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A Bayesian machine learning approach
for online detection of railway wheel
defects using track-side monitoring

Yi-Qing Ni and Qiu-Hu Zhang

Abstract
Wheel condition assessment is of great significance to ensure the operation safety of trains and metro systems. This
study is intended to develop a Bayesian probabilistic method for online and quantitative assessment of railway wheel con-
ditions using track-side strain-monitoring data. The proposed method is a fully data-driven, nonparametric approach
without the need of a physical model. To enable defect identification using only response measurement, the measured
dynamic strain responses of rail tracks during the passage of trains are processed to elicit the normalized cumulative dis-
tribution function values representative of the effect of individual wheels, which in conjunction with the frequency points
are used to formulate a probabilistic reference model in terms of sparse Bayesian learning. Through cleverly realizing
sparsity by introducing hyper-parameters and their priors, the sparse Bayesian learning makes the resulting model to
exempt from overfitting and generalize well on unseen data. Only the monitoring data in healthy state are needed in for-
mulating the reference model. A novel Bayesian null hypothesis significance testing in terms of scale-invariant intrinsic
Bayes factor, which does not suffer from the Jeffreys–Lindley paradox, is then pursued in the presence of new monitoring
data collected from possibly defective wheel(s) to detect wheel defects and quantitatively assess wheel condition. The
proposed method in fully Bayesian inference framework is verified by utilizing the real-world monitoring data acquired
by a distributed fiber Bragg grating–based track-side monitoring system and comparing with the offline inspection
results.
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Introduction

Passenger safety is the highest priority in mass trans-
portation. This is especially true in modern high-speed
rails in view of their mass transportation volume and
fast speed. If a high-speed train runs in failure, it will
result in a disastrous loss of mass lives and rail infra-
structure. The current rail operation control systems do
not have the functions of online detection of structural
health and real-time response to potential structural
failure, since in the current practice structural faults or
damage are detected offline in depots or maintenance
yards at scheduled time intervals. However, structural
faults may occur during in-service operation; this issue
is especially important for the high-speed trains that are
in a high frequency of services. In this regard, develop-
ment of effective online structural fault diagnosis meth-
ods is a core focus for preventing catastrophic failure as
well as prolonging the service life of high-speed rails.

Wheel condition assessment is of great importance
to ensure railway safety and to reduce the maintenance
cost of railway infrastructure. Wheel defects because of
wheel out-of-roundness, such as wheel flats, wheel
shells, and wheel polygonization, can induce damage to
both train and rail track, trimming down safety and
ride comfort of in-service trains and increasing opera-
tion and maintenance costs for railway system.1–3 Early
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detection of wheel condition and timely re-profiling or
replacement of defective wheels confer great benefits in
railway safety and economy. During the past several
decades, offline inspection and online monitoring tech-
niques have been proposed for wheel condition assess-
ment. Incipient offline inspection measures wheel
profiles at workshop by contact-type measurement
devices together with visual inspections.3 The inspec-
tion procedure is often costly in time and must be per-
formed on a maintenance schedule. More time-effective
ways are using noncontact-type measurement devices
such as ultrasonic waves.4,5 Online monitoring tech-
niques allow detection to be conducted in real time,
aided by various sensing technologies such as piezoelec-
tric accelerators,6–9 piezoelectric strain gauges,10–12

fiber Bragg grating (FBG) sensors,13–15 acoustic emis-
sion sensors,16 and laser sensors.17,18 The online moni-
toring techniques for rail system are categorized into
onboard monitoring and track-side monitoring in
accordance with the deployment of sensors. Onboard
monitoring installs sensors on in-service trains, that is,
particularly useful to monitor the deterioration of rail
infrastructure such as rail track defects,19–21 rail fasten-
ers,22,23 and rail irregularities.24 The track-side moni-
toring6,7,10–18 installs sensors on tracks or surrounding
areas, with the purpose of detecting the condition of in-
service trains including wheel qualities.

Apart from various monitoring techniques, diagno-
sis and prognosis algorithms are at the core of research
to realize precise wheel condition assessment. Belotti
et al.7 explored high-frequency wavelet coefficient max-
ima from vertical accelerations of rails as an indicator
of wheel flats. Jia and Dhanasekar8 investigated local
wavelet energy average from vertical accelerations of
bogies for identifying wheel flats. Based on wheel
impact load detector, Stratman et al.10 proposed the
maximum dynamic ratio (MDR) for wheel condition
assessment. The MDR is defined as the ratio of maxi-
mum dynamic impact loads to static axle loads, and its
value of 3 has been adopted as a threshold for flawed
wheels in European Union.12 In line with an FBG-
based track-side monitoring system, Wei et al.13

defined a wheel condition index that is linearly propor-
tional to the averaged strain alterations of rail bending
but inversely proportional to train speed. Filograno
et al.14 suggested that a 70% increase in strain energy
of rail bending with respect to noise levels is a good
measure of significant wheel defects. However, the
aforementioned deterministic diagnostic algorithms are
incapable of dealing with the uncertainties resulting
from measurement of noise or error and randomness in
wheel–rail interactions. Statistical models are deemed
to achieve more reliable and persuasive diagnostic
results.25

Statistical approaches have recently been developed
for wheel condition assessment. Skarlatos et al.6

attempted to establish a fuzzy-logic model for unda-
maged wheels by correlating maximum acceleration
amplitudes with nominal train speeds and 1/3-octave
bands from 80 Hz to 5 kHz. The statistical hypothesis
test was conducted to investigate the probability of
existence of wheel flats and the damage extents.
Krummenacher et al.12 proposed two automatic detec-
tion algorithms for wheel defects by means of machine
learning methods. One algorithm employed support
vector machine to learn and classify wavelet features
extracted from the wheel impact load monitoring data,
and the other automatically learned the original moni-
toring data and classified wheel conditions using deep
artificial neural networks. The proposed methods could
achieve at least 10% improvement in identifying wheel
defects in comparison with the MDR, but defect
extents were not identifiable. Liu and Ni15 assumed a
Gaussian distribution for the normalized rail bending
strain and employed the Chauvenet’s criterion to signal
wheel defects. Zhang et al.9 proposed a Bayesian
dynamic linear approach for modeling ride quality evo-
lution due to deteriorating wheel qualities and for prob-
abilistic assessments of wheel condition with the use of
onboard monitoring data of acceleration acquired from
the running train.

