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Price postponement is an effective mechanism to hedge against the adverse effect of supply random yield.

However, its effectiveness and the resulting production decisions have not been studied for risk averse firms.

In this paper, we investigate the impact of price postponement and risk aversion under supply yield risk.

Specifically, we study a risk averse monopoly firm’s production and pricing decisions under supply random

yield with two distinct pricing schemes: (1) ex ante pricing - the firm simultaneously makes the sales price

and sourcing decisions before production takes place; and (2) responsive pricing - the pricing decision is

postponed until after the production yield realization. We adopt the conditional-value-at-risk (CVaR) as the

risk aversion measurement, and investigate the impact of the firm’s risk aversion level on its optimal decisions

and the corresponding profit. Among other results, we show that for each pricing scheme, there exists a unique

risk aversion threshold, under which the firm chooses not to produce. Interestingly, price postponement has

no impact on the risk aversion threshold, as the cutoff values under both pricing schemes are the same. We

further show that the value of CVaR improvement from responsive pricing may not be monotonic in the firm’s

risk aversion level. Consequently, our results indicate that although price postponement induces operational

flexibility by better matching demand with available supply, whether the firm should adopt responsive pricing

needs to be carefully evaluated, as the benefit may not justify the potential fixed cost associated with price

postponement, especially for a highly risk averse firm. In addition, we show that responsive pricing, albeit

its ex post revenue maximization behavior, benefits the end market consumers in equilibrium. Finally, we

conduct extensive numerical studies to check and confirm the robustness of our results.
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1. Introduction

Supply risk is prevalent in today’s global economy and is listed among the top three most sig-

nificant risks that firms need to battle against (Gyorey et al. 2010). Among various supply risks,

production yield risk is a significant one for many industries, such as seminconductor industry,

agribusiness, and vaccine manufactuering (see, e.g., Tang and Kouvelis 2014, Deo and Corbett

2009). In recent years, we have witnessed many supply chain shortages caused by yield uncertainty.

For example, in December 2010, a cold weather blasted through Florida’s key citrus-growing areas,
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slashed the orange crop, and resulted in a smaller-than-expected crop yield. The orange supply

from Florida was down by 12% from the previous year (Sellen 2010). As another example, egg

companies and turkey producers suffered substantial losses in the U.S. bird-flu outbreak in 2015.

The extermination of 32 million egg laying hens accounted for 10% of the U.S. egg-laying flock.

Turkey production took a hit as well, with 2.5% of the nation’s flock affected (Gee 2015). Such

supply yield risks not only prevail in many industries, but also bring significant financial losses.

In the above bird-flu example, Chad Gregory, president of the United Egg Producers, anticipated

that some egg companies were unlikely to survive because of the cost of culling animals and having

to go months without revenue while facilities were cleaned and repopulated with hens, even though

the government had earmarked nearly $400 million to help compensate farmers for culled birds,

cleanup and disease testing (Gee 2015). Both the prevalence and the costly consequences of supply

uncertainty highlight the importance of supply risk management for researchers and practitioners.

There are many effective risk mitigating mechanisms that can be used to alleviate the adverse

effects of supply random yield, with pricing undoubtedly serving as both a revenue generating and

risk mitigating tool. Even though a fixed stable pricing strategy may be frequently observed in

practice, it is not uncommon when facing supply yield risk, a price-setting firm could postpone the

pricing decision after the yield realization to better match demand with supply and maximize the

revenue from the available inventory (see, e.g., Li et al. 2013, 2017). For example, Etienne et al.

(2017) document that many agri-producers have the option to choose between forward and spot

sales of their products, e.g., corn, oranges. While forward sale with sales price determined ex ante

upon production is a primary market tool for crop farmers to maintain the stability of their output

price, spot sale with output price postponed until after harvest, partially with the purpose to better

utilize the available supply in case of shortage, is also commonly seen in practice (Davis et al. 2005,

Shao and Wu 2019). For example, when facing Florida’s low orange yield in 2010, Tropicana Inc.

raised orange juice price by 8% for pure premium orange juice. At the same time, to better utilize

the limited supply while keeping its announced retail price unchanged, the company shrank its

most popular product, the 64-ounce container, by about 8 percent (The Associated Press 2010).

The above examples clearly illustrate that, when endowed with the power to determine pricing

timing, firms may postpone the sales price to partially mitigate the adverse impact of random yield.

Price postponement strategies have been mostly discussed for risk neutral firms (Van Mieghem

and Dada 1999, Tang and Yin 2007, Li et al. 2017). However, firms, especially small producers

and local processors, usually exhibit certain degrees of risk aversion and amplify the concern of low

profit realizations when making their operational decisions. Such exhibition of risk aversion towards

downside profit shocks may change the firm’s production and pricing decisions, and affect the

potential adoption and the corresponding value of price postponement. For instance, the adoption of
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price postponement in the above examples may depend on many factors, such as the characteristics

of the firm and its product, and the cost associated with delayed price announcement. We are

also interested in understanding at what level of risk aversion, which we refer to as “risk aversion

threshold”, the firm decides not to produce. The main objective of this paper is to understand

the strategic interactions between risk aversion and price postponement under supply yield risk

from both the firm’s and the consumers’ perspectives. Particularly, we would like to investigate the

following research questions: How does price postponement change a firm’s risk aversion threshold?

How does risk aversion alter the value and the operational execution of price postponement? And

how does the pricing scheme choice of a risk averse firm affect its consumers’ total welfare?

Specifically, we study a monopoly firm’s pricing and production decision under supply random

yield. Depending on the timing of pricing decision, we study two distinct pricing schemes: (1) ex

ante pricing scheme, under which the firm sets price and quantity simultaneously before production

takes place; and (2) responsive pricing scheme, under which the firm postpones the pricing decision

until after the yield realization. We study each pricing scheme under both risk neutrality and risk

aversion of the decision makers, and adopt the conditional value at risk (CVaR) criterion as the

risk aversion measurement. Proposed by Rockafellar and Uryasev (1999), the CVaR criterion is a

coherent risk measure for quantifying risk, which emphasizes the lower tail of the profit realizations

and measures the average value of the profit falling below a certain quantile level. The CVaR

criterion quantifies the firm’s risk aversion attitude towards low profit by a single parameter, and

enables us to characterize the impact of risk aversion level upon the optimal decisions under each

pricing scheme. Moreover, we compare the results of the two pricing schemes to understand the

impact of risk aversion on the value and operational execution of price postponement as well as their

joint effect on the end market consumers’ total welfare. We also discuss alternative risk aversion

measurements, such as the expected utility and the mean-variance criteria, as model extensions.

For each pricing scheme, we fully characterize the firm’s optimal pricing and production decisions

and investigate the corresponding impacts of risk aversion. Among other results, we show that under

ex ante pricing, a more risk averse firm sets a higher price and obtains a lower CVaR. However, the

impact of risk aversion on the production quantity is non-monotonic. When the production cost is

low, the production quantity first increases and then decreases as the firm becomes less risk averse.

For responsive pricing, although the firm produces more [less] than the riskless quantity when the

production cost is low [high], the impact of risk aversion on the production quantity may still be

non-monotonic, and shares a similar pattern as that under ex ante pricing.

The main focus of our paper is to understand the strategic impact of risk aversion on the value

and operational adoption of price postponement strategy in mitigating supply yield risk. Our

analysis focuses on four interrelated issues: (1) impact of price postponement on the firm’s risk
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aversion threshold; (2) impact of risk aversion on the operational execution of price postponement;

(3) impact of risk aversion on the value of price postponement; and (4) impact of a risk averse firm’s

pricing scheme choice on consumers’ total welfare. First, we find that there exists a unique threshold

risk aversion level in each pricing scheme, below which the firm chooses not to produce. Intuitively,

one may conjecture that responsive pricing should allow a more risk averse firm to produce, as it

partially mitigates supply risk by reactive pricing. However, our results show that, contrary to the

intuition, the flexibility of price postponement has no impact on the firm’s risk aversion threshold,

i.e., the two pricing schemes share a common risk aversion cutoff level. Second, we find that the

firm always produces more [less] under responsive pricing when the production cost is high [low],

and the region in which the firm produces more under responsive pricing shrinks as it becomes less

risk averse. In addition, we show that the value of CVaR improvement from responsive pricing may

not be monotonic in the firm’s risk aversion level. As such, our results imply that although price

postponement induces operational flexibility by better matching demand with available supply,

whether the firm should adopt such strategy needs to be carefully evaluated since the CVaR gain

may not necessarily cover the associated cost of implementing the price postponement. Finally, we

show that responsive pricing improves consumer surplus in equilibrium. That is, consumers benefit

from price postponement even though the firm may strategically set price to better match supply

with demand through ex post revenue maximization.

To conclude, we overview our contributions to the existing literature. Although price postpone-

ment is recognized as an effective tool to mitigate supply yield risk, its value and operational exe-

cution for a risk averse firm have not been analyzed. Our work contributes by explicitly evaluating

the impact of risk aversion on the value and adoption of responsive pricing strategy. Furthermore,

our results indicate that price postponement, albeit its ex post revenue maximizing behavior, could

improve consumers’ overall surplus. However, such an operational flexibility does not enhance a

firm’ risk aversion threshold, and the CVaR gain for a risk averse firm may not necessarily cover

the associated cost of delayed price announcement. As a result, although responsive pricing could

potentially lead to a win-win outcome for both the firm and its consumers, such a Pareto improve-

ment critically depends on the firm’s risk aversion level and the potential fixed implementation

cost associated with postponing sales price.

The rest of this paper is organized as follows. We position our paper in the related literature

in Section 2. Section 3 sets up the model. Section 4 analyzes the two pricing schemes. Section 5

investigate the impact of price postponement and risk aversion. We conduct numerical analysis to

check the robustness of our results in Section 6, and provide additional discussions in Section 7.

Section 8 concludes the paper. All proofs and additional results are relegated to the appendices.
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2. Literature Review

Our paper mainly contributes to four streams of literature: (1) operations management under risk

aversion; (2) supply risk management; (3) value of price postponement; and (4) joint pricing and

inventory management.

First, our work is related to the literature of operations management under risk aversion. There

are different ways to model a decision maker’s risk aversion attitude. For example, the expected

utility criterion models a decision maker’s risk aversion attitude through a general concave utility

function, under which decisions are optimized by considering all possible realizations of the under-

lying uncertainty (see Chen et al. 2007, Agrawal and Seshadri 2000, Kazaz and Webster 2015).

The mean-variance criterion focuses on both the expected value and the variability of the objective

function under uncertainty (see Chen and Federgruen 2000, Dong and Liu 2007). Different from the

previous criteria, the conditional value-at-risk (CVaR) criterion focuses on the average value of the

objective function falling below a certain quantile level (VaR), which takes into consideration both

the reward and the risk (see Ahmed et al. 2007, Choi and Ruszczynski 2008, Chen et al. 2009).

We also adopt the CVaR criterion as the risk aversion measurement for our pricing problems, and

investigate the impact of risk aversion level upon the firms’ optimal decisions under random yield.

Second, our paper contributes to the extensive literature on supply risk management, see Yano

and Lee (1995) for a comprehensive review. The primary focus in this line of research is how

to design operational strategies to effectively mitigate supply risk. For example, firms can inflate

production and/or hold extra inventory to hedge against yield risk (see Henig and Gerchak 1990),

diversify their supply base to enjoy the risk pooling effect and reduce supply output variability (see

Anupindi and Akella 1993, Dada et al. 2007, Federgruen and Yang 2008, 2009, 2011, 2014, Tang

and Kouvelis 2011, Feng and Shi 2012, Li et al. 2013, Hu and Kostamis 2014, Dong et al. 2015,

Tan et al. 2016, Feng et al. 2018, Dong et al. 2020), and exert effort to improve their suppliers’

production reliabilities (see Wang et al. 2009, Tang et al. 2014). Despite the extensive literature

on supply risk management, little research has been conducted on the impact of risk aversion on

the adoption of supply risk mitigation strategies, and especially price postponement.

Another stream of research investigates the value of price postponement in mitigating the mis-

match of supply and demand. Van Mieghem and Dada (1999) are the first to study the impact of

the timing of price setting on the inventory decision when demand is uncertain. Chod and Rudi

(2005) study the impact of responsive pricing on the usage of flexible resources. Granot and Yin

(2008) investigate the impact of order and price postponement in a decentralized supply chain with

a price-setting retailer. With uncertain yield, Tang and Yin (2007) demonstrate that responsive

pricing improves the profit of a firm. Li et al. (2017) study the impact of price postponement on a
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price-setting firm’s supply diversification decision under supply random capacity.1 Different from

the above papers, our work contributes by investigating how a firm’s risk aversion affects the value

and operational execution of price postponement in mitigating supply yield risk.

Finally, our paper is also related to the literature on joint pricing and inventory management.

For multiple period settings, see Yano and Gilbert (2003) and Chen and Simchi-Levi (2012) for a

comprehensive review. Federgruen and Heching (1999) provide a general treatment for this type of

problem and show that a base-stock/list-price policy is optimal. In subsequent research, Chen and

Simchi-Levi (2004a,b, 2006) study inventory control and pricing strategies with fixed setup costs

and show the optimality of (s,S, p) policy for the finite horizon, the infinite horizon and the contin-

uous review models. Feng et al. (2014) investigate the dynamic pricing and inventory management

problem under a general demand function, which includes both additive and multiplicative random

demand as special cases. Li and Zheng (2006) and Feng (2010) show that a reorder-point/list-price

policy is optimal under supply random yield and random capacity, respectively.

For single period settings, Petruzzi and Dada (1999) provide a comprehensive review on the

price-setting newsvendor problem. With a multiplicative or additive demand model, Yao et al.

(2006) show that if the mean price-induced demand satisfies the IPE property and the random

term follows an IGFR distribution, then the equilibrium price and quantity can be uniquely deter-

mined. Kocabıyıkoğlu and Popescu (2011) provide general conditions to analyze the price-setting

newsvendor problem with a general demand function. Lu and Simchi-Levi (2013) characterize a

general set of conditions to ensure the unimodality of the profit function under a multiplicative and

additive demand function. For supply side uncertainty, Pan and So (2010) study an assembler’s

pricing and inventory decisions with random yield. Xu and Lu (2013) analyze the impact of supply

yield uncertainty on a price-setting newsvendor with a backup supplier. Our work contributes by

studying the price-setting newsvendor problem of a risk averse firm with two pricing schemes, ex

ante and responsive, under random yield. We model risk control under the CVaR criterion, and

characterize the impact of the firm’s risk aversion level upon the optimal decisions.

3. Model Setup

Consider a monopoly firm, which produces a single product and sells to a market with deterministic

price sensitive demand d(p). We assume d(p) strictly decreases in p with inverse demand function

p(d) := d−1(p). Let p0 ≤∞ be the maximal allowable price that induces 0 demand, i.e., d(p0) = 0.

The firm’s production suffers from yield uncertainty, i.e., the output quantity is only a random

fraction ξ of the input quantity. We assume that the yield factor, ξ, is a continuous random

variable with support on the interval [l, u], where 0 ≤ l < u ≤ 1. Let g(ξ), G(ξ), Ḡ(ξ), and µ

1 The detailed discussions between random yield and random capacity models are provided in Section 7.3.
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denote the probability density function (p.d.f.), the cumulative distribution function (c.d.f.), the

complementary cumulative distribution function (c.c.d.f.), and the mean yield, respectively.

Throughout the analysis, we focus on the scenario where our focal firm is a vertically integrated

firm with its own internal production facility. As such, it is responsible for all the production inputs

regardless of the yield realization. Let c denote the unit production cost incurred for every unit of

the input production quantity and equivalently, the effective unit production cost per usable unit

is c/µ. To avoid the trivial solution of no production, we assume that c ≤ p0µ. We remark that

for our centralized setup, it could be practically possible for the firm to incur additional cost for

each successfully produced (and delivered) final product after yield realization, including product

handling and packaging cost, distribution/delivery cost, etc (see Deo and Corbett 2009, Tang and

Kouvelis 2014). Such a general cost structure will be discussed in Section 7.2. In addition, we

assume, without loss of generality, that there is no salvage value or goodwill cost, as these costs

can be easily incorporated without affecting our main results qualitatively.

We consider both the risk neutral and the risk averse cases. For modeling risk aversion, we are

particularly interested in the case where the firm amplifies the concern of low profit realization

and adopt the conditional value-at-risk (CVaR) criterion, which is proposed by Rockafellar and

Uryasev (1999) as a coherent risk measurement for quantifying risk. In its standard definition,

CVaR deals with a random loss function to quantify its average above a certain quantile level (i.e.,

right tail) to avoid a large loss. To adopt in a newsvendor setting, we apply CVaR to a random

profit function and measure the average profit falling below a certain quantile level (i.e., left tail)

to emphasize low profit realization cases (see Chen et al. 2007). Next, we provide formal definition

of CVaR applied to a random profit function and its equivalent maximization formula. Let π be a

random profit function and η ∈ (0,1] be a quantile level. The value-at-risk (VaR) of π at quantile

level η, denoted as VaRη(π), is the η percentile of π, i.e., VaRη(π) = inf{v ∈ R : P(π ≤ v) ≥ η}.
The CVaR at quantile level η is defined as the average value falling below the corresponding

VaR value: CVaRη(π) = E[π|π ≤ VaRη(π)]. Although having clear managerial implication, the

conditional expectation definition is usually not straightforward to calculate. This is because, to

get CVaR through the above definition, we need to first derive the VaR value of the random

profit, which can be lack of nice mathematical property and more complicated itself (Rockafellar

and Uryasev 1999). To resolve such technical inconvenience, Rockafellar and Uryasev (1999, 2002)

propose an alternative formula of CVaR as the maximization of the following auxiliary function:2

CVaRη(π) = max
v∈R
{v+

1

η
Emin{π− v,0}}.

2 In Rockafellar and Uryasev (2002), CVaR is applied to random loss and the alternative formula is to minimize an
auxiliary function. In our setting, we focus on random profit, and the alternative formula is to maximize a revised
auxiliary function. Such an alternative formula is heavily adopted in the Operations Management literature to simplify
the analysis. We further prove the equivalence relationship between the two formulas in Property 1 of Appendix EC.3.
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The above maximization formula possesses nice functional property as it is concave in v, and

reveals that CVaR can be calculated bypassing the calculation of the corresponding VaR value,

on which its original definition depends. In addition, being the optimal solution of the aforemen-

tioned optimization formula, the VaR value can also be obtained simultaneously as a byproduct.

This maximization formula for CVaR calculation is heavily adopted in the related literature with

parameter η reflecting a decision maker’s risk aversion level to the downside profit realizations, see

Chen et al. (2007) for example. We will adopt this alternative CVaR formula in our analysis.

Next, we detail the firm’s activities. Our main objective is to study and compare the firm’s

production decisions under two pricing schemes: (1) the ex ante pricing scheme, under which the

firm makes the pricing and production decisions simultaneously before yield uncertainty realizes;

and (2) the responsive pricing scheme, under which the firm postpones the pricing decision after

yield uncertainty is resolved. We introduce the problem formulation under each pricing scheme.

Ex ante pricing scheme. The firm faces a one-stage problem of setting price and production

quantity simultaneously before yield realizes. Let pa and qa be the market price and the quantity,

respectively. Based on previous discussion, we adopt the maximization formula. The firm’s CVaR

is given by Equation (1) below, where the subscript “a” represents the ex ante pricing scheme.

