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Abstract

Train timetabling and locomotive assignment are often performed separately in a sequential manner.

One obvious disadvantage of such hierarchical planning process is that it often results in poor coordination

between the train schedule and the locomotive schedule. This paper focuses on modeling and solving an

integrated train timetabling and locomotive assignment problem. To solve this integrated problem, we first

construct a three-dimensional state-space-time network in which a state is used to indicate which train a

locomotive is serving. We then formulate the problem as a minimum cost multi-commodity network flow

problem with incompatible arcs and integer flow restrictions. We present a Lagrangian relaxation heuristic

for solving this network flow problem. We conduct a computational study to test the effectiveness of our

Lagrangian relaxation heuristic, compare the performance of our heuristic with that of two benchmark solu-

tion methods, and report the benefits obtained by integrating train timetabling and locomotive assignment

decisions.
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1 Introduction

Due to the complexity of the railway planning process, different planning tasks are often performed sep-

arately in a sequential manner. Typically, train scheduling decisions, such as train path determination and

train timetabling, are made before locomotives and other rolling stocks are assigned to train services. In other

words, when train timetabling is performed, the locomotives’ schedule and routes are neglected. As mentioned

by Bussieck et al. (1997), such hierarchical planning process poses an obvious disadvantage “since the optimal

output of a subtask which serves as the input of a subsequent task, will not result, in general, in an overall

optimal solution.” Thus, separating train timetabling from locomotive assignment decisions often lead to poor

coordination between the train schedule and the locomotive schedule. This may result in delay in the locomo-

tives’ arrival at the trains’ departure stations, which in turn results in delay in the trains’ departure, causing

the need to revise the entire pre-planned train timetable. This may also result in early arrival of locomotives

at the trains’ departure stations, leading to low utilization of railway resources.

In this paper, we present an integrated optimization model that simultaneously determines the train timetable,

the assignment of locomotives to trains, and the routes for the locomotives when they are light-running (i.e.,

when they are not serving any train). We assume that each train has a pre-specified traveling route, each loco-

motive has a given initial location and a given final destination, and that a train can be assigned any locomotive

that satisfies the power requirement of the train. We develop a Lagrangian relaxation heuristic for this model

and test the efficiency and effectiveness of this heuristic via a computational study.

Train timetabling is an important area of railway operation. A train timetabling problem (TTP) aims to

determine the arrival and departure times of each train at each station along the given train path, such that

certain operational requirements such as track capacity constraints, minimum headway constraints, etc., are

taken into consideration. There has been extensive literature on mathematical models and solution methods

for TTPs on both single track networks (see, e.g., Szpigel 1973, Cai and Goh 1994, Caprara et al. 2002, Zhou

and Zhong 2007) and general railway networks (see, e.g., Cacchiani et al. 2010a, Cadarso et al. 2015, Zhu et

al. 2014). Although different TTP papers typically consider different versions of the problem, the problem

is generally referred to as being NP-hard (Caprara et al. 2002). Hence, different heuristic and simulation

approaches have been developed for obtaining near-optimal solutions. See Lusby et al. (2011) and Kroon et

al. (2014) for comprehensive reviews on TTPs.

Locomotive planning is another important area in railway operation. Following the definition of Vaidyanathan

et al. (2008a), the locomotive planning problem (LPP) “considers a fixed pre-defined train schedule and con-

cerns the optimal management of locomotives in order to deliver each train in the schedule from its origin to

its destination at minimal cost.” Here, the LPP includes one or both of the following two decisions: (i) Loco-

motive assignment decision; that is, assigning locomotives or locomotive consists (i.e., sets of locomotives) to

trains in such a way that no two trains are served by the same locomotive simultaneously. In some models, the

assignment of more than one locomotive or one locomotive consist to serve a train is allowed (e.g., using one
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locomotive to pull the train for a certain distance and using another locomotive to continue pulling that train

for another distance). (ii) Locomotive routing decision; that is, determining the sequence of trains that each

locomotive serves. This decision also includes the determination of the routes for the light-running locomotives,

as locomotives often need to travel from one station to another between services. In some models, additional

considerations such as fueling and servicing needs are included. Some models also allow deadheading, where

deadheading locomotives do not pull any train but are repositioned by the active locomotives.