This article aims to develop a Bayesian machine
learning approach for online wheel condition detection
using the track-side strain-monitoring data. The pro-
posed method features the following merits: (a) it uses
only the dynamic strain responses of tracks collected
during the passage of trains; (b) it is fully data-driven
and requires only the monitoring data collected in
healthy state in formulating the reference model; (c) by
means of sparse Bayesian learning (SBL), the built
probabilistic reference model exempts from overfitting
and bears favorable generalization ability due to spar-
sity embedded by SBL; and (d) the proposed method
accounts for uncertainties arising from measurement
and modeling errors. Toward the above, the Fourier
amplitude spectra (FASs) of the measured track
dynamic strain responses in healthy state are obtained
to elicit normalized cumulative density functions
(CDFs) that characterize the patterns of healthy
wheels. The CDFs together with the corresponding fre-
quency points are then used as outputs (response vari-
ables) and inputs (explanatory variables) to train a
probabilistic reference model by means of SBL.26,27

There exist various sources of uncertainties in the mea-
sured track dynamic strain response data such as mea-
surement noise and variability in the stochastic wheel-
rail dynamics. The SBL allows the uncertainties arising
from measurement and modeling errors to be
accounted for in the model formulation. More
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importantly, through introducing hyper-parameters
and sparsity-inducing priors, the SBL elicits a probabil-
istic regression model exempting from overfitting in
terms of highly sparse representation. When new moni-
toring data on track dynamic strain responses coming
from the effect of a possibly defective wheel are made
available, the discrimination between the new measure-
ments and the model predictions is evaluated in terms
of an intrinsic Bayes factor (IBF) for defect detection
and quantification. The IBF is derived through
Bayesian null hypothesis significance testing (BNHST)
which does not suffer from the Jeffreys–Lindley
paradox.

The remainder of this article is organized as follows.
Section ‘‘Feature extraction through track-side moni-
toring’’ describes the feature extraction from raw mea-
surement data acquired by an FBG-based track-side
monitoring system. Section ‘‘Model formulation by
SBL’’ describes the formulation of a probabilistic refer-
ence model by means of SBL. Section ‘‘Bayesian
hypothesis testing for wheel defect detection’’ delineates
the detection of wheel defects and quantitative assess-
ment of wheel condition by BNHST and scale-invariant
IBF. Finally, section ‘‘Conclusion’’ gives the conclu-
sions drawn.

Feature extraction through track-side
monitoring

Track-side monitoring system

As illustrated in Figure 1, the FBG-based track-side
monitoring system for this study consists of two arrays
of FBG strain sensors deployed on two parallel tracks
of a rail segment, two optical cables, a high-speed

optical interrogator, and a desktop or notebook com-
puter. To facilitate the detection of minor wheel
defects, the sensors are densely deployed along rail
length but the instrumentation needs just to cover a
range of rail slightly longer than the wheel perimeter.
The FBG sensors are connected through optical cables
to a high-speed optical interrogator which is controlled
by a computer for data acquisition and processing.
Both the interrogator and the computer can be located
far away from the instrumented rail to facilitate remote
monitoring.

Figure 2 shows the deployment of the track-side
monitoring system on an in-service rail. In this imple-
mentation, each sensor array comprises 21 FBG gauges
evenly spaced at 0.15 m intervals on rail foot of each
single track, and the total instrumentation range
reaches 3.0 m to enable the sensing of rolling action of
the whole circumference of the wheel tread (the dia-
meter of wheel is 0.92 m). Both the optical interrogator
and the computer are operated in an auxiliary office
which is about 120 m away from the monitoring area.
The FBG sensors have been calibrated in laboratory
before their installation to obtain strain sensitivity and
temperature sensitivity, but in general the temperature
compensation is not necessary as the time for online
monitoring of the passage of a whole train just lasts for
a few seconds, during which the environmental tem-
perature does not change dramatically. The wheel-rail
rolling friction may cause heating and cooling effects
on the top surface of the rail, such that, the rail tem-
perature varies to some extent, but such effects mainly
influence the area of rail head and are less significant in
rail foot.28,29 When both FBG strain gauges and tem-
perature sensors are deployed, it is easy to compensate
the effect of varying temperature by subtracting from

Figure 1. Track-side monitoring system using distributed FBG strain sensors.
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the measured strain a thermal-induced ingredient which
is equal to a constant coefficient times the difference
between the measured instant temperature and the
recorded temperature at the installation of the sensor.30

Figure 3 illustrates the time history of longitudinal
(bending) strain at rail foot monitored by the FBG sen-
sor SEN-D2 (refer to Figure 2) when a typical eight-car
passenger train passes through the instrumented rail at
a nominal speed of 10 km/h. The sampling frequency fs
is set to be 5 kHz to ensure that the effect of minor
wheel tread defect can be sensed. It is observed that the
rail bending strain in the longitudinal direction varies

between –100 and 150 me, wherein the 32 peaks concur
with the 32 wheels acting on each track. Figure 4 pro-
vides the corresponding FAS in a logarithmic scale and
it is seen that the strain response is dominated by low-
frequency components lower than 10 Hz when the train
speed is 10 km/h. Although the FBG strain measure-
ment depends on both loading of the train and running
speed, the measured dynamic strains of rail bending
can be classified into two parts: the low-frequency com-
ponents and the high-frequency components separated
by a cut-off frequency fc.

