus, we only need to consider

the case in which yi− = 1, leading to ui = 0, ∀i∈N , due to minimum-down time constraints (3b).

It follows that inequality (4a) converts to ri− ≤ V −C + (C − V )yi,∀i ∈ N . If there exists some

i∈N such that yi = 0, then inequality (4a) becomes ri− ≤ V −C, which is valid due to constraints

(3i). Otherwise, yi = 1, ∀i ∈ N , then inequality (4a) becomes ri− ≤ C −C, which is valid due to

constraints (3g).

Inequality (4b). We show the validity of inequality (4b) by discussing the following three

possible cases in terms of the values of yi and ui.

1) If yi = 0, then inequality (4b) for each pair (i, j) is clearly valid due to minimum-up time

constraints (3a).

2) If yi = 1 and ui = 0, then yi− = 1 and uj = 0, ∀j ∈N , due to constraints (3c). Inequality (4b)

becomes ri+w+
i ≤ (V +V −C)+(C−V −V )yj, ∀i, j ∈N . If there exists some j ∈N such that

yj = 0, then inequality (4b) becomes ri +w+
i ≤ V −C + V , which is valid because ri +w+

i ≤

ri−+V due to ramping-up constraints (3h) and ri− ≤ V −C due to ramping-down constraints

(3i). Otherwise, yj = 1, ∀j ∈ N , then inequality (4b) converts to ri +w+
i ≤ C −C, which is

valid due to constraints (3g).

3) If yi = ui = 1, then yi− = 1 due to constraints (3c) and yj = uj, ∀j ∈ N , due to constraints

(3a) and (3c). Inequality (4b) becomes ri + w+
i ≤ V − C, which is valid due to ramping-up

constraints (3h).

Inequality (4c). This inequality illustrates an explicit relationship between the regulation-up

and -down reserves by providing a tight upper bound for the summation of these two types of

reserves at each scenario node. We show its validity by following the similar proof for inequality (4b)

as follows.

1) If yi = 0, then inequality (4c) for each pair (i, j) is clearly valid due to minimum-up time

constraints (3a).
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2) If yi = 1 and ui = 0, then yi− = 1 and uj = 0, ∀j ∈N , due to constraints (3c). Inequality (4c)

becomes w+
i +w−i ≤ (V +V −C) + (C +V −V )yj, ∀i, j ∈N . If there exists some j ∈N such

that yj = 0, then inequality (4c) converts to w+
i +w−i ≤ V + V − C, which is valid because

w+
i +w−i ≤ ri +w+

i due to constraints (3e) and ri +w+
i ≤ V + V −C due to constraints (3h)

and (3i). Otherwise, yj = 1, ∀j ∈ N , then inequality (4c) becomes w+
i +w−i ≤ 2V , which is

valid due to constraints (3h) and (3i).

3) If yi = ui = 1, then yi− = 1 due to constraints (3c), and yj = uj, ∀j ∈ N , due to constraints

(3a) and (3c). Inequality (4c) becomes w+
i +w−i ≤ V −C, which is valid because w+

i +w−i ≤
ri +w+

i ≤ V −C due to constraints (3e) and (3h).

For inequality (4d), we show how we obtain inequality (4d) for each given i∈N , which evidently

shows that inequality (4d) is valid. From constraints (3h), we have ri +w+
i − ri− ≤ V (1− yi−) +

(C+V )yi−−Cyi. Since ui ≤ 1−yi− due to constraints (3b), we tighten the RHS of constraints (3h)

by replacing 1− yi− with ui. It follows that

ri +w+
i − ri− ≤ V ui + (C +V )yi− −Cyi, (EC.1)

which is clearly valid if ui = 1− yi− . Otherwise we have ui = 0 and yi− = 0, indicating that (EC.1)

is also valid. Next, we continue to tighten inequality (EC.1) by replacing yi− with yi − ui, as

yi− ≥ yi − ui due to constraints (3c). It follows that we obtain inequality (4d), which is clearly

valid if yi− = yi− ui. Otherwise we have yi− = 1 and yi− ui = 0, indicating ui = 0, ∀i ∈N , due to

constraints (3b). Thus inequality (4d) becomes ri− ≥ 0, which is clearly valid.

Inequality (4e). We show the validity of inequality (4e) for each pair (i, j) by discussing the

following two possible cases.

1) If yi− = 0, then ri− = 0 and yi = ui, ∀i∈N . As a result, inequality (4e) becomes −ri+w−i ≤ 0,

which is constraint (3e) and thus valid.

2) If yi− = 1, then ui = 0, ∀i∈N , due to constraints (3b). Inequality (4e) converts to ri− − ri +

w−i ≤ (V − C) + (C + V − V )yj, ∀j ∈ N . If there exists some j ∈ N such that yj = 0, then

inequality (4e) becomes ri− − ri + w−i ≤ V − C, which is valid due to (3e) and ramp-down

constraints (3i). Otherwise, yj = 1, ∀j ∈N , then inequality (4e) becomes ri− − ri +w−i ≤ V ,

which is valid due to ramping-down constraints (3i).

For inequality (4f), we show how we derive inequality (4f) from valid inequalities (4d) and (4e).

First, we derive a valid inequality (i.e., (EC.2) in the following) for conv(P2) from inequalities (4d)

and (4e). In fact, inequality (4e) can be written as rj− − rj +w−j ≤ (V −C)yi− + (C+V −V )(yk−
uk), ∀j, k ∈N , and by summing up (4d) and (4e), we obtain inequality (EC.2) as follows:

ri +wi− rj +w−j ≤ (V −C)yi− +V yi− (C +V −V )ui + (C +V −V )(yk−uk), ∀i, j, k ∈N , i 6= j.

(EC.2)
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Next, we continue to tighten inequality (EC.2) by replacing yi− with yi − ui and accordingly

we obtain inequality (4f), which is clearly valid if yi− = yi − ui. Otherwise we have yi− = 1 and

yi − ui = 0, indicating uk = 0, ∀k ∈ N , due to constraints (3b). Thus inequality (4f) converts to

−rj +w−j ≤ (C + V − V )yk, ∀j, k ∈N , which is valid because rj ≥w−j due to constraints (3e) and

yk ≥ 0. �

EC.1.2. Proof for Proposition EC.1

Proposition EC.1. The polytope Q2 is full-dimensional.

Proof. We show that Q2 is a full-dimensional polytope by providing 5n+4 linearly independent

points in Q2 here.

(1) For each i ∈N (totally n points), yi = ui = 1 and yj = uj = 0,∀j ∈N ∪ {i−}, j 6= i. ri =w+
i =

w−i = 0,∀i∈N ∪{i−}.
(2) For each i ∈ N (totally n points), yi = ui = 1 and yj = uj = 0,∀j ∈ N ∪ {i−}, j 6= i. ri =

V −C,rj = 0,∀j ∈N ∪{i−}, j 6= i and w+
i =w−i = 0,∀i∈N ∪{i−}.

(3) For each i ∈ N (totally n points), yi = ui = 1 and yj = uj = 0,∀j ∈ N ∪ {i−}, j 6= i. w+
i =

V −C,w+
j = 0,∀j ∈N ∪{i−}, j 6= i and ri =w−i = 0,∀i∈N ∪{i−}.

(4) For each i ∈N (totally n points), yi = ui = 1 and yj = uj = 0,∀j ∈N ∪ {i−}, j 6= i. ri =w−i =

V −C,rj =w−j = 0,∀j ∈N ∪{i−}, j 6= i and w+
i = 0,∀i∈N ∪{i−}.

(5) For each i ∈N (totally n points). yi− = yi = 1 and yj = 0,∀j ∈N , j 6= i. ui = 0,∀i ∈N ∪{i−},
and ri =w+

i =w−i = 0,∀i∈N ∪{i−}.
(6) (Totally one point). yi− = 1 and yi = ui = 0,∀i∈N . ri =w+

i =w−i = 0,∀i∈N ∪{i−}.
(7) (Totally one point). yi− = 1 and yi = ui = 0,∀i∈N . ri− = V −C,w+

i− =w−
i− = 0, and ri =w+

i =

w−i = 0,∀i∈N .

(8) (Totally one point). yi− = 1 and yi = ui = 0,∀i ∈ N . ri− = 0,w+
i− = V −C,w−

i− = 0, and ri =

w+
i =w−i = 0,∀i∈N .

(9) (Totally one point). yi− = 1 and yi = ui = 0,∀i ∈ N . ri− = V −C,w+
i− = 0,w−

i− = V −C, and

ri =w+
i =w−i = 0,∀i∈N .

We can easily observe that with Gaussian elimination, the points in Groups (1) - (9) can construct

a lower-triangular matrix and thus they are linearly independent. It follows that the statement is

proved. �

EC.1.3. Proof for Proposition EC.2

Proposition EC.2. All of the inequalities in Q2 are facet-defining for conv(P2).

Proof. We show each inequality in Q2 is facet-defining for conv(P2) by generating 5n+4 affinely

independent points in conv(P2). Since ~0 ∈ conv(P2), we only need to construct 5n + 3 linearly

independent points in conv(P2) with each satisfying one inequality of Q2 at equation.
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For inequality (3a): yj ≥ uj,∀j ∈N .

For any specific j ∈N , we generate same groups of points as in Online Supplement EC.1.2 excluding

the point with yj = 1 from Group (5).

For inequality (3b): uj + yi− ≤ 1,∀j ∈N .

For any specific j ∈N , we can pick 5n+ 3 points from the points generated in Online Supplement

EC.1.2, as all of them satisfy inequality (3b) at equality.

For inequality (3c): yj −uj ≤ yj− ,∀j ∈N .

For any specific j ∈N , we can pick 5n+ 3 points from the points generated in Online Supplement

EC.1.2, as all of them satisfy inequality (3c) at equality.

For inequality (3e): ri ≥w−i ,∀i∈N .

For any specific i∈N , without loss of generality, we assume that node i is the first node in N due

to symmetry, i.e., i= 1, then we can generate the following groups of points.

(1) For each i ∈N (totally n points), yi = ui = 1 and yj = uj = 0,∀j ∈N ∪ {i−}, j 6= i. ri =w+
i =

w−i = 0,∀i∈N ∪{i−}.

(2) For each i ∈ N \{1} (totally n− 1 points), yi = ui = 1 and yj = uj = 0,∀j ∈ N ∪ {i−}, j 6= i.

ri = V −C,rj = 0,∀j ∈N ∪{i−}, j 6= i and w+
i =w−i = 0,∀i∈N ∪{i−}.

(3) For each i ∈ N (totally n points), yi = ui = 1 and yj = uj = 0,∀j ∈ N ∪ {i−}, j 6= i. w+
i =

V −C,w+
j = 0,∀j ∈N ∪{i−}, j 6= i and ri =w−i = 0,∀i∈N ∪{i−}.

(4) For each i ∈N (totally n points), yi = ui = 1 and yj = uj = 0,∀j ∈N ∪ {i−}, j 6= i. ri =w−i =

V −C,rj =w−j = 0,∀j ∈N ∪{i−}, j 6= i and w+
i = 0,∀i∈N ∪{i−}.

(5) For each i ∈N (totally n points). yi− = yi = 1 and yj = 0,∀j ∈N , j 6= i. ui = 0,∀i ∈N ∪{i−},

and ri =w+
i =w−i = 0,∀i∈N ∪{i−}.

(6) (Totally one point). yi− = 1 and yi = ui = 0,∀i∈N . ri =w+
i =w−i = 0,∀i∈N ∪{i−}.

(7) (Totally one point). yi− = 1 and yi = ui = 0,∀i∈N . ri− = V −C,w+
i− =w−

i− = 0, and ri =w+
i =

w−i = 0,∀i∈N .

(8) (Totally one point). yi− = 1 and yi = ui = 0,∀i ∈ N . ri− = 0,w+
i− = V −C,w−

i− = 0, and ri =

w+
i =w−i = 0,∀i∈N .

(9) (Totally one point). yi− = 1 and yi = ui = 0,∀i ∈ N . ri− = V −C,w+
i− = 0,w−

i− = V −C, and

ri =w+
i =w−i = 0,∀i∈N .

As the 5n+ 3 generated points above are picked from the ones in Online Supplement EC.1.2, they

are clearly linearly independent.

For inequality (4a). For any specific i∈N , without loss of generality, e.g., i= 1, we can generate

the following groups of points.

(1) For each i ∈N (totally n points), yi = ui = 1 and yj = uj = 0,∀j ∈N ∪ {i−}, j 6= i. ri =w+
i =

w−i = 0,∀i∈N ∪{i−}.
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(2) For each i ∈ N (totally n points), yi = ui = 1 and yj = uj = 0,∀j ∈ N ∪ {i−}, j 6= i. ri =

V −C,rj = 0,∀j ∈N ∪{i−}, j 6= i and w+
i =w−i = 0,∀i∈N ∪{i−}.

(3) For each i ∈ N (totally n points), yi = ui = 1 and yj = uj = 0,∀j ∈ N ∪ {i−}, j 6= i. w+
i =

V −C,w+
j = 0,∀j ∈N ∪{i−}, j 6= i and ri =w−i = 0,∀i∈N ∪{i−}.

(4) For each i ∈N (totally n points), yi = ui = 1 and yj = uj = 0,∀j ∈N ∪ {i−}, j 6= i. ri =w−i =

V −C,rj =w−j = 0,∀j ∈N ∪{i−}, j 6= i and w+
i = 0,∀i∈N ∪{i−}.

(5) For each i ∈ [2, n]Z (totally n− 1 points). yi− = yi = 1 and yj = 0,∀j ∈ N , j 6= i. ui = 0,∀i ∈

N ∪{i−}, ri− = V −C,ri = 0,∀i∈N and w+
i =w−i = 0,∀i∈N ∪{i−}.

(6) (Totally one point). yi− = 1 and yi = ui = 0,∀i∈N . ri =w+
i =w−i = 0,∀i∈N ∪{i−}.

(7) (Totally one point). yi− = 1 and yi = ui = 0,∀i∈N . ri− = V −C,w+
i− =w−

i− = 0, and ri =w+
i =

w−i = 0,∀i∈N .

(8) (Totally one point). yi− = 1 and yi = ui = 0,∀i ∈ N . ri− = V −C,w+
i− = C − V ,w−

i− = 0, and

ri =w+
i =w−i = 0,∀i∈N .

(9) (Totally one point). yi− = 1 and yi = ui = 0,∀i ∈ N . ri− = V −C,w+
i− = 0,w−

i− = V −C, and

ri =w+
i =w−i = 0,∀i∈N .

For inequality (4b). We prove that inequality (4b) is facet-defining for conv(P2). Without loss

of generality, we assume i= 1 and j = n.

(1) For each i ∈ [2, n]Z (totally n− 1 points), yi = ui = 1 and yj = uj = 0,∀j ∈ N ∪ {i−}, j 6= i.

ri =w+
i =w−i = 0,∀i∈N ∪{i−}.

(2) For each i ∈ N (totally n points), yi = ui = 1 and yj = uj = 0,∀j ∈ N ∪ {i−}, j 6= i. ri =

V −C,rj = 0,∀j ∈N ∪{i−}, j 6= i and w+
i =w−i = 0,∀i∈N ∪{i−}.

(3) For each i ∈ N (totally n points), yi = ui = 1 and yj = uj = 0,∀j ∈ N ∪ {i−}, j 6= i. w+
i =

V −C,w+
j = 0,∀j ∈N ∪{i−}, j 6= i and ri =w−i = 0,∀i∈N ∪{i−}.

(4) For each i ∈N (totally n points), yi = ui = 1 and yj = uj = 0,∀j ∈N ∪ {i−}, j 6= i. ri =w−i =

V −C,rj =w−j = 0,∀j ∈N ∪{i−}, j 6= i and w+
i = 0,∀i∈N ∪{i−}.

(5) For each i∈ [2, n− 1]Z (totally n− 2 points). yi− = yi = 1 and yj = 0,∀j ∈N , j 6= i. ui = 0,∀i∈

N ∪{i−}, and ri =w+
i =w−i = 0,∀i∈N ∪{i−}.

(6) (Totally one point). yi− = y1 = 1 and yi = ui = 0,∀i ∈ [2, n]Z. ri− = V − C,w+
i− = w−

i− = 0,

w+
1 = V +V −C,w+

i = 0,∀i∈ [2, n]Z and ri =w−i = 0,∀i∈N .

(7) (Totally one point). yi = 1,∀i ∈ N ∪ {i−} and ui = 0,∀i ∈ N ∪ {i−}. ri− = C −C − V,w+
i− =

w−
i− = 0, and ri =C −C − 2V,∀i∈N , w+

1 = 2V,w+
i = 0,∀i∈ [2, n]Z,w

−
i = 0,∀i∈N .

(8) (Totally one point). yi− = 1 and yi = ui = 0,∀i∈N . ri =w+
i =w−i = 0,∀i∈N ∪{i−}.

(9) (Totally one point). yi− = 1 and yi = ui = 0,∀i∈N . ri− = V −C,w+
i− =w−

i− = 0, and ri =w+
i =

w−i = 0,∀i∈N .
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(10) (Totally one point). yi− = 1 and yi = ui = 0,∀i ∈ N . ri− = 0,w+
i− = C −C,w−

i− = 0, and ri =

w+
i =w−i = 0,∀i∈N .

(11) (Totally one point). yi− = 1 and yi = ui = 0,∀i ∈ N . ri− = V −C,w+
i− = 0,w−

i− = V −C, and

ri =w+
i =w−i = 0,∀i∈N .

For inequality (4c). We prove that inequality (4c) is facet-defining for conv(P2). Without loss of

generality, we assume i= 1 and j = n.