A great deal of research on locomotive planning is available in the literature. Some research works consider

LPPs with homogeneous locomotives; see, for example, Ghoseiri and Ghannadpour (2010). Some works consider

LPPs in which there are multiple types of locomotives but each train is pulled by a single locomotive; see,

for example, Booler (1980), Wright (1989), and Forbes et al. (1991). Some works consider LPPs in which

more than one locomotive can be assigned to a single train; see, for example, Florian et al. (1976), Ziarati et

al. (1997, 1999), Ahuja et al. (2005), and Vaidyanathan et al. (2008a, 2008b). Some works have incorporated

car assignment decision into locomotive planning. Cordeau et al. (2000) studied a problem that simultaneously

assigns appropriate locomotives and cars to pre-scheduled passenger trains. Cordeau et al. (2001a, 2001b)

extended the work of Cordeau et al. (2000) by introducing equipment substitution possibilities, maintenance

constraints, and car switching penalties. Other related works include Godwin et al. (2006) who propose a

heuristic method for assigning locomotives to freight trains in which locomotive assignment and freight train

schedules are developed in two separate phases, Kuo and Nicholls (2007) who study the allocation of locomotives

to yards and the moving of light engines between yards, and Nourbakhsh and Ouyang (2010) and Raviv and

Kaspi (2012) who study the optimal fueling strategies for locomotives. Comprehensive reviews on LPPs can

be found in Cordeau et al. (1998) and Piu and Speranza (2014). Our work differs from traditional locomotive

planning research in that our model makes train timetabling and locomotive planning decisions simultaneously,

while most locomotive planning studies focus on locomotive assignment and/or locomotive routing decisions

with a pre-planned train timetable.

Integrated models for train timetabling and rolling stock scheduling have received increasing attention re-

cently. Dauzère-Pérès et al. (2015) examined the integrated planning of rolling stock and train drivers when a

set of train paths is given. Zhu et al. (2014) analyzed a freight rail transportation problem which integrates train

service selection decision, train make-up decision (i.e., decision on grouping loaded and empty cars into blocks

and grouping blocks into trains), and freight routing decision. Cadarso et al. (2015) considered an integrated

model for the recovery of train timetable and rolling stock schedules when the railway system encounters a

disruption. Xu et al. (2017) considered an integrated scheduling problem of locomotives and trains on a single

track railway line. Our research topic bears some similarities with those of Zhu et al. and Cadarso et al. as we

also integrate the planning decisions of train timetabling and rolling stocks. Zhu et al.’s model focuses on train

service selection and train make-up decisions, while Cadarso et al.’s model focuses on train service selection and

recovery planning. Our model, however, does not include train make-up decisions or recovery planning, but

includes the construction of train timetables as well as routing decisions of light-running locomotives, which
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are features not covered by these two models. Similar to Xu et al.’s model, our model makes train scheduling

and locomotive assignment decisions simultaneously, but our model involves complicated routing decisions as

we consider a general underlying railway network, while Xu et al. focus on the planning of a single track railway

line in which a relatively simple simulation-based heuristic can be applied.

Our integrated train timetabling and locomotive planning model can also be applied to modern high-speed

railway systems in which electric multiple units are used. Consider the situation where a set of train services

is given; that is, the train route, the departure time window at the origin station, and the arrival time window

at the destination station are given. If we view each multiple unit as a “locomotive” and each train service as

a “train,” then we may use our model to simultaneously assign the multiple units to train services, determine

the routes for reallocating the empty multiple units, and determine the timetables for the train services.

Our model is related to the vehicle routing problem with pickup, delivery, and time window constraints

(VRPPDTW), where the vehicles and passengers in the problem represent locomotives and trains, respectively.