14 The low-frequency compo-
nents are found to be primarily controlled by axle loads
and wheel bases and thus they are often used for the
dynamic weighing, axle counting, and identification of
trains,29 while the high-frequency components are
mainly caused by wheel and rail surface roughness and
measurement noises, and thus they are often used for
wheel condition assessment.13,14 As specified later, the
cut-off frequency depends only on the train speed.
Thus, the classification of low-frequency components
and high-frequency components is a relative concept,
depending on the train speed.

Data pre-processing

To obtain the information relevant to wheel quality,
Filograno et al.14 proposed an empirical formula to
extract the wheel-sensitive response ingredients from
rail strain-monitoring data, which is

fc = kv ð1Þ

where fc is the lower cut-off frequency, v is the train
speed, and k is a proportional coefficient. The propor-
tional coefficient k is set to be 1.0 Hz h/km after
numerous experiments in line of different train running
speeds. The response components in the frequency
range higher than fc are termed as detrended data,
which can be extracted from raw measurement data
using an ideal high-pass filter with a cut-off frequency fc

depending on train speed. The remaining part is the

Figure 2. Deployment of FBG sensors.

Figure 3. Rail foot strain recorded by SEN-D2.

Figure 4. FAS of rail foot strain recorded by SEN-D2.
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response components lower than fc, termed as trend.
Figure 5(a) and (b) shows the trend and the detrended
data, respectively, with a cut-off frequency of fc = 10Hz.
By segmenting the strain response time history into
datasets surrounding its peak values, we obtain 32 data
segments (datasets), each lasting for around 0.3 s and
consisting of about 1500 data points, in line with the
effects of the 32 wheels. Figure 6 shows the 32 data seg-
ments (datasets) of the detrended strain response, and
Figure 7 depicts the FASs of the 32 detrended data seg-
ments (datasets). Typically, an upper frequency limit fu
can be adopted to eliminate the frequency-domain
response components that are mainly caused by ran-
dom noises. The upper limit frequency fu is the upper
bound of the wheel defect–induced effect on the varia-
tion of rail bending strain in the frequency domain. It
depends on the train speed and the possible maximum
wheel defect. However, it is extremely difficult to expli-
citly determine such a relationship, partially because
there is a lack of samples of the possible maximum
wheel defect for field test but mainly because the wheel
defect-induced impact on the rail varies nonlinearly
with the train speed.1,2 In this case study, the average
train speed in test is v = 10 km/h and the targeted
maximum wheel defect length is Lmax = 150 mm. The
upper limit frequency fu is empirically set to be 300 Hz,
which guarantees that the chosen frequency-domain

response components can deliver the most information
about wheel defect.

Feature extraction

After obtaining the FAS, its values d(f ) over the fre-
quency band ½fc; fu� can be normalized by its integration
dI that is defined as

dI =

ðfu
fc

d(f )df ð2Þ

When a discrete Fourier transform (DFT) is
employed, dI can be approximated using the trapezoi-
dal rule31 as

dI ’
XN1

i = 1

di + di + 1

2
Df ð3Þ

where Df is the frequency resolution of DFT and N1 is
the number of frequency bins in ½fc; fu� given by

N1 = round
fu � fc

Df

� �
ð4Þ

(a)

(b)

Figure 5. Rail strain recorded by SEN-D2: (a) trend response
components containing frequencies lower than fc and (b)
detrended response components containing frequencies higher
than fc.

Figure 6. 32 detrended datasets extracted from rail strain
recorded by SEN-D2.

Figure 7. FASs of 32 detrended datasets recorded by SEN-D2.
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where round is a mathematical operation for taking
integer. As a result, the normalized FAS can be
expressed in a probabilistic logic and its CDF on dis-
crete frequency bins can be obtained as

yi =

0; i = 1

PN1�1

i = 1

ðdi + di + 1ÞDf

2dI
; i 6¼ 1

8><
>: ð5Þ

The values of CDF range between 0 and 1 in ½fc; fu�.
The CDFs for the normalized FASs of the 32 detrended
data segments (datasets) are given in Figure 8 with
Df = 3.3 Hz and N1 = 88. Later on, these CDFs will be
used for training a probabilistic reference model by
means of SBL, which will be served for wheel defect
detection.

Model formulation by SBL

SBL

SBL26,27 is a nonparametric machine learning approach
that shares characteristics in common with support vec-
tor machine,32 but produces probabilistic model out-
puts with dramatically few basis functions. Its ability of
sparse representation and accurate prediction is pri-
marily due to the Bayesian setting where uncertainty is
taken into consideration and ‘‘inactive’’ basis terms can
be automatically pruned through introducing hyper-
parameters in the prior distributions of weight para-
meters (sparsity-inducing priors).33 As a result, the SBL
exempts from the problem of overfitting which often
occurs in classical least-squares and penalized least-
squares. Due to the above merits, there has been an
increasing interest in the application of SBL for

structural health monitoring (SHM).34–38 The basic
theory of SBL for regression analysis is briefly intro-
duced below. Given a dataset of input–output pairs
xi, yif gN

i = 1 in which the outputs y= ½y1, . . . , yN �T are
from a function or model f (x) with additive noises
e = ½e1, . . . , eN �T, the outputs can be expressed as

yi = f xið Þ+ ei ð6Þ

A nonparametric approach for modeling f (xi) is a
linearly weighted sum of M basis (kernel) functions,
given by

f xið Þ=wTf xið Þ=
XM
i = 1

wifi xð Þ ð7Þ

where f(x) = f1(x), . . . ,fM (x)½ �T is a kernel vector and
w= w1, . . . ,wM½ �T is the associated weight vector. If the
noise follows an independent and identically distributed
Gaussian distribution with zero mean and variance s2,
the likelihood function for the outputs is