(1) For each i ∈ [2, n]Z (totally n− 1 points), yi = ui = 1 and yj = uj = 0,∀j ∈ N ∪ {i−}, j 6= i.

ri =w+
i =w−i = 0,∀i∈N ∪{i−}.

(2) For each i ∈ [2, n]Z (totally n− 1 points), yi = ui = 1 and yj = uj = 0,∀j ∈ N ∪ {i−}, j 6= i.

ri = V −C,rj = 0,∀j ∈N ∪{i−}, j 6= i and w+
i =w−i = 0,∀i∈N ∪{i−}.

(3) For each i ∈ N (totally n points), yi = ui = 1 and yj = uj = 0,∀j ∈ N ∪ {i−}, j 6= i. w+
i =

V −C,w+
j = 0,∀j ∈N ∪{i−}, j 6= i and ri =w−i = 0,∀i∈N ∪{i−}.

(4) For each i ∈N (totally n points), yi = ui = 1 and yj = uj = 0,∀j ∈N ∪ {i−}, j 6= i. ri =w−i =

V −C,rj =w−j = 0,∀j ∈N ∪{i−}, j 6= i and w+
i = 0,∀i∈N ∪{i−}.

(5) For each i∈ [2, n− 1]Z (totally n− 2 points). yi− = yi = 1 and yj = 0,∀j ∈N , j 6= i. ui = 0,∀i∈

N ∪{i−}, and ri =w+
i =w−i = 0,∀i∈N ∪{i−}.

(6) (Totally one point). yi− = y1 = 1 and yi = ui = 0,∀i ∈ [2, n]Z. ri− = V − C,w+
i− = w−

i− = 0,

w+
1 = V +V −C,w+

i = 0,∀i∈ [2, n]Z and ri =w−i = 0,∀i∈N .

(7) (Totally one point). yi = 1,∀i ∈ N ∪ {i−} and ui = 0,∀i ∈ N ∪ {i−}. ri− = V,w+
i− = w−

i− = 0,

and w+
1 = 2V,w+

i = 0,∀i∈ [2, n]Z, ri =w−i = 0,∀i∈N .

(8) (Totally one point). yi = 1,∀i ∈ N ∪ {i−} and ui = 0,∀i ∈ N ∪ {i−}. ri− = C −C − V,w+
i− =

w−
i− = 0, and ri =C −C − 2V,∀i∈N , w+

1 = 2V,w+
i = 0,∀i∈ [2, n]Z,w

−
i = 0,∀i∈N .

(9) (Totally one point). yi− = 1 and yi = ui = 0,∀i∈N . ri =w+
i =w−i = 0,∀i∈N ∪{i−}.

(10) (Totally one point). yi− = 1 and yi = ui = 0,∀i∈N . ri− = V −C,w+
i− =w−

i− = 0, and ri =w+
i =

w−i = 0,∀i∈N .

(11) (Totally one point). yi− = 1 and yi = ui = 0,∀i ∈ N . ri− = 0,w+
i− = C −C,w−

i− = 0, and ri =

w+
i =w−i = 0,∀i∈N .

(12) (Totally one point). yi− = 1 and yi = ui = 0,∀i ∈ N . ri− = V −C,w+
i− = 0,w−

i− = V −C, and

ri =w+
i =w−i = 0,∀i∈N .

For inequality (4d). Without loss of generality, we assume i= 1.

(1) For each i ∈ [2, n]Z (totally n− 1 points), yi = ui = 1 and yj = uj = 0,∀j ∈ N ∪ {i−}, j 6= i.

ri =w+
i =w−i = 0,∀i∈N ∪{i−}.

(2) For each i ∈ N (totally n points), yi = ui = 1 and yj = uj = 0,∀j ∈ N ∪ {i−}, j 6= i. ri =

V −C,rj = 0,∀j ∈N ∪{i−}, j 6= i and w+
i =w−i = 0,∀i∈N ∪{i−}.
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(3) For each i ∈ N (totally n points), yi = ui = 1 and yj = uj = 0,∀j ∈ N ∪ {i−}, j 6= i. w+
i =

V −C,w+
j = 0,∀j ∈N ∪{i−}, j 6= i and ri =w−i = 0,∀i∈N ∪{i−}.

(4) For each i ∈N (totally n points), yi = ui = 1 and yj = uj = 0,∀j ∈N ∪ {i−}, j 6= i. ri =w−i =

V −C,rj =w−j = 0,∀j ∈N ∪{i−}, j 6= i and w+
i = 0,∀i∈N ∪{i−}.

(5) For each i ∈ [2, n]Z (totally n− 1 points). yi− = yi = 1 and yj = 0,∀j ∈ N , j 6= i. ui = 0,∀i ∈

N ∪{i−}, and ri =w+
i =w−i = 0,∀i∈N ∪{i−}.

(6) (Totally one point). yi− = y1 = 1 and yi = ui = 0,∀i ∈ [2, n]Z. ri− = w+
i− = w−

i− = 0, w+
1 =

V,w+
i = 0,∀i∈ [2, n]Z and ri =w−i = 0,∀i∈N .

(7) (Totally one point). yi− = y1 = 1 and yi = ui = 0,∀i ∈ [2, n]Z. ri− = V − C,w+
i− = w−

i− = 0,

w+
1 = V +V −C,w+

i = 0,∀i∈ [2, n]Z and ri =w−i = 0,∀i∈N .

(8) (Totally one point). yi− = y1 = 1 and yi = ui = 0,∀i ∈ [2, n]Z. ri− = w−
i− = V − C,w+

i− = 0,

w+
1 = V +V −C,w+

i = 0,∀i∈ [2, n]Z and ri =w−i = 0,∀i∈N .

(9) (Totally one point). yi− = 1 and yi = ui = 0,∀i∈N . ri =w+
i =w−i = 0,∀i∈N ∪{i−}.

(10) (Totally one point). yi− = 1 and yi = ui = 0,∀i ∈ N . ri− = 0,w+
i− = C −C,w−

i− = 0, and ri =

w+
i =w−i = 0,∀i∈N .

For inequality (4e). Without loss of generality, we assume i= 1 and j = n.

(1) For each i ∈N (totally n points), yi = ui = 1 and yj = uj = 0,∀j ∈N ∪ {i−}, j 6= i. ri =w+
i =

w−i = 0,∀i∈N ∪{i−}.

(2) For each i ∈ [2, n]Z (totally n− 1 points), yi = ui = 1 and yj = uj = 0,∀j ∈ N ∪ {i−}, j 6= i.

ri = V −C,rj = 0,∀j ∈N ∪{i−}, j 6= i and w+
i =w−i = 0,∀i∈N ∪{i−}.

(3) For each i ∈ N (totally n points), yi = ui = 1 and yj = uj = 0,∀j ∈ N ∪ {i−}, j 6= i. w+
i =

V −C,w+
j = 0,∀j ∈N ∪{i−}, j 6= i and ri =w−i = 0,∀i∈N ∪{i−}.

(4) For each i ∈N (totally n points), yi = ui = 1 and yj = uj = 0,∀j ∈N ∪ {i−}, j 6= i. ri =w−i =

V −C,rj =w−j = 0,∀j ∈N ∪{i−}, j 6= i and w+
i = 0,∀i∈N ∪{i−}.

(5) For each i∈ [1, n− 1]Z (totally n− 1 points). yi− = yi = 1 and yj = 0,∀j ∈N , j 6= i. ui = 0,∀i∈

N ∪{i−}, ri− = V −C,ri = 0,∀i∈N , and w+
i =w−i = 0,∀i∈N ∪{i−}.

(6) (Totally one point). yi = 1,∀i ∈ N ∪ {i−} and ui = 0,∀i ∈ N ∪ {i−}. ri− = C −C − V,w+
i− =

w−
i− = 0, and ri =C −C − 2V,∀i∈N , w+

1 = 2V,w+
i = 0,∀i∈ [2, n]Z,w

−
i = 0,∀i∈N .

(7) (Totally one point). yi− = 1 and yi = ui = 0,∀i∈N . ri =w+
i =w−i = 0,∀i∈N ∪{i−}.

(8) (Totally one point). yi− = 1 and yi = ui = 0,∀i∈N . ri− = V −C,w+
i− =w−

i− = 0, and ri =w+
i =

w−i = 0,∀i∈N .

(9) (Totally one point). yi− = 1 and yi = ui = 0,∀i ∈ N . ri− = V −C,w+
i− = C − V ,w−

i− = 0, and

ri =w+
i =w−i = 0,∀i∈N .

(10) (Totally one point). yi− = 1 and yi = ui = 0,∀i ∈ N . ri− = V −C,w+
i− = 0,w−

i− = V −C, and

ri =w+
i =w−i = 0,∀i∈N .
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For inequality (4f). Without loss of generality, we assume i= 1, j = n, and k= 2.

(1) For each i ∈ [2, n]Z (totally n− 1 points), yi = ui = 1 and yj = uj = 0,∀j ∈ N ∪ {i−}, j 6= i.

ri =w+
i =w−i = 0,∀i∈N ∪{i−}.

(2) For each i ∈ [1, n− 1]Z (totally n− 1 points), yi = ui = 1 and yj = uj = 0,∀j ∈N ∪{i−}, j 6= i.

ri = V −C,rj = 0,∀j ∈N ∪{i−}, j 6= i and w+
i =w−i = 0,∀i∈N ∪{i−}.

(3) For each i ∈ N (totally n points), yi = ui = 1 and yj = uj = 0,∀j ∈ N ∪ {i−}, j 6= i. w+
i =

V −C,w+
j = 0,∀j ∈N ∪{i−}, j 6= i and ri =w−i = 0,∀i∈N ∪{i−}.

(4) For each i ∈N (totally n points), yi = ui = 1 and yj = uj = 0,∀j ∈N ∪ {i−}, j 6= i. ri =w−i =

V −C,rj =w−j = 0,∀j ∈N ∪{i−}, j 6= i and w+
i = 0,∀i∈N ∪{i−}.

(5) For each i∈ [2, n− 1]Z (totally n− 2 points). yi− = yi = 1 and yj = 0,∀j ∈N , j 6= i. ui = 0,∀i∈

N ∪{i−}, and ri =w+
i =w−i = 0,∀i∈N ∪{i−}.

(6) (Totally one point). yi− = y1 = 1 and yj = 0,∀j ∈ [2, n]Z. ui = 0,∀i∈N ∪{i−}, ri− = V −C,r1 =

V +V −C,ri = 0,∀i∈ [2, n]Z and w+
i =w−i = 0,∀i∈N ∪{i−}.

(7) (Totally one point). yi = 1,∀i ∈ N ∪ {i−} and ui = 0,∀i ∈ N ∪ {i−}. ri− = V,w+
i− = w−

i− = 0,

and ri = 0,∀i∈N , w+
1 = 2V,w+

i = 0,∀i∈ [2, n]Z,w
−
i = 0,∀i∈N .

(8) (Totally one point). yi = 1,∀i ∈ N ∪ {i−} and ui = 0,∀i ∈ N ∪ {i−}. ri− = C −C − V,w+
i− =

w−
i− = 0, and ri =C −C − 2V,∀i∈N , w+

1 = 2V,w+
i = 0,∀i∈ [2, n]Z,w

−
i = 0,∀i∈N .

(9) (Totally one point). yi− = 1 and yi = ui = 0,∀i∈N . ri =w+
i =w−i = 0,∀i∈N ∪{i−}.

(10) (Totally one point). yi− = 1 and yi = ui = 0,∀i∈N . ri− = V −C,w+
i− =w−

i− = 0, and ri =w+
i =

w−i = 0,∀i∈N .

(11) (Totally one point). yi− = 1 and yi = ui = 0,∀i ∈ N . ri− = V −C,w+
i− = C − V ,w−

i− = 0, and

ri =w+
i =w−i = 0,∀i∈N .

(12) (Totally one point). yi− = 1 and yi = ui = 0,∀i ∈ N . ri− = V −C,w+
i− = 0,w−

i− = V −C, and

ri =w+
i =w−i = 0,∀i∈N .

Finally, we can follow the similar way to easily show that trivial inequalities (3d) and (5) are also

facet-defining and thus we omit the corresponding proof here. �

EC.1.4. Proof for Proposition EC.3

Proposition EC.3. All of the inequalities in P2 are dominated by those in Q2.

Proof. We prove the proposition by showing that all the inequalities in P2 can be represented

as an affine combination of inequalities in Q2. Since inequalities (3a) - (3f) belong to Q2, we only

need to consider inequalities (3g) - (3i).

Inequality (3g). By picking i= j for inequality (4b) in Q2, we can obtain ri +w+
i ≤ (C −C)yi−

(C −V )ui which implies inequality (3g) in P2.
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Inequality (3h). We can derive inequality (3h) by rewriting inequality (4d) as ri + w+
i − ri− ≤

V yi − (C + V − V )ui = (C + V − V )(yi − ui) + V yi −Cui ≤ (C + V − V )yi− + V −Cui, where the

last inequality holds because of yi ≤ 1 and constraints (3c).

Inequality (3i). Inequality (3i) is dominated, because we can pick i = j ∈ N in inequality (4e)

such that ri− − ri + w−i ≤ (V − C)yi− + (C + V − V )(yi − ui) = V yi− + (C + V − V )yi − Cyi− −

(C+V −V )ui ≤ V + (C+V −V )yi−Cyi− , where the last inequality holds because of yi− ≤ 1 and

ui ≥ 0. �

EC.1.5. Proof for Lemma EC.1

Lemma EC.1. For the following two-period multistage stochastic self-scheduling problem co-

optimizing power generation and regulation reserve service

z∗ = max

{
n∑
i=0

airi +
n∑
i=0

biw
+
i +

n∑
i=0

ciw
−
i +

n∑
i=0

diyi +
n∑
i=1

eiui : (r,w+,w−, y, u)∈ P2

}
, (EC.3)

where (a, b, c, d, e)∈R5n+4, there exists at least one optimal solution satisfying one of the following

six conditions:

1) r0 =w+
0 =w−0 = y0 = 0, (ri, w

+
i , w

−
i , yi)∈ {(0, 0, 0, 0), (0, 0, 0, 1), (V −C, 0, 0, 1), (0, V −

C, 0, 1), (V −C, 0, V −C, 1)}, ∀i= 1, · · · , n, and binary variables u are uniquely decided

following the constraints in P2;

2) (r0, w
+
0 , w

−
0 , y0)∈ {(0, 0, 0, 1), (0, C−C,0,1)}, (ri, w

+
i , w

−
i , yi)∈ {(0, 0, 0, 0), (0, 0, 0,

1), (V, 0, 0, 1), (0, V, 0, 1), (V, 0, V, 1)}, ∀i= 1, · · · , n, and binary variables y and u are

uniquely decided following the constraints in P2;

3) (r0, w
+
0 , w

−
0 )∈ {(V −C, 0, 0), (V −C, 0, V −C), (V −C, C−V , 0), (V −C, C−V , V −

C)}, (ri, w
+
i , w

−
i , yi) ∈ {(0, 0, 0, 0), (0, 0, 0, 1), (V + V − C, 0, 0, 1), (0, V + V −

C, 0, 1), (V + V −C, 0, V + V −C, 1)}, ∀i = 1, · · · , n, and binary variables y and u are

uniquely decided following the constraints in P2;

4) (r0, w
+
0 , w

−
0 )∈ {(V, 0, 0), (V, 0, V ), (V, C−C−V, 0), (V, C−C−V, V )}, (ri, w

+
i , w

−
i )∈

{(0, 0, 0), (2V, 0, 0), (0, 2V, 0), (2V, 0, 2V )}, ∀i= 1, · · · , n, and binary variables y and u

are uniquely decided following the constraints in P2;

5) (r0, w
+
0 , w

−
0 ) ∈ {(C −C − V, 0, 0), (C −C − V, 0, C −C − V ), (C −C − V, V, 0), (C −

C − V, V, C − C − V )}, (ri, w
+
i , w

−
i ) ∈ {(C − C − 2V, 0, 0), (C − C − 2V, 2V, 0), (C −

C, 0, 0), (C −C, 0, 2V )}, ∀i= 1, · · · , n, and binary variables y and u are uniquely decided

following the constraints in P2;

6) (r0, w
+
0 , w

−
0 ) ∈ {(C −C, 0, 0), (C −C, 0, C −C)}, (ri, w

+
i , w

−
i ) ∈ {(C −C, 0, 0), (C −

C, 0, V ), (C −C − V, 0, 0), (C −C − V, V, 0)}, ∀i= 1, · · · , n, and binary variables y and

u are uniquely decided following the constraints in P2.
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Proof. Let A+ = {i ∈ [1, n]Z : ai ≥ 0}, A− = {i ∈ [1, n]Z : ai < 0}, B+ = {i ∈ [1, n]Z : bi ≥ 0}, B− =

{i ∈ [1, n]Z : bi < 0}, C+ = {i ∈ [1, n]Z : ci ≥ 0}, C− = {i ∈ [1, n]Z : ci < 0}. We discuss two different

cases based on the unit commitment status (“online” or “offline”) at the root node.

1) The generator is offline at the root node, i.e., r0 = w+
0 = w−0 = y0 = 0. For this case, prob-

lem (EC.3) becomes separable in terms of each scenario node i∈N . Thus, we further discuss

the following eight situations based on if i ∈ A+ or i ∈ A−; if i ∈ B+ or i ∈ B−; if i ∈ C+ or

i∈C−, for each i∈ [1, n]Z:

1.1) If i∈A+∩B+∩C+, then to maximize objective function (EC.3), the generator should be

scheduled online at node i with (i) ri =w−i = V −C, i.e., (ri,w
+
i ,w

−
i , yi, ui) = (V −C,0, V −

C,1,1), following constraints (3h) and (3e) if ai(V − C) + ci(V − C) + di + ei ≥ 0 and

ai + ci ≥ bi, or (ii) w+
i = V −C, i.e., (ri,w

+
i ,w

−
i , yi, ui) = (0, V −C,0,1,1), if bi(V −C) +

di + ei ≥ 0 and ai + ci < bi, or (iii) offline otherwise, i.e., (ri,w
+
i ,w

−
i , yi, ui) = (0,0,0,0,0).