In fact, our model can be viewed as a VRPPDTW with additional constraints, such as track capacity constraints

and minimum headway constraints, that exist in train operations. Various solution methods have been proposed

for the VRPPDTW. Recently, Mahmoudi and Zhou (2016) developed a state-space-time network representa-

tion and a Lagrangian relaxation based solution method for the VRPPDTW. Their solution approach is able

to solve the VRPPDTW in large-scale transportation networks. Enlightened by their work, in this paper we

also use a state-space-time network representation of our problem and present a Lagrangian relaxation algo-

rithm. However, unlike Mahmoudi and Zhou’s network in which a state is represented by an array of binary

digits, we use a single integer to represent a state. In addition, our solution method is developed with the

consideration of the additional train operations constraints, namely “train service constraints,” “arrival and

departure headway constraints,” and “track capacity constraints.” These additional constraints make some of

the arcs in the state-space-time network incompatible with each other (i.e., at most one of these arcs can be

used). Such incompatibility constraints do not exist in the traditional VRPPDTW but are quite common in

train timetabling models (see, e.g., Caprara et al. 2002, 2007).

The contribution of this paper is threefold. First, we provide a tool for integrated scheduling of trains

and locomotives. Second, our main tool, namely the minimum cost multi-commodity network flow model with

incompatible arcs and integer flow restrictions in a state-space-time underlying network, is quite flexible. It

is easy to modify the cost parameters to accommodate different train timetabling and locomotive planning

requirements. In other words, our solution method can potentially be used for more complicated railway

planning problems. Third, our computational results report the significance of integrating train timetabling

and locomotive planning decisions.

The rest of this paper is organized as follows. In Section 2, we provide a detailed description of our problem.

In Section 3, we present a state-space-time network representation and the corresponding multi-commodity

network flow formulation of the problem. In Section 4, we describe our Lagrangian relaxation based solution

method. Computational experiments are conducted to test the solution method and to assess the benefits
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obtained by our integrated solution approach, and the results are reported in Section 5. Several extensions of

our model are discussed in Section 6. Concluding remarks are made in Section 7.

2 Problem Description

The problem we study, hereinafter referred to as integrated train timetabling and locomotive assignment

problem, aims to simultaneously assign locomotives to trains, determine the locomotives’ routes, and determine

the trains’ timetables. Our problem has the following characteristics: (i) The underlying railway network is

a general network, with arcs and vertices representing track segments and stations, respectively. (ii) All the

track segments consist of one-way (i.e., mono-directional) tracks, and the capacity of each station is unlimited.

(iii) The route of each train is given, but the timetable of each train is to be determined. (iv) The initial and

final stations of each locomotive are given, but the route of each locomotive is to be determined. (v) Each train

needs only one locomotive, and the locomotive needs to be compatible with the train (e.g., with an operating

power no smaller than the power requirement of the train). (vi) After a locomotive has finished serving a train,

it may light run to another station to serve another train. (vii) A train may be canceled, and a penalty is

incurred when there is a cancellation. (viii) The planning horizon, denoted [0, T ], is discretized, and the time

units are expressed as integers (e.g., T = 1440 if the planning horizon is 24 hours and each time unit is 1

minute).

The train timetabling part of our model follows fairly closely the model of Caprara et al. (2002). For

simplicity, our model does not consider some features that may appear in practice. These features include,

for example, station capacity constraints, two-way tracks where trains and locomotives may travel in opposite

directions, etc. See Section 6 for a discussion of possible extensions of our model.

2.1 Input Data

Table 1 summarizes the input parameters of the problem, where all time-related parameters are integer-

valued. Detailed explanations of these input parameters are given as follows.

2.1.1 Railway Network Data

Let N = (S, E) be the given railway network, where S and E are the vertex set and arc set, respectively.

Each vertex i ∈ S represents a station. Each arc i→ j ∈ E represents the mono-directional track segment from

station i to station j, with no intermediate station in between. To ensure safety, at each station i ∈ S, there is

a minimum time interval gi between two consecutive arrivals coming from the same track segment (i.e., arrival

headway), and there is a minimum time interval hi between two consecutive departures entering the same track

segment (i.e., departure headway).
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Table 1: Summary of input data.