P yjw,s2
� �

=
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ps2ð ÞN
q exp � 1

2s2
k y�F1wk2

� �
ð8Þ

where F1 = f(x1), . . . ,f(xN )½ �T is the design matrix for
training the regression model. The maximum likelihood
estimation of the unknown parameters w and s2 from
equation (8) may lead to severe overfitting and to avoid
this, a common practice is to impose additional con-
straints on these unknowns to obtain a simpler model.
In the Bayesian learning framework, this can be
achieved by defining a set of explicit priors over these
unknown parameters, which is also the key to SBL and
available only in Bayesian setting. A popular choice of
the prior for the weight vector w is

P wjað Þ=
YM
i = 1

P wijaið Þ=
YM
i = 1

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2p=ai

p exp � 1

2
aiw

2
i

� �

ð9Þ

where a = ½a1, . . . ,aM �T is a hyper-parameter vector
that controls the strength of the prior. A suitable hier-
archical prior for a is defined as

P að Þ=
YM
i = 1

P aið Þ=
YM
i = 1

Gamma aija, bð Þ ð10Þ

and the prior for the noise level s2 is defined as

P
1

s2

� �
=P bð Þ=Gamma bjc, dð Þ ð11Þ

where b[1=s2 and

Figure 8. CDFs for normalized FASs of 32 detrended datasets
recorded by SEN-D2.
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Gamma aja, bð Þ= G að Þ�1
baaa�1e�ba ð12Þ

with the gamma function G(a) =
Ð ‘

0
t

a�1

e�tdt. To make
these priors non-informative, the parameters
a; b; c; and d are fixed to small values. By Bayes theo-
rem, the joint posterior distribution for all the
unknown parameters is given by

P w,a,s2jy
� �

=
P yjw,a,s2ð ÞP w,a,s2ð Þ

P yð Þ ð13Þ

Typically, it is difficult to compute the joint poster-
ior P(w,a,s2jy) analytically from equation (13).
Alternatively, the joint posterior P(w,a,s2jy) can be
decomposed into

P w,a,s2jy
� �

=P wjy,a,s2
� �

P a,s2jy
� �

ð14Þ

where P(a,s2jy) can be easily calculated as the weight
vector w can be integrated out analytically as follows39

P a,s2jy
� �

}P yja,s2
� �

= P yjw,s2
� �

P wjað Þdw
=N m1,S1ð Þ

=
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pð ÞN S1j j
q

exp � 1

2
y� m1ð ÞTS�1

1 y� m1ð Þ
	 


ð15Þ

where

m1 = 0N ð16Þ

S1 = s2IN + F1A
�1FT

1 ð17Þ

with A =diag(a1, . . . ,aM ). Most-plausible point esti-
mators aMP and s2

MP can be derived through maximi-
zation of equation (15) with respect to a and s2. In
Bayesian inference, the maximization of the marginal
likelihood is known as a type-II maximum likelihood
method. After deriving aMP and s2

MP, the posterior dis-
tribution over the weights is given by

P wjy,a,s2
� �

=
P yjw,s2ð ÞP wjað Þ

P yja,s2ð Þ

=
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pð ÞN + 1 S2j j
q

exp � 1

2
w� m2ð ÞTS�1

2 w� m2ð Þ
	 


ð18Þ

where the posterior covariance and mean vector for the
weights are, respectively, given as

S2 = s�2FT
1 F1 +A

� ��1 ð19Þ

m2 = s�2S2FT
1 y ð20Þ

Given the most-plausible point estimators aMP and
s2
MP, predictions can be made on new test points

x� = ½x�, 1, . . . , x�, S �T to obtain model outputs
y� = ½y�, 1, . . . , y�, S �T, in terms of the predictive
distribution

P y�jy,aMP,s2
MP

� �
’

ð
P y�jw,s2

MP

� �
P wjy,aMP,s2

MP

� �
dw

ð21Þ

where S is the number of the new test points. Since the
terms in the aforementioned integration are both
Gaussian, it turns out that

P y�jy,aMP,s2
MP

� �
’N m3,S3ð Þ

=
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pð ÞS S3j j
q

exp � 1

2
y� � m3ð ÞTS�1

3 y� � m3ð Þ
	 


ð22Þ

with

m3 = F2m2 ð23Þ

S3 = s2
MPIS + F2S2FT

2 ð24Þ

where F2 = fi(x�, 1), . . . ,fi(x�, S)½ �T is the prediction
matrix, and m3 and S3 are the posterior mean and cov-
ariance of outputs, respectively. The predictive covar-
iance comprises the sum of two uncertain components:
the estimated noise level on the data and that due to the
uncertainty in the prediction of the weights. In imple-
mentation by iteration,27 the maximum marginal likeli-
hood method (type-II maximum likelihood method)
makes a point approximation of a and s2 by maximiz-
ing P(yja,s2) at each iteration step. The iterative
updating of the hyper-parameters a and the noise level
s2 typically leads many ai