Πa(pa, qa) := CVaRη(πa(pa, qa)) = max
v∈R

{
v+

1

η
Eξ min{πa(pa, qa)− v,0}

}
, (1)

where πa(pa, qa) := pamin{d(pa), qaξ}− cqa.

Note that πa(pa, qa) is the firm’s ex post profit when the yield realization is ξ, and η ∈ (0,1] can be

interpreted as the risk aversion parameter. The CVaR criterion measures the average value of the

profit below η quantile level, and emphasizes low profit realization cases. The larger the η, the less

risk averse the firm is. When η= 1, the model reduces to the risk neutral case.

Responsive pricing scheme. The firm engages in a two-stage decision making process. At the

first stage, the firm decides the production quantity qr. At the second stage, after yield realization,

the firm sets market price pr to maximize its revenue. The firm’s CVaR is given by Equation (2)

below, where the subscript “r” represents the responsive pricing scheme.

Πr(qr) := CVaRη(πr(qr)) = max
v∈R

{
v+

1

η
Eξ min{πr(qr)− v,0}

}
, (2)

where πr(qr) := max
pr∈[0,p0]

{pr min{d(pr), qrξ}}− cqr.

Note that πr(qr) is the firm’s ex post profit given the yield realization ξ and the firm’s revenue

maximizing pricing decision pr. In the first stage, the firm’s ex post profit πr(qr) is a random

function depending on the production quantity qr and the realization of the production yield ξ,

albeit the firm’s revenue maximizing pricing decision. In this case, the CVaR criterion continues to



Kouvelis, Xiao, and Yang: Role of Risk Aversion in Price Postponement under Supply Random Yield
Article submitted to ; manuscript no. MS-OPM-18-01273.R2 9

emphasize the low yield realization cases even though the firm has additional flexibility to better

match demand with supply through postponed pricing.

Given the above objective functions, we proceed to characterize the firm’s optimal production

and pricing decisions for each pricing scheme and compare them to investigate the impacts of risk

aversion and price postponement on the firm’s optimal decisions and corresponding profits. We

further remark that the term “risk aversion” in the subsequent analysis specifically refers to the

case where the firm amplifies the concern of low profit realizations and focuses on the average

profit falling below certain quantile level as modeled through the CVaR criterion. The impacts of

alternative risk aversion criteria are discussed in Section 7.1.

4. Model Analysis
4.1. Ex ante Pricing

In this section, we characterize the firm’s optimal pricing and production decisions under the ex

ante pricing scheme. In general, the objective function Πa(pa, qa) is not jointly concave in (pa, qa).

Hence, we adopt the sequential optimization approach. For any given sales price pa, the problem

is a standard newsvendor-type decision problem under random yield and CVaR criterion. The

following proposition characterizes the firm’s optimal production quantity.

Proposition 1. For any η ∈ (0,1] and pa ∈ [c/µ, p0], there exists a threshold sales price p̃ :=

min{p0,
cη∫G−1(η)

l
ξdG(ξ)

} ≥ c
µ
. The optimal production quantity and objective function value are:

q∗a(pa) =

{
d(pa)

δ
if pa ∈ [p̃, p0]

0 if pa ∈
[
c
µ
, p̃
) and Πa(pa, q

∗
a(pa)) =

{
pad(pa)(1− G(δ)

η
) if pa ∈ [p̃, p0]

0 if pa ∈
[
c
µ
, p̃
)
,

respectively, where the inflation factor δ satisfies
∫ δ
l
ξdG(ξ) = cη/pa. Moreover, δ decreases in pa

and increases in η, and q∗a(pa) decreases in η.

Proposition 1 shows that the firm produces if and only if the sales price is higher than the

threshold sales price p̃. When the sales price and the corresponding margin are sufficiently high

(i.e., p > p̃), the optimal production quantity is a linear inflation of the price induced demand, i.e.,

q∗a = d(pa)/δ. Moreover, the optimal production quantity decreases in η, which implies that given

that the firm decides to produce, the more risk averse firm tends to produce more. This is because

the CVaR criterion emphasizes the low profit realization cases, which occur when yield realization

is low. To mitigate the yield uncertainty, the more risk averse firm tends to produce more to hedge

against underage risk. In contrast, when the margin is thin (i.e., p < p̃), the gain from satisfying

demand through aggressive production inflation does not justify the increased production cost.

Thus, the risk averse firm optimally chooses not to produce.
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Next, we proceed to analyze the firm’s optimal pricing decision by optimizing Πa(pa, q
∗
a(pa))

directly. To facilitate the analysis, we impose the following set of assumptions on both the yield

distribution and the demand function.

Assumption 1. (a) xḠ(x)∫ x
l ξg(ξ)dξ

decreases in x ∈ [l, u]. (b) d(p) satisfies the increasing price elas-

ticity property, i.e., τ(p) =−pd′(p)
d(p)

increases in p.

Assumption 1 is first proposed in Kouvelis et al. (2018) to analyze the risk neutral price-setting

newsvendor problem under supply random yield. Assumption 1(a) is quite general and is satisfied

by all continuous yield distributions with an increasing length-biased hazard rate, which is also

known as increasing generalized failure rate (IGFR) in the Operations Management literature.

This property is satisfied by many commonly used distributions, including Uniform, Beta, Nor-

mal, Gamma distributions as well as their truncations. Assumption 1(b) is satisfied by most of

the demand functions in the literature, e.g., linear, iso-elastic, concave, and log-concave demand

functions. We show that Assumption 1 can be directly applied to the risk averse case under CVaR

criterion, and is used to establish the unimodality of Πa(pa, q
∗
a(pa)) in the following proposition.

Proposition 2. Assume Assumption 1 holds. For any c and p0 with p0 ≥ c/µ, there exists a

risk aversion threshold η∗a(p0, c)∈ [0,1] such that:

(i) If η < η∗a(p0, c), it is optimal for the firm not to produce.

(ii) If η ≥ η∗a(p0, c), Πa(pa, q
∗
a(pa)) is quasi-concave with the unique optimal price p∗a defined by

the first order condition (FOC), which is equivalent to 1 +
∫ δ
l ξg(ξ)dξ

δ(η−G(δ))
+ pad

′(pa)

d(pa)
= 0.

Given the cost structure (p0, c), Proposition 2 shows that there exists a threshold risk aversion

level, η∗a(p0, c). If η < η∗a(p0, c), the firm exhibits strongly risk averse attitude towards low profit

realizations. In this case, the gain from satisfying demand does not justify the production cost

associated with the aggressive production inflation, so the firm optimally chooses not to produce.

Otherwise, for η ≥ η∗a(p0, c), it is optimal for the firm to produce. In addition, the optimal sales

price and production quantity can be uniquely determined under Assumption 1. Note that when

η = 1, the firm is risk-neutral. Since η∗a(p0, c) ≤ 1, it is always optimal for a risk-neutral firm to

produce and its corresponding optimal price can be uniquely characterized via the FOC.

We now provide some economic intuition for Assumption 1(a). For risk neutral firms, the overpro-

duction probability is defined as P (d(pa)< q
∗(pa)ξ) = P (d(pa)<d(pa)

ξ
δ
) = Ḡ(δ), where the inflation

factor δ satisfies
∫ δ
l
ξg(ξ)dξ = c/pa. For risk averse firms, we inflate the underproduction probability

by 1/η to capture the impact of the risk aversion level, and define the modified overproduction

probability as 1− 1
η
G(δ), where δ satisfies

∫ δ
l
ξg(ξ)dξ = ηc/pa. Note that, on the feasible price range
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with positive production quantity (i.e., pa ∈ (p̃, p0]), G(δ)∈ [0, η) and the modified overproduction

probability is well-defined. The price elasticity of the modified overproduction probability is:

e(pa, η) :=
pa

∂(1− 1
ηG(δ))
∂pa

1− 1
η
G(δ)

=

∫ δ
l
ξg(ξ)dξ

δ(η−G(δ))
=

∫ δ
l
ξg(ξ)dξ

δḠ(δ)

1−G(δ)

η−G(δ)
,

which increases in δ under Assumption 1(a) when δ ≤ G−1(η) and, thus, decreases in pa on the

feasible price range. The economic interpretation is that as the sales price increases, the mod-

ified overproduction probability becomes less sensitive to the sales price change, i.e., the same

percentage increase in the sales price leads to a smaller percentage increase in the modified over-

production probability. Moreover, an increase in the sales price has two effects: (1) it decreases

the market demand; and (2) it increases the inflation rate 1/δ and, thus, the modified overpro-

duction probability. Recall that the optimal sales price p∗a satisfies the FOC, which pins down to

1+
∫ δ
l ξg(ξ)dξ

δ(η−G(δ))
+ pad

′(pa)

d(pa)
= 1+e(pa, η)− τ(pa) = 0. This shows that p∗a is charged by striking a balance

between the price elasticity of demand and that of the modified overproduction probability.

In what follows, we study the impacts of supply uncertainty and risk aversion upon the optimal

sales price and the corresponding optimal profit. As a benchmark, we define the optimal riskless

price pda as the optimal sales price without supply uncertainty (i.e., the yield is deterministic with

mean µ): pda := arg maxp∈[c,p0] Π
d
a(p), where Πd

a(p) = (p− c
µ
)d(p). Corollary 1 below shows that the

firm charges a higher sales price under supply uncertainty and risk aversion, i.e., p∗a ≥ pda, and earns

a lower CVaR, i.e, Πa(p
∗
a)≤Πd

a(p
d
a). Moreover, as the firm becomes more risk averse, the optimal

price becomes higher, which leads to a smaller demand and a lower corresponding CVaR.

Corollary 1. Under Assumption 1, for any η ∈ [η∗a(p0, c),1]: (i) p∗a ≥ pda and Πa(p
∗
a)≤Πd

a(p
d
a).

(ii) p∗a decreases in η and Πa(p
∗
a) increases in η.

The CVaR criterion emphasizes the lower tail of the profit realization, which occurs when the

yield realization is low. As such, Corollary 1(ii) indicates that the more risk averse firm sets a higher

sales price to limit demand and mitigate the underage risk. Finally, we conclude this section by

investigating the impact of risk aversion on the optimal production quantity q∗a = d(p∗a)

δ
and compare

it with the optimal riskless quantity qda under linear demand and uniform yield distribution.

Corollary 2. Assume d(p) = a − bp and ξ ∼ Uniform [0,1]. For any c ∈ [0, a
2b

] and η ∈

[η∗a(p0, c),1]: (i) There exists a threshold cost ĉa independent from η. If c < ĉa, q∗a(η) first increases

and then decreases in η; otherwise, q∗a(η) increases in η. (ii) There exist threshold values c̄a and

η̄1
a < η̄

2
a such that if c < c̄a and η ∈ [η̄1

a,min{η̄2
a,1}], q∗a(η)≥ qda; otherwise, q∗a(η)< qda.

The level of risk aversion affects the optimal production quantity d(p∗a)

δ
in two opposite ways. As

the firm becomes less risk averse (i.e., η increases), it reduces the price p∗a to induce a larger demand.
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Meanwhile, it also reduces the production inflation by increasing δ. The two effects counterbalance

each other and may result in the non-monotonic behavior of the optimal production quantity,

as shown by Corollary 2(i). In particular, if the production cost is high and/or when the firm is

moderately risk averse, then hedging low profit realization through production inflation becomes

too risky, and the more risk averse firm prefers to produce less (i.e., q∗a(η) increases in η). In

contrast, if the production cost is low and the firm is not too risk averse, then the firm may prefer

to hedge low yield realization through a higher production quantity as it becomes more concerned

about low profit shock (i.e., q∗a(η) could decrease in η). See Figure 1 for a detailed depiction.

Part (ii) compares q∗a with the optimal riskless quantity qda. Although the firm charges a higher

sales price under yield uncertainty and risk aversion by Corollary 1(i), it may not necessarily

produce less. The comparison can be twofold and depends on both the firm’s risk aversion level

and the production cost. Specifically, when the production cost is low, the firm may produce a

larger quantity (i.e., q∗a(η) ≥ qda) given that it exhibits intermediate level of risk aversion (i.e.,

η ∈ [η̄1
a,min{η̄2

a,1}]). This is because for moderately risk averse firms, avoiding low profit realization

through conservative operations is not the primary concern. As such, the firm reduces the sales

price to stimulate the demand and copes with the inflation behavior, resulting in a larger overall

production quantity.

(a) c= 0.5 (b) c= 2.5

Figure 1 Impact of Risk Aversion on q∗a(η) under Ex ante Pricing: d(p) = 10− p, ξ ∼ Uniform [0,1]

4.2. Responsive Pricing

In this section, we characterize the firm’s optimal pricing and production decisions under responsive

pricing. Recall that d(p) strictly decreases in p with inverse demand function p(d) := d−1(p). To

facilitate the analysis, we make the following assumption on the revenue function p(d)d:

Assumption 2. The revenue function p(d)d is concave and twice differentiable in d.
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Assumption 2 is a standard assumption in joint pricing and inventory management literature

and is satisfied by many commonly used demand functions (see, e.g., Federgruen and Heching

1999). The concavity of p(d)d in d suggests a decreasing marginal revenue with respect to demand.

With Assumption 2, we are able to solve the two-stage decision making problem in Equation

(2) through backward induction. Let d∗ be the unconstrained revenue maximizing demand, i.e.,

p′(d∗)d∗+ p(d∗) = 0. The second stage optimal pricing decision is given by the following lemma.

Lemma 1. Under Assumption 2, given on-hand inventory qrξ, the firm’s optimal retail price is

p∗r = p(min{qrξ, d∗}) and its optimal second stage revenue is min{qrξ, d∗}p(min{qrξ, d∗}).

Lemma 1 shows that when supply is sufficient, the firm sets price to sell just d∗ to achieve

the unconstrained revenue maximization albeit left with surplus inventory; when supply is scarce,

it sets the inventory clearing price to make better use of the available inventory. Such a pricing

strategy is independent from the risk aversion level, as there is no risk involved ex post after yield

realization. Back to the first stage, the firm decides the optimal production quantity q∗r to maximize

its CVaR, and the result is characterized by the following proposition.

Proposition 3. Assume Assumption 2 holds. For any production cost c and maximal allowable

price p0 with p0 ≥ c/µ, Πr(qr) is continuously differentiable and concave in qr. There exists a risk

aversion threshold η∗r(p0, c)∈ [0,1] such that:

(i) If η < η∗r(p0, c), it is optimal for the firm not to produce.

(ii) If η ≥ η∗r(p0, c), let c̄r := 1
η

∫ G−1(η)

l

[
p
(

ξd∗

G−1(η)

)
+
(

ξd∗

G−1(η)

)
p′
(

ξd∗

G−1(η)

)]
ξdG(ξ), then there

exists an optimal production quantity q∗r satisfying the following equations:

q∗r solves


1
η

∫ G−1(η)

l
[p′(q∗rξ)(q

∗
rξ) + p(q∗rξ)] ξdG(ξ) = c if c∈ [c̄r,max{c̄r, p0µ}],

1
η

∫ d∗
q∗r
l [p′(q∗rξ)(q

∗
rξ) + p(q∗rξ)] ξdG(ξ) = c if c∈ [0, c̄r].

Similar to its counterpart under ex ante pricing, Proposition 3 shows that, for any given feasible

parameters (p0, c), there always exists a risk aversion threshold, η∗r(p0, c), below which the firm

chooses not to produce as the gain from selling does not justify the associated cost of inflated

production quantity due to random yield. On the other hand, if the firm is less risk averse than

the risk aversion cutoff level (i.e., η ≥ η∗r(p0, c)), it is always optimal to produce. Moreover, there

exists a unique cost threshold c̄r, at which the firm produces q∗r = d∗

G−1(η)
. The quantity d∗

G−1(η)
has

an interesting implication, as it is the revenue maximizing quantity adjusted for the firm’s risk

aversion level: If the firm is risk-neutral (i.e., η= 1), d∗

G−1(η)
= d∗

u
, which is the largest quantity that

will be cleared for sure in the market under any yield realization. If the firm is risk-averse (i.e.,

η < 1), the revenue maximizing quantity d∗ is modified to d∗

G−1(η)
, taking into account of the firm’s
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risk aversion level. As shown in part (ii), when the production cost is high [low], the firm produces

less [more] than the risk-aversion adjusted revenue maximizing quantity d∗

G−1(η)
.

Next, we investigate the impact of yield uncertainty and risk aversion on the firm’s optimal

production decision and the corresponding profit. As a benchmark, consider the riskless production

quantity qdr under deterministic yield case (i.e., the yield is deterministic with fixed rate µ), qdr :=

arg maxq∈[0,∞) Πd
r(q), where Πd

r(q) = p(qµ)qµ− cq. The results are given in the following corollary.

Corollary 3. Under Assumption 2, for any η ∈ [η∗r(p0, c),1]: (i) There exists δi > 0, i= 1,2,

such that q∗r > qdr if c ∈ [0, δ1), and q∗r < qdr if c ∈ (p0µ− δ2, p0µ). Moreover, Πr(q
∗
r) ≤ Πd

r(q
d
r ). (ii)

When c≤ c̄r, q∗r decreases in η. When c > c̄r, q
∗
r may not be monotonic in η. (iii) Πr(q

∗
r) increases

in η.

Corollary 3(i) indicates that, compared to the case under deterministic yield, the firm produces

more [less] under yield uncertainty and risk aversion when c is sufficiently low [high].3 Nevertheless,

yield uncertainty always leads to a lower CVaR for the firm. Parts (ii) and (iii) investigate the

impact of risk aversion on the firm’s optimal production quantity and its corresponding optimal

CVaR. While the more risk averse firm always earns a lower CVaR, the effect of η on q∗r is again

not straightforward. As the CVaR criterion emphasizes low profit realization caused by low yield

realization, one may conjecture that the more risk averse firm produces more to hedge against

underproduction. This intuition is true when the firm produces more than the risk-aversion adjusted

revenue maximizing quantity d∗

G−1(η)
(i.e., when c≤ c̄r), but is not necessarily true when the firm

produces less than d∗

G−1(η)
(i.e., when c > c̄r). In this case, the more risk averse firm may produce

less as production quantity inflation is too risky under high production cost. In addition, as c̄r

depends on η, the overall impact of η on q∗r may not be monotonic, as illustrated in Corollary 4.

Corollary 4. Assume d(p) = a − bp and ξ ∼ Uniform [0,1]. For any c ∈ [0, a
2b

] and η ∈

[η∗r(p0, c),1], there exists a threshold cost ĉr independent from η. If c < ĉr, q
∗
r(η) first increases and

then decreases in η; otherwise, q∗r(η) increases in η.

Corollary 4 confirms that the overall effect of risk aversion on q∗r(η) is qualitatively the same as

that under ex ante pricing: When production cost is low, the impact is non-monotonic, whereas

when production cost is high, the production quantity increases as the firm becomes less risk averse.

The underlying tradeoff is again to carefully strike a balance between costly production inflation

and low yield realization. A depiction of Corollary 4 for responsive pricing is given in Figure 2.