1.2) If i ∈ A+ ∩B− ∩C+, then to maximize objective function (EC.3), the generator should

be scheduled online at node i with (i) ri = w−i = V − C, i.e., (ri,w
+
i ,w

−
i , yi, ui) = (V −

C,0, V −C,1,1), following constraints (3h) and (3e) if ai(V −C)+ ci(V −C)+di+ei ≥ 0,

or (ii) offline otherwise, i.e., (ri,w
+
i ,w

−
i , yi, ui) = (0,0,0,0,0).

1.3) If i∈A+∩B+∩C−, then to maximize objective function (EC.3), the generator should be

scheduled online at node i with (i) ri = V −C, i.e., (ri,w
+
i ,w

−
i , yi, ui) = (V −C,0,0,1,1),

following constraints (3h) and (3e) if ai(V −C)+di+ei ≥ 0 and ai ≥ bi, or (ii) the generator

should be scheduled online at node i with w+
i = V −C, i.e., (ri,w

+
i ,w

−
i , yi, ui) = (0, V −

C,0,1,1), following constraints (3h) and (3e) if bi(V −C) +di + ei ≥ 0 and ai < bi, or (iii)

the generator at node i should be offline otherwise, i.e., (ri,w
+
i ,w

−
i , yi, ui) = (0,0,0,0,0).

1.4) If i∈A+∩B−∩C−, then to maximize objective function (EC.3), the generator should be

scheduled online at node i with (i) ri = V −C, i.e., (ri,w
+
i ,w

−
i , yi, ui) = (V −C,0,0,1,1),

following constraints (3h) if ai(V − C) + di + ei ≥ 0, or (ii) offline otherwise, i.e.,

(ri,w
+
i ,w

−
i , yi, ui) = (0,0,0,0,0).

1.5) If i∈A−∩B+∩C+, then to maximize objective function (EC.3), the generator should be

scheduled online at node i with (i) w+
i = V −C, i.e., (ri,w

+
i ,w

−
i , yi, ui) = (0, V −C,0,1,1),

following constraints (3h) and (3e) if bi(V − C) + di + ei ≥ 0 and ai + ci < bi, or (ii)

ri =w−i = V −C, i.e., (ri,w
+
i ,w

−
i , yi, ui) = (V −C,0, V −C,1,1), following constraints (3h)

and (3e) if ai(V −C) + ci(V −C) + di + ei ≥ 0 and ai + ci ≥ bi, or (iii) offline otherwise,

i.e., (ri,w
+
i ,w

−
i , yi, ui) = (0,0,0,0,0).

1.6) If i∈A−∩B+∩C−, then to maximize objective function (EC.3), the generator should be

scheduled online at node i with (i) w+
i = V −C, i.e., (ri,w

+
i ,w

−
i , yi, ui) = (0, V −C,0,1,1),

following constraints (3h) and (3e) if bi(V −C) + di + ei ≥ 0, or (ii) offline otherwise, i.e.,

(ri,w
+
i ,w

−
i , yi, ui) = (0,0,0,0,0).
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1.7) If i ∈ A− ∩B− ∩C+, then to maximize objective function (EC.3), the generator should

be scheduled online at node i with (i) ri = w−i = V − C, i.e., (ri,w
+
i ,w

−
i , yi, ui) = (V −

C,0, V −C,1,1), following constraints (3h) and (3e) if ai(V −C)+ ci(V −C)+di+ei ≥ 0,

or (ii) ri = w+
i = w−i = 0, i.e., (ri,w

+
i ,w

−
i , yi, ui) = (0,0,0,1,1), following constraints (3h)

and (3e) if ai(V −C) + ci(V −C) + di + ei < 0 and di + ei ≥ 0, or (iii) offline otherwise,

i.e., (ri,w
+
i ,w

−
i , yi, ui) = (0,0,0,0,0).

1.8) If i ∈ A− ∩B− ∩C−, then to maximize objective function (EC.3), the generator should

be scheduled online at node i with (i) ri = w+
i = w−i = 0, i.e., (ri,w

+
i ,w

−
i , yi, ui) =

(0,0,0,1,1), following constraints (3h) and (3e) if di + ei ≥ 0, or (ii) offline otherwise, i.e.,

(ri,w
+
i ,w

−
i , yi, ui) = (0,0,0,0,0).

From the above 1.1) to 1.8), we verified Claim (1).

2) The generator is scheduled online at the root node, i.e., y0 = 1. It follows that ui = 0 for all

i = 1, · · · , n. First, we determine the values of w+
0 and w−0 based on coefficients b0 and c0

respectively. Note that 0≤ w+
0 ≤ C −C − r0 due to constraints (3f) and 0≤ w−0 ≤ r0 due to

constraints (3e). It follows that, to maximize objective function (EC.3), w+
0 = C −C − r0 if

b0 ≥ 0, and w+
0 = 0 otherwise. Meanwhile, w−0 = r0 if c0 ≥ 0, and w−0 = 0 otherwise. Next, we

further discuss the following two cases in terms of the value of r0:

2.1) If 0≤ r0 ≤ V −C, then similar to (1) above, we discuss the following eight cases in terms

of each i ∈ N . It follows that ri +w+
i ≤ r0 + V , ri −w−i ≥ 0,∀i ∈ N , with yi = 1 due to

constraints (3e), (3h), and (3i), and ri =w+
i =w−i = 0 with yi = 0.

2.1.1) If i∈A+∩B+∩C+, then to maximize objective function (EC.3), the generator should

be scheduled online at node i with (i) ri = w−i = r0 + V , i.e., (ri,w
+
i ,w

−
i , yi, ui) =

(r0 +V,0, r0 +V,1,0), following constraints (3h) and (3e) if ai(r0 +V ) + ci(r0 +V ) +

di ≥ 0 and ai + ci ≥ bi, or (ii) w+
i = r0 +V , i.e., (ri,w

+
i ,w

−
i , yi, ui) = (0, r0 +V,0,1,0),

following constraints (3h) and (3e) if bi(r0 +V )+di ≥ 0 and ai+ci < bi, or (iii) offline

otherwise, i.e., (ri,w
+
i ,w

−
i , yi, ui) = (0,0,0,0,0).

2.1.2) If i∈A+∩B−∩C+, then to maximize objective function (EC.3), the generator should

be scheduled online at node i with (i) ri =w−i = r0 +V , i.e., (ri,w
+
i ,w

−
i , yi, ui) = (r0 +

V,0, r0 +V,1,0), following constraints (3h) and (3e) if ai(r0 +V )+ci(r0 +V )+di ≥ 0,

or (ii) offline otherwise, i.e., (ri,w
+
i ,w

−
i , yi, ui) = (0,0,0,0,0).

2.1.3) If i ∈ A+ ∩ B+ ∩ C−, then to maximize objective function (EC.3), the generator

should be scheduled online at node i with (i) ri = r0 + V , i.e., (ri,w
+
i ,w

−
i , yi, ui) =

(r0 +V,0,0,1,0), following constraints (3h) and (3e) if ai(r0 +V )+di ≥ 0 and ai ≥ bi,

or (ii) the generator should be scheduled online at node i with w+
i = r0 + V , i.e.,

(ri,w
+
i ,w

−
i , yi, ui) = (0, r0 + V,0,1,0), following constraints (3h) and (3e) if bi(r0 +
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V ) + di ≥ 0 and ai < bi, or (iii) the generator at node i should be offline otherwise,

i.e., (ri,w
+
i ,w

−
i , yi, ui) = (0,0,0,0,0).

2.1.4) If i∈A+∩B−∩C−, then to maximize objective function (EC.3), the generator should

be scheduled online at node i with (i) ri = r0 + V , i.e., (ri,w
+
i ,w

−
i , yi, ui) = (r0 +

V,0,0,1,0), following constraints (3h) if ai(r0 +V ) + di ≥ 0, or (ii) offline otherwise,

i.e., (ri,w
+
i ,w

−
i , yi, ui) = (0,0,0,0,0).

2.1.5) If i ∈ A− ∩ B+ ∩ C+, then to maximize objective function (EC.3), the generator

should be scheduled online at node i with (i) w+
i = r0 + V , i.e., (ri,w

+
i ,w

−
i , yi, ui) =

(0, r0 +V,0,1,0), following constraints (3h) and (3e) if bi(r0 +V )+di ≥ 0 and ai+ci <

bi, or (ii) ri =w−i = r0 + V , i.e., (ri,w
+
i ,w

−
i , yi, ui) = (r0 + V,0, r0 + V,1,0), following

constraints (3h) and (3e) if ai(r0 + V ) + ci(r0 + V ) + di ≥ 0 and ai + ci ≥ bi, or (iii)

offline otherwise, i.e., (ri,w
+
i ,w

−
i , yi, ui) = (0,0,0,0,0).

2.1.6) If i ∈ A− ∩ B+ ∩ C−, then to maximize objective function (EC.3), the generator

should be scheduled online at node i with (i) w+
i = r0 + V , i.e., (ri,w

+
i ,w

−
i , yi, ui) =

(0, r0 + V,0,1,0), following constraints (3h) and (3e) if bi(r0 + V ) + di ≥ 0, or (ii)

offline otherwise, i.e., (ri,w
+
i ,w

−
i , yi, ui) = (0,0,0,0,0).

2.1.7) If i∈A−∩B−∩C+, then to maximize objective function (EC.3), the generator should

be scheduled online at node i with (i) ri = w−i = r0 + V , i.e., (ri,w
+
i ,w

−
i , yi, ui) =

(r0 +V,0, r0 +V,1,0), following constraints (3h) and (3e) if ai(r0 +V ) + ci(r0 +V ) +

di ≥ 0 and ai + ci ≥ 0, or (ii) ri =w+
i =w−i = 0, i.e., (ri,w

+
i ,w

−
i , yi, ui) = (0,0,0,1,0),

following constraints (3h) and (3e) if ai(r0 + V ) + ci(r0 + V ) + di < 0 and di ≥ 0, or

(iii) offline otherwise, i.e., (ri,w
+
i ,w

−
i , yi, ui) = (0,0,0,0,0).

2.1.8) If i∈A−∩B−∩C−, then to maximize objective function (EC.3), the generator should

be scheduled online at node i with (i) ri = w+
i = w−i = 0, i.e., (ri,w

+
i ,w

−
i , yi, ui) =

(0,0,0,1,0), following constraints (3h) and (3e) if di ≥ 0, or (ii) offline otherwise, i.e.,

(ri,w
+
i ,w

−
i , yi, ui) = (0,0,0,0,0).

From 2.1.1) to 2.1.8), we can represent the optimal objective value of (EC.3) with a given

set of (a0, b0, c0, ai, bi, ci, di),∀i∈N , as a function of r0, i.e., g(r0) = (a0r0 +max{b0,0}(C−

C − r0) + max{c0,0}r0 + d0) +
∑

i∈N1
(ai(r0 + V ) + ci(r0 + V ) + di) +

∑
i∈N2

(ai(r0 + V ) +

di) +
∑

i∈N3
(bi(r0 + V ) + di) +

∑
i∈N4

di, where Ni, i = 1,2,3,4, based on the arguments

derived above from 2.1.1) to 2.1.8), are defined as follows: N1 = {i ∈ N : (ai + ci)(r0 +

V ) + di ≥ 0, ai + ci ≥ bi, ai + ci ≥ 0, ci ≥ 0}, N2 = {i ∈N : ai(r0 + V ) + di ≥ 0, ai ≥ bi, ai ≥

0, ci < 0}, N3 = {i ∈ N : bi(r0 + V ) + di ≥ 0, bi ≥ 0, bi ≥ ai, ai + ci < bi}, N4 = {i ∈ N :

(ai + ci)(r0 + V ) + di < 0, di ≥ 0, ai < 0, ai + ci < 0, bi < 0}. Furthermore, we can simplify

the representation of g(r0) as g(r0) = (a0r0 +max{b0,0}(C−C−r0)+max{c0,0}r0 +d0)+
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∑
i∈N

[
[max{ai+ ci, ai, bi}]+(r0 +V )+di

]+

, where [x]+ represents the positive part of any

real number x, i.e., [x]+ = max{x,0}. Thus, g(r0) is a convex function with respect to

r0 ∈ [0, V −C]. It follows that the optimal solutions are achieved when r0 = 0 or r0 = V −C.

i. If r0 = 0, then w+
0 ,w

−
0 , ri,w

+
i ,w

−
i , yi, ui,∀i ∈ N , can be obtained based on 2.1.1) to

2.1.8). Thus, Claim (2) is proved.

ii. If r0 = V − C, then there exists at least one node i for some i ∈ N such that the

generator is offline, i.e., yi = 0 for some i ∈ N . If such node i does not exist, then

generators are online at each node i,∀i∈N , i.e., yi = 1, ui = 0,∀i∈N , and ri,w
+
i ,w

−
i

are determined following 2.1.1) to 2.1.8) above. w+
0 ,w

−
0 can be set as follows:

w+
0 =

{
C −V , b0 ≥ 0

0, b0 < 0
, w−0 =

{
V −C, c0 ≥ 0

0, c0 < 0
.

Without loss of generality, we let (ri,w
+
i ,w

−
i ) = (V + V − C,0, V + V − C),∀i ∈

N1, (ri,w
+
i ,w

−
i ) = (V + V − C,0,0),∀i ∈ N2, (ri,w

+
i ,w

−
i ) = (0, V + V − C,0),∀i ∈

N3 and (ri,w
+
i ,w

−
i ) = (0,0,0),∀i ∈ N4. However, it is easy to observe that such

(r,w+,w−, y, u) can be represented as a linear combination of the following two points

belonging to P2:

(r,w+,w−, y, u) =
1

2
(r̂, ŵ+, ŵ−, ŷ, û) +

1

2
(r̃, w̃+, w̃−, ỹ, ũ),

where ŷ= ỹ= y, û= ũ= u, r̂0 = r0 + ε, r̃0 = r0− ε and

ŵ+
0 =

{
w+

0 − ε, b0 ≥ 0

w+
0 , b0 < 0

, w̃+
0 =

{
w+

0 + ε, b0 ≥ 0

w+
0 , b0 < 0

,

ŵ−0 =

{
w−0 + ε, c0 ≥ 0

w−0 , c0 < 0
, w̃−0 =

{
w−0 − ε, c0 ≥ 0

w−0 , c0 < 0
,

r̂i =

{
ri + ε, i∈N1 ∪N2

ri, o.w.
, r̂i =

{
ri− ε, i∈N1 ∪N2

ri, o.w.
,

ŵ+
i =

{
w+
i + ε, i∈N1 ∪N3

w+
i , o.w.

, w̃+
i =

{
w+
i − ε, i∈N1 ∪N3

w+
i , o.w.

,

ŵ−i =

{
w−i + ε, i∈N1

w−i , o.w.
, w̃−i =

{
w−i − ε, i∈N1

w−i , o.w.
,

with ε ∈ (0,min{V −C,C − V − V }). This is a contradiction since (r,w+,w−, y, u)

should be an extreme point of conv(P2) if there is only one optimal solution for

(EC.3). Thus, Claim (3) is verified.
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2.2) If V −C < r0 ≤C −C, then the generator should be scheduled online at node i,∀i ∈N ,

due to ramping-down constraints (3i), i.e., yi = 1, ui = 0,∀i∈N . It follows that ri +w+
i ≤

min{C −C,r0 +V }, ri−w−i ≥max{0, r0−V },∀i ∈N , due to constraints (3e), (3h), and

(3i).

2.2.1) If ai + ci ≥ 0, ai + ci ≥ bi, and ci ≥ 0, then to maximize objective function (EC.3), the

generator should be scheduled online at node i with ri = min{C −C,r0 + V },w+
i =

0,w−i = min{C −C,2V, r0 +V,C −C +V − r0}.
2.2.2) If ci < 0, ai ≥ 0, and ai ≥ bi, then to maximize objective function (EC.3), the generator

should be scheduled online at node i with ri = min{C −C,r0 +V },w+
i =w−i = 0.

2.2.3) If bi >ai+ci, bi >ai, and bi ≥ 0, then to maximize objective function (EC.3), the gen-

erator should be scheduled online at node i with ri = max{0, r0−V },w+
i = min{C−

C,2V, r0 +V,C −C +V − r0},w−i = 0.

2.2.4) If ai < 0, ai + ci < 0, and bi < 0, then to maximize objective function (EC.3), the

generator should be scheduled online at node i with ri = max{0, r0−V },w+
i =w−i = 0.