0s to diverge toward infinity,
resulting in the posterior of the corresponding weights
highly peaked at zero. It means that the related basis
functions fi(x) are irrelevant (or ‘‘inactive’’) and can be
pruned from the model expressed in equation (7). Thus,
the SBL offers an automatic regularization approach to
make sparsity come out through pruning irrelevant
(‘‘inactive’’) basis functions in the iteration process.
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Implementation for model learning

In general, monitoring data at the model training stage
is lopsided: it is prodigal in healthy state, but niggard
(even null) in defective state. Wheel defects are diverse
in type and extent, and monitoring data from defective
wheels of each type can be very limited. By contrast,
data for healthy wheels are often abundant. In the
worst case where undamaged data are also not avail-
able, it is necessary to resort to a precise and validated
physical model such as a high-fidelity wheel–rail inter-
action model and the method is no longer free of
model. This study is intended to develop a nonpara-
metric reference model using only the monitoring data
from healthy wheels in the training phase, with which
defective wheels can be identified in the testing phase.
To help account for uncertainties arising from different
sources, this model is established in a probabilistic
framework by means of SBL. In this section, the moni-
toring data acquired by the sensor SEN-D2 as
described in the preceding section are taken as an
example to illustrate the model training by SBL and
this process can be easily applied to other sensors.

The monitoring data of rail foot strain response
acquired by the sensor SEN-D2 contain the informa-
tion about all 32 wheels (refer to Figure 3). The
sequence of data is then separated and filtered to
obtain the detrended datasets (Figure 6), their FASs
(Figure 7), and normalized CDFs (Figure 8) stemming
from individual wheels. The probabilistic model is
trained in terms of SBL using the normalized CDFs
which are elicited from the data collected by the sensor
SEN-D2 during multiple trips of the train with all the
wheels being in healthy state. Because of good adapt-
ability, the Gaussian kernels are employed in this study
as basis functions, given by

fi xð Þ= exp �k x� xik2

2g2

� �
ð25Þ

where g is the Gaussian kernel width. In the SBL
framework developed by Tipping,26,27 the kernel width
needs to be predefined. In this study, a random initiali-
zation strategy is utilized to explore the optimal kernel
width g and three indices are employed to investigate
the performance of model trained using different kernel
widths. The first index is the root mean square residual
(RMSR), defined as

RMSR=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN2

i = 1

XN1

j = 1

yij � m3j

� �2

N1N2

vuuut ð26Þ

where N1 is the number of frequency bins for each
observed CDF, N2 is the total number of CDFs used,

yij is the observed value of the ith CDF on the jth fre-
quency bin, and m3j is the expectation value predicted
by the SBL model. The second index is the mean stan-
dardized log loss (MSLL), given by

MSLL=� 1

N1N2

log P yð Þ

=
1

2N1N2

XN2

i = 1

XN1

j = 1

logð2pS3 n; nð Þ+ S�1
3 n; nð Þ yij � m3j

� �2
	 


ð27Þ

where S3(n, n) is the nth diagonal element of the covar-
iance matrix S3 with n = j + (i� 1)3N1. The third index
is the sparse ratio k, defined as

k =
NRV

N1N2

3100% ð28Þ

where NRV is the number of non-zero weights in the
trained model.

Then, SBL model is trained by successively increas-
ing the kernel width g from 1 to 100. Figure 9(a) to (d)
shows four SBL models in conjunction with their pre-
dicted expectations, and the associated 95% confidence
intervals when the kernel width g = 1 are equal to 1,
26, 41, and 100, respectively. Figures 10–12, respec-
tively, show the variation of RMSR, MSLL, and the
sparse ratio k against the kernel width g. From Figure
9(a), it can be seen that the trained model is relatively
complicated when the kernel width is too small and as
a result, 79 relevance vectors (basis functions) are
needed to represent the CDFs. Figure 9(b) and (c) pro-
vides two better alternative models, which are smoother
and sparser with only six and four relevance vectors
used, respectively. When the kernel width continues to
increase, the probabilistic model learned by SBL will
lose expressive ability as evidenced in Figure 9(d),
where only three relevance vectors remain in the model
but they are insufficient to characterize the CDFs. As
shown in Figures 10 and 11, both RMSR and MSLL
increase in general with the kernel width g. Within the
kernel width range considered, there exist two different
local optimal kernel widths, which are g = 26 and 41
for RMSR and g = 25 and 40 for MSLL, in relation to
different explanations about the complexity of the
probabilistic model. By contrast, the sparsity ratio k

almost deceases continuously with the kernel width g

as shown in Figure 12. As a compromise between
expressive ability and sparseness, the kernel width
g = 40 is considered in this study as the optimal value
to construct the probabilistic model that is fairly simple
and favorably consistent with the likelihood of the
training data. There exist only four relevance vectors
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(a)

(b)

(c)

(d)

Figure 9. Model training with different kernel widths: (a) g = 1,
(b) g = 26, (c) g = 41, and (d) g = 100.

Figure 10. RMSR against kernel width g.

Figure 11. MSLL against kernel width g.

Figure 12. Sparsity ratio k against kernel width g.
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(basis functions) in the probabilistic model when
g = 40, justifying a sparse representation of the built
model. Table 1 shows the four relevance vectors includ-
ing the distributions of active (non-zero) weights and
the associated kernel functions, where the frequency
band of interest xf = ½10Hz; 300Hz� has been scaled to
x = ½1; 88� using a linear transform x = 3xf =10� 2 to
facilitate computational accuracy and efficiency.