3 With linear demand function d(p) = a− bp and Uniform[0,1] yield distribution, we show that there exists a unique
threshold cost ĉ such that q∗r > q

d
r holds if and only if c∈ [0, ĉ). See the proof of Corollary 3(i) for details.
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(a) c= 0.5 (b) c= 2.5

Figure 2 Impact of Risk Aversion on q∗r (η) under Responsive Pricing: d(p) = 10− p, ξ ∼ Uniform[0,1]

5. Impacts of Risk Aversion and Price Postponement

In this section, we compare the two pricing schemes to investigate our main research question: the

strategic interactions between risk aversion and price postponement under supply random yield. We

proceed by answering the following four questions: (1) how price postponement affects a firm’s risk

aversion threshold; (2) how risk aversion changes the operational execution of price postponement;

(3) how the value of price postponement gets affected by the level of risk aversion; and (4) how a

risk averse firm’s pricing scheme choice affects the overall consumer surplus.

When comparing the two pricing schemes, we impose consistent assumptions to regulate the

CVaR objectives under both models. For the yield distribution, Assumption 1(a) alone is suffi-

cient. For the demand functions, we assume that both Assumptions 1(b) and 2 hold to ensure the

unimodality of the objectives. Lemma 2 shows that most of the commonly used demand functions

satisfy these assumptions. For the rest of this section, without loss of generality, we assume both

Assumptions 1 and 2 hold. Whenever investigation under those general assumptions is intractable,

we adopt Uniform [0,1] yield distribution and linear demand function d(p) = a − bp to derive

insights, and confirm the robustness of our results through numerical experiments in Section 6.

Lemma 2. Both Assumptions 1(b) and 2 hold under: (i) d(p) = a− bpk, a> 0, b > 0, k≥ 1; (ii)

d(p) = (1 + p)−a, a> 1, (iii) d(p) = ap−b, a> 0, b > 1; and (iv) d(p) is concave.

5.1. Impact on Risk Aversion Threshold

We start our discussion by investigating how price postponement affects a firm’s risk aversion

threshold. Recall from Propositions 2 and 3 that, under both pricing schemes, there always exists

a respective risk aversion threshold, below which the risk averse firm chooses not to produce. The

risk aversion threshold is a characteristic of the decision making environment, which depends on

parameters c and p0 and the underlying yield uncertainty. Lowering this threshold implies that it
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is more likely for risk averse firms to produce in this environment, because more firms will have η

larger than this cutoff level. The following proposition compares the two key threshold values.

Proposition 4. Assume Assumptions 1 and 2 hold. For any c and p0 with p0 ≥ c/µ: (i)

η∗a(p0, c) = η∗r(p0, c) := η∗. (ii) η∗ increases in c and decreases in p0. (iii) Let ξ1 be stochastically

larger than ξ2, i.e., ξ1 ≥st ξ2, then η∗1 ≤ η∗2. (iv) Let ξ ∼ Uniform [µ− σ,µ+ σ] ⊆ [0,1], then η∗

increases in σ.

Intuitively, price postponement provides a firm with flexibility to better match demand with

the realized supply, and thus partially mitigates the adverse effect of yield uncertainty. Hence, one

may conjecture that responsive pricing enhances the risk aversion threshold of the decision making

environment, i.e., responsive pricing allows more risk averse firms to produce. Proposition 4(i)

shows that this conjecture is not true and price postponement has no impact on the risk aversion

threshold. The underlying intuition can be explained as follows: When deciding whether to produce

or not, the risk averse firm always compares the marginal revenue with the associated marginal cost.

Due to the unimodality of the CVaR objective, the firm only needs to evaluate such comparison at

a marginal production quantity. That is, if producing an infinitely small quantity would result in

a positive marginal profit, then it implies that the firm will choose to produce optimally. As such,

the investigation pins down to understanding whether the firm would have incentive to produce a

marginal quantity. Clearly, with a marginal production quantity, the firm will set price optimally as

p0 under both pricing schemes. In this case, the marginal benefit is the same as
p0
∫G−1(η)
l

ξdG(ξ)

η
for

both pricing schemes, which leads to the identical risk aversion threshold. Part (ii) shows that as

the production cost decreases or the pricing power (as measured by p0) increases, the risk aversion

threshold η∗ decreases, allowing a more risk averse firm to produce. Part (iii) investigates the effect

of yield distribution on the risk aversion threshold. As the yield distribution becomes stochastically

larger, the risk aversion threshold decreases. This implies it is more likely for a risk averse firm

to produce when the underlying yield distribution becomes more reliable. Finally, part (iv) shows

that under a uniformly distributed yield, the risk aversion threshold decreases as yield variability

decreases. Section 6 further confirms this finding numerically with general yield distributions: As

the yield decreases in convex order, the risk aversion threshold decreases, creating a decision making

environment with binary production decisions (to produce or not) less impacted by risk aversion.

5.2. Impact on Production Quantity

Next, we compare the optimal production quantity decisions. When the firm chooses to produce,

it is not intuitively clear how the flexibility of price postponement affects the firm’s production

quantity and how such impact varies with the firm’s risk aversion level. We address these questions

under the linear demand function and uniform yield distribution in the following proposition.
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Proposition 5. Assume d(p) = a− bp and ξ ∼ Uniform [0,1]. For any c∈ [0, a
2b

] and η ∈ [η∗,1]:

(i) There exists a threshold cost ĉ ∈ (0, a
2b

), s.t., q∗r ≤ q∗a if c≤ ĉ and q∗r > q∗a otherwise. Moreover,

the threshold ĉ increases in η. (ii) q∗r − q∗a may not be monotonic in η.

Proposition 5 characterizes the effects of price postponement and risk aversion on the firm’s

optimal production decision under the linear demand function and uniform yield distribution. For

any feasible risk aversion level, part (i) shows that there always exists a cost threshold such that

the firm produces more under responsive pricing if and only if its production cost exceeds this

threshold. The underlying intuition is that when the cost is high [low], the firm produces less [more].

After yield realization, it is more likely for the responsive pricing firm to set inventory clearing

[revenue maximizing] price, which enhances [reduces] the marginal value of inventory and hence

increases [decreases] the optimal quantity under responsive pricing. In addition, the threshold cost

ĉ increases in η. This indicates that as the responsive pricing firm gets less risk averse, it is less

likely for the firm to produce more than that of an ex ante pricing firm, because ĉ increases. Part

(ii) further characterizes the impact of risk aversion on the difference of the optimal production

quantities under the two pricing schemes. As the firm becomes less risk averse (i.e., η increases),

the firm may either increase or decrease the additional quantity produced under responsive pricing

(i.e., q∗r − q∗a), which could be negative if q∗r < q
∗
a. To further elaborate such non-monotonic trends,

our numerical study in Section 6 illustrates that when the production cost is low, q∗r − q∗a first

increases and then decreases in η; when the production cost is high, q∗r − q∗a increases in η. This

echos the respective impacts of risk aversion on the optimal quantity under each pricing scheme.

See column (a) of Figure 3 for details.

To sum up, our results imply that whether to postpone pricing has a profound impact on a firm’s

production decision, which in turn affects the overall supply of the product and the corresponding

ex post price. Such an impact further interacts with the firm’s risk aversion level in a non-monotonic

way, and intricately influences both the firm and its consumers as shown in the subsequent sections.

5.3. Impact on the Value of Price Postponement

We now investigate the impact of risk aversion on the value of price postponement. Clearly, price

postponement creates additional flexibility in mitigating supply risk and hence improves the firm’s

CVaR. However, it is not clear how the benefit of responsive pricing gets affected (amplified or

diminished) by the risk aversion level. In practice, when deploying the price postponement strat-

egy, firms may incur a fixed implementation cost, which captures the cost associated with good-

will/reputation loss, delayed announcement, etc. The adoption of the responsive pricing scheme

for a risk averse firm critically depends on whether the CVaR improvement could justify the addi-

tional fixed cost. We are interested in quantifying the value of price postponement for firms with
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different risk aversion levels and characterizing when adopting price postponement is worthwhile.

To this purpose, we define the value of price postponement (VPP) as Π∗r −Π∗a, which clearly is

non-negative. The following proposition characterizes the impact of risk aversion on VPP under

the linear demand function and uniform yield distribution.

Proposition 6. Assume d(p) = a− bp and ξ ∼ Uniform [0,1]. For any c∈ [0, a
2b

] and η ∈ [η∗,1],

there exists a threshold cost c̃ independent from η. If c < c̃, VPP first increases and then decreases

in η. Otherwise, VPP increases in η.

As responsive pricing better matches supply with demand, one may conjecture that postpone-

ment will be more beneficial for a more risk averse firm and induce a larger CVaR improvement with

higher risk aversion (i.e., lower η). However, Proposition 6 shows that the VPP always increases

in η when the production cost is high, and is non-monotonic in η otherwise. In other words, the

CVaR improvement from price postponement may increase as the firm becomes less risk averse.

To better understand Proposition 6, we decompose the VPP into the following two parts:

VPP = Πr(q
∗
r)−Πr(q

∗
a)︸ ︷︷ ︸

Quantity Effect

+ Πr(q
∗
a)−Πa(q

∗
a, p
∗
a)︸ ︷︷ ︸

Pricing Effect

.

The first part, i.e., Πr(q
∗
r)−Πr(q

∗
a), measures the CVaR difference for a responsive pricing firm due

to the difference of the optimal production quantities under the two pricing schemes, which captures

the quantity effect of price postponement. The second part, i.e., Πr(q
∗
a)−Πa(q

∗
a, p
∗
a), measures the

CVaR difference under the two pricing schemes without adjusting the production quantity q∗a,

which teases out the pricing effect of price postponement. Clearly, both the quantity and the pricing

effects are nonnegative, and jointly contribute to the VPP. Due to the unimodality of Πr(qr), the

magnitude of the quantity effect depends on how close q∗a is relative to q∗r , and may not be monotonic

as η changes. However, we numerically observe that, compared to the pricing effect, the impact of

the quantity effect on the VPP is relatively small in magnitude. Hence, the shape of the VPP with

respect to risk aversion parameter η is primarily driven by the impact of η on the pricing effect. That

is, η affects the VPP in a similar way as it affects the pricing effect. We further note that the pricing

effect quantifies the value of price postponement without adjusting the production quantity, which

is essentially the revenue difference between the two pricing schemes evaluated at quantity q∗a. For

any yield realization, a larger q∗a provides the responsive pricing firm more operational flexibility in

choosing the ex post sales price from a weakly larger feasible set [max{p(d∗), p(q∗a)}, p0]. Therefore,

a larger optimal quantity q∗a is more likely to induce a larger pricing effect. In addition, Corollary

4 shows that the effect of risk aversion on the optimal production quantity q∗a is non-monotonic

[increasing] when production cost c is low [high]. Combining the above discussions, we explain why



Kouvelis, Xiao, and Yang: Role of Risk Aversion in Price Postponement under Supply Random Yield
Article submitted to ; manuscript no. MS-OPM-18-01273.R2 19

the VPP is non-monotonic in η when the production cost is low, but increases in η otherwise.

In Appendix EC.2, we further provide two numerical illustrations to show that the pricing effect

primarily contributes to the VPP and is affected by η in a qualitatively similar way as that for the

optimal production quantity q∗a.

Proposition 6 provides useful managerial insights: Although price postponement creates opera-

tional flexibility, whether a risk averse firm should adopt responsive pricing needs to be carefully

evaluated, especially when postponing pricing decision incurs a fixed implementation cost. When

the production cost is high (i.e., c > c̃), a less risk averse firm is more likely to deploy the price

postponement strategy. On the other hand, when the production cost is low, due to the unimodal-

ity of the VPP, there exist some fixed implementation costs such that postponing the sales price

may be worthwhile only for firms with medium risk aversion level, and too costly for firms with

either high or low risk aversion level. This finding could be potentially helpful in understanding

why different firms may have different attitudes towards price postponement. For example, with

uncertain crop yields, some agri-producers may opt to sign forward contracts at the time of pro-

duction, which require them deliver the harvest at the predetermined price regardless of the yield

realization. In contrast, others may find it optimal not to sign forward contracts but to make price

decisions responsively after harvest (Davis et al. 2005). The robustness of our findings is further

confirmed in Section 6 by using Beta yield distribution family.

5.4. Impact on Consumer Surplus

We conclude this section by studying how the firm’s decisions, jointly driven by price postponement

and its risk aversion level, affect its end market consumers’ total surplus. To this purpose, we first

define consumer surplus for each of the two pricing schemes under supply random yield. Recall

that p(d) represents the inverse demand function d−1(p). Under the ex ante pricing scheme, for

any given sales price pa and order quantity qa, the consumer surplus, CSa, is defined by:

CSa(pa, qa) =Eξ

(∫ min{d(pa),qaξ}

0

(p(x)− pa)dx

)
. (3)

Note that the above definition of CSa(pa, qa) corresponds to the definition of consumer surplus

under demand uncertainty with H rule allocation from Cohen et al. (2018). That is, when shortage

happens, available supply is allocated with priority to the consumers who have higher valuations.

Clearly, this allocation rule leads to the highest possible consumer surplus under the ex ante pricing

scheme. Next, under the responsive pricing scheme, for any given qr together with the revenue

maximizing pricing decision captured in Lemma 1, the consumer surplus, CSr, is defined by:

CSr(qr) =Eξ

(
1{qrξ>d∗}

∫ d∗

0

(p(x)− p(d∗))dx+ 1{qrξ<d∗}

∫ qrξ

0

(p(x)− p(qrξ))dx

)
, (4)
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where 1{} is the indicator function and d∗ is the revenue maximizing quantity. Plugging the firm’s

optimal decisions under each pricing scheme, we have the equilibrium consumer surplus as CS∗a =

CSa(p
∗
a, q
∗
a) and CS∗r =CSr(q

∗
r), respectively. To quantify the joint impact of price postponement

and risk aversion on consumer surplus, we define the change of consumer surplus (CCS) as CS∗r −

CS∗a. Proposition 7 characterizes the impact of risk aversion on CCS under the linear demand

function and uniform yield distribution, and its robustness is confirmed in Section 6 numerically.

Proposition 7. Assume d(p) = a− bp and ξ ∼ Uniform [0,1]. For any c∈ [0, a
2b

] and η ∈ [η∗,1]:

(i) CS∗a increases in η. CS∗r increases in η ∈ [η∗,min{ 4bc
a
,1}] and decreases otherwise. (ii) CCS > 0.

Note that the higher the sales price, the lower the consumer surplus, because both individual

consumer’s gain and total sales decrease in sales price. Such intuition is helpful in explaining the

results stated in Proposition 7. Specifically, part (i) shows that risk aversion may have different

impacts on consumer surplus under different pricing schemes. On the one hand, for ex ante pricing,

Corollary 1(ii) shows that p∗a always decreases in η, which leads to a higher consumer surplus as

η increases. On the other hand, for responsive pricing, the sales price is undetermined ex ante but

is closely related to the firm’s production quantity. A lower [higher] production quantity is more

likely to result in a higher [lower] ex post sales price after any yield realization, which, in return,

decreases [increases] consumer surplus. Corollary 4 shows that when the production cost is low, the

impact of risk aversion on a responsive pricing firm’s optimal production quantity is non-monotonic

with larger quantities produced when the firm has a medium risk aversion level, leading to possibly

lower ex post sales prices and higher consumer surplus for moderately risk averse firms. In contrast,

when production cost is high, the responsive pricing firm produces more as it becomes less risk

averse, which potentially leads to a lower ex post price and higher consumer surplus.

Next, we investigate how the pricing scheme choice of a risk averse firm may affect its consumers’

overall surplus. Since the responsive pricing scheme better matches supply with demand through ex

post revenue maximization with potential inventory withholding, one may, intuitively, conjecture

that such a pricing flexibility further squeezes consumers’ net welfare and results in a lower overall

surplus. However, Proposition 7(ii) shows that, contrary to the intuition, responsive pricing always

benefits the consumers in equilibrium, regardless of the firm’s risk aversion level. The underlying

rationale for this interesting result can be explained as follows: On the one hand, Corollary 1(i)

shows that the ex ante pricing firm always charges a price higher than the optimal riskless (i.e.,

deterministic supply) price, which is captured as p∗a ≥ pda = a+c/µ

2b
under the linear demand function

d(p) = a− bp. This clearly implies that the ex ante pricing firm charges a price higher than the

revenue maximizing price charged by the responsive pricing firm, i.e., p∗a ≥ a
2b

. Consequently, the

ex post consumer surplus under responsive pricing is larger when the revenue maximizing price is
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charged. On the other hand, when the realized supply is insufficient, the responsive pricing firm will

charge the inventory clearance price, which is more likely to happen when the initial production

quantity is low under a high production cost. Proposition 5(i) shows that with a high production

cost, the ex ante pricing firm charges a high sales price to pass the cost to the consumers and

produces an even smaller quantity than that under responsive pricing, which may lead to a lower

ex post consumer surplus. In addition, we further remark that, given CS∗r is unimodal in η when

c is low, CCS may not be monotonic in η, especially with a low production cost.

Indeed, the fact that CCS> 0 continues to hold under any other allocation rule. Note that CSa

in Equation (3) allocates the available supply with priority to the consumers with higher valuations

in case of shortage, and represents the largest possible consumer surplus among all allocation rules.

In contrast, supply shortage never happens under responsive pricing because the firm either sets

the inventory clearance price or withholds part of the available supply. In both cases, the demand

is fully satisfied, implying the irrelevance of the allocation rule. Hence, CCS> 0 continues to hold.

Although price postponement may lead to a high ex post sales price when facing low yield

realization, its overall impact on consumer surplus remains beneficial. This is because the firm may

strategically adjust the production quantity in accordance to the chosen pricing scheme, and such

adjustment is further governed by the firm’s risk aversion level in an intricate way. An immediate

managerial implication of Propositions 6 and 7 is that the responsive pricing scheme may lead to

a win-win outcome for both the risk averse firm and its consumers. Such a Pareto improvement

is more likely to occur when the production cost is low [high] and the firm’s risk aversion level is

medium [low]. However, the win-win outcome may not be readily induced for a firm with high risk

aversion level, especially when price postponement may incur some fixed implementation cost.

6. Numerical Analysis

We now conduct numerical study to confirm the robustness of our main results and obtain addi-

tional managerial insights. We focus on linear demand function d(p) = 10−p and present our results

using Beta yield distribution as it has various kinds of shapes, which represent yields with distinct

natures. Specifically, we choose Beta distribution B(α,β) with α= β = k, where k ∈ {0.5,1,1.5,2}.

The mean of the Beta distribution is equal to 0.5, and variances are {0.125,0.0833,0.0625,0.05},

respectively. As k increases, the distribution B(k, k) decreases in convex order, i.e., the mean keeps

unchanged and the variance decreases. Moreover, the shape of the distribution changes from U-

shape to Uniform and then to unimodal with decreasing variance as k increases. To avoid the trivial

case of no production, we require c≤ a
b
µ= 5 and pick the production cost c∈ {0.5,1.5,2.5,3.5,4.5}.