From the above 2.2.1) to 2.2.4), we can represent the optimal objective value of (EC.3)

with a given set of (a0, b0, c0, ai, bi, ci, di),∀i ∈ N , as a continuous function of r0, i.e.,

g(r0) = (a0r0 + max{b0,0}(C −C − r0) + max{c0,0}r0 + d0) +
∑

i∈N ′1
(aimin{C −C,r0 +

V } + cimin{C − C,2V, r0 + V,C − C + V − r0} + di) +
∑

i∈N ′2
(aimin{C − C,r0 + V } +

di) +
∑

i∈N ′3
(aimax{0, r0 − V } + bimin{C − C,2V, r0 + V,C − C + V − r0} + di) +∑

i∈N ′4
(aimax{0, r0−V }+di), where N ′i , i= 1,2,3,4, are defined as follows: N ′1 = {i∈N :

ai + ci ≥ 0, ai + ci ≥ bi, ci ≥ 0}, N ′2 = {i ∈ N : ai ≥ bi, ai ≥ 0, ci < 0}, N ′3 = {i ∈ N : bi ≥
0, bi ≥ ai, ai + ci < bi}, and N ′4 = {i∈N : ai < 0, ai + ci < 0, bi < 0}. We further discuss the

following three cases in terms of r0.

i. If V − C < r0 ≤ V , then min{C − C,r0 + V } = r0 + V,min{C − C,2V, r0 + V,C −
C + V − r0}= r0 + V,max{0, r0− V }= 0. Thus, g(r0) = (a0r0 + max{b0,0}(C −C −
r0) + max{c0,0}r0 + d0) +

∑
i∈N ′1

(ai(r0 + V ) + ci(r0 + V ) + di) +
∑

i∈N ′2
(ai(r0 + V ) +

di) +
∑

i∈N ′3
(bi(r0 + V ) + di) +

∑
i∈N ′4

di, which is a convex function with respect to

r0 ∈ (V −C,V ]. It follows that the optimal solutions are achieved when r0 = V or r0 =

V −C+ε, where ε is an arbitrarily small positive real number. When r0 = V −C+ε, a

similar contradiction argument as that in 2.1) can be applied to show such point is not

an optimal solution. When r0 = V , (ri,w
+
i ,w

−
i ) are determined based on the above

2.2.1) to 2.2.4) and there cannot exist the case where ri = 2V,w+
i =w−i = 0,∀i ∈N .

Otherwise, such (r,w+,w−, y, u) can be represented as a linear combination of the

following two points belonging to P2:

(r,w+,w−, y, u) =
1

2
(r̂, ŵ+, ŵ−, ŷ, û) +

1

2
(r̃, w̃+, w̃−, ỹ, ũ),
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where ŷ = ỹ = y, û= ũ= u, ŵ+ = w̃+ = w+, ŵ− = w̃− = w−, r̂ = r+ ε, r̃ = r− ε, with

ε∈ (0, V ). Thus, we have verified Claim (4).

ii. If V ≤ r0 ≤C−C−V , then min{C−C,r0 +V }= r0 +V,min{C−C,2V, r0 +V,C−

C + V − r0} = 2V,max{0, r0 − V } = r0 − V . Thus, g(r0) = (a0r0 + max{b0,0}(C −

C− r0) + max{c0,0}r0 + d0) +
∑

i∈N ′1
(ai(r0 +V ) + ci(2V ) + di) +

∑
i∈N ′2

(ai(r0 +V ) +

di) +
∑

i∈N ′3
(ai(r0 − V ) + bi(2V ) + di) +

∑
i∈N ′4

(ai(r0 − V ) + di), which is a convex

function with respect to r0 ∈ [V,C − C − V ]. It follows that the optimal solutions

are achieved when r0 = V or r0 =C −C − V . Here we only need to discuss the case

r0 = C − C − V , where (ri,w
+
i ,w

−
i ) are determined based on the above 2.2.1) to

2.2.4) and there cannot exist the case where ri = C −C − 2V,w+
i = w−i = 0,∀i ∈N .

Otherwise, such (r,w+,w−, y, u) can be represented as a linear combination of the

following two points belonging to P2:

(r,w+,w−, y, u) =
1

2
(r̂, ŵ+, ŵ−, ŷ, û) +

1

2
(r̃, w̃+, w̃−, ỹ, ũ),

where ŷ = ỹ = y, û= ũ= u, ŵ+ = w̃+ = w+, ŵ− = w̃− = w−, r̂ = r+ ε, r̃ = r− ε, with

ε∈ (0,C −C − 2V ). Thus, we have verified Claim (5).

iii. If C − C − V ≤ r0 ≤ C − C, then min{C − C,r0 + V } = C − C,min{C −

C,2V, r0 + V,C −C + V − r0}= 2V,max{0, r0 − V }= r0 − V . Thus, g(r0) = (a0r0 +

max{b0,0}(C − C − r0) + max{c0,0}r0 + d0) +
∑

i∈N ′1
(ai(C − C) + ci(2V ) + di) +∑

i∈N ′2
(ai(C −C) + di) +

∑
i∈N ′3

(ai(r0 − V ) + bi(2V ) + di) +
∑

i∈N ′4
(ai(r0 − V ) + di),

which is a convex function with respect to r0 ∈ [V,C − C − V ]. It follows that the

optimal solutions are achieved when r0 = C − C − V or r0 = C − C. Here we only

need to discuss the case r0 = C −C, and (ri,w
+
i ,w

−
i ) are determined based on the

above 2.2.1) to 2.2.4). Thus, we have verified Claim (6).

This completes the proof. �

EC.1.6. Proof for Proposition EC.4

Proposition EC.4. All of the extreme points of Q2 are integral in y and u.

Proof. We prove the claim by showing that every point in the six groups of extreme points

described in Lemma EC.1 satisfies 5n + 4 linearly independent inequalities at equation, which

indicates that they are also extreme points of Q2. Thus, our claim is verified under the facet-defining

conditions in Proposition EC.2 and dominance conditions in Proposition EC.3. In the following,

we prove the claim in the following six possible cases:
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1) For Group (1) points, we have r0 =w+
0 =w−0 = y0 = 0 and let

(ri,w
+
i ,w

−
i , yi, ui) =



(V −C,0, V −C,1,1), ∀i∈N1,

(V −C,0,0,1,1), ∀i∈N2,

(0, V −C,0,1,1), ∀i∈N3,

(0,0,0,1,1), ∀i∈N4,

(0,0,0,0,0), ∀i∈N \
⋃4

k=1Nk,

where Nk, k = 1,2,3,4 are defined as N1 = {i ∈ N : (ai + ci)(V − C) + di + ei ≥ 0, ai + ci ≥

bi, ai + ci ≥ 0, ci ≥ 0}, N2 = {i ∈ N : ai(V − C) + di + ei ≥ 0, ai ≥ bi, ci < 0}, N3 = {i ∈ N :

bi(V −C) + di + ei ≥ 0, bi ≥ 0, bi ≥ ai, ai + ci < bi}, N4 = {i ∈N : (ai + ci)(V −C) + di + ei <

0, di + ei ≥ 0, ai < 0, ai + ci < 0, bi < 0}. Without loss of generality, we assume Ni 6= ∅,∀i =

1,2,3,4 and (N \
⋃4

k=1Nk) 6= ∅. The following 5n + 4 linearly independent inequalities are

satisfied at equality: (3a) (for each i ∈N ), (3b) (for each i ∈
⋃4

k=1Nk), (3c) (for each i ∈N ),

(4a) (for each i ∈N ), (4d) (for each i ∈N \
⋃4

k=1Nk), (4e) (for each i ∈N and some j ∈N ),

w+
0 = 0, w−0 = 0, (3e) (for i= 0), (3f).

2) For Group (2) points, we have y0 = 1, r0 =w−0 = 0 and w+
0 = 0 or C −C. We let

(ri,w
+
i ,w

−
i , yi, ui) =



(V,0, V,1,0), ∀i∈N1,

(V,0,0,1,0), ∀i∈N2,

(0, V,0,1,0), ∀i∈N3,

(0,0,0,1,0), ∀i∈N4,

(0,0,0,0,0), ∀i∈N \
⋃4

k=1Nk,

where Nk, k= 1,2,3,4 are defined as N1 = {i∈N : (ai+ ci)V +di+ei ≥ 0, ai+ ci ≥ bi, ai+ ci ≥

0, ci ≥ 0}, N2 = {i ∈N : aiV + di + ei ≥ 0, ai ≥ bi, ci < 0}, N3 = {i ∈N : biV + di + ei ≥ 0, bi ≥

0, bi ≥ ai, ai + ci < bi}, N4 = {i ∈N : (ai + ci)V + di + ei < 0, di + ei ≥ 0, ai < 0, ai + ci < 0, bi <

0}. Without loss of generality, we assume Ni 6= ∅,∀i = 1,2,3,4 and (N \
⋃4

k=1Nk) 6= ∅. The

following 5n+ 3 linearly independent inequalities are satisfied at equality: ui = 0 (for each

i ∈ N ), w+
i = 0 (for each i ∈ N \ N3), w−i = 0 (for each i ∈ {0} ∪ (N \ N1)), (3b) (for some

i∈N ), (3c) (for each i∈
⋃4

k=1Nk), (3e) (for i∈ {0}∪(N \N2)), (4d) (for each i∈N \N4). The

last linearly independent inequality satisfied at equality is (3f) when w+
0 =C −C, or w+

0 = 0

otherwise. Thus, we have found 5n+ 4 linearly independent inequalities satisfied at equality.

3) For Group (3) points, we have y0 = 1 and r0 = V −C. We let

(ri,w
+
i ,w

−
i , yi, ui) =



(V +V −C,0, V +V −C,1,0), ∀i∈N1,

(V +V −C,0,0,1,0), ∀i∈N2,

(0, V +V −C,0,1,0), ∀i∈N3,

(0,0,0,1,0), ∀i∈N4,

(0,0,0,0,0), ∀i∈N \
⋃4

k=1Nk,
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where Nk, k= 1,2,3,4 are defined as N1 = {i∈N : (ai + ci)(V +V −C) +di + ei ≥ 0, ai + ci ≥
bi, ai + ci ≥ 0, ci ≥ 0}, N2 = {i ∈N : ai(V + V −C) + di + ei ≥ 0, ai ≥ bi, ci < 0}, N3 = {i ∈N :

bi(V +V −C)+di+ei ≥ 0, bi ≥ 0, bi ≥ ai, ai+ci < bi}, N4 = {i∈N : (ai+ci)(V +V −C)+di+

ei < 0, di + ei ≥ 0, ai < 0, ai + ci < 0, bi < 0}. Based on the proof in Online Supplement EC.1.5,

we have (N \
⋃4

k=1Nk) 6= ∅. Without loss of generality, we prove under the conditions Ni 6=
∅,∀i= 1,2,3,4 and (N \

⋃4

k=1Nk) 6= ∅. The following 5n+ 2 linearly independent inequalities

are satisfied at equality: ui = 0 (for each i∈N ), w+
i = 0 (for each i∈N \N3), w−i = 0 (for each

i∈N \N1), (3a) (for each i∈
⋃4

k=1Nk), (3b) (for each i∈N ), (3c) (for each i∈N \
⋃4

k=1Nk),
(4a) (for some i∈N \

⋃4

k=1Nk), (4d) (for each i∈N1∪N3), (4e) (for some i∈N \N2 and some

j ∈ N ). The last two linearly independent inequalities satisfied at equality are (i) (3e) (for

i= 0) and (3f) when w+
0 =C−V ,w−0 = V −C, or (ii) w−0 = 0 and (3f) when w+

0 =C−V ,w−0 =

0, or (iii) w+
0 = 0 and (3e) (for i= 0) when w+

0 = 0,w−0 = V −C, or (iv) w+
0 = 0 and w−0 = 0

otherwise. Thus, we have found 5n+ 4 linearly independent inequalities satisfied at equality.

4) For Group (4) points, we have y0 = 1 and r0 = V . It follows that yi = 1 and ui = 0. We let

(ri,w
+
i ,w

−
i , yi, ui) =


(2V,0,2V,1,0), ∀i∈N ′1,
(2V,0,0,1,0), ∀i∈N ′2,
(0,2V,0,1,0), ∀i∈N ′3,
(0,0,0,1,0), ∀i∈N ′4,

where N ′k, k = 1,2,3,4, are defined as follows: N ′1 = {i ∈ N : ai + ci ≥ 0, ai + ci ≥ bi, ci ≥ 0},
N ′2 = {i ∈N : ai ≥ bi, ai ≥ 0, ci < 0}, N ′3 = {i ∈N : bi ≥ 0, bi ≥ ai, ai + ci < bi}, and N ′4 = {i ∈
N : ai < 0, ai + ci < 0, bi < 0} with

⋃4

i=1N ′i =N . Based on the proof in Online Supplement

EC.1.5, we have N ′2 ⊂ N . Without loss of generality, we prove under the conditions N ′i 6=
∅,∀i= 1,2,3,4. The following 5n+2 linearly independent inequalities are satisfied at equality:

ui = 0 (for each i ∈N ), w+
i = 0 (for each i ∈N \N ′3), w−i = 0 (for each i ∈N \N ′1), (3b) (for

each i∈N ), (3c) (for each i∈N ), (4c) (for each i∈N ′1∪N ′3 and some j ∈N ′), (4d) (for some

i ∈ N \N ′4), (4e) (for some i ∈ N \N ′2 and some j ∈ N ). The last two linearly independent

inequalities satisfied at equality are (i) (3e) (for i= 0) and (3f) when w+
0 =C−C−V,w−0 = V ,

or (ii) w−0 = 0 and (3f) when w+
0 =C−C−V,w−0 = 0, or (iii) w+

0 = 0 and (3e) (for i= 0) when

w+
0 = 0,w−0 = V , or (iv) w+

0 = 0 and w−0 = 0 otherwise. Thus, we have found 5n+ 4 linearly

independent inequalities satisfied at equality.

5) For Group (5) points, we have y0 = 1 and r0 = C −C − V . It follows that yi = 1 and ui = 0.

We let

(ri,w
+
i ,w

−
i , yi, ui) =


(C −C,0,2V,1,0), ∀i∈N ′1,
(C −C,0,0,1,0), ∀i∈N ′2,
(C −C − 2V,2V,0,1,0), ∀i∈N ′3,
(C −C − 2V,0,0,1,0), ∀i∈N ′4,
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where N ′k, k = 1,2,3,4, are defined as follows: N ′1 = {i ∈ N : ai + ci ≥ 0, ai + ci ≥ bi, ci ≥ 0},

N ′2 = {i ∈N : ai ≥ bi, ai ≥ 0, ci < 0}, N ′3 = {i ∈N : bi ≥ 0, bi ≥ ai, ai + ci < bi}, and N ′4 = {i ∈

N : ai < 0, ai + ci < 0, bi < 0} with
⋃4

i=1N ′i =N . Based on the proof in Online Supplement

EC.1.5, we have N ′4 ⊂ N . Without loss of generality, we prove under the conditions N ′i 6=

∅,∀i= 1,2,3,4. The following 5n+2 linearly independent inequalities are satisfied at equality:

ui = 0 (for each i ∈N ), w+
i = 0 (for each i ∈N \N ′3), w−i = 0 (for each i ∈N \N ′1), (3b) (for

each i∈N ), (3c) (for each i∈N ), (4c) (for each i∈N ′1 ∪N ′3 and some j ∈N ), (4d) (for some

i ∈ N \N ′4), (4e) (for some i ∈ N \N ′2 and some j ∈ N ). The last two linearly independent

inequalities satisfied at equality are (i) (3e) (for i= 0) and (3f) when w+
0 = V,w−0 =C−C−V ,

or (ii) w−0 = 0 and (3f) when w+
0 = V,w−0 = 0, or (iii) w+

0 = 0 and (3e) (for i = 0) when

w+
0 = 0,w−0 = C −C − V , or (iv) w+

0 = 0 and w−0 = 0 otherwise. Thus, we have found 5n+ 4

linearly independent inequalities satisfied at equality.

6) For Group (6) points, we have y0 = 1 and r0 =C−C. It follows that yi = 1 and ui = 0. We let

(ri,w
+
i ,w

−
i , yi, ui) =


(C −C,0, V,1,0), ∀i∈N ′1,
(C −C,0,0,1,0), ∀i∈N ′2,
(C −C −V,V,0,1,0), ∀i∈N ′3,
(C −C −V,0,0,1,0), ∀i∈N ′4,

where N ′k, k = 1,2,3,4, are defined as follows: N ′1 = {i ∈ N : ai + ci ≥ 0, ai + ci ≥ bi, ci ≥ 0},

N ′2 = {i ∈N : ai ≥ bi, ai ≥ 0, ci < 0}, N ′3 = {i ∈N : bi ≥ 0, bi ≥ ai, ai + ci < bi}, and N ′4 = {i ∈

N : ai < 0, ai + ci < 0, bi < 0}. Without loss of generality, we assume N ′i 6= ∅,∀i = 1,2,3,4.

The following 5n + 2 linearly independent inequalities are satisfied at equality: ui = 0 (for

each i ∈ N ), (3b) (for each i ∈ N ), (3c) (for each i ∈ N ), (3f), (4a) (for each i ∈ N ), (4b)

(for each i ∈ N and some j ∈ N ), (4e) (for some i ∈ N \N ′2 and some j ∈ N ). The last two

linearly independent inequalities satisfied at equality are (i) w+
0 = 0 and (3e) (for i= 0) when

w+
0 = 0,w−0 =C−C, or (ii) w+

0 = 0 and w−0 = 0 otherwise. Thus, we have found 5n+4 linearly

independent inequalities satisfied at equality.