To validate the benefit of the SBL framework, a
comparative study is conducted using the non-sparse
Bayesian generalized linear (BGL)40 model to learn the
same training data. Table 2 provides a comparison
between the SBL and the BGL models in terms of three
performance indices. It is seen that while the learning
performance in terms of RMSR and MSLL is compa-
rable between the SBL and the BGL models, the SBL
model utilizes dramatically fewer basis functions (much
lower sparsity ratio), giving rise to a much simpler
probabilistic model with stronger prediction ability.

In this study, the SBL model is formulated using the
data collected under the nominal running speed of
10 km/h. This is due to the fact that the track-side
monitoring system is often installed at a location imme-
diately before trains arrive at a railway station or termi-
nal, for the ease of operation, management, and
maintenance. As a result, it allows both low-speed
trains and high-speed trains to pass the monitoring
area at a fixed speed. Certainly, the SBL model can be
adaptive to a wide range of running speeds by incor-
porating an extra variable (train speed) in the basis
functions in equation (25) if enough data covering dif-
ferent train speeds are available.

The formulated model is deemed to be robust to
loading conditions as the loading conditions, such as
fully loaded and non-loaded trains, do not significantly
influence the wheel defect-incurred impact on the rail-
way track, which has been validated by both numerical
modeling41 and field test.1 Environmental conditions,
such as wet track, ice, debris, and extremely tempera-
ture, may affect the pattern of wheel–rail interaction.
To ensure the reliability of defect detection results by
the proposed method, it is preferable to collect the mon-
itoring data in the testing phase under the similar envi-
ronmental conditions as to obtain the training data.

The model does not evolve with time because it is
formulated to represent the initial defect-free state of
railway wheels. If new monitoring data collected later
are confirmed from healthy state as well, the model can
be refined using the newly collected data as explained
in the following section. In principle, the model does
not need to be updated over time. Instead, the model
can be utilized to investigate the deterioration of wheel
condition over time.

Bayesian hypothesis testing for wheel
defect detection

A variety of diagnostic criteria are available for damage
or fault identification and quantification. In recogniz-
ing the shortcomings of the commonly used distance-
based diagnostic methods, statistical hypothesis tests
have gained growing interest in SHM applications. For
example, Bayesian point null hypothesis testing
(BPNHT) has been attempted for damage or fault iden-
tification and quantification in terms of Bayes fac-
tor.40,42,43 It is more robust than the distance-based
diagnostic methods in that its resulting risk is averaged
over the priors for unknown parameters in the hypoth-
eses. However, the BPNHT is sensitive to the priors of
the unknown parameters, giving rise to the so-called
Jeffreys–Lindley paradox. In this study, we introduce a
novel damage diagnostic logic in terms of BNHST and
IBF, which does not suffer from the Jeffreys–Lindley
paradox and the effect of sample size (data scale).

BNHST

In the previous section, a probabilistic model has been
formulated by SBL using monitoring data in the state
of healthy wheels. This model characterizes the stochas-
tic CDFs in healthy state. Thus, a null hypothesis H0

can be defined for healthy wheel using the built prob-
abilistic model. Because of the lack of monitoring data
from defective wheels in the model training phase, we
are unable to elicit an alternative hypothesis representa-
tive of defective wheels by using the training data.

Table 1. Active weights and associated kernel functions.

Weight number Weight distribution Associated
kernel function

w1 N (�5:35, 0:052) exp � kx�1k2

23402

� �
w209 N (5:65, 0:0482) exp � kx�9k2

23402

� �
w1769 N (�1:73, 0:0202) exp � kx�69k2

23402

� �
w2263 Nð2:24; 0:0162Þ exp � kx�88k2

23402

� �

Table 2. Performance comparison of SBL and BGL models.

Performance index SBL BGL

RMSR 0.0223 0.0222
MSLL –2.3844 –2.3835
k 0.17% 3.85%

SBL: sparse Bayesian learning; BGL: Bayesian generalized linear; RMSR:

root mean square residual; MSLL: mean standardized log loss.
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Instead, the alternative hypothesis H1 for defective
wheel is made here by shifting the expectations m3 with
small values of h.44 Thus, referring to equation (22),
the two hypotheses are given by

H0 : yu;N m3;S3ð Þ for healthy wheel ð29Þ

H1 : yu;N m3 + h;S3ð Þ for defective wheel ð30Þ

where yu = ½yu, 1, . . . , yu, S�T is the new CDFs from wheels
(healthy or defective) to be assessed, and m3 and S3 are
the predicted expectations and the covariance as given
in equations (23) and (24), respectively. The same cov-
ariance matrix is presumed in equations (29) and (30)
for the computational efficiency. More importantly, it
enables us to focus on the identification of the systema-
tic change in defect-sensitive features (the means of the
stochastic CDFs) caused by wheel defects. h is related
to the false-positive diagnostic risk, denoted as q, which
is referred to as the probability of healthy wheels being
falsely diagnosed as defective. There is a one-to-one
relationship between h and q, given by

q = 2 1�F
1

2S
S
�1=2
3 h

� �T
31S

	 
� �
ð31Þ

where F is the cumulative distribution function of the
standard normal random variable, and 1S is a unit col-
umn vector of size S. The Bayes factor is defined as the
ratio of the likelihood probabilities of the two hypoth-
eses, given by

BF01 =
P(yujH0)

P(yujH1)
= exp

1

2
eT1 S�1

3 e1 � eT0 S�1
3 e0

� �	 

ð32Þ

where e0 = yu � m3 and e1 = yu � (m3 + h). Since BF01 is
always non-negative, it can be converted to the loga-
rithmic scale for convenience of comparison among a
large range of values. It is also useful to consider twice
the natural logarithm of the Bayes factor that is on the
same scale as the familiar deviance and likelihood ratio
test statistics,45 given by