In what follows, we uncover the impacts of the risk aversion parameter η on the changes of optimal
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production quantity q∗r − q∗a, optimal profit Π∗r −Π∗a, and optimal consumer surplus CS∗r −CS∗a,

respectively, and investigate how these impacts get affected by the production cost.4

We first investigate the impact of risk aversion on q∗r − q∗a, which is depicted in column (a) of

Figure 3. There are several interesting observations. First, consistent with the results in Proposition

5(ii), q∗r − q∗a could be non-monotonic in η, which happens when the production cost c is relatively

low. In contrast, when c is high, the quantity difference increases when the firm becomes less

risk averse. Second, recall from Proposition 5(i), under Uniform yield distribution, there exists a

threshold cost ĉ such that q∗r < q∗a iff c < ĉ. Since ĉ increases in η, the relation between c and ĉ

may switch as η changes. Figure 3(a1) shows that the quantity difference changes from positive

to negative when c is small, whereas Figures 3(a2)-(a5) show that the quantity difference always

remains positive when c is large. Finally, Proposition 4 shows that the risk aversion threshold is

the same between the two pricing schemes, and decreases as the yield becomes more reliable under

uniform yield distribution. Figure 3 complements our theoretical results by showing that as the

yield decreases in convex order, the risk aversion threshold also decreases. That is, as shown in

Figures 3(a1)-(a5), η∗ obtained in B(k, k) distribution decreases as k increases regardless of c.

Next, we study the impacts of risk aversion on the VPP (i.e., Π∗r −Π∗a), which are presented in

column (b) of Figure 3. Consistent with the result in Proposition 6(i), Figure 3(b1) shows that

when c is relatively small (i.e., c= 0.5), VPP first increases and then decreases in η. This indicates

that, for some fixed implementation cost, only firms with intermediate level of risk aversion may

find it worthwhile to deploy the price postponement strategy. In contrast, Figures 3(b2)-(b5) show

that when c is large (i.e., c ∈ {1.5,2.5,3.5,4.5}), VPP always increases in η, indicating that the

CVaR improvement from price postponement is always more significant when the firm is less risk

averse. Moreover, although each firm obtains a higher CVaR when the yield becomes less variable,

the impact of yield variability on VPP remains undetermined, especially when c is low. In contrast,

for a high production cost, Figures 3(b2)-(b5) imply that the benefit of responsive pricing tends

to be more significant when the yield distribution is less variable. That is, a lower yield variability

strengthens the value of responsive pricing and leads to a higher CVaR improvement for any η.

Finally, we investigate the impact of risk aversion on the CCS (i.e., CS∗r −CS∗a) in column (c)

of Figure 3. The trends observed are consistent with our analytical result in Proposition 7(ii): the

effect of risk aversion on CCS could be non-monotonic, especially when c is low. In contrast, with

a high cost, Figure 3(c5) shows that the consumers benefit more from responsive pricing as the

firm becomes less risk averse. Moreover, Figures 3(c1)-(c5) further confirm that CCS is positive,

which implies that price postponement always improves consumer surplus. Finally, the impact of

4 Note that the observations presented in this section are robust to different model parameter combinations and yield
distributions, including Uniform, truncated Normal, etc.
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yield variability on CCS is involved when c is low (i.e., c∈ {0.5,1.5}). However, when c is high (i.e.,

c∈ {2.5,3.5,4.5}), a lower yield variability always strengthens consumer surplus gain.

7. Additional Discussions

Now, we provide discussions on some model assumptions and potential extensions. Specifically,

we discuss alternative risk aversion criteria in Section 7.1, general cost structure in Section 7.2,

random capacity model in Section 7.3, and demand uncertainty in Section 7.4, respectively.

7.1. Alternative Risk Aversion Criteria

We adopt the CVaR objective in our model, which is only one way to capture a decision maker’s

risk aversion attitude. There are many alternative measures, among which the expected utility and

the mean-variance criteria are widely adopted. Different from the CVaR criterion, which ignores

the profit above the η-quantile level, the expected utility criterion considers the whole spectrum of

the profit with amplified concerns on the low realizations. In contrast, the mean-variance criterion

shifts the focus to balancing the expected value and variability of the profit. In the remainder of

this subsection, we discuss how the choice of risk aversion criterion affects our main results.

The expected utility criterion: Let U(π) be the firm’s utility as a function of its ex-post

profit π, which satisfies the properties that U ′ > 0 and U ′′ ≤ 0. The firm optimizes its decisions by

maximizing the expected utility EξU(πi), where ex-post profit πi, i∈ {a, r}, is given in Equations

(1) and (2), respectively. On the one hand, for ex-ante pricing, Kazaz and Webster (2015) provide

a sophisticated condition for the objective to be jointly concave. They show that, if the objective

is supermodular, then a risk averse firm charges a higher price and produces a larger quantity than

those under risk neutrality, which is consistent with our prediction in Corollary 1(i) for the pricing

part and Corollary 2(i) for the quantity part with high cost. They further remark that without

such regulation condition, the impact of risk aversion can go either way due to the complexity of

the problem. On the other hand, for responsive pricing, Lemma 3 shows that the problem is well

behaved and the firm always produces given p0 ≥ c
µ
. In addition, the comparison of the optimal

quantity with that in the riskless case shares the same trend as the one under the CVaR criterion.

Lemma 3. For the responsive pricing scheme, EU(πr(qr)) is continuously differentiable and con-

cave in qr with q∗r ≥ 0 given p0 ≥ c
µ

. In addition, Corollary 3(i) continues to hold.

To investigate the impact of price postponement and risk aversion, we conduct numerical analysis

using the exponential utility function family U(π) = 1−e−aπ
a

, in which the firm is risk averse [risk

seeking] when a> 0 [when a< 0] and is risk neutral when a→ 0. As we only focus on the risk averse

situations, the utility formula can be simplified to U(π) = 1− e−aπ, which has constant absolute

risk aversion level, i.e., −U(π)′′

U(π)′ = a and the firm exhibits a higher absolute risk aversion level as
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(a1): q∗r − q∗a with c= 0.5 (b1): Π∗r −Π∗a with c= 0.5 (c1): CS∗r −CS∗a with c= 0.5

(a2): q∗r − q∗a with c= 1.5 (b2): Π∗r −Π∗a with c= 1.5 (c2): CS∗r −CS∗a with c= 1.5

(a3): q∗r − q∗a with c= 2.5 (b3): Π∗r −Π∗a with c= 2.5 (c3): CS∗r −CS∗a with c= 2.5

(a4): q∗r − q∗a with c= 3.5 (b4): Π∗r −Π∗a with c= 3.5 (c4): CS∗r −CS∗a with c= 3.5

(a5): q∗r − q∗a with c= 4.5 (b5): Π∗r −Π∗a with c= 4.5 (c5): CS∗r −CS∗a with c= 4.5

Figure 3 Impact of Risk Aversion Parameter η on q∗r − q∗a (Column a), Π∗r −Π∗a (Column b) and CS∗r − CS∗a
(Column c): c increases in {0.5,1.5,2.5,3.5,4.5} from top to bottom.



Kouvelis, Xiao, and Yang: Role of Risk Aversion in Price Postponement under Supply Random Yield
Article submitted to ; manuscript no. MS-OPM-18-01273.R2 25

a increases. We adopt a similar setup as that in Section 6 with d(p) = 10− p, ξ ∼ Uniform[0,1],

c∈ {0.5,1.5,2.5,3.5,4.5}, and a∈ [0.05,1]. The results are listed in Figure EC.4 of Appendix EC.4.

We briefly highlight the similarities and the major differences between the expected utility and

the CVaR criteria. Consistent with our observations from Figure 3, q∗r−q∗a, U∗r −U∗a and CS∗r −CS∗a
depicted in Figure EC.4 all show some non-monotonic trends as the firm’s absolute risk aversion

level a changes, with the peak typically achieved when a is in some intermediate range. In addition,

recall that the firm is less risk averse when η becomes larger [a becomes smaller] in the CVaR

criterion [the expected utility criterion]. As such, the impacts of risk aversion exhibit qualitatively

the same nature under both the CVaR and the expected utility criteria. The only major difference

observed is that: When the cost is high and/or the firm exhibits a high absolute risk aversion level,

CS∗r −CS∗a < 0 could happen under the expected utility criterion. In this case, the firm orders a

small quantity under both pricing schemes and the quantity difference is almost negligible (i.e., as

a decreases from 1, columne (a) in Figure EC.4 shows that q∗r − q∗a increases from 0 very slowly).

As the optimal quantity is almost the same, the responsive pricing firm could potentially charge a

higher inventory clearance price after yield realization, which decreases consumer surplus. This is

in contrast to the finding obtained under the CVaR criterion, in which the quantity difference is

noticeably changed under the corresponding scenarios (i.e., in column (a) of Figure 3, as η increases

from η∗, q∗r − q∗a increases sharply from 0), leading to a larger expected consumer surplus under

responsive pricing. This difference is mainly driven by the choice of risk aversion measurement: For

the expected utility criterion, the firm always produces given p0 >
c
µ

but may produce a minimum

amount when it is too risk averse and production inflation is very costly. In contrast, under the

CVaR criterion, the firm simply forgoes those unattractive scenarios without producing.

To sum up, the impacts of price postponement under risk aversion are qualitatively consistent

under the CVaR and expected utility criteria, as they both amplify the concern of the low profit

realizations. On the other hand, they also exhibit some quantitative differences mainly resulting

from the facts that the CVaR criterion purely focuses on low profit realizations whereas the expected

utility considers the whole spectrum of the profit with primary weights on low profit realizations.

The mean-variance criterion: Let U(πi) =Eπi−λV ar(πi) be the firm’s mean-variance utility

function given ex-post profit πi, i ∈ {a, r}, where λ≥ 0 is the risk aversion parameter measuring

the firm’s attitude towards profit variability. Rather than amplifying the concern of low profit

realizations, the firm optimizes its decisions by striking a balance between the expected profit and

the induced profit variability. Such a distinct focus has a profound impact on the firm’s production

decision. Specifically, under the CVaR criterion, the firm pays particular attention to low profit

realizations, which occur when the supply yield is low. To mitigate the underage risk, the firm

always inflates the production quantity. In contrast, under the mean-variance criterion, the firm
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could be conservative to production inflation, since it may amplify the profit variability due to the

multiplicative nature of random yield. We show in Lemma 4 that the firm’s optimal production

may exhibit deflation behavior to control the profit variability, which is in sharp contrast to the

inflation behavior uncovered under the CVaR criterion. As such, it is not surprising that the firm

under the mean-variance criterion may opt to different operational decisions, leading to distinct

implications of price postponement under risk aversion. On the other hand, Lemma 4 shows that

the firm’s mean-variance objective may not be well behaved under random yield, since the variance

term is non-monotonic in the production quantity. We leave the full exploration for future research.

Lemma 4. For any given sales price p and demand d(p), the firm’s utility U(π(q)) is continuously

differentiable but may not be unimodal, where π(q) = pmin{d(p), qξ}−cq. Given p0 ≥ c
µ

, there exists

a q∗ ≥ 0 satisfying the first order condition. In addition, q∗ <d(p) may hold.

7.2. General Cost Structure

Our main model assumes that the firm pays for the production inputs at a unit cost c. As discussed

in Section 3, it is possible that the firm may incur additional cost for each successfully produced

product after the yield realization. Suppose the firm needs to pay a per unit cost c̄ for each delivered

product. Then, the firm’s total ex-post cost incurred for a production quantity q contingent upon

yield realization ξ is C(q|ξ) = cq + c̄qξ (Deo and Corbett 2009). This general payment scheme is

also adopted in a procurement setting, in which the buying firm pays a fraction for the total order

submitted and the remaining upon successful delivery (Tang and Kouvelis 2014, Li et al. 2017).

For a risk neutral firm (i.e., η= 1), this general payment scheme does not affect our analysis and

all the results continue to hold. This is because, under risk neutrality, the firm only cares about

the expected total cost EξC(q|ξ) = (c+ c̄µ)q, which solely depends on the yield mean µ rather than

individual yield realization ξ. As such, we can define a new unit production cost c̃ := (c+ c̄µ) and

transfer the problem back to the original one, in which the firm pays for all the production inputs at

the unit cost c̃ (i.e., EξC(q|ξ) = c̃q). This linear transformation technique has been adopted in the

random yield literature to demonstrate the equivalence relationship among various commonly used

payment schemes (see, e.g., Li and Zheng 2006, Tang and Kouvelis 2014, for detailed discussions).

In contrast, for a risk averse firm (i.e., η < 1), when the production cost is contingent upon the

yield realization, the firm’s problem becomes more involved as the above linear transformation no

longer applies. This is because the component c̄qξ interacts with the revenue term in the CVaR

objective and affects the firm’s ex-post profit realization. As such, the linear production inflation

rule in Proposition 1 may not hold. Though technically challenging, we manage to conduct some

preliminary analysis in Appendix EC.5, and show in Lemma 5 that the firm opts to produce nothing

if its risk aversion parameter is below a threshold level. Moreover, we show that price postponement

does not affect the firm’s risk aversion threshold under this general cost structure.
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Lemma 5. For the general cost structure, there exists a unique risk aversion threshold η∗i ∈ (0,1]

for pricing scheme i∈ {a, r} such that the firm produces if and only if η≥ η∗i . Moreover, η∗a = η∗r .

7.3. Random Capacity

In practice, supply shortage may also be driven by other factors rather than random yield. An

commonly adopted alternative modeling choice is random capacity, in which the final delivery of

the order quantity q is capped by a random capacity level K, i.e., min{q,K} (see Li et al. 2017,

for example). In what follows, we demonstrate some subtle differences between the two modeling

frameworks, and show that they may lead to distinct managerial implications.

For a risk neutral firm (i.e., η = 1), we discuss how price postponement affects the optimal

ordering policies. For the random yield model, the random factor ξ affects the production quantity

q in a multiplicative way. As such, the firm can strategically inflate the production quantity above

the price-induced demand d(p∗a) [revenue maximizing demand d∗] under ex ante [responsive] pricing

to partially mitigate the supply risk. Such inflation behavior introduces overage risk and affects

the marginal revenue of production quantity, leading to a two-fold impact of price postponement.

That is, as shown in Proposition 5(i), responsive pricing reduces [increases] production quantity

when the cost is low [high]. In contrast, for the random capacity model, the random capacity K

affects q via an additive way and there is no need for production inflation. As shown in Li et al.

(2017), the firm produces the price-induced demand under ex ante pricing, and no larger than the

revenue maximizing demand under responsive pricing. In this case, the overage risk is absent, and

the responsive pricing firm sets the inventory clearance price to better match supply with demand.

Such a pricing flexibility always enhances the marginal value of inventory and induces a larger

production quantity, which contrasts the result from the random yield model in Proposition 5(i).

In contrast, for a risk averse firm (i.e., η < 1), subtle differences on the impacts of risk aversion

exist under the two supply models. To illustrate, consider the setting in Proposition 1 with supply

risk replaced by random capacity K. The firm chooses production quantity q to maximize its CVaR

given the price-induced demand d(p), where CVaR(π(q)) = maxv∈R{v+ 1
η
Emin{π(q)− v,0}} and

π(q) = pmin{q, d(p),K}−cq. The firm’s optimal ordering decision is given by the following lemma.

Lemma 6. Given sales price p > c and price-induced demand d(p), for any η ∈ (0,1], the firm’s

optimal production quantity is:

q∗(p) =

{
d(p) if d(p)≤ F−1(η(p−c)

p
),

F−1(η(p−c)
p

) otherwise ,

where F (K) is the cdf of random capacity K. Clearly, q∗(p)≤ d(p) and increases in η.



Kouvelis, Xiao, and Yang: Role of Risk Aversion in Price Postponement under Supply Random Yield
28 Article submitted to ; manuscript no. MS-OPM-18-01273.R2

Lemma 6 draws some interesting comparisons with its counterpart under the random yield model.

For the random capacity model, given a positive margin (i.e., p > c), the firm always chooses to

produce regardless of its risk aversion level η. Moreover, the firm always produces no larger than the

price-induced demand d(p) and the less risk averse firm produces more. In contrast, for the random

yield model, Proposition 1 shows that the firm produces if and only if the sales price is high enough,

or equivalently, the firm is not too risk averse. In addition, whenever the firm chooses to produce,

it always inflates its production over d(p) and the less risk averse firm produces less. The above

differences are driven by the source of supply uncertainty and the fact that the CVaR criterion

focuses on the low profit realizations. For the random capacity [yield] model, low profit occurs

when the realized capacity [yield] is low, so a more risk averse firm reduces [increases] production

quantity to avoid excess spending [hedge against shortage]. To sum up, the above discussions clearly

demonstrate the fundamental differences between the two supply uncertainty models. We leave the

full exploration of the random capacity model as a future research direction.

7.4. Random Demand

Our model focuses on supply random yield and treats demand as deterministic, which helps us

single out the unique impact of yield uncertainty on a risk averse firm’s operational decisions. In

contrast, demand uncertainty is also a common source of risk in many sectors. In the literature, a

risk averse firm’s pricing and production decision under demand uncertainty has been investigated,

e.g., Agrawal and Seshadri (2000) and Kazaz and Webster (2015) for a general concave utility

function with and without emergent supply, respectively, and Chen et al. (2009) for a CVaR

objective. We now compare our findings and the corresponding ones under demand uncertainty

and explain how the uncertainty source interacts with risk aversion and affects the firm’s decisions.

For demand uncertainty, under mild regulation conditions, a risk averse firm charges a lower sales

price and/or orders less quantity compared to those under risk neutrality (Agrawal and Seshadri

2000 for the additive model, Kazaz and Webster 2015). Under the CVaR criterion, Chen et al.

(2009) show that a risk averse firm always produces given a positive margin and a more risk averse

firm charges a lower sales price. However, the impact of risk aversion on the optimal production

quantity is involved, as it depends on how demand uncertainty is modeled (multiplicative vs.

additive). In contrast, for yield uncertainty, we show that, under the CVaR criterion, only the firm

with relatively low risk averse level chooses to produce. Compared to the riskless case, the firm

charges a higher sales price and produces more [less] if it is less [more] risk averse. Moreover, as the

firm becomes less risk averse, it reduces the sales price but may increase the production quantity.

The above comparisons show some subtle differences between demand and yield uncertainties.

The underlying intuition is: Both the CVaR and the expected utility criteria amplify the concern
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on low profit realization and generate the decision rules to alleviate such concern. For demand

uncertainty, low profit occurs when the demand realization is low, which reduces revenue and

generates potential excess inventory. As such, the risk averse firm mitigates the overage risk by

boosting demand via a low sales price and/or reducing the production. Moreover, given positive

margin, the firm always opts to produce regardless of its risk aversion level. In contrast, for yield

uncertainty, low yield realization leads to downside profit shock due to insufficient supply, which

generates low revenue and potential lost sales. Consequently, a more risk averse firm would charge a

higher sales price to limit demand. In addition, given the multiplicative nature of random yield, the

firm would inflate the production above the price-induced demand to hedge against underage risk,

and a more risk averse firm favors a larger inflation rate 1
δ
. Such inflation behavior may intensify

the overage risk due to high yield realization and result in inventory disposal. Hence, some firms

forgo this costly endeavor by producing nothing, especially for those who are highly risk averse. In

sum, the source of uncertainty has a profound impact on a risk averse firm’s operational decisions.

8. Conclusion

Price postponement is an effective mechanism to hedge against the adverse effect of supply random

yield. However, its value and the resulting operational decisions have not been studied for risk

averse firms. We study the interaction between risk aversion and price postponement under supply

yield risk. Among other results, we show that price postponement does not affect a firm’s risk

aversion threshold. That is, all else being equal, there exists a unique risk aversion threshold under

which firms with higher risk aversion (i.e., lower η) choose not to produce under both pricing

schemes. We further show that the value of CVaR improvement due to price postponement may

not be monotonic in the firm’s risk aversion level, which implies that a risk averse firm should

be cautious when implementing the price postponement strategy as the gain may not necessarily

cover the fixed postponement cost. In addition, our results show that responsive pricing, albeit its

ex post revenue maximizing behavior, benefits the end market consumers in equilibrium.