Type of data Notation Description

Railway network data S set of stations

E set of mono-directional track segments i → j, where i, j ∈ S

gi minimum headway between arrivals from the same track segment at station i

hi minimum headway between departures to the same track segment at station i

Train data K set of trains

Sk set of stations along train k’s route, where Sk ⊆ S

skj jth station along train k’s route, where skj ∈ Sk

ok origin station of train k (i.e., ok = sk1)

dk destination station of train k (i.e., dk = sk|Sk|)

[pk, p′k] departure time window for train k at station ok, where 0 ≤ pk ≤ p′k ≤ T

[qk, q′k] arrival time window for train k at station dk, where 0 ≤ qk ≤ q′k ≤ T

αk
ij minimum time for train k to traverse i → j

βki minimum required dwell time of train k at station i, where i ∈ Sk

Ωk set of compatible locomotives for train k

πk penalty for canceling train k

φk(·) nondecreasing function penalizing train k’s shift

γk unit penalty of train k’s stretch

Locomotive data L set of locomotives

ôl origin station of locomotive l, where ôl ∈ S

d̂l destination station of locomotive l, where d̂l ∈ S

p̂l earliest start time of operation of locomotive l, where 0 ≤ p̂l ≤ T

q̂l latest completion time of operation of locomotive l, where 0 ≤ q̂l ≤ T

α̂l
ij time for locomotive l to traverse i → j when light-running

cl operating cost per unit time for locomotive l when it is running

c′l operating cost per unit time for locomotive l when it is not running

flk fixed cost for assigning locomotive l to train k, where l ∈ Ωk

ε+lk service time for locomotive l to pick up train k at station ok, where l ∈ Ωk

ε−lk service time for locomotive l to drop off train k at station dk, where l ∈ Ωk

2.1.2 Train Data

Let K be the set of trains considered. For each k ∈ K, the input data of train k include: (i) a set

Sk = {sk1, . . . , sk|Sk|} ⊆ S of distinct stations that train k visits, where (sk1, . . . , sk|Sk|) is the sequence of

stations visited, ok = sk1 is the origin station, and dk = sk|Sk| is the destination station; (ii) the departure time

window [pk, p′k] for train k to depart from station ok, and the arrival time window [qk, q′k] for train k to arrive

at station dk; (iii) the minimum possible running time αk
ij that train k needs to traverse track segment i → j,

which equals the travel time on i → j if train k is assigned to its best-matched locomotive; (iv) the minimum

dwell time βki that train k needs to spend at station i ∈ Sk, during which passengers can leave and board the
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train; (v) the set Ωk of locomotives that are compatible with train k; and (vi) a penalty πk which is incurred

when train k is canceled.

Besides these input data, an ideal timetable is also given for each train k. It is the most desirable timetable

for train k if we assume that a compatible locomotive and all track segments are available for train k at any

time. We impose the same penalty measurement on the train timetable as Caprara et al. (2002) if a train’s

actual timetable is different from its ideal timetable. For each k ∈ K, there is a penalty φk(νk) on train k’s

shift νk, which is the absolute difference between the departure times from station ok in the actual and ideal

timetables, where φk(·) is a nondecreasing function. For each k ∈ K, there is also a penalty γkµk on train k’s

stretch µk, which is the total running time in the actual timetable minus the total running time in the ideal

timetable, where the total running time of train k is the time interval between the departure from station ok

and the arrival at station dk. We assume that in the ideal timetable, the travel time of train k on each track

segment i→ j is αk
ij , and the dwell time of train k at each station i is βki.

2.1.3 Locomotive Data

Let L be the set of locomotives considered. For each l ∈ L, the input data of locomotive l include: (i) the

origin station ôl and destination station d̂l of the locomotive; (ii) the earliest possible start time of operation

p̂l at station ôl, and the latest allowed completion time of operation q̂l at station d̂l; (iii) the running time α̂l
ij

locomotive l needs to traverse track segment i→ j when the locomotive is light-running; (iv) the operating cost

of cl per unit time for the locomotive to run on a track; and (v) the operating cost of c′l per unit time for the

locomotive to wait at a station during the time period [p̂l, q̂l].

Note that locomotive l may be assigned to train k if it is compatible with train k; that is, l ∈ Ωk. A fixed

cost of flk is incurred if locomotive l is assigned to train k. If locomotive l is assigned to train k, then the speed

of this locomotive-train pair is the smaller of locomotive l’s light-running speed and train k’s speed. Hence,

once this assignment is made, the running time required for this locomotive-train pair to traverse track segment

i → j is max{α̂l
ij , α

k
ij}, for any i → j ∈ E. When locomotive l picks up train k at station ok, a service time

of ε+lk is incurred, and an additional dwell time no shorter than βkok
is needed before this locomotive-train pair

can depart from station ok. When this locomotive-train pair arrives at station dk, a dwell time no shorter than

βkdk
is needed, and a service time of ε−lk is incurred for locomotive l to drop off train k before the locomotive

can leave station dk.