Thus, the proof is complete. �

EC.2. Three-Period Convex Hulls

In this section, we perform the polyhedral study for the three-period formulation, i.e., T = 3 in P ,

and derive convex hull descriptions for the cases with different minimum-up/-down time limits for

a special scenario tree setting, as shown in Figure EC.1. In this case, the uncertain parameters are

realized in the first and second time periods and multiple scenario nodes are explored in the third

period. Note that this scenario tree is a basic structure appearing in the complete scenario tree as

shown in Figure 1.
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i−2 i−

n

i

1

Figure EC.1 Three-Period Scenario Tree

First, we study the case in which L = ` = 2 in the original constraint set, which is the most

representative one that includes all of the capacity, ramping rate, and minimum-up/-down time

requirements among all possible cases: 1) L= `= 1, 2) L= 1 and `= 2, 3) L= 2 and `= 1, and 4)

L= `= 2. Under this setting, the original constraint set can be described as follows:

P 2
3 :=

{
(r,w+,w−, y, u)∈Rn+2×Rn+2×Rn+2×Bn+2×Bn+1 :

ui− +ui ≤ yi, ∀i∈N , (EC.4a)

yi−2
+ui− +ui ≤ 1, ∀i∈N , (EC.4b)

ui− ≥ yi− − yi−2 , ui ≥ yi− yi− , ∀i∈N , (EC.4c)

w+
i ≥ 0, w−i ≥ 0, ∀i∈N ∪{i−, i−2 }, (EC.4d)

ri ≥w−i , ∀i∈N ∪{i−, i−2 }, (EC.4e)

ri +w+
i ≤ (C −C)yi, ∀i∈N ∪{i−, i−2 }, (EC.4f)

ri +w+
i − ri− ≤ V + (C +V −V )yi− −Cyi, ∀i∈N ∪{i−}, (EC.4g)

ri− − ri +w−i ≤ V + (C +V −V )yi−Cyi− , ∀i∈N ∪{i−}
}
, (EC.4h)

where N is the set of all leaf nodes in the third time period as shown in Figure EC.1 and |N |= n.

Following the similar techniques illustrated in Proposition 1, we develop several families of strong

valid inequalities to strengthen P 2
3 as follows.

Proposition EC.5. The inequalities

ri−2
≤ (V −C)yi−2

+V (yi− −ui−) + (C −V −V )(yi−ui−ui−),∀i∈N ,(EC.5a)

ri− ≤ (V −C)yi− + (C −V )(yi−ui−ui−), ∀i∈N , (EC.5b)

w−
i− ≤ (V −C)yi− + (C + 2V −V )(yi−ui−ui−), ∀i∈N , (EC.5c)

w+
i− +w−

i− ≤ 2V yi− − (C + 2V −V )ui− , (EC.5d)

w+
i +w−i ≤ (V +V −C)yi−V ui + (C +V −V )(yj −uj −ui−), ∀i, j ∈N , (EC.5e)
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ri− +w+
i− ≤ (V + 2V −C)yi− − 2V ui− + (C −V − 2V )(yi−ui−ui−),∀i∈N ,(EC.5f)

ri +w+
i ≤ (V +V −C)yi−V ui + (C −V −V )(yj −uj −ui−), ∀i, j ∈N , (EC.5g)

ri− − ri−2 ≤ (V −C)yi− + (C +V −V )(yi−ui−ui−), ∀i∈N , (EC.5h)

ri−2
− ri− +w−

i− ≤ (V −C)yi−2
+ (C +V −V )(yi− −ui−), (EC.5i)

ri− − ri +w−i ≤ (V −C)yi− + (C +V −V )(yj −uj −ui−), ∀i, j ∈N , (EC.5j)

ri−2
− ri +w−i ≤ (V −C)yi−2

+V (yi− −ui−) + (C +V −V )(yj −uj −ui−),

∀i, j ∈N , (EC.5k)

ri +w+
i − ri−2 ≤ (V +V −C)yi−V ui + (C +V −V )(yj −uj −ui−), ∀i, j ∈N , (EC.5l)

ri +w+
i − ri− ≤ V yi− (C +V −V )ui, ∀i∈N ∪{i−}, (EC.5m)

w+
i− + ri +w+

i ≤ 2V (yi− −ui−) + (V +V −C)yi−V ui

+(C −V − 2V )(yj −uj −ui−), ∀i, j ∈N , (EC.5n)

w+
i− +w+

i +w−i ≤ 2V (yi− −ui−) + (V +V −C)yi−V ui

+(C +V −V )(yj −uj −ui−), ∀i, j ∈N , (EC.5o)

ri− +w+
i− − ri +w−i ≤ (V −C)yi− + 2V (yi− −ui−) + (C +V −V )(yj −uj −ui−),

∀i, j ∈N , (EC.5p)

ri +w+
i − ri− +w−

i− ≤ (V +V −C)yi−V ui + (C + 2V −V )(yj −uj −ui−), ∀i, j ∈N , (EC.5q)

ri +w+
i − rj +w−j ≤ (V +V −C)yi−V ui + (C +V −V )(yk−uk−ui−),

∀i, j, k ∈N , i 6= j, (EC.5r)

ri−2
− ri− + ri +w+

i ≤ (V −C)yi−2
+ (C +V −V )yi− −V ui− + (V +V −C)yi

−V ui + (C −V −V )(yj −uj −ui−), ∀i, j ∈N , (EC.5s)

ri−2
− ri− +w+

i +w−i ≤ (V −C)yi−2
+ (C +V −V )yi− −V ui− + (V +V −C)yi

−V ui + (C +V −V )(yj −uj −ui−), ∀i, j ∈N , (EC.5t)

w+
i− + ri +w+

i − rj +w−j ≤ 2V (yi− −ui−) + (V +V −C)yi−V ui

+(C +V −V )(yk−uk−ui−), ∀i, j, k ∈N , i 6= j, (EC.5u)

ri−2
− ri− + ri +w+

i − rj +w−j ≤ (V −C)yi−2
+ (C +V −V )yi− −V ui− + (V +V −C)yi

−V ui + (C +V −V )(yk−uk−ui−), ∀i, j, k ∈N , i 6= j, (EC.5v)

are valid for conv(P 2
3 ). Furthermore, they are facet-defining for conv(P 2

3 ) when C −V ≥ 2V .

Proof. The proof is similar to that of Proposition EC.2 and thus is omitted here. �



e-companion to Huang, Pan, and Guan: Multistage Stochastic Power Generation Scheduling ec21

Note that with one more time period and correspondingly one more scenario node (i.e., i−2 ) than

the two-period case in Section 3, several families of inequalities with more complex structures (e.g.,

(EC.5s) - (EC.5v)) than those in Q2 are developed to relate both power generation and regulation

reserve at nodes i−2 , i−, and i, and possibly node i’s sibling node j ∈N .

Remark EC.1. We can similarly derive strong valid inequalities for the case when C−V ≥ 2V

in Proposition EC.5 does not hold. We adopt the condition C−V ≥ 2V here because it represents

the most common generator characteristics and under this condition, the corresponding convex

hull representation has relatively the largest number of inequalities.

Now, through utilizing inequalities (EC.5a) - (EC.5v), we introduce the linear programming

description of conv(P 2
3 ) by adding several original constraints from P 2

3 and trivial inequalities as

follows:

Q2
3 :=

{
(r,w+,w−, y, u)∈R5n+9 : (EC.4a)− (EC.4e), (EC.5a)− (EC.5v),

ri−2
+w+

i−2
≤ (C −C)yi−2

, ui ≥ 0, ∀i∈N
}
. (EC.6)

Theorem EC.1. Q2
3 = conv(P 2

3 ) .

Proof. The proof is similar to that of Theorem 1 and thus is omitted here. �

Next, we consider the case in which L= `= 1 and meanwhile we also assume C − V − 2V ≥ 0.

For this case, the original constraint set (denoted by P 1
3 ) can be described as follows:

P 1
3 :=

{
(r,w+,w−, y, u)∈Rn+2×Rn+2×Rn+2×Bn+2×Bn+1 : (EC.4c)− (EC.4g),

ui ≤ yi, ∀i∈N ∪{i−}, (EC.7a)

yi− +ui ≤ 1, ∀i∈N ∪{i−}
}
. (EC.7b)

Accordingly, following the similar methods described above, we can derive the convex hull

description as follows:

Theorem EC.2. For the case when L= `= 1 and C−V −2V ≥ 0, the convex hull representation

for the three-period problem is Q1
3 = conv(P 1

3 ) ={
(r,w+,w−, y, u)∈R5n+9 : (EC.4c)− (EC.4e), (EC.5d), (EC.5i), (EC.5m), (EC.6), (EC.7a)− (EC.7b),

ri−2
≤ (V −C)yi−2

+V (yi− −ui−) + (C −V −V )(yi−ui), ∀i∈N , (EC.8a)

ri−2
≤ (V −C)yi−2

+ (C −V )(yi− −ui−), (EC.8b)

ri− ≤ (V −C)yi− + (C −V )(yi−ui), ∀i∈N , (EC.8c)

w−
i− ≤ (V −C)yi− + (C + 2V −V )(yi−ui), ∀i∈N , (EC.8d)



ec22 e-companion to Huang, Pan, and Guan: Multistage Stochastic Power Generation Scheduling

w+
i +w−i ≤ (V +V −C)yi−V ui + (C +V −V )(yj −uj), ∀i∈N ,∀j ∈N ∪{i−}, (EC.8e)

ri− +w+
i− ≤ (V −C)yi− + 2V (yi− −ui−) + (C −V − 2V )(yj −uj), ∀j ∈N ∪{i−}, (EC.8f)

ri +w+
i ≤ (V +V −C)yi−V ui + (C −V −V )(yj −uj), ∀i∈N ,∀j ∈N ∪{i−}, (EC.8g)

ri− − ri−2 ≤ (V −C)yi− + (C +V −V )(yi−ui), ∀i∈N , (EC.8h)

ri− − ri +w−i ≤ (V −C)yi− + (C +V −V )(yj −uj), ∀i∈N ,∀j ∈N ∪{i−}, (EC.8i)

ri−2
− ri +w−i ≤ (V −C)yi−2

+V (yi− −ui−) + (C +V −V )(yj −uj), ∀i∈N ,∀j ∈N ∪{i−}, (EC.8j)

ri +w+
i − ri−2 ≤ (V +V −C)yi−V ui + (C +V −V )(yj −uj), ∀i∈N ,∀j ∈N ∪{i−}, (EC.8k)

w+
i− + ri +w+

i ≤ 2V yi− − (C + 2V −V )ui− + (V +V −C)yi−V ui

+(C −V − 2V )(yj −uj), ∀i, j ∈N , (EC.8l)

ri− +w+
i− − ri +w−i ≤ 3V yi− − 2V ui− + (C +V −V )(yj −uj − yi−), ∀i∈N ,∀j ∈N ∪{i−} (EC.8m)

ri +w+
i − ri− +w−

i− ≤ 3V yi−V ui + (C + 2V −V )(yj −uj − yi), ∀i∈N ,∀j ∈N ∪{i−}, (EC.8n)

ri +w+
i − rj +w−j ≤ 2V yi−V ui + (C +V −V )(yk−uk− yi),∀i, j ∈N , i 6= j,∀k ∈N ∪{i−}

}
. (EC.8o)

Theorem EC.3. For the case when L = 1 and ` = 2 and C − V − 2V ≥ 0, the convex hull

representation of the original constraint set is the same as Q1
3 except that (EC.7b) is replaced by

(EC.4b). For the case when L= 2 and `= 1 and C − V − 2V ≥ 0, the convex hull representation

of the original constraint set is the same as Q2
3 except that (EC.4b) is replaced by (EC.7b). In

fact, when two original constraint sets have the same value of L, the corresponding convex hull

descriptions are the same except that the minimum-down constraints are different.

Proof. The proof is similar to that of Theorem 1 and thus is omitted here. �

EC.3. Proofs for Multi-Period Formulations

To show an inequality is facet-defining for conv(P ), we create 5|V|− 1 affinely independent points

in conv(P ) that satisfy this inequality at equation. Since ~0∈ conv(P ), it is sufficient to create the

remaining 5|V| − 2 linearly independent points. In this section, we label the nodes in the tree as

follows for the convenience of generating points. Due to the symmetry of the scenario tree, we

label the nodes in V following the breadth-first search rule, i.e., root node 0 is labeled as 0, the

first node at the second stage, i.e., t(1), is labeled as 1, the second node at t(1) is labeled as 2,

the first node at the third stage, i.e., t(2), is labeled as n + 1, the first node at t(k) is labeled

as 1 + n+ · · ·+ nk−1 = (nk − 1)/(n− 1), and the last node at stage T is |V| − 1. Without loss of

generality, we assume that i is the first node of all leaf nodes in the scenario tree and its ancestor

node i− is also the first node of all nodes at t(i−) as for each node considered in one inequality in

the following proofs, we can always rearrange the scenario tree to achieve this. We use Γ(t(i)) to

denote the set of all of the nodes in the same period with node i and we use Γ(i−) to collect all of

the nodes with labeling less than that of node i−.
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EC.3.1. Proof for Proposition 2

Proof. (Validity) We discuss the following two possible cases in terms of the value of yi− .

1. If yi− = 0, then us = 0,∀s ∈ [i−L , i
−], due to minimum-up time constraints (2a). Thus, ri− = 0

and
∑L−1

h=1 (h− 1)V ui−
h

= 0. Inequality (6) converts to 0 ≤ (C − V )(yi −
∑L−1

h=0 ui−
h

), which is

valid due to (2a).

2. If yi− = 1, then we consider the following two possible cases in terms of when the generator

starts up.

(a) If us = 1 for some s ∈ [i−L−1, i
−]Z, then inequality (6) converts to ri− ≤ V −C + (t(i−)−

t(s))V ui−
h

due to minimum-up time constraints (2a). It follows that inequality (6) is valid

since yi−
∑L−1

h=0 ui−
h
≥ 0 due to ramping-up constraints (2g).

(b) If us = 1 for some s ∈ [1, i−L ]Z, then inequality (6) converts to ri− ≤ (V −C) + (C − V )yi,

which is valid due to capacity constraints (2f) and the fact that yi is binary.

(Facet-defining) Here we prove the case where L≥ 3 because it is easier to prove the case in

which L≤ 2, where the last term on the RHS of inequality (6) is 0. We create 5|V| − 2 points as

follows.

1. For each α∈ [0, |Γ(i−)|−1]Z, we create four points with ys = 1,∀s∈ [0, α]Z and ys = 0 otherwise,

and us = 0,∀s ∈ [0, |V| − 1]Z, leading to 4|Γ(i−)| points in total. In addition, for each α ∈

[0, |Γ(i−)| − 1]Z, we assign different values of rs,w
+
s , and w−s to those four points as follows.

(a) rs = V −C,∀s∈ [0, α]Z and rs = 0,∀s∈ [α+ 1, |V|− 1]Z. w+
s =w−s = 0,∀s∈ [0, |V|− 1]Z.

(b) rs = w−s = V −C,∀s ∈ [0, α]Z and rs = w−s = 0,∀s ∈ [α+ 1, |V| − 1]Z. w+
s = 0,∀s ∈ [0, |V| −

1]Z.

(c) w+
s = V −C,∀s∈ [0, α]Z and w+

s = 0,∀s∈ [α+ 1, |V|− 1]Z. rs =w−s = 0,∀s∈ [0, |V|− 1]Z.

(d) rs =w+
s =w−s = 0,∀s∈ [0, |V|− 1]Z.

Note that these four points are obviously linearly independent, and for each α, since we have

ys = 1,∀s∈ [0, α]Z, we can conclude that these 4|Γ(i−)| points are linearly independent.

2. For each α ∈ [|Γ(i−)|, |Γ(i−)|+ |Γ(t(i−))| − 1]Z, we create three points with ys = 1,∀s∈ [0, α]Z,

ys = 0 otherwise, and us = 0,∀s∈ [0, |V|−1]Z, leading to 3|Γ(t(i−))| points in total. In addition,

for each α, we assign different values of rs,w
+
s , and w−s to those three points as follows.

(a) rs = V −C,∀s∈ [0, α]Z and rs = 0,∀s∈ [α+ 1, |V|− 1]Z. w+
s =w−s = 0,∀s∈ [0, |V|− 1]Z.

(b) rs = w−s = V −C,∀s ∈ [0, α]Z and rs = w−s = 0,∀s ∈ [α+ 1, |V| − 1]Z. w+
s = 0,∀s ∈ [0, |V| −

1]Z.

(c) w+
s = V −C,∀s∈ [0, α]Z and w+

s = 0,∀s∈ [α+ 1, |V|− 1]Z. rs =w−s = 0,∀s∈ [0, |V|− 1]Z.

3. For α= |Γ(i−)|+ |Γ(t(i−))|, we create one point with ys = 1, us = 0,∀s∈ [0, |V|−1]Z, rα =C−C

and rs =C −C −V,∀s∈ [0, |V|− 1]Z \ {α}, and w+
s =w−s = 0,∀s∈ [0, |V|− 1]Z.
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4. For each α∈ [|Γ(i−)|+ |Γ(t(i−))|+1, |V|−1]Z, we create one point with ys = 1,∀s∈ [0, |Γ(i−)|+

|Γ(t(i−))| − 1]Z ∪{α}, ys = 0 otherwise, and us = 0,∀s∈ [0, |V|− 1]Z, leading to |V|− |Γ(i−)| −

|Γ(t(i−))| − 1 points in total. In addition, for each α ∈ [|Γ(i−)|+ |Γ(t(i−))|+ 1, |V| − 1]Z, we

assign ri− = V −C and rs = 0 otherwise. w+
s =w−s = 0,∀s∈ [0, |V|− 1]Z.

Thus, we have created |V| + 3|Γ(i−)| + 2|Γ(t(i−))| linearly independent points above. Next, we

create another 4|V| − 2− 3|Γ(i−)| − 2|Γ(t(i−))| points in the following and sort them according to

the values of us.