2 ln BF01ð Þ= eT1 S�1
3 e1 � eT0 S�1

3 e0 ð33Þ

Kass and Raftery46 suggested interpreting 2 ln (BF01)
between 0 and 2 as weak evidence in favor of H0,
between 2 and 6 as positive evidence, between 6 and 10
as strong evidence, and 2 ln (BF01).10 as very strong
evidence. Negative Bayes factor of the same magnitude
is said to favor the alternative hypothesis H1 by the
same amount. However, the Bayes factor defined ear-
lier relies heavily on sample size such that different
Bayes factor thresholds should be used when the sam-
ple size is highly different. To overcome this drawback,
a novel Bayes factor, termed as intrinsic Bayes factor,

is proposed in this study to eliminate the effect of sam-
ple size (data scale), which is defined as follows

IBF01 =
ffiffiffiffiffiffiffiffiffiffi
BF01

S
p

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp

1

2
eT1 S�1

3 e1 � eT0 S�1
3 e0

� �	 

S

s
ð34Þ

where S is the size of yu. Twice the natural logarithm of
IBF01 yields

2ln(IBF01) =
1

S
eT1 S�1

3 e1 � eT0 S�1
3 e0

� �
ð35Þ

As identical Gaussian kernels are used in the model
trained by SBL, the predicted uncertainties can be
approximated by S3’s2

MPIS .
26 Thus, the IBF01 and its

twice the natural logarithm reduce to

IBF01 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp

1

2s2
MP

eT1 e1 � eT0 e0

� �	 

S

s
ð36Þ

2ln(IBF01) =
1

Ss2
MP

eT1 e1 � eT0 e0

� �
ð37Þ

Accordingly, the false-positive diagnostic risk q is
approximately given by

q = 2 1�F
hT31S

2SsMP

� �	 

ð38Þ

When new monitoring data from potentially defec-
tive wheel(s) are made available, the predicted expecta-
tions m3 and covariance S3 can be obtained from the
built reference model. Then, the IBF01 or its twice the
natural logarithm is calculated to infer the existence of
defective wheel(s) and to assess the degree of wheel
defect(s). Using the foregoing classification criterion on
discrimination strength (more detailed classification
intervals are available in Kass and Raftery46) to quanti-
tatively assess the extent of defect is relatively subjec-
tive before physical calibration.

If the new monitoring data are confirmed from
healthy state, the newly collected data can be used to
update or refine the current SBL model by taking the
joint posterior distribution P(w,a,s2jy) of the
unknown parameters in the current model as a data-
based prior for the updated model. The model accuracy
will be enhanced since the model posterior uncertainty
S3 in equation (24) can be reduced by increasing the
training data. As mentioned before, the formulation of
the reference model does not use monitoring data in
defective states. However, when monitoring data in line
with confirmed defects are available, the classification
intervals can be calibrated and pertinently refined to
provide more precise mapping between the range of
IBF and the extent of wheel defect.
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In comparison with the new defect-sensitive features
characterized by the SBL model, the raw defect-
sensitive features cannot be directly adopted to perform
Bayesian hypothesis significance testing in the presence
of new monitoring data because their uncertainties are
not quantified. Moreover, the raw and the new features
have different feature inputs and thus they are not
directly comparable.

Diagnostic results of wheel defects using a single
sensor

A blind test was later conducted by replacing some
healthy wheels by defective wheels and running the
train equipped with defective wheels on the rail instru-
mented with the track-side monitoring system. It pro-
vides in-situ monitoring data to verify the proposed
wheel defect detection method. Moreover, after the
blind test, the suspected defective wheels have been
delivered to a workshop for offline wheel radius devia-
tion measurement. As such, a comparison between the
online diagnostic results by the proposed method and
the offline inspection results can be made. It is worth
noting that the monitoring data collected by a single
sensor might be unable to capture the defect-relevant
information in case the minor defective tread (e.g. a
small flat) did not roll over the rail section deployed
with the sensor; it would result in a false negative if
using only the data from the single sensor. When using
the monitoring data from all the deployed sensors,
more reliable defect detection results would be obtained
because the effect of minor defective tread must be
sensed by at least one sensor if the sensors are densely
deployed along a rail segment longer than the wheel
perimeter. In the following section, both the wheel
defect detection results using the monitoring data from
a single sensor (SEN-D2) and from all the sensors are
presented.

In the implementation of the proposed method, the
shift parameters are set to be h= 5sMP31S at the price
of the diagnostic risk of 1.24% that healthy wheels are
falsely diagnosed as defective, where 1S is a unit col-
umn vector of size S. The choice of h reflects the under-
standing of professionals regarding the presumed
discrepancy in the features of wheels with and without
defect. Its choice is essentially a balance between the
false-positive and false-negative error rates. If the val-
ues of h are smaller, a higher rate of false alarm of
wheel defect occurs, while larger values of h correspond
to a higher rate of missing alarm. For different applica-
tion domains, one may use customized values of h,
according to the total loss caused by the two types of
errors. The obtained IBFs for assessing the condition
of all right wheels when using the monitoring data from

the sensor SEN-D2 deployed on the right railway track
are shown in Figure 13. It is observed that the IBF for
the 24th right wheel is less than –10, which advocates
very strongly that it is heavily defective. The IBF for
the 27th right wheel is between –10 and –6, providing
evidence that it is moderately defective. By contrast,
the IBFs for other right wheels are all positive and
therefore, these wheels are diagnosed as undefective.