To conclude, our work can be further explored in several other directions. First, it would be

interesting to understand the impact of risk aversion on the value and adoption of other supply risk

mitigation tools such as supply diversification. Second, including an independent supplier could

help understand the effect of double marginalization on price postponement for risk averse firms.
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Appendices to “Role of Risk Aversion in Price Postponement
under Supply Random Yield”

The appendices consist of five parts. Appendix EC.1 provides the proofs for all the results in

the main paper. Appendix EC.2 discusses both the pricing and the quantity effects uncovered in

Section 5.3. Appendix EC.3 presents some fundamental properties of the CVaR criterion that will

be used to facilitate the analysis. Appendix EC.4 illustrates the numerical results from the expected

utility criterion discussed in Section 7.1. Finally, appendix EC.5 provides additional analysis for

the general cost structure from Section 7.2.

EC.1. Proofs of Statements

Proof of Proposition 1: We prove part (i) and part (ii) together. For any given sales price pa

and production quantity qa, define F (v) = v+ 1
η
Eξ min{πa(pa, qa)− v,0}. There are three cases to

consider.

Case 1: If qa ≤ d(pa)

u
, regardless of the realization of ξ, we have πa(pa, qa) = (paξ− c)qa. In this

case, πa(pa, qa)− v≤ 0 if and only if (iff) ξ ≤ cqa+v
paqa

. Then, we have:

F (v) =


v, if v ∈ (−∞, (pal− c)qa],
F 1

1 (v) := v+ 1
η

∫ cqa+v
paqa

l
[(paξ− c)qa− v]dG(ξ), if v ∈ ((pal− c)qa, (pau− c)qa],

F 2
1 (v) := v+ 1

η

∫ u
l

[(paξ− c)qa− v]dG(ξ), if v ∈ ((pau− c)qa,∞].

Easy to check that F (v) is continuously differentiable and concave in v, with ∂
∂v
F (v)|v=(pal−c)qa =

1> 0 and ∂
∂v
F (v)|v=(pau−c)qa = 1− 1

η
≤ 0. Thus, v∗ is defined by the first order condition (FOC),

i.e., ∂
∂v
F (v) = 0, which implies that v∗ = (paG

−1(η)− c)qa and F (v∗) = 1
η

∫ G−1(η)

l
(paξ− c)qadG(ξ).

Case 2: If qa ∈
(
d(pa)

u
, d(pa)

l

]
, we can write F (v) using similar comparisons as in Case 1:

F (v) =


v, if v ∈ (−∞, (pal− c)qa],

F 1
2 (v) := v+ 1

η

∫ cqa+v
paqa

l [(paξ− c)qa− v]dG(ξ), if v ∈ ((pal− c)qa, pad(pa)− cqa],

F 2
2 (v) := v+ 1

η
(
∫ d(pa)

qa
l [(paξ− c)qa− v]dG(ξ) +

∫ u
d(pa)
qa

[pad(pa)− cqa− v]dG(ξ)), if v ∈ (pad(pa)− cqa,∞].

Easy to check that F (v) is continuous. Moreover, ∂
∂v
F 1

2 (v)|v=pad(pa)−cqa = 1 − 1
η

∫ d(pa)
qa

l
dG(ξ) >

∂
∂v
F 2

2 (v)|v=pad(pa)−cqa = 1− 1
η
. Morover, ∂

∂v
F 2

2 (v) = 1− 1
η
< 0, ∀v ∈ (pad(pa)− cqa,∞]. Hence, the

optimal v∗ belongs to the interval ((pal − c)qa, pad(pa) − cqa]. Easy to see ∂
∂v
F 1

2 (v)|v=pad(pa)−cqa

increases in qa, thus, there exists a unique q̄a := d(pa)

G−1(η)
such that ∂

∂v
F 1

2 (v)|v=pad(pa)−cq̄a = 0, with

q̄a ∈ [d(pa)

u
, d(pa)

l
). When qa < q̄a, v

∗ is defined by ∂
∂v
F 1

2 (v) = 0, which implies v∗ = (paG
−1(η)− c)qa

and F (v∗) := F 1
2 (v∗) = 1

η

∫ G−1(η)

l
(paξ − c)qadG(ξ). When qa > q̄a, v

∗ = pad(pa)− cqa and F (v∗) :=

F 2
2 (v∗) = pad(pa)− cqa + 1

η

∫ d(pa)
qa

l
[paξqa− pad(pa)]dG(ξ).
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Case 3: If qa ∈
(
d(pa)

l
,∞
]
, then regardless of the realization of ξ, we have πa(pa, qa) = pad(pa)−

cqa. πa(pa, qa) − v ≤ 0 if and only if (iff) v ≥ pad(pa) − cqa. Easy to calculate in this case v∗ =

pad(pa)− cqa and F (v∗) = pad(pa)− cqa decreases in qa.

Combining all above cases, for any given sales price pa, we can express the firm’s CVaR as a

function of qa as follow:

Πa(qa|pa) := F (v∗) =


1
η

∫ G−1(η)

l
(paξ− c)qadG(ξ), if qa ∈ (−∞, q̄a],

pad(pa)− cqa + 1
η

∫ d(pa)
qa

l
[paξqa− pad(pa)]dG(ξ), if qa ∈

(
q̄a,

d(pa)

l

]
,

pad(pa)− cqa, if qa ∈
(
d(pa)

l
,∞
)
.

When qa = q̄a, we have pad(pa) − cq̄a = G−1(η)paq̄a − cq̄a and, thus, limqa→q̄−a
Πa(qa|pa) =

limqa→q̄+a
Πa(qa|pa). When qa = d(pa)

l
, we have pad(pa) − cq̄a = G−1(η)paq̄a − cq̄a and,

thus, lim
qa→ d(pa)

l

− Πa(qa|pa) = lim
qa→ d(pa)

l

+ Πa(qa|pa). Consequently, Πa(qa|pa) is continuous

in qa. Moreover, limqa→q̄−a
∂
∂qa

Πa(qa|pa) = 1
η

∫ G−1(η)

l
(paξ − c)dG(ξ) = −c + pa

η

∫ d(pa)
q̄a

l
ξdG(ξ) =

limqa→q̄+a
∂
∂qa

Πa(qa|pa), and lim
qa→ d(pa)

l

−
∂
∂qa

Πa(qa|pa) = −c = lim
qa→ d(pa)

l

+
∂
∂qa

Πa(qa|pa). Hence,

Πa(qa|pa) is continuously differentiable.

When qa > q̄a, Πa(qa|pa) is concave since ∂2

∂q2
Πa(qa|pa) = −pad(pa)2

ηq3a
g(d(pa)

qa
) < 0. And

limqa→∞
∂
∂qa

Πa(qa|pa) =−c < 0. When qa ≤ q̄a, ∂
∂qa

Πa(qa|pa) = 1
η

∫ G−1(η)

l
(paξ − c)dG(ξ), which is a

constant independent of qa, and its sign determines the optimal production quantity q∗a. In partic-

ularly, if 1
η

∫ G−1(η)

l
(paξ − c)dG(ξ) ≤ 0 or pa ≤ cη∫G−1(η)

l
ξdG(ξ)

, Πa(qa|pa) decreases in qa with q∗a = 0.

If 1
η

∫ G−1(η)

l
(paξ − c)dG(ξ)> 0 or pa >

cη∫G−1(η)
l

ξdG(ξ)
, Πa(qa|pa) is concave in qa with q∗a ∈ [q̄a,

d(pa)

l
]

defined by q∗a = d(pa)

δ
, where δ satisfies

∫ δ
l
ξdG(ξ) = cη

pa
. Let p̃ := min{p0,

cη∫G−1(η)
l

ξdG(ξ)
} and plug q∗a

into Πa(pa, qa), we have:

Πa(pa, q
∗
a(pa)) =

{
pad(pa)(1− G(δ)

η
) if pa ∈ [p̃, p0]

0 if pa ∈
[
c
µ
, p̃
)
.

At last, since δ satisfies
∫ δ
l
ξdG(ξ) = cη

pa
, it is immediate that δ strictly increases in η and strictly

decreases in pa. Moreover, q∗a = d(pa)

δ
strictly decreases in η. �

Proof of Proposition 2: We prove Parts (i) and (ii) together. From Proposition 1, we have

Πa(pa|q∗a(pa)) =

pad(pa)(1−
G(

d(pa)
q∗a(pa)

)

η
) if pa ∈

(
min

{
p0,

cη∫G−1(η)
l

ξdG(ξ)

}
, p0

]
0 otherwise.

We first focus on the case when cη∫G−1(η)
l

ξdG(ξ)
< p0 (at the end of the proof we will provide condition

under which this holds). Let δ = d(pa)

q∗a(pa)
and from the proof of Proposition 1, it is clear that δ ∈
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[l, u]. When p ∈
(

cη∫G−1(η)
l

ξdG(ξ)
, p0

]
, we have

∫ δ
l
ξdG(ξ) = ηc

pa
<
∫ G−1(η)

l
ξdG(ξ), which implies that

δ <G−1(η) or G(δ)< η. In this case, Πa(pa|q∗a(pa)) = pad(pa)(1− 1
η
G(δ)), and taking derivative, we

have:

∂

∂pa
Πa(pa|q∗a(pa)) = [pad

′(pa) + d(pa)]

(
1− G(δ)

η

)
+ pad(pa)

(
−g(δ)

η

)
∂δ

∂pa

= [pad
′(pa) + d(pa)]

(
1− G(δ)

η

)
+ d(pa)

∫ δ
l
ξg(ξ)dξ

δη

= d(pa)

(
1− G(δ)

η

)(
pad

′(pa)

d(pa)
+ 1 +

∫ δ
l
ξg(ξ)dξ

δ(η−G(δ))

)

When pa = cη∫G−1(η)
l

ξdG(ξ)
, we have δ = G−1(η) and ∂

∂pa
Πa(pa|q∗a(pa))|pa= cη∫G−1(η)

l
ξdG(ξ)

=

d(pa)
∫ δ
l ξg(ξ)dξ

δη
> 0. When pa = p0, we have d(pa) = 0 and ∂

∂pa
Πa(pa|q∗a(pa))|pa=p0

=

pad
′(pa)

(
1− G(δ)

η

)
< 0. Due to continuity, there must exist at least one p∗a ∈

(
cη∫G−1(η)

l
ξdG(ξ)

, p0

)
such that ∂

∂pa
Πa(pa|q∗a(pa))|pa=p∗a = 0. Moreover, p∗a < p0 implies d(p∗a) > 0 and p∗a >

cη∫G−1(η)
l

ξdG(ξ)

implies 1− G(x)

η
|pa=p∗ > 0. Thus, p∗a must satisfy pad

′(pa)

d(pa)
+ 1 +

∫ x
l ξg(ξ)dξ

x(η−G(x))
= 0. Evaluating the second

order derivative at pa = p∗a, we have

∂2

∂p2
a

Πa(pa|q∗a(pa))|pa=p∗a = d(p∗a)

(
1− G(x(p∗a))

η

)(
∂

∂pa

pad
′(pa)

d(pa)
|pa=p∗a +

∂

∂pa

∫ x
l
ξg(ξ)dξ

x(η−G(x))
|pa=p∗a

)

When demand has the IPE property, ∂
∂pa

pad
′(pa)

d(pa)
≤ 0 for any pa. Thus, to show

∂2

∂p2
a
Πa(pa|q∗a(pa))|pa=p∗a < 0, it is sufficient to show ∂

∂pa

∫ δ
l ξg(ξ)dξ

δ(η−G(δ))
|pa=p∗a < 0, which is equivalent to

∂
∂δ

∫ δ
l ξg(ξ)dξ

δ(η−G(δ))
|δ=δ∗ > 0 since δ decreases in pa. Next, we show that if the yield distribution satisfies

Assumption 1(a), i.e.,
∫ x
l ξg(ξ)dξ

x(1−G(x))
increases in x ∈ [l, u], then

∫ x
l ξg(ξ)dξ

x(η−G(x))
increases in x ∈ [l,G−1(η)].

Taking derivative, we have

∂

∂x

∫ x
l
ξg(ξ)dξ

x(η−G(x))
=

(η−G(x))
(
x2g(x)−

(
1− xg(x)

η−G(x)

)∫ x
l
ξdG(ξ)

)
x2(η−G(x))2

Define A(η) = x2g(x)−
(

1− xg(x)

η−G(x)

)∫ x
l
ξdG(ξ), which decreases in η. ∀η ∈ (0,1], A(η)>A(1)> 0,

where A(1) > 0 comes from Assumption 1(a). Thus,
∫ x
l ξg(ξ)dξ

x(η−G(x))
increases in x ∈ [l,G−1(η)], which

implies that ∂
∂pa

∫ δ
l ξg(ξ)dξ

δ(η−G(δ))
< 0. As a consequence, ∂2

∂p2
a
Πa(pa|q∗a(pa))|pa=p∗a < 0, and Πa(pa|q∗a(pa)) is

quasi-concave in pa with the unique p∗a defined by the FOC.

Finally, we need to check when cη∫G−1(η)
l

ξdG(ξ)
< p0 holds. Define g(η) :=

∫G−1(η)
l

ξdG(ξ)

η
. Easy to see

g′(η) =
ηG−1(η)−

∫G−1(η)
l

ξdG(ξ)

η2 > 0. Moreover, g(1) = µ ≥ c
p0

and g(0) = G−1(0) = l by applying the

L’ Hospital’s rule. If l≤ c
p0

, there exists a unique η∗a(p0, c)> 0 such that cη∫G−1(η)
l

ξdG(ξ)
< p0 holds iff

η > η∗a(p0, c). And if l > c
p0

, ∀η > 0 := η∗r(p0, c),
cη∫G−1(η)

l
ξdG(ξ)

< p0 holds. Combining all the above
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arguments, parts (i) and (ii) of Proposition 2 are proved. �

Proof of Corollary 1: Part (i): under the IPE assumption, (p − c/µ)d(p) is quasi-concave

(see Chen et al. 2009). Thus, p = pda is defined by (p − c/µ)d′(p) + d(p) = 0. If pda < p̃, pda < p∗a

automatically holds. Otherwise, pda satisfies c
pda

= µ(pdad
′(pda)+d(pda))

pdad
′(pda)

, and we have G(δpda) < η, since

pda > p̃. From the proof of Proposition 2, the FOC is:

∂

∂pa
Πa(pa|q∗a(pa)) = d(pa)

(
1− G(δ)

η

)(
pad

′(pa)

d(pa)
+ 1 +

∫ δ
l
ξdG(ξ)

δ(η−G(δ))

)
.

Thus, plugging pda into ∂
∂pa

Πa(pa|q∗a(pa)), we only need to check the sign of A(pa) := pad
′(pa)

d(pa)
+ 1 +∫ δ

l ξdG(ξ)

δ(η−G(δ))
at point pa = pda. For simplicity, we denote δd as satisfying

∫ δd
l
ξdG(ξ) = cη

pda
, which is a

function of pda in the following analysis.

A(pda) =
pdad

′(pda)

d(pda)
+ 1 +

∫ δd
l
ξdG(ξ)

δd(η−G(δd))
=
pdad

′(pda)

d(pda)
+ 1 +

cη

pdaδd(η−G(δd))

=
(pdad

′(pda) + d(pda))
(
pdad

′(pda)δd

(
1− G(δd)

η

)
+µd(pda)

)
d(pda)p

d
ad
′(pda)δd

(
1− G(δd)

η

) ,

where the last equality comes from the fact that c
pda

= µ(pdad
′(pda)+d(pda))

pdad
′(pda)

. When p = pda, we have

pdad
′(pda) + d(pda) = c

µ
d′(pda) < 0. We can write A(pda) = K

(
pdad

′(pda)δd

(
1− G(δd)

η

)
+ d(pda)

)
, where

K := (pdad
′(pda)+d(pda))

d(pda)pdad
′(pda)δd

(
1−G(δd)

η

) > 0. Next, since cη

pda
=
∫ δd
l
ξdG(ξ) = δdG(δd)−

∫ δd
l
G(ξ)dξ. Plugging into

A(pda), it is immediate that

A(pda) = pdad
′(pda)

(
δd−µ−

1

η

∫ δd

l

G(ξ)dξ

)
.

Thus, we only need to check the sign of M := δd − µ − 1
η

∫ δd
l
G(ξ)dξ. Recall from the proof of

Proposition 2, we have µ= g(1)≥ g(η) := 1
η

∫ G−1(η)

l
ξdG(ξ) = 1

η

(
G−1(η)η−

∫ G−1

l
G(ξ)dξ

)
. Plugging

into the express of M , we have

M ≤ 1

η

(
δdη−

∫ δd

l

G(ξ)dξ− ηG−1(η) +

∫ G−1(η)

l

G(ξ)dξ

)

= (δd−G−1(η)) +
1

η

(∫ G−1(η)

δd

G(ξ)dξ

)
≤ (δd−G−1(η)) +

1

η

(∫ G−1(η)

δd

ηdξ

)
= 0,

where the first equality comes from the fact that G(δd) < η and the second inequality comes

from the fact that G(ξ) increases in ξ. Thus, ∂
∂pa

Πa(pa|q∗a(pa))|pa=pda
≥ 0 and pda ≤ p∗a, due to the

unimodality of Πa(pa|q∗a(pa)). Next, we show Πa(p
∗
a) := Πa(p

∗
a|q∗a(p∗a))≤Πd

a(p
d
a). By part (ii), since

Πa(p
∗
a) increases in η, it is clear that Πa(p

∗
a)|η<1 <Πa(p

∗
a)|η=1. When η= 1, the firm is risk neutral
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with expected profit concave in ξ. Thus, due to convex order, Πa(p
∗
a)|η=1 ≤Πd

a(p
d
a), which concludes

the proof.

Part (ii): Let A(pa) := pad
′(pa)

d(pa)
+ 1 +

∫ δ
l ξdG(ξ)

δ(η−G(δ))
, where δ is defined by

∫ δ
l
ξdG(ξ) = ηc

pa
. From the

proof of Proposition 2, p∗a is defined by A(p∗) = 0 and ∂A(p)

∂pa
|pa=p∗a < 0. Thus, the sign of ∂p∗a

∂η
=

−
∂A
∂η
∂A
∂pa

|pa=p∗a is the same as that of ∂A
∂η
|pa=p∗a . For any pa,

∂A(pa)

∂η
= ∂

∂η

∫ δ
l ξdG(ξ)

δ(η−G(δ))
= ∂

∂η
m

δ
(

1−G(δ)
η

) , where

m= c
pa

. Now, we first check the monotonicity of G(δ)

η
on η. Taking derivative, we have:

∂

∂η

G(δ)

η
=
ηg(δ) ∂δ

∂η
−G(δ)

η2
=

∫ δ
l
ξdG(ξ)− δG(δ)

δη2

=
−
∫ δ
l
G(ξ)dξ

δη2
< 0

where the last equality comes from integration by parts. Since G(δ)

η
strictly decreases in η and δ

strictly increases in η, δ
(

1− G(δ)

η

)
strictly increases in η, given that G(δ) ≤ η. Thus, m

δ
(

1−G(δ)
η

)
strictly decreases in η and A(pa) strictly decreases in η for any feasible pa, which implies p∗a strictly

decreases in η. Next, we show that for any η ≥ η∗a(p0, c), Πa(p
∗
a) = p∗ad(p∗a)(1−

G(δ)

η
) increases in η.