5. For each α ∈ [1, |Γ(i−L−1)| − 1]Z, we create one point with uα = 1 and ys = 1, rs = V −C,∀s ∈

HL(α), and w+
s =w−s = 0,∀s∈ [0, |V|− 1]Z, leading to |Γ(i−L−1)| − 1 points in total.
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on on
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Figure EC.2 Online/offline Status of the Scenario Tree for Case 6 of Online Supplement EC.3.1, where S1 =

[|Γ(i−L−1)|+
∑k

h=1 |Γ(t(i−L−h))|, α− 1]Z and S2 = [α, |Γ(i−L−1)|+
∑k+1

h=1 |Γ(t(i−L−h))| − 1]Z
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6. For each k ∈ [0,L − 3]Z and each α ∈ [|Γ(i−L−1)| +
∑k

h=1 |Γ(t(i−L−h))|, |Γ(i−L−1)| +∑k+1

h=1 |Γ(t(i−L−h))|−1]Z, we create one point with us = 1,∀s∈ [α, |Γ(i−L−1)|+
∑k+1

h=1 |Γ(t(i−L−h))|−

1]Z and us = 0 otherwise, leading to |Γ(i−)|− |Γ(i−L−1)| points in total. Furthermore, as shown

in Figure EC.2, we start up the generator at the child nodes of each node s ∈ [|Γ(i−L−1)|+∑k

h=1 |Γ(t(i−L−h))|, α − 1]Z , i.e., us = 1,∀s ∈ [|Γ(i−L−1)| +
∑k+1

h=1 |Γ(t(i−L−h))|, |Γ(i−L−1)| +∑k+2

h=1 |Γ(t(i−L−h))|−1]Z \
⋃|Γ(i−

L−1
)|+

∑k+1
h=1
|Γ(t(i−

L−h
))|−1

k=α HL(k), ys = 1,∀s∈ [α, |V|−1]Z, and ys = 0

otherwise. rs = V −C + (t(s)− t(α))V, if s ∈ C(ŝ),∀ŝ ∈ [α, |Γ(i−L−1)|+
∑k+1

h=1 |Γ(t(i−L−h))| − 1]Z

and rs = V − C + (t(s) − t(α) − 1)V, if s ∈ C(ŝ),∀ŝ ∈ [|Γ(i−L−1)| +
∑k

h=1 |Γ(t(i−L−h))|, α − 1]Z.

w+
s =w−s = 0,∀s∈ [0, |V|− 1]Z.

7. For each α ∈ [|Γ(i−)|, |Γ(i−)| + |Γ(t(i−))| − 1]Z, we create two points with us = 1,∀s ∈

[α, |Γ(i−)| + |Γ(t(i−))| − 1]Z, us = 0 otherwise, and yŝ = 1,∀ŝ ∈ HL(s),∀s ∈ [α, |Γ(i−)| +

|Γ(t(i−))| − 1]Z, leading to 2|Γ(t(i−))| − 2 points in total. In addition, for each α, we assign

different values of rs,w
+
s , and w−s to those two points as follows.

(a) rŝ = V −C,∀ŝ∈HL(s),∀s∈ [α, |Γ(i−)|+ |Γ(t(i−))| − 1]Z and rŝ = 0 otherwise. w+
s =w−s =

0,∀s∈ [0, |V|− 1]Z.

(b) rŝ =w−ŝ = V −C,∀ŝ ∈HL(s),∀s∈ [α, |Γ(i−)|+ |Γ(t(i−))| − 1]Z and rŝ =w−ŝ = 0 otherwise.

w+
s = 0,∀s∈ [0, |V|− 1]Z.

8. For α = |Γ(i−)| , we create one point with us = 1,∀s ∈ [α, |Γ(i−)| + |Γ(t(i−))| − 1]Z, us =

0 otherwise, ys = 1,∀s ∈ [α, |V| − 1]Z, and ys = 0 otherwise. rs = V − C,∀s ∈ [α, |Γ(i−)| +

|Γ(t(i−))| − 1]Z and rs = V + V − C,∀s ∈ [|Γ(i−)| + |Γ(t(i−))|, |V| − 1]Z. w+
s = w−s = 0,∀s ∈

[0, |V|− 1]Z.

9. For each α∈ [|Γ(i−)|+ |Γ(t(i−))|, |V|−1]Z, we create four points with us = ys = 1,∀s∈ [α, |V|−

1]Z, leading to 4|V| − 4|Γ(t(i−))| − 4|Γ(i−)| points in total. In addition, for each α, we assign

different values of rs,w
+
s , and w−s to those four points as follows.

(a) rs = V −C,∀s∈ [α, |V|− 1]Z and rs = 0,∀s∈ [0, α− 1]Z. w+
s =w−s = 0,∀s∈ [0, |V|− 1]Z.

(b) rs = w−s = V −C,∀s ∈ [α, |V| − 1]Z and rs = w−s = 0,∀s ∈ [0, α− 1]Z. w+
s = 0,∀s ∈ [0, |V| −

1]Z.

(c) w+
s = V −C,∀s∈ [α, |V|− 1]Z and w+

s = 0,∀s∈ [0, α− 1]Z. rs =w−s = 0,∀s∈ [0, |V|− 1]Z.

(d) rs =w+
s =w−s = 0,∀s∈ [0, |V|− 1]Z.

In summary, we have created 5|V| − 2 points and they are linearly independent since they can be

easily transformed to a lower-triangular matrix by sorting them according to the values of α. �

EC.3.2. Proof for Proposition 4

Proof. The validity proof is trivially similar to that of Online Supplement EC.3.1, so we only

present the proof for facet-defining in the following proof for brevity. Similar to Online Supplement
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EC.3.1, we create 5|V|−2 linearly independent points satisfying inequality (8) at equality and sort

these points according to the values of α, which forms a lower-triangular matrix.

Without loss of generality, we assume that node i is the first direct child node of node i− and j

is the second direct child node of node i−. We create 5|V|− 2 points as follows.

1. For each α ∈ [0, |Γ(i)| − 1]Z, we create four points with ys = 1,∀s ∈ [0, α]Z, and us = 0,∀s ∈

[0, |V| − 1]Z, leading to 4|Γ(i)| points in total. In addition, for each α ∈ [0, |Γ(i−)| − 1]Z, we

assign different values of rs,w
+
s , and w−s to those four points as follows.

(a) rs = V −C,∀s∈ [0, α]Z and rs = 0,∀s∈ [α+ 1, |V|− 1]Z. w+
s =w−s = 0,∀s∈ [0, |V|− 1]Z.

(b) rs = w−s = V −C,∀s ∈ [0, α]Z and rs = w−s = 0,∀s ∈ [α+ 1, |V| − 1]Z. w+
s = 0,∀s ∈ [0, |V| −

1]Z.

(c) w+
s = V −C,∀s∈ [0, α]Z and w+

s = 0,∀s∈ [α+ 1, |V|− 1]Z. rs =w−s = 0,∀s∈ [0, |V|− 1]Z.

(d) rs =w+
s =w−s = 0,∀s∈ [0, |V|− 1]Z.

2. For α = |Γ(i)|, we create one point with ys = 1,∀s ∈ [0, α]Z, and us = 0,∀s ∈ [0, |V| − 1]Z.

rs = V −C,∀s∈ [0, α]Z and rs = 0,∀s∈ [α+1, |V|−1]Z. w+
s = V, if s= α and w+

s = 0 otherwise.

w−s = 0,∀s∈ [0, |V|− 1]Z.

3. For α= |Γ(i)|+1, we create one point with ys = 1,∀s∈ [0, |V|−1]Z, and us = 0,∀s∈ [0, |V|−1]Z.

rs =C −C − V, if t(s) = t(i−) and rs =C −C − 2V otherwise. w+
s = 2V, if s= α and w+

s = 0

otherwise. w−s = 0,∀s∈ [0, |V|− 1]Z.

4. For each α ∈ [|Γ(i)|+ 2, |V| − 1]Z, we create one point with ys = 1,∀s ∈ [0, |Γ(i)| − 1]Z ∪ {α},

and us = 0,∀s ∈ [0, |V| − 1]Z, leading to |V| − |Γ(i)| − 2 points in total. In addition, we let

rs = V − C,∀s ∈ [0, |Γ(i)| − 1]Z ∪ {α} and rs = 0 otherwise. w+
s = V, if s = α and w+

s = 0

otherwise. w−s = 0,∀s∈ [0, |V|− 1]Z.

Now we have constructed |V|+3|Γ(i)| linearly independent points. Thus, we only need to construct

another 4|V|− 3|Γ(i)| − 2 linearly independent points as follows.

5. For each α ∈ [1, |Γ(j−k )| − 1]Z, we create one point with uα = 1 and ys = 1, rs = V − C,∀s ∈

HL(α), and w+
s =w−s = 0,∀s∈ [0, |V|− 1]Z, leading to |Γ(j−k )| − 1 points in total.

6. For each n ∈ [0, k − 1]Z and each α ∈ [|Γ(j−k )| +
∑n

h=1 |Γ(t(j−k+1−h))|, |Γ(j−k )| +∑n+1

h=1 |Γ(t(j−k+1−h))| − 1]Z, we create one point with us = 1,∀s ∈ [α, |Γ(j−k )| +∑n+1

h=1 |Γ(t(j−k+1−h))| − 1]Z, leading to |Γ(i−)| − |Γ(j−k )| points in total. Furthermore, we start

up the generator at the child nodes of each node s ∈ [|Γ(j−k )| +
∑n

h=1 |Γ(t(j−k+1−h))|, α −

1] , i.e., us = 1,∀s ∈ [|Γ(j−k )| +
∑n+1

h=1 |Γ(t(j−k+1−h))|, |Γ(j−k )| +
∑n+2

h=1 |Γ(t(j−k+1−h))| − 1]Z \

∪
|Γ(j−

k
)|+

∑n+1
h=1
|Γ(t(j−

k+1−h
))|−1

m=α HL(m). And ys = 1,∀s ∈ [α, |V| − 1]Z. rs = V − C + (t(s) −

t(α))V, if s ∈ C(ŝ),∀ŝ ∈ [α, |Γ(i−L−1)|+
∑k+1

h=1 |Γ(t(i−L−h))| − 1]Z and rs = V −C + (t(s)− t(α)−

1)V, if s∈ C(ŝ),∀ŝ∈ [|Γ(i−L−1)|+
∑k

h=1 |Γ(t(i−L−h))|, α− 1]Z. w+
s =w−s = 0,∀s∈ [0, |V|− 1]Z.
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7. For α= |Γ(i)|, we create three points with uα = 1 and yα = 1, leading to three points in total.

We assign different values of rs,w
+
s , and w−s to those three points as follows.

(a) rα = V −C and w+
s =w−s = 0,∀s∈ [0, |V|− 1]Z.

(b) rα =w−α = V −C and w+
s = 0,∀s∈ [0, |V|− 1]Z.

(c) w+
α = V −C and rs =w−s = 0,∀s∈ [0, |V|− 1]Z.

8. For each α ∈ [|Γ(i)|+ 1, |V| − 1]Z, we create four points with uα = 1 and yα = 1, leading to

4|V| − 4|Γ(i)| − 4 points in total. In addition, for each α, we assign different values of rs,w
+
s ,

and w−s to those four points as follows.

(a) rα = V −C and w+
s =w−s = 0,∀s∈ [0, |V|− 1]Z.

(b) rα =w−α = V −C and w+
s = 0,∀s∈ [0, |V|− 1]Z.

(c) w+
α = V −C and rs =w−s = 0,∀s∈ [0, |V|− 1]Z.

(d) rs =w+
s =w−s = 0,∀s∈ [0, |V|− 1]Z.

In summary, we have created 5|V| − 2 points and they are linearly independent since they can be

easily transformed to a lower-triangular matrix by sorting them according to the values of α. �

EC.3.3. Proof for Proposition 6

Proof. The validity proof is trivially similar to that of Online Supplement EC.3.1, so we only

present the facet-defining proof as follows for brevity. Similar to Online Supplement EC.3.1, we

create 5|V| − 2 linearly independent points satisfying inequality (10) at equality and sort these

points according to the values of α, which forms a lower-triangular matrix. For notational brevity,

we define β = min{k−1,L−1}. Without loss of generality, we assume that node i is the first node

of set N .

First, we present |V|+ 3|Γ(i)| points as follows, where each α represents the time period when

the generator shuts down.

1. For α∈ [0, |Γ(i)|−1]Z, we create four points with ys = 1,∀s∈ [0, α]Z, ys = 0 otherwise, and us =

0,∀s ∈ [0, |V| − 1]Z, leading to 4|Γ(i)| points in total. In addition, for each α ∈ [0, |Γ(i)| − 1]Z,

we assign different values of rs,w
+
s , and w−s to those four points as follows.

(a) rs = V −C,∀s∈ [0, α]Z and rs = 0,∀s∈ [α+ 1, |V|− 1]Z. w+
s =w−s = 0,∀s∈ [0, |V|− 1]Z.

(b) rs = w−s = V −C,∀s ∈ [0, α]Z and rs = w−s = 0,∀s ∈ [α+ 1, |V| − 1]Z. w+
s = 0,∀s ∈ [0, |V| −

1]Z.

(c) w+
s = V −C,∀s∈ [0, α]Z and w+

s = 0,∀s∈ [α+ 1, |V|− 1]Z. rs =w−s = 0,∀s∈ [0, |V|− 1]Z.

(d) rs =w+
s =w−s = 0,∀s∈ [0, |V|− 1]Z.

Note here that these four points are obviously linearly independent, and for each α, since we

have ys = 1,∀s∈ [0, α]Z, we can conclude that these 4|Γ(i)| points are linearly independent.
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2. For α= |Γ(i)|, we create one point with ys = 1,∀s ∈ [0, |V| − 1]Z, and us = 0,∀s ∈ [0, |V| − 1]Z.

We assign values of rs,w
+
s , and w−s as follows.

rs =


V −C, s∈ [0, |Γ(i−k )|]Z
V −C + (t(s)− t(i−k ))V, s∈ [|Γ(i−k−1)|, |Γ(i−)|]Z
V −C + kV, s∈ [|Γ(i)|, |V|− 1]Z

and w+
s =w−s = 0,∀s∈ [0, |V|− 1]Z.

3. For α∈ [|Γ(i)|+1, |V|−1]Z, we create one point with ys = 1,∀s∈ [0, |Γ(i)|−1]Z∪ [|Γ(i)|+1, α]Z,

ys = 0 otherwise, and us = 0,∀s ∈ [0, |V| − 1]Z, leading to |V| − |Γ(i)| − 1 points in total. In

addition, for each α, we let rs = 0,∀s∈ [0, α−1]Z, rs = V −C,∀s∈ [α, |V|−1]Z and w+
s =w−s =

0,∀s∈ [0, |V|− 1]Z.

Now we have constructed |V|+ 3|Γ(i)| linearly independent points. Thus, we only need to con-

struct another 4|V|−3|Γ(i)|−2 linearly independent points as follows, where each α represents the

time period when the generator starts up.

4. For each α∈ [1, |Γ(i−β )| − 1]Z, we consider two possible cases in terms of β.

(a) If β = min{k− 1,L− 1}= k− 1, then we create one point with ys = 1,∀s ∈ [α, |V| − 1]Z,

ys = 0,∀s∈ [0, α− 1]Z, and uα = 1, us = 0,∀s 6= α, leading to |Γ(i−β )| − 1 points in total. In

addition, for each α, we assign values of rs,w
+
s , and w−s as follows.

rs =


0, s∈ [0, α− 1]Z
V −C, s∈ [α, |Γ(i−k )|]Z
V −C + (t(s)− t(i−k ))V, s∈ [|Γ(i−k )|+ 1, |Γ(i−)|]Z
V −C + kV, s∈ [|Γ(i)|, |V|− 1]Z

and w+
s =w−s = 0,∀s∈ [0, |V|− 1]Z.

(b) If β = min{k−1,L−1}=L−1, then we create one point with ys = 1,∀s∈ [α,α+L−1]Z,

ys = 0,∀s ∈ [0, α− 1]Z ∪ [α+L, |V| − 1]Z, and uα = 1, us = 0,∀s 6= α, leading to |Γ(i−β )| − 1

points in total. In addition, for each α, we let rs = V −C,∀s ∈ [α,α+L− 1]Z \ {i−k } and

rs = 0 otherwise. w+
s = V −C, if α= i−k , and w+

s = 0 otherwise. w−s = 0,∀s∈ [0, |V|− 1]Z.

5. For each α∈ [|Γ(i−β )|, |Γ(i)|−1]Z, we create one point with ys = 1,∀s∈ [α, |V|−1]Z, ys = 0,∀s∈

[0, α− 1]Z, and uα = 1, us = 0,∀s 6= α, leading to |Γ(i)| − |Γ(i−β )| points in total. In addition,

for each α, we let rs = 0,∀s ∈ [0, α− 1]Z, rs = V − C + (t(s)− t(α))V,∀s ∈ [α, |V| − 1]Z, and

w+
s =w−s = 0,∀s∈ [0, |V|− 1]Z.

6. For α = |Γ(i)|, we create three points with uα = yα = 1, and ys = us = 0,∀s 6= α, leading to

three points in total. We assign different values of rs,w
+
s , and w−s to those three points as

follows.

(a) rα = V −C and w+
s =w−s = 0,∀s∈ [0, |V|− 1]Z.

(b) rα =w−α = V −C and w+
s = 0,∀s∈ [0, |V|− 1]Z.



e-companion to Huang, Pan, and Guan: Multistage Stochastic Power Generation Scheduling ec29

(c) w+
α = V −C and rs =w−s = 0,∀s∈ [0, |V|− 1]Z.

7. For each α∈ [|Γ(i)|+ 1, |V|−1]Z, we create four points with uα = yα = 1, and ys = us = 0,∀s 6=

α, leading to 4|V| − 4|Γ(i)| − 4 points in total. In addition, for each α, we assign different

values of rs,w
+
s , and w−s to those four points as follows.

(a) rα = V −C and w+
s =w−s = 0,∀s∈ [0, |V|− 1]Z.