Diagnostic results of wheel defects by integrating all
sensors

The wheel defect detection is then pursued using the
monitoring data from all sensors deployed on one side
of the rail. As we are interested in finding defective
wheels, the smallest IBF is used in the assessment,
which is given by

2ln IBF01ð Þ= min 2ln IBF1
01

� �
, . . . , 2ln IBF

NS

01

� �
 �
ð39Þ

where NS is the number of sensors deployed on each
side of the rail. For the track-side monitoring system
described in section ‘‘Feature Extraction through
Track-side Monitoring,’’NS = 21.

Figure 14 provides the diagnostic results on the con-
dition of the right wheels using the monitoring data
from all 21 sensors deployed on the right rail track. It
can be seen that the IBFs associated with the 1st, 6th,
24th, 27th, and 31st right wheels are negative, suggest-
ing that the five wheels are potentially defective with
different degrees. The 24th wheel is most heavily defec-
tive, while the 31st wheel is most weakly defective. With
IBFs being positive, the other right wheels are diag-
nosed as healthy. By comparing Figure 14 with Figure
13, it is found that using only the monitoring data from
the sensor SEN-D2 fails to identify the defects on the

Figure 13. Condition assessment of right wheels using
monitoring data from SEN-D2 deployed on right rail track.
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1st, 6th, and 31st right wheels, while the results from
the two settings indicate defects on the 24th and 27th
wheels.

Figure 15 illustrates the diagnostic results on the
condition of the left wheels when using the monitoring
data from all 21 sensors deployed on the left rail track.
It is observed that the IBFs for the 1st, 6th, and 27th
wheels are negative, indicating that the three wheels are
defective with the 27th wheel being most heavily defec-
tive. The other left wheels are diagnosed as healthy.
The values of IBFs provide a quantitative measure to
assess the degree of wheel defects. Smaller values of
IBF indicate in general worse wheel conditions.

To validate the diagnostic results by the proposed
online method, offline inspection on the suspected
defective wheels was conducted afterwards in a work-
shop. The offline wheel radius deviation measurement
indicates that the 1st, 6th, 24th, and 27th right wheels,
and the 1st, 6th, and 27th left wheels are indeed defec-
tive, with large flats found on the 24th (36.0 mm in
length), 27th right wheel (26.9 mm), and the 27th left
wheel (34.6 mm). Although the 31st right wheel is diag-
nosed as weakly defective by the proposed method, it is
in fact healthy. This warns us of the diagnostic risk
imposed by the proposed method. Overall, the diagnos-
tic results by the proposed online method are in good
agreement with the offline measurement results.

Conclusion

A Bayesian machine learning approach for online
detection of wheel defects and condition has been

proposed in this study. With the aid of an FBG-based
track-side monitoring system, CDFs for the normalized
FASs of rail foot strain responses in the healthy state of
wheels are extracted as characteristic features to train a
probabilistic reference model by SBL. In the Bayesian
probabilistic framework, the formulated model can
account for uncertainties arising from the monitoring
data (e.g. measurement noise and variability in the sto-
chastic wheel–rail dynamics) and modeling error, and
the SBL enables the model to perform well in either
characterizing the training data or predicting unseen
data. Because only a few basis functions are involved in
the model, its computational efficiency is quite competi-
tive especially on prediction, enabling fast diagnosis in
wheel condition assessment. The diagnostic logic in
terms of BNHST and scale-invariant IBF allows the
unsupervised defect detection to be executed in a fully
probabilistic inference context, ranging from the prob-
abilistic model development in the training phase to the
wheel defect diagnosis in the testing phase.

The proposed method is verified using the in-situ
monitoring data acquired by a track-side monitoring
system during the passage of a train with all wheels
being healthy and with some wheels being defective,
respectively, and is validated through comparing the
diagnostic results obtained by the proposed online
method and by the offline wheel radius deviation mea-
surement. It turns out the following findings: (a) when
using CDFs as characteristic features, a sparse repre-
sentation of the probabilistic model containing only a
few basis functions (four Gaussian kernels in the case
of the optimal kernel width g = 40) can be obtained to

Figure 14. Condition assessment of right wheels using
monitoring data from all sensors deployed on right rail track.

Figure 15. Condition assessment of left wheels using
monitoring data from all sensors deployed on left rail track.
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favorably characterize the stochastic CDFs; (b) the
proposed method may give rise to false-negative diag-
nostic results when using only the monitoring data
from a single sensor, but more accurate diagnostic
results can be obtained using the monitoring data from
all the deployed sensors; and (c) when using the moni-
toring data from all the sensors, the diagnostic results
on the wheel defects and condition by the proposed
online method are in good agreement with the offline
inspection results. It should be mentioned that the
choice of the shifting values h affects the evaluated
value of IBF (or its twice the natural logarithm) and
therefore has an influence on defect detection results.
The value of h is directly related to the significance level
(diagnostic risk). In this study, h is set to be 5sMP31S

at the price of the diagnostic risk of 1.24% that healthy
wheels are falsely diagnosed as defective, and a false-
positive ‘‘defect’’ on the 31st right wheel is falsely
alarmed (albeit it is identified to be a very weakly defec-
tive according to its IBF). When offline radius devia-
tion measurement results on wheels of different defect
extents are available, a more appropriate choice of the
shifting values h can be made. Similarly, when the cor-
respondence between the evaluated values of IBF and
the real defect extents of defective wheels detected by
offline inspection is established, the generic classifica-
tion intervals defined from a mathematical logic can be
refined to be more precise and specific for defect degree
classification of the monitored wheels based on the
evaluated value of IBF.
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