Taking derivative, we have dΠa(p∗a)

dη
= ∂Πa(p∗a)

∂η
+ ∂Πa(p∗a)

∂pa

∂p∗a
∂η

= ∂Πa(p∗a)

∂η
due to the Envelope Theorem.

Straightforward calculation shows that ∂Πa(p∗a)

∂η
> 0, which concludes the proof. �

Proof of Corollary 2: To simplify the expression, we normalize b= 1 without loss of generality.

Part (i): The optimal production quantity under the linear demand and uniform yield is

q∗a(η) = (a− p∗a)
√

p∗a
2cη

, where p∗a is the largest root of polynomial equation 8ηp3 + p2(−8aη− 9c) +

p (2a2η+ 6ac) − a2c = 0. Taking derivative with the Implicit Function Theorem and after some

necessary simplifications, we have q∗a decreases in η if and only if c < ĉa and η > η̂a, where the

threshold ĉa is the smallest real root of polynomial 27c3 +9a2c−2a3 = 0 and the threshold η̂a is the

smallest real root of polynomial equation 2a3η3− 9a2cη2− 27c3 = 0. Part (ii): Simple calculation

yields that pda = a+2c
2

and qda = d(pda)

µ
= a−2c, which decreases in c and is independent from η. On the

other hand, given c, q∗a(η) is non-monotone in η when c is small and increases otherwise. Comparing

q∗a(η) with qda, it is immediate the verify that there exist threshold values c̄a and η̄1
a < η̄

2
a such that if

c < c̄a and η ∈ [η̄1
a,min{η̄2

a,1}], q∗a(η)≥ qda; otherwise, q∗a(η)< qda, where the threshold c̄a is the small-

est root of polynomial a6 − 18a5c+ 117a4c2 − 540a3c3 + 1620a2c4 − 2592ac5 + 1728c6 = 0, and the

thresholds η̄1
a < η̄

2
a are the two real roots of polynomial −2a3c+ η (a4 + 27a2c2− 108ac3 + 108c4) +

η3 (32a3c− 192a2c2 + 384ac3− 256c4) + η2 (−2a4− 8a3c+ 48a2c2− 48ac3) = 0, respectively. �

Proof of Lemma 1: Lemma 1 holds due to the concavity of p(d)d. �
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Proof of Proposition 3: We prove part (i) and part (ii) together. For any

given production quantity qr, define F (v) = v + 1
η
Eξ min{πr(qr) − v,0}, where πr(qr) =

maxpr∈[0,p0]{pr min{d(pr), qrξ}}− cqr. There are three cases to consider.

Case 1: If qr <
d∗

u
, then ∀ξ ∈ [l, u], qrξ ∈ [ l

u
d∗, d∗)< d∗. In this case, define f(ξ) = πr(qr)− v =

p(qrξ)qrξ−cq−v, which is concave in ξ due to the concavity of p(d)d. Let ξ∗ = d∗

qr
such that f ′(ξ∗) =

0. Since f ′(u) = p(qru) + qrup
′(qru)> p(d∗) + d∗p′(d∗) = 0, we have ξ∗ >u. Thus, f(ξ) increases in

[l, u]. There are three sub-cases to consider. Sub-case 1: If v ≥ p(qru)qru− cqr, then f(u)≤ 0. In

this case, F (v) = v+ 1
η
Eξ(p(qrξ)qrξ− cqr− v). Sub-case 2: If v≤ p(qrl)qrl− cqr, then f(l)≥ 0. In

this case, F (v) = v. Sub-case 3: If v ∈ [p(qrl)qrl− cqr, p(qru)qru− cqr], then f(l)≤ 0≤ f(v). Let ξ̂

such that f(ξ̂) = 0, i.e., p(qrξ̂)qrξ̂− cqr = v. In this case, F (v) = v+ 1
η

∫ ξ̂
l

(p(qrξ)qrξ− cqr− v)dG(ξ).

Putting all three sub-cases together, we have the following:

F (v) =


v, if v ∈ (−∞, p(qrl)qrl− cqr],
v+ 1

η

∫ ξ̂
l

[p(qrξ)qrξ− cqr− v]dG(ξ), if v ∈ (p(qrl)qrl− cqr, p(qru)qru− cqr],
v+ 1

η

∫ u
l

[p(qrξ)qrξ− cqr− v]dG(ξ), if v ∈ (p(qru)qru− cqr,∞].

Easy to check that F (v) is continuously differentiable in v since ξ̂|v=p(qrl)qrl−cqr = l and

ξ̂|v=p(qru)qru−cqr = u. Taking derivative, ∂F (v)

∂v
|v=p(qrl)qrl−cqr = 1> 0 and ∂F (v)

∂v
|v=p(qru)qru−cqr = 1− 1

η
<

0 for η ∈ (0,1). Thus, there must exist a v∗ ∈ (p(qrl)qrl− cqr, p(qru)qru− cqr) satisfying the first

order condition, which pins down to 1− 1
η

∫ ξ̂
l
dG(ξ) = 0 or equivalently ξ̂ =G−1(η). Consequently,

F (v∗) = 1
η

∫ G−1(η)

l
(p(qrξ)qrξ− cqr)dG(ξ).

Case 2: If qr >
d∗

l
, then ∀ξ ∈ [l, u], qrξ > d∗. In this case, πr(qr) = p(d∗)d∗ − cqr − v ≤ 0 if and

only if v≥ p(d∗)d∗− cqr. Therefore, we have the following:

F (v) =

{
v, if v ∈ (−∞, p(d∗)d∗− cqr],
v+ 1

η

∫ u
l

[p(qrξ)qrξ− cqr− v]dG(ξ), otherwise.

Easy to check that F (v) is continuous but not differentiable with v∗ = p(d∗)d∗− cqr and F (v∗) =

p(d∗)d∗− cqr.
Case 3: If qr ∈ [d

∗

u
, d
∗

l
], then πr(qr) = p(qrξr)qrξr−cqr−v, if ξ ≤ d∗

qr
and πr(qr) = p(d∗)d∗−cqr−v,

otherwise. Let f(ξ) = p(qrξr)qrξr−cqr−v and ξ∗ = d∗

qr
defined in Case 1 belongs to [l, u]. There are

three sub-cases to consider. Sub-case 1: If v≤ p(qrl)qrl−cqr, then f(l)≥ 0. In this case, F (v) = v.

Sub-case 2: if v ∈ [p(qrl)qrl−cqr, p(d∗)d∗−cqr], then f(l)≤ 0 and f(ξ∗)≥ 0. Let ξ̂ such that f(ξ̂) =

0. In this case, F (v) = v+ 1
η

∫ ξ̂
l

(p(qrξ)qrξ − cqr − v)dG(ξ). Sub-case 3: If v > p(d∗)d∗ − cqr, then

f(ξ∗)< 0. In this case, F (v) = v+ 1
η

∫ d∗
qr
l

(p(qrξ)qrξ− cqr− v)dG(ξ) + 1
η

∫ u
d∗
qr

(p(d∗)d∗− cqr− v)dG(ξ).

To sum up, we have the following:

F (v) =


v, if v ∈ (−∞, p(qrl)qrl− cqr],
F 1

1 (v) := v+ 1
η

∫ ξ̂
l

[p(qrξ)qrξ− cqr − v]dG(ξ), if v ∈ (p(qrl)qrl− cqr, p(d∗)d∗− cqr],

F 2
1 (v) := v+ 1

η

∫ d∗
qr
l (p(qrξ)qrξ− cqr − v)dG(ξ) + 1

η

∫ u
d∗
qr

(p(d∗)d∗− cqr − v)dG(ξ), otherwise.
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Easy to check that F (v) is continuous since when v = p(d∗)d∗ − cqr, ξ̂ = d∗

qr
. However,

∂F (v)

∂v
|v→(p(d∗)d∗−cqr)− = 1− 1

η
G(ξ̂)> 1− 1

η
= ∂F (v)

∂v
|v→(p(d∗)d∗−cqr)+ . Therefore, F (v) is unimodal with

v∗ ∈ [p(qrl)qrl − cqr, p(d∗)d∗ − cqr]. Let K(qr) = ∂F (v)

∂v
|v→(p(d∗)d∗−cqr)− = 1 − 1

η
G(ξ̂) = 1 − 1

η
G(d

∗

qr
),

since when v= p(d∗)d∗− cqr, ξ̂ = d∗

qr
. Then K(d

∗

l
) = 1> 0 and K(d

∗

u
) = 1− 1

η
< 0. Thus, there exists

a unique q̄r ∈ (d
∗

u
, d
∗

l
) s.t., K(q̄r) = 0, which is equivalent to q̄r = d∗

G−1(η)
. Therefore,

v∗ =

{
s.t,G(ξ̂) = η, if qr < q̄r,

p(d∗)d∗− cqr, otherwise.

And the corresponding value function is:

F (v∗) =

 1
η

∫ G−1(η)

l
(p(qrξ)qrξ− cqr)dG(ξ), if qr ∈ [d

∗

u
, q̄r),

p(d∗)d∗− cqr + 1
η

∫ d∗
qr
l

(p(qrξ)qrξ− p(d∗)d∗)dG(ξ), otherwise.

Combining all the three cases together, we have the following value function:

Πr(qr) = F (v∗) =


1
η

∫ G−1(η)

l
(p(qrξ)qrξ− cqr)dG(ξ), if qr ∈ [0, q̄r),

p(d∗)d∗− cqr + 1
η

∫ d∗
qr
l

(p(qrξ)qrξ− p(d∗)d∗)dG(ξ), if qr ∈ [q̄r,
d∗

l
],

p(d∗)d∗− cqr otherwise.

(EC.1)

Easy to check that Πr(qr) is continuously differentiable since when qr = q̄r,
d∗

qr
=G−1(η). Checking

the second derivative, it is immediate that ∂2Πr(qr)

∂q2r
≤ 0 due to the concavity of p(d)d, and ∂2Πr(qr)

∂q2r
<

0 if p(d)d is strictly concave. Thus, Πr(qr) is continuously differentiable and concave. Checking

the boundary condition, ∂Πr(qr)

∂qr
|qr=0 = p0

η

∫ G−1(η)

l
ξdG(ξ) − c. Let g(η) :=

∫G−1(η)
l

ξdG(ξ)

η
. We have

g′(η) =
ηG−1(η)−

∫G−1(η)
l

ξdG(ξ)

η2 > 0. Moreover, g(1) = µ ≥ c
p0

and g(0) = G−1(0) = l by applying the

L’ Hospital’s rule. If l ≤ c
p0

, there exists a unique η∗r(p0, c)> 0 such that ∂Πr(qr)

∂qr
|qr=0 > 0 holds iff

η > η∗r(p0, c). And if l > c
p0

, ∀η > 0 := η∗(p0, c),
∂Πr(qr)

∂qr
|qr=0 > 0 holds.

Now, we focus on the case when η≥ η∗r(p0, c), which indicates that ∂Πr(qr)

∂qr
|qr=0 ≥ 0. Together with

the facts that ∂Πr(qr)

∂qr
|qr= d∗

l
=−c < 0 and Πr(qr) is continuously differentiable and concavity in the

entire feasible region of qr, there exists an optimal q∗r ≥ 0 satisfying the first order condition. Let

c̄r := 1
η

∫ G−1(η)

l

[
p
(

ξd∗

G−1(η)

)
+
(

ξd∗

G−1(η)

)
p′
(

ξd∗

G−1(η)

)]
ξdG(ξ), under which q∗r = q̄r = d∗

G−1(η)
. Then, the

concavity of the objective function together with the boundary derivative conditions immediately

indicate that the optimal q∗r must satisfy the following first order condition:

q∗r solves


1
η

∫ G−1(η)

l
[p′(q∗rξ)(q

∗
rξ) + p(q∗rξ)] ξdG(ξ) = c c∈ [c̄r,max{c̄r, p0µ}]

1
η

∫ d∗
q∗r
l [p′(q∗rξ)(q

∗
rξ) + p(q∗rξ)] ξdG(ξ) = c c∈ [0, c̄r].

This completes the proof. �

Proof of Corollary 3: Part (i): when c = 0, we have q∗r = d∗

l
> d∗

µ
= qdr . Since both q∗r and
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qdr are continuous in c, there must exist a δ > 0 such that q∗r > qdr , ∀c ∈ [0, δ). On the other

hand, when c = p0µ, qdr = 0 = q∗r . Moreover, η∗r(p0, p0µ) = 1. Next, taking derivative and we have
∂qdr
∂c
|c=p0µ = 1

2p′(0)µ2 and ∂q∗r
∂c
|c=p0µ = 1

2p′(0)Eξ2
. Since Eξ2 > µ2, |∂q

d
r

∂c
|c=p0µ| > |

∂q∗r
∂c
|c=p0µ|. Thus, there

exists a δ > 0 such that q∗r < q
d
r , ∀c∈ (p0µ− δ, p0µ). In particular, if d(p) = a− bp with b normalized

to 1 and ξ ∼ Uniform[0,1], then there exists a unique threshold ĉ(η) such that q∗r > qdr holds if

and only if c ∈ [0, ĉ), where ĉ = 4aη2−3aη
8η2−6

if η < 1
2

(
3−
√

3
)

and ĉ is the first root of polynomial

96c3η− 96c2aη+ 24ca2η− a3 = 0 otherwise.

Next, we show Πr(q
∗
r) < Πd

r(q
d
r ). By part (iii), since Πr(q

∗
r) increases in η, it is clear that

Πr(q
∗
r)|η<1 < Πr(q

∗
r)|η=1. When η = 1, the firm is risk neutral with expected profit concave in ξ.

Thus, due to convex order, Πr(q
∗
r)|η=1 <Πd

r(q
d
r ), which concludes the proof.

Part (ii): When c≤ c̄r, q∗r is defined by 1
η

∫ d∗
q∗r
l [p′(q∗rξ)(q

∗
rξ) + p(q∗rξ)] ξdG(ξ) = c. It is immediate

that q∗r decreases in η due to the concavity of p(d)d. When c > c̄r, Figure 2 and the proof of

Corollary 4 provide illustrations that the q∗r may not be monotonic in η.

Part (iii): We show that for any η≥ η∗r(p0, c), Πr(q
∗
r) increases in η. Taking derivative, we have

dΠr(q∗r )

dη
= ∂Πr(q∗r )

∂η
+ ∂Πr(q∗r )

∂qr

∂q∗r
∂η

= ∂Πr(q∗r )

∂η
due to the Envelope Theorem. Straightforward calculation

shows that ∂Πr(q∗r )

∂η
> 0, where Πr(qr) is given in Equation (EC.1). �

Proof of Corollary 4: To simplify the expression, we normalize b= 1 without loss of generality.

The optimal production quantity under the linear demand and uniform yield is q∗r(η) = a
2
√

6

√
a
cη

if

0< c < aη
6

and q∗r(η) = 3(aη−2c)

4η2 otherwise. Straightforward calculation yields that q∗r(η) decreases

in η if and only if c < a
4

:= ĉr and η ∈ ( 4c
a
,1]. �

Proof of Lemma 2: By Yao et al. (2006), demand functions in parts (i)-(v) all satisfy the

IPE property. Next, we show that they also satisfy Assumption 2. For part (i), p(d) = (a−d
b

)
1
k .

Taking derivative, we have (p(d)d)′′ = ((a−d)/b)
1
k (d+dk−2ak)

(a−d)2k2 ≤ 0, since d ≤ a and d ≤ dk ≤ ak. For

part (ii), p(d) = −d− 1
a (−1 + d

1
a ). Taking derivative, we have (p(d)d)′′ = (1−a)d−

1+a
a

a2 < 0. For

part (iii), p(d) = ( d
a
)−

1
b . Taking derivative, we have (p(d)d)′′ =

(1−b)( da )
− 1
b

b2d
< 0. For part (iv),

(p(d)d)′′ = 2p′(d) + dp′′(d)< 0 since p′(d) = 1
d′(p(d))

< 0 and p′′(d) = −d′′(p(d))p′(d)

(d′(p(d)))2
< 0. �

Proof of Proposition 4: Part (i): From the proofs of Propositions 2 and 3, it can be easily

seen that η∗a(p0, c) = η∗r(p0, c) = 0, if p0l > c. Otherwise, η∗a(p0, c) = η∗r(p0, c) is the unique solution

of g(η) = c
p0

, where g(η) = 1
η

∫ G−1(η)

l
ξdG(ξ). Part (ii): For any given l and p0, if c ≤ p0l, then

η∗ = 0. If c > p0l, then η∗ > 0 is defined by g(η) = c
p0

. It is immediate that η∗ increases in c and

decreases in p0, since g(η) increases in η. Moreover, as η∗ is continuous in c, it increases in c for

all feasible c. Similar argument can be made to show η∗ decreases in p0.
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Part (iii): Suppose ξ1 ≥st ξ2 in stochastic order. Then, for any ξ, G1(ξ)≤G2(ξ) or equivalently

for any η, G−1
1 (η) ≥ G−1

2 (η). Now, suppose η∗1 > η∗2 . By definition, g1(η∗1) = g2(η∗2) = c
p0

, where

gi(η) = 1
η

∫ G−1
i (η)

l
ξdGi(ξ), i= 1,2. Since gi(η) increases in η, we have g1(η∗2)< g1(η∗1) = g2(η∗2), which

is equivalent to ∫ G−1
1 (η∗2)

l

ξdG1(ξ)<

∫ G−1
2 (η∗2)

l

ξdG2(ξ). (EC.2)

Utilizing integration by parts, we have (EC.2) holds←→ η∗2(G−1
1 (η∗2)−G−1

2 (η2))<
∫ G−1

2 (η∗2)

l
[G1(ξ)−

G2(ξ)]dξ +
∫ G−1

1 (η∗2)

G−1
2 (η∗2)

G1(ξ)dξ. Since
∫ G−1

1 (η∗2)

G−1
2 (η∗2)

G1(ξ)dξ < η∗2(G−1
1 (η∗2)−G−1

2 (η∗2)) and G1(ξ) ≤ G2(ξ),

(EC.2) leads to a contradiction, which implies that η∗1 ≤ η∗2 . Part (iv): Let k = c
p0

. Simple

calculation yields that η∗ = 1− µ−k
σ

, which increases in σ, since k≤ µ. �

Proof of Proposition 5: Part (i): To simplify the expression, we normalize b= 1 without loss

of generality. Adopting the formulations in Propositions 2 and 3, we can explicitly calculate q∗r

and q∗a in the following expressions.

q∗r =

{
a
2

√
a

6cη
, if c∈ [0, aη

6
],

3(aη−2c)

4η2 , if c∈ [aη
6
, a

2
],

and q∗a = (a − p∗a)
√

p∗a
2cη

, where p∗a is the third (largest) root of equation 8ηp3
a − (8aη +

qc)p2
a + (ac + 2a2η)pa − a2c = 0. Comparing q∗a and q∗r and after some simplifications, there

exists a unique threshold ĉ such that q∗r ≤ q∗a iff c ≤ ĉ and ĉ is the first root of equation

1323c3 − 1512aηc2 + 432a2η2c − 32a3η3 = 0. In addition, it is straightforward to calculate the ĉ

increase in η via the Implicit Function Theory. Part (ii): To illustrate that q∗r − q∗a may not be

monotonic, we further normalize a = 1 for expositional convenience. Straightforward calculation

yields that there exists a threshold hold risk aversion parameter η̂ ∈ (η∗,1], which is the 2nd root

of polynomial 163296c6 − 101088c5η + 60534c4η2 − 36639c3η3 + 9594c2η4 − 840cη5 + 16η6 = 0. For

c∈ [0,0.3182], q∗r − q∗a first increases in η ∈ (η∗, η̂] and then decreases η ∈ (η̂,1]. For c∈ (0.3182,0.5],

q∗r − q∗a always increases in η. �

Proof of Proposition 6: To simplify the expression, we normalize b= 1 without loss of generality.