(b) rα =w−α = V −C and w+
s = 0,∀s∈ [0, |V|− 1]Z.

(c) w+
α = V −C and rs =w−s = 0,∀s∈ [0, |V|− 1]Z.

(d) rs =w+
s =w−s = 0,∀s∈ [0, |V|− 1]Z.

In summary, we have created 5|V| − 2 points and they are linearly independent since they can be

easily transformed to a lower-triangular matrix by sorting them according to the values of α. �

EC.3.4. Proof for Proposition 8

Proof. Without loss of generality, we assume that node p is the shared ancestor node of nodes

i and j at the largest time period, i.e., p = argmax{t(n) : n ∈ P(i) ∩ P(j)}, and we denote the

distances by dist(i, p)≡ k1 and dist(j, p)≡ k2, where k = k1 + k2. We let d be a leaf node on the

path such that j ∈P(p, d). Here we assume that k1 ≥ k2, since the other case where k1 <k2 can be

proved similarly and thus is omitted.

Note that due to the symmetry of the scenario tree, we only need to prove inequality (12) is

facet-defining for conv(P̄ ), where P̄ is constructed with the same constraints in P that are applied

to the scenario structure V̄ in Figure EC.3. To simplify the process of creating linearly independent

points, we re-index the nodes in V̄ as follows:

(1) For nodes 0, . . . , i−k+1, i
−
k , . . . , i

−
k1+1, p, we re-label them as 0, . . . , n− k2− 1, n− k2, . . . , n− 1, n,

where n= t(p)− 1.

(2) For nodes j−k2−1, . . . , j, . . . , d, we re-label them as n+ 1, . . . , n+ k2, . . . , n+ k1.

(3) For nodes i−k1−1, . . . , i, we re-label them as n+ k1 + 1, . . . , n+ 2k1.

0 i−k p

j−k2−1 j d

i−k1−1 i−h i

Figure EC.3 Re-Indexed Scenario Tree
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To show that inequality (12) is facet-defining for conv(P̄ ), we will create 5(n + 2k1 + 1) − 1

linearly independent points while satisfying inequality (12) at equality. Since ~0∈ conv(P̄ ), we only

need to create 5n+ 10k1 + 3 points as follows.

1. For each α ∈ [0, n+ k2 − 1]Z, we create four points with ys = 1,∀s ∈ [0, α]Z, and us = 0,∀s ∈

[0,2T − n]Z, leading to 4n+ 4k2 points in total. In addition, for each α ∈ [0, n+ k2 − 1]Z, we

assign different values of rs,w
+
s , and w−s to those four points as follows.

(a) rs = V −C,∀s∈ [0, α]Z and rs = 0,∀s∈ [α+ 1, n+ 2k1]Z. w+
s =w−s = 0,∀s∈ [0, n+ 2k1]Z.

(b) rs = w−s = V −C,∀s ∈ [0, α]Z and rs = w−s = 0,∀s ∈ [α+ 1, n+ 2k1]Z. w+
s = 0,∀s ∈ [0, n+

2k1]Z.

(c) w+
s = V −C,∀s∈ [0, α]Z and w+

s = 0,∀s∈ [α+ 1, n+ 2k1]Z. rs =w−s = 0,∀s∈ [0, n+ 2k1]Z.

(d) rs =w+
s =w−s = 0,∀s∈ [0, n+ 2k1]Z.

2. For α = n+ k2, we create three points with ys = 1,∀s ∈ [0, α]Z and us = 0,∀s ∈ [0, n+ 2k1]Z,

leading to three points in total. In addition, we assign different values of rs,w
+
s , and w−s to

those three points as follows.

(a) rs = w−s = V −C,∀s ∈ [0, α]Z and rs = w−s = 0,∀s ∈ [α+ 1, n+ 2k1]Z. w+
s = 0,∀s ∈ [0, n+

2k1]Z.

(b) w+
s = V −C,∀s∈ [0, α]Z and w+

s = 0,∀s∈ [α+ 1, n+ 2k1]Z. rs =w−s = 0,∀s∈ [0, n+ 2k1]Z.

(c) rs =w+
s =w−s = 0,∀s∈ [0, n+ 2k1]Z.

3. For each α ∈ [n + k2 + 1, n + 2k1 − 1]Z, we create four points with ys = 1,∀s ∈ [0, α]Z and

us = 0,∀s ∈ [0, n+ 2k1]Z, leading to 8k1 − 4k2 − 4 points in total. In addition, for each α, we

assign different values of rs,w
+
s , and w−s to those four points as follows.

(a) rs = V −C,∀s∈ [0, n+ k2− 1]Z ∪ [n+ k2 + 1, α]Z, and rs = 0 otherwise. w+
s =w−s = 0,∀s∈

[0, n+ 2k1]Z.

(b) rs = w−s = V −C,∀s ∈ [0, α]Z and rs = w−s = 0,∀s ∈ [α+ 1, n+ 2k1]Z. w+
s = 0,∀s ∈ [0, n+

2k1]Z.

(c) w+
s = V −C,∀s∈ [0, α]Z and w+

s = 0,∀s∈ [α+ 1, n+ 2k1]Z. rs =w−s = 0,∀s∈ [0, n+ 2k1]Z.

(d) rs =w+
s =w−s = 0,∀s∈ [0, n+ 2k1]Z.

4. For α= n+ 2k1, we create three points with ys = 1, us = 0,∀s ∈ [0, n+ 2k1]Z. In addition, we

assign different values of rs,w
+
s , and w−s to those three points as follows.

(a) rs = V + k2V − C,∀s ∈ [0, n]Z, rs = V + (k2 − s + n)V − C,∀s ∈ [n + 1, n + k2]Z, rs =

V + (s− n− k1 + k2)V −C,∀s ∈ [n+ k1 + 1, n+ 2k1]Z and rs = 0 otherwise. w+
s = w−s =

0,∀s∈ [0, n+ 2k1]Z.

(b) rs = V + k2V − C,∀s ∈ [0, n]Z, rs = V + (k2 − s + n)V − C,∀s ∈ [n + 1, n + k2]Z, rs =

V + (s−n−k1 +k2)V −C,∀s∈ [n+k1 + 1, n+ 2k1−1]Z, rn+2k1 = V + (2k1−1 +k2)V −C

and rs = 0 otherwise. w+
n+2k1

= V and w+
s = 0 otherwise. w−s = 0,∀s∈ [0, n+ 2k1]Z.
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(c) rs = k2V,∀s ∈ [0, n]Z, rs = (k2− s+ n)V,∀s ∈ [n+ 1, n+ k2]Z, rs = (s− n− k1 + k2)V,∀s ∈

[n+ k1 + 1, n+ 2k1]Z and rs = 0 otherwise. w+
s =w−s = 0,∀s∈ [0, n+ 2k1]Z.

Now we have constructed 4n+ 8k1 + 2 linearly independent points. Thus, we only need to create

another n+ 2k1 + 1 linearly independent points and sort them according to the values of us. Here

we assume min{L− 1, k− 1} ≥ k1, otherwise the proof can be completed easily. Furthermore, we

assume k− 1≤L− 1, i.e., k≤L, since the case in which L≤ k can be proved similarly.

5. For each α∈ [1, n+k1−L]Z, we create one point with uα = 1 and ys = 1, rs =w−s = V −C,∀s∈

[α,α+L− 1]Z ∪ [n+ k1 + 1, α+L− 1 + k1]Z. w+
s = 0,∀s ∈ [0, n+ 2k1]Z, leading to n+ k1 −L

points in total.

6. For each α ∈ [n + k1 − L + 1, n − k2]Z, we create one point with uα = 1 and ys = 1,∀s ∈

[α,n+ 2k1]Z. rs = V + (s−α)V −C,∀s ∈ [α,α+ k2]Z, rs = V + k2V −C,∀s ∈ [α+ k2 + 1, n]Z,

rs = V + (k2− s+n)V −C,∀s∈ [n+ 1, n+k2]Z, rs = V + (k2 + s−n−k1)V −C,∀s∈ [n+k1 +

1, n+ 2k1]Z and rs = 0 otherwise. w+
s =w−s = 0,∀s∈ [0, n+ 2k1]Z, leading to L−k1−k2 points

in total.

7. For α= n− k2, we create one point with uα = 1 and ys = 1,∀s ∈ [α,n+ 2k1]Z. rs = V + (s−

α)V −C,∀s∈ [α,n]Z, rs = V +(k2−s+n)V −C,∀s∈ [n+1,2n−α]Z, rs = V +(s−k1−α)V −

C,∀s∈ [n+k1 + 1, n+ 2k1− 1]Z, rn+2k1 = V + (k− 2)V −C and rs = 0 otherwise. w+
n+2k1

= 2V

and w+
s = 0 otherwise. w−s = 0,∀s∈ [0, n+ 2k1]Z.

8. For each α ∈ [n− k2 + 1, n]Z, we create one point with uα = 1 and ys = 1,∀s ∈ [α,n+ 2k1]Z.

rs = V + (s − α)V − C,∀s ∈ [α,n]Z, rs = V + (k2 − s + n)V − C,∀s ∈ [n + 1,2n − α]Z, rs =

V + (s − k1 − α)V − C,∀s ∈ [n + k1 + 1, n + 2k1]Z and rs = 0 otherwise. w+
s = w−s = 0,∀s ∈

[0, n+ 2k1]Z, leading to k2 points in total.

9. For each α ∈ [n+ 1, n+ k1]Z, we create one point with uα = 1 and ys = 1,∀s ∈ [α,n+ 2k1]Z.

rs =w−s = V −C,∀s∈ [α,n+k1]Z and rs =w−s = 0 otherwise. w+
s = 0,∀s∈ [0, n+2k1]Z, leading

to k1 points in total.

10. For each α∈ [n+k1 +1, n+2k1]Z, we create one point with uα = 1 and ys = 1,∀s∈ [α,n+2k1]Z.

rs = V + (s−α)V −C,∀s∈ [α,n+ 2k1]Z and rs = 0 otherwise. w+
s =w−s = 0,∀s∈ [0, n+ 2k1]Z,

leading to k1 points in total.

In summary, we have created 5n+ 10k1 + 3 points and they are linearly independent since they

can be easily transformed to a lower-triangular matrix by sorting them according to the values of

α. �

EC.3.5. Proof for Proposition 12

Proof. (Validity) We show that inequality (17) is valid for conv(P ) with ψ(y,u) = (C + V −

V )(yj−
∑L−1

m=0 uj−m) and the case ψ(y,u) = (C+V −V )(yi−
∑L−1

m=0 ui−m) is similar and thus is omitted
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here. We can observe that inequality (17) is obviously valid when yi−
k

= 0, so we focus on yi−
k

= 1

in the following discussion.

First, we consider the case where yj = 0, i.e., rj =w−j = 0. We denote the latest start-up node by

i−k+s where s≥ 0 and then we discuss the following two possible cases in terms of the value of s.

1) If s≥ L− 1, then φ= 0 and i−k+s−L+1 ∈ P(i−k ). Now we need to consider when the generator

will shut down. We denote the shut-down node by h and thus we have h /∈P(i−k ). We further

discuss three possible cases of h as follows.

1.1) If h ∈ P(i−k−n̂), then we can let h= i−k−α for some α ∈ [1, n̂]Z and ri−
k
≤ V −C + min{k−

1, s,α−1}V ≤ V −C+(α−1)V ≤ V −C+V
∑α−1

n=0(yi−
k−n
−
∑min{L−1,n+ω}

m=0 ui−
k−n+m

), which

is less than the RHS of inequality (17).

1.2) If h ∈ P(i) \ P(i−k−n̂), then we can have h = i−k−α for some α ∈ [n̂ + 1, k]Z and ri−
k
≤

V − C + min{k − 1, s,α − 1}V ≤ V − C + (α − 1)V ≤ V − C + V
∑

n∈S0(yi−
k−n
−∑min{L−1,n+ω}

m=0 ui−
k−n+m

) + V
∑

n∈S∪{n̂}(gn − n)(yi−
k−n
−
∑L−1

m=0 ui−
k−n+m

) indicating that

inequality (17) is valid.

1.3) If h∈ V(i) \P(i), then inequality (17) becomes ri−
k
≤ kV , which is also valid.

2) If s∈ [0,L− 2]Z, then i−k+s−L+1 ∈ V(i−k ) \P(i−k ) and yi−
k−n
−
∑min{L−1,n+ω}

m=0 ui−
k−n+m

= 0 for each

n ∈ [1,L− 1− s]Z. Similarly, we let the shut-down node be h and discuss the following two

possible cases in terms of the value of s.

2.1) If L− 1− s∈ [1, n̂− 1]Z, then we discuss three possible cases in terms of the value of h as

follows.

2.1.1) If h ∈ P(ik−n̂−), then we let h = i−k−α for some α ∈ [L − 1 − s, n̂]Z and similar to

previous discussion in Subcase 1.1), we have ri−
k
≤ V −C+min{k−1, s,α−1}V ≤ V −

C+min{s,α−1}V ≤ V −C+(α−1−(L−1−s))V +φ where φ= sV or (L−1−s)V
indicating that inequality (17) is valid.

2.1.2) If h ∈ P(i) \ P(i−k−n̂), then we can have h= i−k−α for some α ∈ [n̂+ 1, k]Z and ri−
k
≤

V −C+min{k−1, s,α−1}V . Inequality (17) now becomes ri−
k
≤ V −C+(n̂−1−(L−

1− s))V +V
∑

n∈(S∪{n̂})∩[n̂,α−1]Z
(gn−n) +φ. Next, if φ= sV , then clearly ri−

k
≤ V −

C+min{k−1, s,α−1}V ≤ V −C+(n̂−1−(L−1−s))V +V
∑

n∈(S∪{n̂})∩[n̂,α−1]Z
(gn−

n)+φ. If φ= (L−1−s)V , then inequality (17) converts to ri−
k
≤ V −C+(n̂−1)V +

V
∑

n∈(S∪{n̂})∩[n̂,α−1]Z
(gn−n), which is also greater than V −C+min{k−1, s,α−1}V .

2.1.3) If h ∈ V(i) \P(i), then we have ri−
k
≤ V −C + min{k− 1, s,α− 1}V . Inequality (17)

converts to ri−
k
≤ V −C + (n̂− 1− (L− 1− s))V + V

∑
n∈(S∪{n̂})(gn − n) + φ= V −

C + (n̂− 1− (L− 1− s))V + (k− n̂)V +φ. So we only need to show that

ri−
k
≤ V −C + min{k− 1, s,α− 1}V ≤ V −C + (n̂− 1− (L− 1− s))V + (k− n̂)V +φ

(EC.9)
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holds. Next, if φ= sV , then clearly ri−
k
≤ V −C + min{k− 1, s,α− 1}V ≤ V −C +

(n̂− 1− (L− 1− s))V + (k− n̂)V + φ, indicating (EC.9) holds. If φ= (L− 1− s)V ,

then inequality (17) converts to ri−
k
≤ V −C+ (k−1)V which is clearly greater than

V −C + min{k− 1, s,α− 1}V .

2.2) If L− 1− s≥ n̂, then it follows that s≤L− 1− n̂≤L− 2. Here we assume L− 1− s < k,

as the other case in which L−1−s≥ k, indicating i−k+s−L+1 ∈ V(i)\P(i) and thus yi−
k−n
−∑min{L−1,n+ω}

m=0 ui−
k−n+m

= 0 for each n∈ [1, k]Z, is easier to prove and thus is omitted here.

Similar to the proof in 2.1), we also have ri−
k
≤ V −C+ min{k−1, s,α−1}V and we only

need to show that ri−
k
≤ V −C+min{k−1, s,α−1}V ≤ V −C+V

∑
n∈(S∪{n̂})∩[0,L−s]Z

(gn−
n)+φ holds. Next, we show that φ= sV , where inequality (17) is clearly valid. Otherwise

we have φ= (L− 1− s)V , then it follows that L− 1− s≤ s− 1, i.e., 2s≥ L, which will

not hold due to the following discussions.

i. If t(i−k )≥L, then min{t(i−k )−2,L−2}=L−2≥L/2, where the last inequality holds

because of L/2 ≤ s ≤ L − 2, and it follows by the definition of n̂ that n̂ = L − 2.

However, note that L−1−s≤L−1−L/2 =L/2−1≤L−2−1 = n̂−1 since s≥L/2,

which contradicts to the condition L− 1− s≥ n̂.

ii. If t(i−k )≤L−1, then t(i−k+s−L+1) = t(i−k )+L−1−s≤ 2(L−1)−s≤−2 since s≥L/2,

which contradicts to L− 1− s≥ n̂.

Therefore, φ = sV and ri−
k
≤ V − C + min{k − 1, s,α − 1}V ≤ V − C +

V
∑

n∈(S∪{n̂})∩[0,L−s]Z
(gn−n) +φ holds obviously.

Next, we consider the case in which yj = 1. Let p be the shared ancestor node of i−k and j at

the largest time period, i.e., p= argmax{t(s) : s∈P(i−k )∩P(j)}= i−k+k1
= j−k2 . Here we only discuss

the case where there is neither a start-up between i−k+k1
and i−k nor a start-up between j−k2 and j,

otherwise the proof would be similar to the discussion before. Furthermore, we discuss the case

k1 ≤L−2 since when k1 ≥L−1 , φ= 0 is a simpler case. We denote the last start-up node by i−k+s

where s≥ 0.

3) If s≥ L− 1, then φ= 0 and i−k+s−L+1 ∈ P(i−k ). Now we need to consider when the generator

will shut-down. We denote it by h and h /∈P(i−k ). We further discuss three possible cases of h.