As mentioned in Section 1, our model can be applied to modern high-speed railway systems. In this case,

we set the minimum running time αk
ij for a train service k on any track segment i→ j to 0 so that the running

time of train service k on track segment i→ j is equal to α̂l
ij if multiple unit l is assigned to this train service.

2.2 Objective and Constraints

The problem is to assign locomotives to trains, determine a route for each locomotive, and determine a

timetable for each train, such that the total cost is minimized. The route for locomotive l has to start at station
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ôl and terminate at station d̂l, and it may visit a station multiple times if needed. Several types of constraints

need to be satisfied.

• Train assignment constraints: Each train k is either assigned one compatible locomotive or canceled. Each

locomotive l needs to serve those trains assigned to it one after another. When locomotive l serves a train k,

it needs to travel to station ok (= sk1) to pick up the train, traverse the path sk1 → sk2 → · · · → sk|Sk| with

the train, and drop off the train at station dk (= sk|Sk|).

• Time window constraints: Each locomotive l is initially located at station ôl and is available for operation

at time p̂l. It needs to complete its operation at station d̂l no later than q̂l. For each train k assigned

to locomotive l, locomotive l needs to arrive at station ok no later than p′k − ε+lk − βkok
to pick up train

k, spend at least ε+lk + βkok
time units at station ok, and depart from station ok with train k during the

time window [pk, p′k]. Locomotive l needs to spend at least βki time units with train k at station i for each

i ∈ {skj | j = 2, 3, . . . , |Sk| − 1}. It also needs to arrive at station dk with train k during the time window

[qk, q′k] and then spend at least βkdk
+ ε−lk time units at station dk.

• Headway constraints at stations: For each i ∈ S, the arrivals of two locomotives at station i must be at least

gi time units apart if both locomotives are arriving from the same track segment, and the departures of two

locomotives from station i must be at least hi time units apart if both locomotives are departing to the same

track segment.

• Track capacity constraints: Each arc in network N represents a mono-directional track segment. Thus, a

locomotive/train should be forbidden to overtake another locomotive/train on a track segment.

The total cost of a solution is the sum of (i) total fixed cost of all locomotive-train assignments, (ii) total

operating cost of all locomotives, (iii) total cancellation cost of all canceled trains, (iv) total penalty on the shift

of all (uncanceled) trains, and (v) total penalty on the stretch of all (uncanceled) trains.

Note that in practice it may be undesirable to cancel a train. In our model, we may set πk to infinity if we

want to disallow the cancellation of train k. Note also that in some applications, the train timetable is repeated

daily or weekly, and each locomotive should finish a cycle’s operation at a station at which the locomotive can

start its next cycle’s operation. In Section 6.1, we discuss how our model can be applied to such setting.

2.3 An Example

Consider an example with a railway network N = (S, E) as depicted in Figure 1, in which there are five

stations and ten one-way track segments. The set of trains is K = {k1, k2, k3}, and the set of locomotives is

L = {l1, l2}. Both the minimum arrival headway and departure headway at each station are 1 time unit (i.e.,

gi = hi = 1 for all i ∈ S). Other input parameter values are provided in Table 2, where the cost data have been

omitted.

The given ideal timetable for train k1 is the timetable where the train departs from its origin station i1 at

time 2, traverses each track segment in minimum time, spends the minimum dwell time at each station along its

7



i2i1

i3

i4 i5

station

track segment

Figure 1: Railway network of the example.

route, and arrives at its destination station i4 at time 6. The given ideal timetable for train k2 is the timetable

where the train departs from its origin station i2 at time 12, traverses track segment i2 → i1 in minimum time,

and arrives at its destination station i1 at time 13. The given ideal timetable for train k3 is the timetable where

the train departs from its origin station i5 at time 6, traverses each track segment in minimum time, spends

the minimum dwell time at each station along its route, and arrives at its destination station i1 at time 12.