Adopting the formulations in Propositions 2 and 3, we can explicitly calculate q∗r and q∗a, which are

given in the proof of Proposition 5. Plugging q∗r and q∗a, we have Π∗r and Π∗a given in the following

expressions.

Π∗r =

 a
12

(3a− 2c
√

6a
cη

), if c∈ [0, aη
6

],

3(aη−2c)2

16η2 , if c∈ [aη
6
, a

2
],
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and Π∗a = (a − p∗a)p
∗
a(1 − 1

η

√
2cη
p∗a

), where p∗a is the third root of equation 8ηp3
a − (8aη +

qc)p2
a + (ac + 2a2η)a − a2c = 0. Comparing Π∗a and Π∗r and after some necessary yet cumber-

some simplifications, we obtain a unique threshold c̃, which is the first root of polynomial

1323c3 − 1512ac2 + 432a2c− 32a3 = 0. If c < c̃, then Π∗r − Π∗a increases (decreases) in η if η < η̂

(η > η̂), where η̂ is the third root of polynomial 32a3η3 − 432a2cη2 + 1512ac2η − 1323c3 = 0.

Otherwise, Π∗r −Π∗a increases in η. �

Proof of Proposition 7: To simplify the expression, we normalize b= 1 without loss of generality.

Part (i): Adopting the formulations in Propositions 2 and 3, we can explicitly calculate q∗r , q
∗
a

and p∗a, which are given in the proof of Proposition 5. Plugging q∗r , q
∗
a and p∗a, we have CS∗r and

CS∗a given in the following expressions:

CS∗r =


1
24
a
(

3a− 2cη
√

6a
cη

)
, if c∈ [0, aη

6
),

a2(a(9−4η)η−18c)

72(aη−2c)
, if c∈ [aη

6
,
(3aη−2aη2)

6
),

3(aη−2c)2

32η4 , if c∈ [
(3aη−2aη2)

6
, a

2
],

and CS∗a = 1
6
(a− p∗a)2

(
3−
√

2
√

cη
p∗a

)
, where p∗a is the third root of equation 8ηp3

a− (8aη+ qc)p2
a +

(ac+2a2η)pa−a2c= 0. Taking derivatives (by using the implicit function theorem) and after some

necessary simplifications, we have ∂CS∗r
∂η

< 0 iff η ∈ [ 4c
a
,max{1, 4c

a
}], and ∂CS∗a

∂η
> 0 always holds.

Part (ii): since p∗a ≤ a, it is immediate that CS∗a ≤ 1
6
(a− p∗a)2

(
3−
√

2
√

cη
a

)
:= ĈSa. It remains

sufficient to compare CS∗r with ĈSa. When c ∈ [aη
6
,
(3aη−2aη2)

6
) (respectively, c ∈ [

(3aη−2aη2)
6

, a
2
]),

CS∗r = a2(a(9−4η)η−18c)

72(aη−2c)
(respectively, CS∗r = 3(aη−2c)2

32η4 ), necessary simplifications and comparisons

yield that CS∗r > ĈSa ≥ CS∗a in this case. For the remaining case of c ∈ [0, aη
6

] or equivalently

η ∈ [ 6c
a
,max{1, 6c

a
}], CS∗r = 1

24
a
(

3a− 2cη
√

6a
cη

)
, and it is clear that CS∗r decreases in η, whereas

CS∗a increases in η by part (i). Checking boundary condition, we have CS∗r −CS∗a|η=1 > 0 for all

c ∈ [0, a
6
]. Consequently, CS∗r >CS∗a in this case. Next, we illustrate that CS∗r −CS∗a may not be

monotonic in η. Recall from part (i) that when c < a
4b

, CS∗r increases in η ∈ (η̂, 4bc
a

] and decreases

otherwise, whereas CS∗a always increases in η. This implies that CS∗r −CS∗a decreases in η at least

when η ∈ [ 4bc
a
,1]. Together with the fact that CS∗r − CS∗a|η→η̂ = 0 < CS∗r − CS∗a|η=1, CS∗r − CS∗a

must increase in η for some η ∈ (η̂, 4bc
a

], which implies that CS∗r −CS∗a is non-monotonic in η in

this case. Combining the above arguments, part (ii) is proved. �

Proof of Lemma 3: Let Πr(qr) = EU(πr(qr)). There are two cases to consider. If qr ≤ d∗,

then πr(qr) = p(qrξ)qrξ − cqr and Πr(qr) = EU(p(qrξ)qrξ − cqr). If qr > d∗, then Πr(qr) =∫ d∗
qr

0
U(p(qrξ)qrξ − cqr)dG(ξ) +

∫ 1
d∗
qr
U(p(d∗)d∗ − cqr)dG(ξ). It is easy to check that Πr(qr) is
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continuously differentiable and concave in qr with ∂Πr(qr)

∂qr
|qr=0 =U ′(0)(p0µ−c) and ∂Πr(qr)

∂qr
|qr→+∞ =

−cU ′(p(d∗)d∗ − cqr)|qr→+∞ < 0. Thus, q∗r ≥ 0 if and only if p0µ ≥ c. Next, define the riskless

quantity as qdr = arg maxp(qdrµ)qdrµ − cqdr . Applying the same argument as used in the proof

of Corollary 3, we have q∗r → +∞ > d∗

µ
= qdr when c = 0. Due to continuity, there must exist a

δ > 0 such that q∗r > qdr for c ∈ [0, δ). On the other hand, when c = p0µ, we have q∗r = 0 = qdr . In

addition, straightforward calculation through L’ Hospital rule yields that ∂qdr
∂c
|c=p0µ = 1

2p′(0)µ2 and
∂q∗r
∂c
|c=p0µ = U ′(0)

2U ′(0)p′(0)Eξ2
= 1

2p′(0)Eξ2
. Since Eξ2 > µ2, |∂q

d
r

∂c
|c=p0µ| > |

∂q∗r
∂c
|c=p0µ|. Thus, there exists

a δ > 0 such that q∗r < qdr , ∀c ∈ (p0µ− δ, p0µ). Thus, Corollary 3(i) continues to hold under the

expected utility criterion. �

Proof of Lemma 4: Let U(q) = Eπ(q) − λV ar(π(q)), where π(q) = pmin{d(p), qξ} − cq. If

q < d(p), then we have U(q) = (pµ − c)q − λp2σ2q2, which is concave in q. If q > d(p), we

have Eπ(q) = p(
∫ d(p)

q

0
qξdG(ξ) +

∫ 1
d(p)
q
d(p)dG(ξ)) − cq and V ar(π(q)) = p2V ar(min{d(p), qξ}) =

p2[Emin{d(p), qξ}2 − (Emin{d(p), qξ})2]. Taking derivative, we have ∂Eπ(q)

∂q
= p

∫ d(p)
q

0
ξdG(ξ) − c

and ∂V ar(π(q))

∂q
= 2p2[

∫ d(p)
q

0
qξ2dG(ξ)− (

∫ d(p)
q

0
ξdG(ξ))(

∫ d(p)
q

0
qξdG(ξ) +

∫ 1
d(p)
q
dG(ξ))]. It can be easily

verified that ∂U(q)

∂q
|q=d(p)− = ∂U(q)

∂q
|q=d(p)+ = (pµ − c) − 2λd(p)p2σ2. In addition, ∂U(q)

∂q
|q→+∞ = −c

and ∂U(q)

∂q
|q=0 = pµ − c ≥ 0 if and only if p ≥ c

µ
. In this case, there must exist at least one

maximal q∗ satisfying the FOC. In addition, if ∂U(q)

∂q
|q=d(p) = (pµ − c) − 2λd(p)p2σ2 < 0 for

some p, then it could be possible that q∗ < d(p). Finally, we discuss the variance term. It is

immediate that V ar(π(q)) increases in q for q ∈ [0, d(p)] with V ar(π(q))|q=0 = 0 = ∂V ar(π(q))

∂q
|q=0,

∂V ar(π(q))

∂q
|q=d(p) = 2d(p)p2σ2 > 0 and V ar(π(q))|q→+∞ = 0 = ∂V ar(π(q))

∂q
|q→+∞, which indicates that

the V ar(π(q)) is non-monotonic in q. Such non-monotonicity, together with the fact that Eπ(q)

is concave in q, may lead to the fact that U(q) is not unimodal in q. For example, Figure EC.1

provides a numerical example in which U(π(q)) is bi-modal in q under Uniform yield distribution

with optimal q∗ <d(p) = 10− 7 = 3. �

Proof of Lemma 5: The proof and additional discussions on the analysis of general cost structure

are given in Appendix EC.5. �

Proof of Lemma 6: For any given price p and production quantity q, define F (v) =

v+ 1
η
EK min{π(q)− v,0}, where π(q) = pmin{q, d(p),K}− cq. There are two cases to consider.

Case 1: If q < d(p), then π(q) = pmin{q,K}− cq. Simple comparison yields that:

F (v) =


v, if v ∈ (−∞,−cq],
F 1

2 (v) := v+ 1
η

∫ cq+v
p

l
[pK − cq− v]dF (K), if v ∈ (−cq, (p− c)q],

F 2
2 (v) := v+ 1

η
(
∫ q
l

[pK − cq− v]dF (K) +
∫ +∞
q

[(p− c)q− v]dF (K)), otherwise .
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Figure EC.1 U(π(q)) with ξ ∼ Uniform[0,1], d(p) = 10− p, p= 7, c= 1 and λ= 0.18

It is clear that F (v) is continuous and concave in v. Moreover, we have ∂F (v)

∂v
|v=−cq− = ∂F (v)

∂v
|v=−cq+ =

1 and ∂F (v)

∂v
|v=−(p−c)q− = 1 − 1

η

∫ q
0
dF (K) > 1 − 1

η
= ∂F (v)

∂v
|v=−(p−c)q+ . Then, it is immediate that

v∗ = (p− c)q if q < F−1(η) and v∗ = pF−1(η)− cq otherwise. Plugging back, given q < d(p), we have

F (v∗) =

{
(p− c)q+ 1

η

∫ q
0
p(K − q)dF (K), if q < F−1(v),

1
η

∫ F−1(η)

0
(pK − cq)dF (K), otherwise .

Case 2: If q≥ d(p), then π(q) = pmin{d(p),K}−cq. Applying the same analysis as used in Case

1, we can obtain that v∗ = pd(p)−cq if d<F−1(η) and v∗ = pF−1(η)−cq otherwise. Plugging back,

given q≥ d(p), we have

F (v∗) =

{
pd(p)− cq+ 1

η

∫ q
0
p(K − d)dF (K), if d<F−1(v),

1
η

∫ F−1(η)

0
(pK − cq)dF (K), otherwise .

Combining the above cases, there are two scenarios that could happen depending on the magni-

tude of d(p). On the one hand, if d(p)<F−1(η), we have

π(q) = F (v∗) =

{
(p− c)q+ 1

η

∫ q
0
p(K − q)dF (K), if q < d(p),

pd(p)− cq+ 1
η

∫ q
0
p(K − d)dF (K), otherwise.

In this case, straightforward analysis yields the optimal production quantity as:

q∗ =

{
d(p), if d(p)<F−1(η(p−c)

p
),

F−1(η(p−c)
p

), if F−1(η(p−c)
p

)≤ d(p)<F−1(η).

On the other hand, if d(p)≥ F−1(η), we have

π(q) = F (v∗) =

{
(p− c)q+ 1

η

∫ q
0
p(K − q)dF (K), if q < F−1(η),

1
η

∫ F−1(η)

0
(pK − cq)dF (K), otherwise.

In this case, straightforward analysis yields the optimal production quantity q∗ = F−1(η(p−c)
p

).

To sum up, combining the above two scenarios, the final optimal production quantity is given

as:

q∗ =

{
d(p), if d(p)<F−1(η(p−c)

p
),

F−1(η(p−c)
p

), if F−1(η(p−c)
p

)≤ d(p).

In addition, it is immediate that q∗ ≤ d(p) and weakly increases in η. �
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EC.2. Quantity and Pricing Effects

In this appendix, we demonstrate the quantity and the pricing effects discussed in Section 5.3

under the linear demand function d(p) = 10− p and Uniform [0,1] yield distribution. Figure EC.2

[Figure EC.3] depicts both effects and the optimal order quantity under ex ante pricing with c= 0.5

[c= 2.5].

CVaRr
*-CVaRa

*

Pricing Effect

Quantity Effect

0.2 0.4 0.6 0.8 1.0
η

0.5

1.0

1.5

2.0

(a) Quantity and Pricing Effects

0.2 0.4 0.6 0.8 1.0
η

6

8

10

12

14

qa
*

(b) Optimal Quantity under Ex Ante Pricing

Figure EC.2 Impact of Risk Aversion on the Decomposed Effects and Optimal Quantity: c= 0.5.
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0.6 0.7 0.8 0.9 1.0
η

0.5

1.0

1.5

2.0

2.5

3.0

qa
*

(b) Optimal Quantity under Ex Ante Pricing

Figure EC.3 Impact of Risk Aversion on the Decomposed Effects and Optimal Quantity: c= 2.5.

EC.3. CVaR Properties

In this appendix, we present some fundamental properties of the CVaR objective, which are used

in our analysis.

Property 1 For a random profit π, the definition CVaRη(π) =E[π|π≤VaRη(π)] is equivalent to

that of CVaRη(π) = maxv∈R{v+ 1
η
E min{π− v,0}}.
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Proof of Property 1: Let ξ be the random factor in the profit function π with c.d.f. G(ξ).

Given VaRη(π) = inf{z|P(π ≤ z) ≥ η}, then by definition CVaRη(π) = E[π|π ≤ VaRη(π)] =
E(π&1{π≤V aRη(π)})
E(1{π≤V aRη(π)})

= 1
η

∫
π≤V aRη(π)

πdG(ξ). On the other hand, let F (v) = v + 1
η
Emin{π − v,0} =

v + 1
η

∫
π≤v(π − v)dG(ξ), which is clearly concave in v. Taking derivative, we have ∂F (v)

∂v
= 1 −

1
η

∫
π≤v dG(ξ) = 0, impling that v∗ = VaRη(π). Plugging v∗ back, we have F (v∗) = v∗+ 1

η

∫
π≤v∗(π−

v∗)dG(ξ) = 1
η

∫
π≤V aRη(π)

πdG(ξ) = CVaRη(π), which completes the proof. �

Property 2 If π(q|ξ) is concave in q, then CVaR(π(q)) = maxv∈R{v+ 1
η
Eξ min{π(q|ξ)− v,0}} is

also concave in q.

Proof of Property 2: Since π(q|ξ) is concave in q, then π(q|ξ)− v is jointly concave in (q, v) and

min{π(q|ξ)−v,0} is also jointly concave in (q, v). As concavity is preserved under expectation, then

Eξ min{π(q|ξ)−v,0} and v+ 1
η
Eξ min{π(q|ξ)−v,0} are both jointly concave in (q, v). Finally, since

concavity is preserved under maximization, CVaR(π(q)) = maxv∈R{v+ 1
η
Eξ min{π(q|ξ)− v,0}} is

concave in q. �

EC.4. Discussions on the Expected Utility Criterion

In this appendix, we list the numerical results obtained under the expected utility criterion in

Figure EC.4, which depicts the impact of absolute risk aversion level (i.e., a) on the differences

of production quantity q∗r − q∗a (column a), optimal utility U∗r − U∗a (column b), and consumer

surplus CS∗r −CS∗a (column c), respectively. The parameter combinations used in this numerical

experiment are given in Section 7.1.

EC.5. Discussions on General Cost Structure

In this appendix, we analyze the firm’s optimal decisions under the general payment structure

discussed in Section 7.2 and prove Lemma 5. We first analyze the ex ante pricing scheme and then

the responsive pricing scheme. For expositional brevity, we assume that ξ ∈ [0,1].

EC.5.1. The Ex ante Pricing Scheme

Let qa and pa be the production quantity and sales price, respectively. Define F (v) = v +

1
η
Eξ min{πa(pa, qa)−v,0}, where πa(pa, qa) = pmin{d(pa), qaξ}−(c+ c̄ξ)qa. The firm needs to decide

both pa and qa to maximize its CVaR(pa, qa) = maxv∈RF (v). Similar to the analysis in the main

model, we adopt the sequential optimization approach by solving qa as a function of pa and the

discuss the analysis of pa. For any given pa, there are two cases to consider.
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(a1): q∗r − q∗a with c= 0.5 (b1): U∗r −U∗a with c= 0.5 (c1): CS∗r −CS∗a with c= 0.5

(a2): q∗r − q∗a with c= 1.5 (b2): U∗r −U∗a with c= 1.5 (c2): CS∗r −CS∗a with c= 1.5

(a3): q∗r − q∗a with c= 2.5 (b3): U∗r −U∗a with c= 2.5 (c3): CS∗r −CS∗a with c= 2.5

(a4): q∗r − q∗a with c= 3.5 (b4): U∗r −U∗a with c= 3.5 (c4): CS∗r −CS∗a with c= 3.5

(a5): q∗r − q∗a with c= 4.5 (b5): U∗r −U∗a with c= 4.5 (c5): CS∗r −CS∗a with c= 4.5

Figure EC.4 Impact of Constant Absolute Risk Aversion Level a on q∗r − q∗a (Column a), U∗r −U∗a (Column b)

and CS∗r −CS∗a (Column c) under Expected Utility Criterion: c increases in {0.5,1.5,2.5,3.5,4.5}

from top to bottom.
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Case 1: If qa ≤ d(pa), then πa(pa, qa) = [pξ − (c+ c̄ξ)qa]. In this case, πa(pa, qa)− v ≤ 0 if and

only if ξ ≤ v+cqa
(p−c̄)qa . Comparing v+cqa

(p−c̄)qa with the interval [0,1], we have:

F (v) =


v, if v ∈ (−∞,−cqa],

v+ 1
η

∫ v+cqa
(p−c̄)qa

0 [paξ− (c+ c̄ξ)qa]− vdG(ξ), if v ∈ (−cqa, (pa− c)qa],
v+ 1

η

∫ 1

0
[paξ− (c+ c̄ξ)qa]− vdG(ξ), if v ∈ ((pa− c)qa,∞].

Applying the same analysis as conducted in the proof of Proposition 1, it is immediate that F (v)

is continuouly differentiable and concave in v with the v∗ satisfying v+cqa
(pa−c̄)qa =G−1(qa). Plugging

v∗ back, we have F (v∗) = 1
η

∫ G−1(η)

0
[paξ− (c+ c̄ξ)]qadG(ξ).