3.1) If h ∈ P(i−k−n̂), then we can let h = i−k−α for some α ∈ [1, n̂]Z and ri−
k
− rj + w−j ≤

min{kV,V −C+min{k−1, s,α−1}V +(C+V −V )} ≤ V −C+(α−1)V +(C+V −V )≤
V −C +V

∑α−1

n=0(yi−
k−n
−
∑min{L−1,n+ω}

m=0 ui−
k−n+m

) + (C +V −V )(yj −
∑L−1

m=0 uj−m), which is

less than the RHS of inequality (17).

3.2) If h∈P(i)\P(i−k−n̂), then we can have h= i−k−α for some α∈ [n̂+1, k]Z and ri−
k
−rj +w−j ≤

min{kV,V −C + min{k − 1, s,α− 1}V + (C + V − V )} ≤ V −C + (α− 1)V + (C + V −
V )≤ V −C + V

∑
n∈S0(yi−

k−n
−
∑min{L−1,n+ω}

m=0 ui−
k−n+m

) + V
∑

n∈(S∩[n̂+1,k−α+1]−Z)∪{n̂}(gn−
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n)(yi−
k−n
−
∑L−1

m=0 ui−
k−n+m

) + (C + V − V )(yj −
∑L−1

m=0 uj−m), which is less than the RHS of

inequality (17).

3.3) If h∈ V(i) \P(i), then inequality (17) becomes ri−
k
≤ kV , which is also valid.

4) If s∈ [k1,L− 2]Z, the proof is similar to subcase 2) and thus omitted here.

(Facet-defining) The facet-defining proof is similar to that for Proposition 2 in Online Supple-

ment EC.3.1 and thus is omitted here. �

EC.4. Proofs for Multi-Generator Formulations
EC.4.1. Proof for Proposition 14

Proof. (Validity) We have

∑
g∈S

(
rgi +w+g

i − r
g

i− +w−gi

)
=Di−Di− −

∑
g∈S

(
Cgygi −C

gyg
i−

)
+
∑
g∈S

(
w+g
i +w−gi

)
+
∑
g∈G\S

(
rg
i− +Cgyg

i− − r
g
i −C

gygi

)
≤Di−Di− −

∑
g∈S

(
Cgygi −C

gyg
i−

)
+
∑
g∈S

(
w+g
i +w−gi

)
+
∑
g∈G\S

((
V
g −Cg

)
yg
i− +

(
Cg +V g −V g

)(
ygi −u

g
i

)
−w−gi +Cgyg

i− −C
gygi

)
≤Di−Di− −

∑
g∈S

(
Cgygi −C

gyg
i−

)
+
∑
g∈S

(
2V gygi −

(
Cg + 2V g −V g

)
ugi

)
+
∑
g∈G\S

((
V
g −Cg

)
yg
i− +

(
Cg +V g −V g

)(
ygi −u

g
i

)
−w−gi +Cgyg

i− −C
gygi

)
=Di−Di− +

∑
g∈S

(
Cgyg

i− +
(

2V g −Cg
)
ygi −

(
Cg + 2V g −V g

)
ugi

)
+
∑
g∈G\S

(
V
g
yg
i− −C

gygi +
(
Cg +V g −V g

)(
ygi −u

g
i

)
−w−gi

)
,

which readily indicates that (18) is valid. In particular, in the above induction, the first equality

is due to load balance (1j) at nodes i and i−. The first inequality holds because rg
i− − r

g
i +w−gi ≤

(V
g−Cg)yg

i− + (Cg +V g−V g
)(ygi −u

g
i ), which can be proved easily by following the similar proof

in Proposition 1. The second inequality holds because w+g
i +w−gi ≤ 2V gygi − (Cg + 2V g −V g

)ugi .

(Facet-defining) The two-period case of conv(Ψ) is defined as the convex hull of Ψ2 =

{(r,w+,w−, y, u) ∈R2|G|
+ ×R2|G|

+ ×R2|G|
+ ×B2|G|×B|G| : (1b)− (1j)}. In the following, we create 9|G|

affinely independent points that satisfy inequality (18) at equation, where each point has the fol-

lowing components (rg
i− , r

g
i ,w

+g

i− ,w
+g
i ,w−g

i− ,w
−g
i , yg

i− , y
g
i , u

g
i ),∀g ∈ G.
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First, we discuss the possible values that we can choose for (yg
i− , y

g
i , u

g
i ),∀g ∈ G. Note that for each

given g ∈ G, to create the affinely independence among the dimensions spanned by (yg
i− , y

g
i , u

g
i ),

only three possible sets of values for (yg
i− , y

g
i , u

g
i ) can be used, i.e.,

(yg
i− , y

g
i , u

g
i ) = (1,0,0), (EC.10)

(yg
i− , y

g
i , u

g
i ) = (1,1,0), and (EC.11)

(yg
i− , y

g
i , u

g
i ) = (0,1,1), (EC.12)

which are affinely independent by themselves.

Next, we discuss the possible values that we can choose for (rg
i− , r

g
i ,w

+g

i− ,w
+g
i ,w−g

i− ,w
−g
i ),∀g ∈

G. For each given g, to create the affinely independence among the dimensions spanned by

(rg
i− , r

g
i ,w

+g

i− ,w
+g
i ,w−g

i− ,w
−g
i ) and to satisfy (18) at equation, we can choose the following possible

values for (rg
i− , r

g
i ,w

+g

i− ,w
+g
i ,w−g

i− ,w
−g
i ) depending on the values of (yg

i− , y
g
i , u

g
i ):

• If (yg
i− , y

g
i , u

g
i ) = (1,0,0), then (rg

i− , r
g
i ,w

+g

i− ,w
+g
i ,w−g

i− ,w
−g
i ) can take (0,0,0,0,0,0), (V

g−Cg−
s,0,0,0,0,0), (V

g −Cg − s,0, V g −Cg − s,0,0,0), and (0, V
g −Cg − s,0,0,0,0) for some s ∈

[0, V
g −Cg), which are affinely independent by themselves.

• If (yg
i− , y

g
i , u

g
i ) = (1,1,0), then (rg

i− , r
g
i ,w

+g

i− ,w
+g
i ,w−g

i− ,w
−g
i ) can take (rg∗

i− + s,0,0, rg∗i − s,V g −
s,V g − s), (rg∗

i− , s,0, r
g∗
i − s,V g − s,V g − s), and (rg∗

i− + s,0, s, rg∗i − s,V g − s,V g − s) for some

s ∈ [0, V g], which are affinely independent by themselves. The values of rg∗
i− and rg∗i can be

decided by considering the load balance at nodes i− and i.

• If (yg
i− , y

g
i , u

g
i ) = (0,1,1), then (rg

i− , r
g
i ,w

+g

i− ,w
+g
i ,w−g

i− ,w
−g
i ) can take (0,0,0,0,0,0), (0,0,0, V

g−
Cg − s,0,0), (0,0,0, V

g −Cg − s,0, V g −Cg − s), and (0,0,0,0, V
g −Cg − s,0) for some s ∈

[0, V
g −Cg), which are affinely independent by themselves.

Meanwhile, by integrating the possible values of (rg
i− , r

g
i ,w

+g

i− ,w
+g
i ,w−g

i− ,w
−g
i ) and (yg

i− , y
g
i , u

g
i ), it is

clear that they are affinely independence by themselves with g given. Therefore, by appropriately

choosing these values through adjusting the value of s as mentioned above and for different g ∈ G,

we can easily generate 9|G| feasible points in conv(Ψ2) that satisfy (18) at equation. �

EC.4.2. Proof for Proposition 16

Proof. (Validity) If
∑

g∈G\S(ygi −u
g
i )≥ 1, then it is clear that (19) holds. If

∑
g∈G\S(ygi −u

g
i ) = 0,

i.e., ygi = ugi for all g ∈ G \S, then we need to show that∑
g∈S

rgi ≥Di− −
∑
g∈S

(
V
g

+Cg
)
. (EC.13)

Assume S0 ⊆ G \ S such that ygi = ugi = 1 for all g ∈ S0 and ygi = ugi = 0 for all g ∈ G \ {S ∪ S0}. It

follows that ∑
g∈S

rgi =Di−
∑
g∈S0

(rgi +Cgygi )−
∑
g∈S

Cgygi
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≥Di− +
∑
g∈G\S

V
g −
∑
g∈S

V g −
∑
g∈S0

V
g −
∑
g∈S

Cg

≥Di− −
∑
g∈S

(
V
g

+Cg
)
,

where the first equality is due to load balance (1j) at node i, the first inequality holds because

Di−Di− ≥
∑

g∈G\S V
g−
∑

g∈S V
g, rgi +Cgygi ≤ V

g
for g ∈ S0, and ygi ≤ 1 for g ∈ S, and the second

inequality is due to S0 ⊆G \S. Thus, (EC.13) holds.

(Facet-defining) The two-period case of conv(Ψ) is defined as the convex hull of Ψ2 =

{(r,w+,w−, y, u) ∈R2|G|
+ ×R2|G|

+ ×R2|G|
+ ×B2|G|×B|G| : (1b)− (1j)}. In the following, we create 9|G|

affinely independent points that satisfy inequality (19) at equation, where each point has the fol-

lowing components (rg
i− , r

g
i ,w

+g

i− ,w
+g
i ,w−g

i− ,w
−g
i , yg

i− , y
g
i , u

g
i ),∀g ∈ G.

First, we discuss the possible values that we can choose for (yg
i− , y

g
i , u

g
i ),∀g ∈ G. Note that for each

given g ∈ G, to create the affinely independence among the dimensions spanned by (yg
i− , y

g
i , u

g
i ), only

three possible sets of values for (yg
i− , y

g
i , u

g
i ) can be used, i.e., (EC.10) - (EC.12), which are affinely

independent by themselves. Note that we need to appropriately choose the value of (yg
i− , y

g
i , u

g
i ) to

ensure that
∑

g∈G\S(ygi −u
g
i )≤ 1.

Next, we discuss the possible values that we can choose for (rg
i− , r

g
i ,w

+g

i− ,w
+g
i ,w−g

i− ,w
−g
i ),∀g ∈

G. For each given g, to create the affinely independence among the dimensions spanned by

(rg
i− , r

g
i ,w

+g

i− ,w
+g
i ,w−g

i− ,w
−g
i ) and to satisfy (19) at equation, we can choose the following possible

values for (rg
i− , r

g
i ,w

+g

i− ,w
+g
i ,w−g

i− ,w
−g
i ) depending on the values of (yg

i− , y
g
i , u

g
i ):

• If (yg
i− , y

g
i , u

g
i ) = (1,0,0), then (rg

i− , r
g
i ,w

+g

i− ,w
+g
i ,w−g

i− ,w
−g
i ) can take (0,0,0,0,0,0), (V

g−Cg−
s,0,0,0,0,0), (V

g −Cg − s,0, V g −Cg − s,0,0,0), and (0, V
g −Cg − s,0,0,0,0) for some s ∈

[0, V
g −Cg), which are affinely independent by themselves.

• If (yg
i− , y

g
i , u

g
i ) = (1,1,0), then we discuss the following possible cases:

— If g ∈ S and
∑

g∈G\S(ygi −u
g
i ) = 1 (i.e., there only exists g ∈ G \S such that ygi = 1 and ugi =

0), then (rg
i− , r

g
i ,w

+g

i− ,w
+g
i ,w−g

i− ,w
−g
i ) can take (0,0,0,0, V g−s,V g−s), (rg∗

i−+s,0,0,0, V g−
s,V g − s), (rg∗

i− , s,0,0, V
g − s,V g − s), and (rg∗

i− + s,0, s,0, V g − s,V g − s) for some s ∈
[0, V g], which are affinely independent by themselves. The value of rg∗

i− can be decided by

considering the load balance at node i−.

— Otherwise, then (rg
i− , r

g
i ,w

+g

i− ,w
+g
i ,w−g

i− ,w
−g
i ) can take (0,0,0,0, V g − s,V g − s),

(rg∗
i− , s,0, r

g∗
i − s,V g − s,V g − s), and (rg∗

i− + s,0, s, rg∗i − s,V g − s,V g − s) for some s ∈
[0, V g], which are affinely independent by themselves. The value of rg∗

i− can be decided by

considering the load balance at node i−.

• If (yg
i− , y

g
i , u

g
i ) = (0,1,1), then (rg

i− , r
g
i ,w

+g

i− ,w
+g
i ,w−g

i− ,w
−g
i ) can take (0,0,0,0,0,0), (0,0,0, V

g−
Cg − s,0,0), (0,0,0, V

g −Cg − s,0, V g −Cg − s), and (0,0,0,0, V
g −Cg − s,0) for some s ∈

[0, V
g −Cg), which are affinely independent by themselves.



e-companion to Huang, Pan, and Guan: Multistage Stochastic Power Generation Scheduling ec37

Meanwhile, by integrating the possible values of (rg
i− , r

g
i ,w

+g

i− ,w
+g
i ,w−g

i− ,w
−g
i ) and (yg

i− , y
g
i , u

g
i ), it is

clear that they are affinely independence by themselves with g given. Therefore, by appropriately

choosing these values through adjusting the value of s as mentioned above and for different g ∈ G,

we can easily generate 9|G| feasible points in conv(Ψ2) that satisfy (19) at equation. �

EC.4.3. Proof for Proposition 17

Proof. (Validity) We only prove the case in which j = i− since the case in which j− = i follows

a similar proof. We prove it by contradiction. Assume
∑

g∈G y
g
i ≤ qi. Then we have

∑
g∈G y

g
i = qi due

to the condition
∑|G|

g=|G|−qi+2C
[g]
<di ≤

∑|G|
g=|G|−qi+1C

[g]
. Due to the condition

∑|G|
g=|G|−qi+1C

[g]
+ν <

dj <
∑|G|

g=|G|−qi
C

[g]
, we have

∑
g∈G y

g

i− ≥ qi + 1. Thus, at least one generator should shut down

at node i, meaning xg
i− ≤ V

g
for some g with yg

i− = 1 due to ramping-down rate restriction (1i).

Since di− −di > (
∑|G|

g=|G|−qi+1C
[g]

+ ν)−
∑|G|

g=|G|−qi+1C
[g]

= ν ≥ V g
for all g ∈ G, which prevents any

generator from shutting down at node i, a contradiction.

(Facet-defining) The facet-defining proof is similar to that for Proposition 14 in Online Sup-

plement EC.4.1 and thus is omitted here. �

EC.4.4. Proof for Proposition 18

Proof. We first consider the case in which
∑

g∈S

(
yg
i− − y

g
i +ugi

)
≥ 1. We have

∑
g∈S

(
rg
i−
k

− rgi
)

+
∑
g∈G\S

w+g
i =Di−

k
−Di +

∑
g∈G

(
Cgygi −C

gyg
i−
k

)
+
∑
g∈G\S

(
rgi +w+g

i − r
g

i−
k

)
≤Di−

k
−Di +

∑
g∈G

(
Cgygi −C

gyg
i−
k

)

+
∑
g∈G\S

kV gygi −
min{k−1,Lg−1}∑

m=0

(
Cg + (k−m)V g −V g

)
ug
i−m


≤Di−

k
−Di +

∑
g∈G

(
Cgygi −C

gyg
i−
k

)

+
∑
g∈G\S

kV gygi −
min{k−1,Lg−1}∑

m=0

(
Cg + (k−m)V g −V g

)
ug
i−m


−

{
Γ−

(
Di−

∑
g∈S

Cg

)}(
1−

∑
g∈S

(
yg
i− − y

g
i +ugi

))
,

where the first equality is due to load balance (1j) at nodes i and i−, the first inequality is due to

(10), and the second inequality is due to the condition
∑

g∈S

(
yg
i− − y

g
i +ugi

)
≥ 1.

Next, if
∑

g∈S

(
yg
i− − y

g
i +ugi

)
= 0, then we have yg

i− − y
g
i + ugi = 0 for all g ∈ S due to (1e). It

follows that for each g ∈ S, there exists three possible cases: 1) yg
i− = 1, ygi = 1, and ugi = 0; 2)
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yg
i− = 0, ygi = ugi = 1; and 3) yg

i− = ygi = ugi = 0. Since |G \S| ≤ qi−1, the third case can be ruled out

and we focus on the first two cases where ygi = 1 for all g ∈ S. It follows that∑
g∈S

(
rg
i−
k

− rgi
)

+
∑
g∈G\S

w+g
i ≤

∑
g∈S

(
rg
i−
k

− 0

)
+
∑
g∈G\S

w+g
i

≤
∑
g∈S

rg
i−
k

+

(
Di−

k
−
∑
g∈S

rg
i−
k

−
∑
g∈G

Cgyg
i−
k

)
+
∑
g∈G\S

w+g
i

≤
∑
g∈S

rg
i−
k

+

(
Di−

k
−
∑
g∈S

rg
i−
k

−
∑
g∈G

Cgyg
i−
k

)
−Γ +

∑
g∈G\S

Cgygi

+
∑
g∈G\S

kV gygi −
min{k−1,Lg−1}∑

m=0

(
Cg + (k−m)V g −V g

)
ug
i−m


=Di−

k
−Di +

∑
g∈G

(
Cgygi −C

gyg
i−
k

)

+
∑
g∈G\S

kV gygi −
min{k−1,Lg−1}∑

m=0

(
Cg + (k−m)V g −V g

)
ug
i−m


−

{
Γ−

(
Di−

∑
g∈S

Cg

)}(
1−

∑
g∈S

(
yg
i− − y

g
i +ugi

))
,

where the first inequality is due to the fact that ygi = 1 and rgi ≥ 0 for all g ∈ S, the second inequality

is due to the fact that Di−
k
−
∑

g∈S r
g

i−
k

−
∑

g∈G C
gyg
i−
k

≥ 0, and the third inequality is due to the

definition of Γ. �
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