Figure 2(a) depicts these three trains’ ideal timetables.

Consider a feasible solution in which locomotive l1 serves train k1 first and then train k2, while locomotive

l2 serves train k3. Specifically, locomotive l1 begins its operation at time 0 at its origin station i1 which is also

train k1’s origin station, picks up train k1 during the time period [0, 2], leaves station i1 at time 2, visits stations

i2 and i3, arrives at station i4 at time 6, and drops off train k1 at station i4 during the time period [6, 8]. It

then light-travels on track segment i4 → i2, arrives at station i2 at time 9, waits for 2 time units, picks up train

k2 at station i2 during time period [11, 13], leaves station i2 with train k2 at time 13, arrives at station i1 at

time 14, drops off train k2 at station i1 during the time period [14, 16], and completes its operation at time 16.

Since train k2’s departure time at its origin is 1 time unit later than that of its ideal timetable, its shift is 1 time

unit. Locomotive l2 begins its operation at time 4 at its origin station i5 which is also train k3’s origin station,

Table 2: Input data of the example.

Train k (ok, dk) sk1 → sk2 → · · · → sk|Sk| (βk1, . . . , βk|Sk|) [pk, p′k] [qk, q′k] Ωk

k1 (i1, i4) i1 → i2 → i3 → i4 (0, 1, 0, 0) [2, 4] [6, 8] {l1}
k2 (i2, i1) i2 → i1 (0, 0) [12, 13] [13, 14] {l1}
k3 (i5, i1) i5 → i4 → i2 → i1 (0, 0, 0, 0) [6, 8] [12, 14] {l1, l2}

Locomotive l (ôl, d̂l) [p̂l, q̂l] (ε+lk1
, ε−lk1

) (ε+lk2
, ε−lk2

) (ε+lk3
, ε−lk3

)

l1 (i1, i1) [0, 16] (2, 2) (2, 2) (2, 2)

l2 (i5, i1) [0, 16] - - (2, 2)

Track segment i → j αk1
ij αk2

ij αk3
ij α̂l1

ij α̂l2
ij

i1 → i2 1 - - 1 2

i2 → i1 - 1 2 1 2

i2 → i3 1 - - 1 2

i2 → i4 - - - 1 2

i3 → i2 - - - 1 2

i3 → i4 1 - - 1 2

i4 → i3 - - - 1 2

i4 → i2 - - 2 1 2

i4 → i5 - - - 1 2

i5 → i4 - - 2 1 2

8



locomotive l1 (waiting & light-running):

train k1: train k2: train k3:

(a) Ideal timetables

(b) Actual timetables of a feasible solution

locomotive l2 (waiting & light-running):

12 13 1614 151 2 3 6 7 8 94 50

i1

i3

i4

i5

i2
i2

i1

i5

111096 7 84 5

i4

12 13 1614 151 2 3 6 7 8 94 50

i1

i3

i4

i5

i2
i2

i1

i5

111096 7 84 5

i4

Time Time

TimeTime

Figure 2: Ideal and actual timetables of the trains.

picks up train k3 during the time period [4, 6], leave station i5 at time 6, arrives at station i4 at time 8, and

stays at station i4 during the time period [8, 9], which is longer than the minimum required dwell time of train

k3 by 1 time unit. It then leaves station i4 at time 9, visits station i2, arrives at station i1 at time 13, drops off

train k3 at station i1 during the time period [13, 15], and completes its operation at time 15. Since train k3’s

running time is 1 time unit longer than that of its ideal timetable, its stretch is 1 time unit. The total cost of

this feasible solution is (cl1 · 13 + cl2 · 10) + (c′l1 · 3 + c′l2 · 1) + (fl1k1 + fl1k2 + fl2k3) + (φk2(1) + γk3 · 1), where

the first part is the operating cost of the locomotives running on tracks, the second part is the operating cost

of the locomotives waiting at stations, the third part is the fixed cost of locomotive-train assignment, and the

fourth part is the penalty on the train services. The train cancellation penalty is zero as no train is canceled.

Figure 2(b) depicts the three trains’ actual timetables, as well as the schedules and routes of the locomotives,

of this feasible solution.

Note that in this feasible solution train k3 dwells at station i4 longer than the minimum required dwell time.