Case 2: If qa > d(pa), then πa(pa, qa) = pmin{qaξ, d(pa)}− (c+ c̄ξ)qa = [pξ− (c+ c̄ξ)]qa := π1
a if

ξ ≤ d(pa)

qa
and πa(pa, qa) = pad(pa)− (c+ c̄ξ)qa := π2

a, otherwise. When πa = π1
a, we have π1

a − v ≤ 0

iff ξ ≤ v+cqa
(p−c̄)qa . When πa = π2

a, we have π2
a − v ≤ 0 iff ξ ≥ pad(pa)−cqa−v

c̄qa
. Comparing v+cqa

(p−c̄)qa and

pad(pa)−cqa−v
c̄qa

with respective threshold values d(pa)

qa
, 0, and 1, we can obtain the following:

F (v) =



v, if v ∈ (−∞,−cqa],

v+ 1
η

∫ v+cqa
(p−c̄)qa

0 [paξqa− (c+ c̄ξ)qa− v]dG(ξ), if v ∈ (−cqa, pad(pa)− (c+ c̄)qa],

v+ 1
η

∫ v+cqa
(p−c̄)qa

0 [paξqa− (c+ c̄ξ)qa− v]dG(ξ) + 1
η

∫ 1
pad(pa)−cqa−v

c̄qa

[pad(pa)− (c+ c̄ξ)qa− v]dG(ξ),

if v ∈ (pad(pa)− (c+ c̄)qa, pad(pa)− cqa− c̄d(pa)],

v+ 1
η

∫ d(pa)
qa

0 [paξqa− (c+ c̄ξ)qa− v]dG(ξ) + 1
η

∫ 1
d(pa)
qa

[pad(pa)− (c+ c̄ξ)qa− v]dG(ξ), otherwise.

It can be verified that F (v) is continuously differentiable and concave in v. Since ∂F (v)

∂v
|v=−cqa = 1> 0

and ∂F (v)

∂v
|v=pad(pa)−cqa−c̄d(pa) = 1− 1

η
< 0, v∗ must be in the interval (−cqa, pad(pa)− cqa− c̄d(pa)).

Define q̄a such that ∂F (v)

∂v
= 0, which is equivalent to pad(pa)−c̄q̄a

(p−c̄)q̄a = G−1(η). On one hand, when

qa ≤ q̄a, v∗ ∈ (−cqa, pad(pa)− (c+ c̄)qa] and satisfies v∗+cq−a
(pa−c̄)qa = G−1(η), which implies to F (v∗) =

1
η

∫ G−1(η)

0
[paξ−(c+ c̄ξ)]qadG(ξ). On the other hand, when qa > q̄a, v

∗ ∈ (pad(pa)−(c+ c̄)qa, pad(pa)−

cqa− c̄d(pa)) and satisfies that
∫ v+cqa

(p−c̄)qa
0 dG(ξ)+

∫ 1
pad(pa)−cqa−v

c̄qa
dG(ξ) = η, which implies that F (v∗) =

1
η

∫ v∗+cqa
(p−c̄)qa

0 [paξ− (c+ c̄ξ)]qadG(ξ) + 1
η

∫ 1
pad(pa)−cqa−v∗

c̄qa
[pad(pa)− (c+ c̄ξ)qa]dG(ξ).

Combining the above two cases, for any given sales price pa, we can express the firm’s CVaR as

a function of qa as follow:

Πa(qa|pa) := F (v∗) =

{
1
η

∫ G−1(η)

0
(paξ− c− c̄ξ)qadG(ξ), if qa ∈ (−∞, q̄a],

1
η

∫ v∗+cqa
(p−c̄)qa

0 [paξ− (c+ c̄ξ)]qadG(ξ) + 1
η

∫ 1
pad(pa)−cqa−v∗

c̄qa

[pad(pa)− (c+ c̄ξ)qa]dG(ξ), if qa ∈ (q̄a,∞) .

It can be easily verify that Πa(qa|pa) is continuously differentiable in qa, since Πa(q̄a
−|pa) =

Πa(q̄a
+|pa) and ∂Πa(qa|pa)

∂qa
|qa=q̄−a

= ∂Πa(qa|pa)

∂qa
|qa=q̄+a

= 1
η

∫ G−1(η)

0
(paξ−c− c̄ξ)dG(ξ). In addition, by the

Property 2 in Appendix EC.3, Πa(qa|pa) is concave in qa since πa(pa, qa) is concave in qa. Thus,

Πa(qa|pa) is continuously differentiable and concave in qa, and it is optimal for the firm to pro-

duce if and only if ∂Πa(qa|pa)

∂qa
|qa=0 = 1

η

∫ G−1(η)

0
(paξ − c− c̄ξ)dG(ξ) ≥ 0, which is equivalent to pa ≥
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cη∫G−1(η)
0 ξdG(ξ)

+ c̄ := p̃a. When pa ≥ p̃a, Πa(qa|pa) increases in qa ∈ (−∞, q̄a) and the optimal q∗a ≥ q̄a

satisfying the corresponding first order condition:
∫ v∗+cqa

(p−c̄)qa
0 [paξ− (c+ c̄ξ)]dG(ξ)−

∫ 1
pad(pa)−cqa−v∗

c̄qa
(c+

c̄ξ)dG(ξ) = 0, where v∗ satisfies
∫ v+cqa

(p−c̄)qa
0 dG(ξ) +

∫ 1
pad(pa)−cqa−v

c̄qa
dG(ξ) = η.

Plugging q∗a back, after some simplifications, we have Πa(pa) = pad(pa)(1− 1
η
G(pad(pa)−cq∗a−v

∗

c̄q∗a
)),

given that pa ≥ p̃a. Clearly, we have Πa(p̃a) = Πa(p0) = 0. Since Π(pa) is a continuous function

defined on a compact set pa ∈ [min{p̃a, p0}, p0], there must exists at least a global maximal point.

Moreover, taking derivative and after some cumbersome calculation, we have ∂Πa(pa)

∂pa
|pa=p̃a > 0 and

∂Πa(pa)

∂pa
|pa=p0

< 0, then p∗a is not a corner point and must satisfy the first order condition, as long

as the set of feasible sales price [min{p̃a, p0}, p0] is non-empty.

Next, we discuss the threshold risk aversion level. To ensure that it is optimal for the firm to

produce, we need to ensure the feasible region for the pricing decision is non-empty, because the

firm’s optimal (p∗a, q
∗
a) always exists given the non-empty feasible price set, which pins down to

require p̃a := cη∫G−1(η)
0 ξdG(ξ)

+ c̄≤ p0. Let f(η) := cη∫G−1(η)
0 ξdG(ξ)

+ c̄. It is clear that f(η) decreases in η

with f(0)→+∞ and f(1) = c
µ

+ c̄≤ p0 (i.e., the effective per unit total cost is no larger than p0).

Thus, there must exists a unique ηa(p0, c, c̄) such that f(η)≤ p0 if and only if η≥ ηa(p0, c, c̄). That

is, it is optimal for the firm to produce if and only if η≥ ηa(p0, c, c̄).

To conclude, we remark that q∗a is no longer a linear inflation of d(pa) based on the above analysis

unless c̄ = 0. When c̄ = 0, the region [pad(pa) − (c + c̄)qa, pad(pa) − cqa − c̄d(pa)] clusters into a

single point pad(pa)− cqa. In this case, function F (v) defined in Case 2 only has 3 pieces. Similar

analysis yields that: when qa > q̄a, v
∗ = arg maxv∈RF (v) = pad(pa)− cqa and F (v∗) = 1

η

∫ d(pa)
qa

0
[paξ−

c]qadG(ξ) + 1
η

∫ 1
d(pa)
qa

[pad(pa)− cqa]dG(ξ). Then, all the subsequent analysis is the same as that in

the proof of Proposition 1. In addition, when plugging q∗a back, we have Πa(pa) = pad(pa)(1 −
1
η
G( d(pa)

q∗a(pa)
)). All the analysis in the proof of Proposition 2 continues to hold.

EC.5.2. The Responsive Pricing Scheme

For any given production quantity qr, define F (v) = v + 1
η
Eξ min{πr(qr)− v,0}, where πr(qr) =

maxpr∈[0,p0]{pr min{d(pr), qrξ}}−(c+ c̄ξ)qr is concave in qr. Then, based on Property 2 in Appendix

EC.3, Πr(qr) = CVaR(πr(qr)) is concave in qr. Define q̄ such that p′(q̄)q̄+ p(q̄) = c̄. Clearly, q̄ < d∗

due to the concavity of p(d)d. There are three cases to consider.

Case 1: If qr ≤ q̄, then let f(ξ) = πr(qr) = p(qrξ)qrξ− (c+ c̄ξ)qr, which is concave in ξ. It can be

shown that f ′(0) = (p0− c̄)q > 0 and f ′(1) = p′(q)q+ p(q)− c̄ > p′(q̄)q̄+ p(q̄)− c̄= 0, which implies

that f(ξ) increases in ξ ∈ [0,1]. Then, let ξ̂ satisfies f(ξ) = v, we have the following:

F (v) =


v, if v ∈ (−∞,−cqr],
v+ 1

η

∫ ξ̂
0

[p(qrξ)qrξ− cqr− c̄ξqr− v]dG(ξ), if v ∈ (−cqr, p(qr)qr− (c+ c̄)qr],

v+ 1
η

∫ 1

0
[p(qrξ)qrξ− cqr− c̄ξqr− v]dG(ξ), otherwise .
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It is clear that F (v) is continuously differentiable and concave in v. We have v∗ such that ξ̂ =G−1(ξ)

and F (v∗) = 1
η

∫ G−1(η)

0
(p(qrξ)qrξ− cqr− c̄ξqr)dG(ξ).

Case 2: If qr ∈ [q̄, d∗], let f(ξ) = πr(qr) = p(qrξ)qrξ − cqr − c̄ξqr which is concave in ξ with

f ′(0)> 0 and f ′(1) = p′(qr)qr + p(qr)− c̄ < p′(q̄)q̄+ p(q̄)− c̄= 0. Let ξ∗ ∈ (0,1) satisfying f ′(ξ) = 0.

If v≤ p(qr)qr− (c+ c̄)qr, then there exists a ξ̂1 such that f(ξ) = v. If p(qr)qr− (c+ c̄)qr < v≤ f(ξ∗),

there exist ξ̂1 ≤ ξ̂2 such that f(ξ) = v. Otherwise, v > f(ξ) always holds. We have:

F (v) =


v, if v ∈ (−∞,−cqr],
v+ 1

η

∫ ξ̂1
0

[p(qrξ)qrξ− cqr − c̄ξqr − v]dG(ξ), if v ∈ (−cqr, p(qr)qr − (c+ c̄)qr],

v+ 1
η

∫ ξ̂1
0

[p(qrξ)qrξ− cqr − c̄ξqr − v]dG(ξ) + 1
η

∫ 1

ξ̂2
[p(qrξ)qrξ− cqr − c̄ξqr − v]dG(ξ), if v ∈ (p(qr)qr − (c+ c̄)qr, f(ξ∗)],

v+ 1
η

∫ 1

0
[p(qrξ)qrξ− cqr − c̄ξqr − v]dG(ξ), otherwise .

It is immediate that F (v) is continuously differentiable and concave in v. Let q̄1
r such that

∂F (v)

∂v
|v=p(qr)qr−(c+c̄)qr = 1 − 1

η

∫ ξ̂1
0
dG(ξ) = 0. On one hand, if qr < q̄1

r , then v∗ ∈ (−cqr, p(qr)qr −

(c+ c̄)qr) and F (v∗) = 1
η

∫ G−1(η)

0
(p(qrξ)qrξ − cqr − c̄ξqr)dG(ξ). On the other hand, if qr > q̄1

r , then

v∗ ∈ (p(qr)qr−(c+ c̄)qr, f(ξ∗)) satisfying (
∫ ξ̂1

0
+
∫ 1

ξ̂2
)dG(ξ) = η, and F (v∗) = 1

η
(
∫ ξ̂1

0
+
∫ 1

ξ̂2
)(p(qrξ)qrξ−

cqr− c̄ξqr)dG(ξ).

Case 3: If q ≥ d∗, then let f(ξ) = π1
r(qr) = p(qrξ)qrξ − (c+ c̄ξ)qr if ξ ≤ d∗

qr
and f(ξ) = π2

r(qr) =

p(d∗)d∗ − (c + c̄ξ)qr otherwise. Clearly, f(ξ) is concave in ξ with f ′(0) = (p0 − c̄)qr > 0 and

f ′(ξ)|ξ≥ d∗qr = −c̄qr. Then, ξ∗ satisfying f ′(ξ) = 0 must belong to [0, d
∗

qr
). If v ≤ p(qr)qr − (c+ c̄)qr,

then let ξ̂1 be the unique solution such that f(ξ̂1) = π1
r(qr) = v. If v∗ ∈ (p(qr)qr− (c+ c̄)qr, p(d

∗)d∗−

(c+ c̄)qr], then let ξ̂1 <
d∗

qr
such that f(ξ) = π1

r(qr) = v and let ξ̂2 ≥ d∗

qr
such that f(ξ) = π2

r(qr) = v. If

v ∈ [p(d∗)d∗− (c+ c̄)qr, f(ξ∗)], then let ξ̂1 < ξ̂2 be the two solutions of f(ξ) = π1
r(qr) = v. Combining

all the cases, we have:

F (v) =



v, if v ∈ (−∞,−cqr],
v+ 1

η

∫ ξ̂1
0

[p(qrξ)qrξ− cqr − c̄ξqr − v]dG(ξ), if v ∈ (−cqr, p(qr)qr − (c+ c̄)qr],

v+ 1
η

∫ ξ̂1
0

[p(qrξ)qrξ− cqr − c̄ξqr − v]dG(ξ) + 1
η

∫ 1

ξ̂2
[p(d∗)d∗− cqr − c̄ξqr − v]dG(ξ), if v ∈ (p(qr)qr − (c+ c̄)qr, p(d

∗)d∗− (c+ c̄)qr],

v+ 1
η

∫ ξ̂1
0

[p(qrξ)qrξ− cqr − c̄ξqr − v]dG(ξ) + 1
η

∫ 1

ξ̂2
[p(qrξ)qrξ− cqr − c̄ξqr − v]dG(ξ), if v ∈ (p(d∗)d∗− (c+ c̄)qr, f(ξ∗)],

v+ 1
η

∫ d∗
qr

0 [p(qrξ)qrξ− cqr − c̄ξqr − v]dG(ξ) + 1
η

∫ 1
d∗
qr

[p(d∗)d∗− cqr − c̄ξqr − v]dG(ξ), otherwise .

It is immediate to verify that F (v) is continuously differentiable and concave in v. Moreover, since

qr >d
∗ > q̄1

r defined in Case 2, then ∂F (v)

∂v
|v=p(qr)qr−(c+c̄)qr > 0. And ∂F (v)

∂v
|v=f(ξ∗) = 1− 1

η
< 0. Then v∗

must be in (p(qr)qr−(c+ c̄)qr, f(ξ∗)). Let q̄2
r satisfy ∂F (v)

∂v
|v=p(d∗)d∗−cqr−c̄qr = 1− 1

η
(
∫ ξ̂1

0
+
∫ 1
d∗
qr

)dG(ξ) =

0. It is clear that q̄2
r > q̄1

r . On one hand, if q < q̄2
r , then ∂F (v)

∂v
|v=p(d∗)d∗−cqr−c̄qr > 0 and v∗ ∈

(p(d∗)d∗ − (c + c̄)qr, f(ξ∗)) satisfying (
∫ ξ̂1

0
+
∫ 1

ξ̂2
)dG(ξ) = η, and F (v∗) = 1

η
(
∫ ξ̂1

0
+
∫ 1

ξ̂2
)(p(qrξ)qrξ −

cqr − c̄ξqr)dG(ξ). On the other hand, if qr > q̄
2
r , then ∂F (v)

∂v
|v=p(d∗)d∗−cqr−c̄qr < 0 and v∗ ∈ (p(qr)qr −

(c+ c̄)qr, p(d
∗)d∗ − (c+ c̄)qr) satisfying (

∫ ξ̂1
0

+
∫ 1

ξ̂2
)dG(ξ) = η, and F (v∗) = 1

η

∫ ξ̂1
0

(p(qrξ)qrξ − cqr −

c̄ξqr)dG(ξ) + 1
η

∫ 1

ξ̂2
(p(d∗)d∗− cqr− c̄ξqr)dG(ξ).
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Combining all the above three cases, we have the following value function:

Πr(qr) = F (v∗) =


1
η

∫ G−1(η)

0
(p(qrξ)qrξ− cqr)dG(ξ), if qr ∈ [0, q̄1

r),

1
η
(
∫ ξ̂1

0
+
∫ 1

ξ̂2
)(p(qrξ)qrξ− cqr− c̄ξqr)dG(ξ), if qr ∈ [q̄1

r , q̄
2
r ],

1
η

∫ ξ̂1
0

(p(qrξ)qrξ− cqr− c̄ξqr)dG(ξ) + 1
η

∫ 1

ξ̂2
(p(d∗)d∗− cqr− c̄ξqr)dG(ξ) otherwise.

It is immediate to verify that Πr(qr) is continuously differentiable. And by Property 2 in Appendix

EC.3, Πr(qr) is concave in qr. Next, we discuss whether it is optimal for the firm to produce

by checking the sign of ∂Πr(qr)

∂qr
|qr=0. Taking derivative, we have ∂Πr(qr)

∂qr
|qr=0 = 1

η

∫ G−1(η)

0
(p0ξ− cξ−

c)dG(ξ)≥ 0, which is equivalent to require that p0 ≥ c̄+ cη∫G−1(ξ)
0 ξdG(ξ)

. Let f(η) := cη∫G−1(η)
0 ξdG(ξ)

+ c̄.

It is clear that f(η) decreases in η with f(0)→+∞ and f(1) = c
µ

+ c̄≤ p0. Thus, there must exists

a unique ηr(p0, c, c̄) such that f(η)≤ p0 if and only if η ≥ ηr(p0, c, c̄). That is, it is optimal for the

firm to produce if and only if η≥ ηr(p0, c, c̄).

To conclude, we remark that when c̄= 0, q̄ defined before Case 1 always equals to d∗. Therefore,

Case 2 disappears. In addition, for Case 3, ξ∗ = d∗

qr
and f(ξ) is a weakly increasing function. As

such, F (v) in Case 3 reduces to have only three pieces within the intervals (−∞,−cqr] (i.e., piece

1), (−cqr, p(d∗)d∗− cqr] (i.e., piece 2), and [p(d∗)d∗− cqr,∞) (i.e., piece 5), respectively. Then, all

the subsequent analysis is the same as that in the proof of Proposition 3.

EC.5.3. Comparison of the Risk Aversion Thresholds

Based on the analysis conducted in Appendices EC.5.1 and EC.5.2, it is immediate that ηa(p0, c, c̄) =

ηr(p0, c, c̄) as they are both satisfying the equation of p0 = c̄ + cη∫G−1(ξ)
0 ξdG(ξ)

, which is shown to

admit only a unique solution. That is, price postponement does not affect the firm’s risk aversion

threshold, which proves Lemma 5.