This is because train k3 is ready to leave station i4 at time 8 and head toward station i2, but locomotive l1 is

also departing from station i4 at time 8 and heading toward station i2. The departure headway requirement

demands these two departures to be at least one time unit apart. Note also that train k2 departs from its origin

station i2 later than that of its ideal timetable. This is because if train k2 departs from its origin station at

its ideal timetable’s departure time (i.e., time 12), then it will arrive at station i1 at the same time as train k3

(i.e., time 13). The arrival headway requirement demands these two arrivals to be at least one time unit apart.

9



3 The State-Space-Time Network Formulation

In this section we formulate our problem as a minimum cost multi-commodity network flow problem with

incompatible arcs and integer flow restrictions, where each commodity represents a locomotive. The underlying

network is a three-dimensional acyclic directed network G = (V,A), where the three dimensions are state, space,

and time.

3.1 State-Space-Time Network Construction

For each locomotive, we use a state to indicate which train the locomotive is serving. We say that a locomotive

is in state 0 if the locomotive is not serving any train (i.e., if the locomotive is light-running or staying at a

station by itself). We say that a locomotive is in state k if it is serving train k (i.e., if the locomotive is picking

up train k, pulling train k, or dropping off train k), for k ∈ K. Let K̄ = {0} ∪K denote the set of all possible

states, which forms the “state” dimension of network G. The set of all possible time instants in the planning

horizon is {0, 1, . . . , T}, which forms the “time” dimension of G. The “space” dimension of G covers the railway

stations, where we use two vertices to represent one station for each state and time combination. One of these

two vertices corresponds to the arrival at the station, and the other corresponds to the departure from the

station. We use these two vertices because each train has a dwell time requirement at a station; see Caprara

et al. (2002) for a similar treatment. Mathematically, we let S̄ = {ρ(i) | i ∈ S} ∪ {ρ′(i) | i ∈ S} denote the

“space” dimension, where ρ(i) represents a locomotive’s arrival at station i and ρ′(i) represents a locomotive’s

departure from station i.

The vertex set of the state-space-time network G is

V = {ō, d̄} ∪
{
(k, r, t)

∣∣ k ∈ K̄, r ∈ S̄, t = 0, 1, . . . , T
}
,

where vertices ō and d̄ are the dummy source and dummy sink, respectively, for the multi-commodity flow.

A path in this network starting at ō and ending at d̄ indicates the sequence of changes in state and location

of a locomotive over time. The arc set A of network G contains several types of arcs, with a vector of cost

coefficients (ξl1
u,v, . . . , ξ

l|L|
u,v ) associated with each arc u → v ∈ A, where cost coefficient ξl

u,v represents the cost

for locomotive l to traverse this arc. Each arc u → v ∈ A has a unit capacity per locomotive, but different

locomotives may traverse the same arc. Descriptions of different types of arcs are given below.

• Starting arcs: For each i ∈ S and t = 0, 1, . . . , T , there is a starting arc ō→ (0, ρ(i), t) if there exists at least

one locomotive l ∈ L such that i = ôl and t ≥ p̂l. For each l ∈ L, if i = ôl and t ≥ p̂l, then ξl
ō,(0,ρ(i),t) = 0;

otherwise, ξl
ō,(0,ρ(i),t) = +∞. This arc allows locomotive l to start its operation at station ôl at or after time

p̂l.

• Ending arcs: For each i ∈ S and t = 0, 1, . . . , T , there is an ending arc (0, ρ′(i), t)→ d̄ if there exists at least

one locomotive l ∈ L such that i = d̂l and t ≥ p̂l. For each l ∈ L, if i = d̂l and t ≥ p̂l, then ξl
(0,ρ′(i),t),d̄

= 0;

otherwise, ξl
(0,ρ′(i),t),d̄

= +∞. This arc allows locomotive l to complete its operation at station d̂l at or before

time q̂l.
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• Pickup arcs: For each k ∈ K and t, t′ = 0, 1, . . . , T , there is a pickup arc (0, ρ′(ok), t)→ (k, ρ(ok), t′) if there

exists at least one locomotive l ∈ Ωk such that t ≥ p̂l and t′ = t+ε+lk ≤ q̂l. For each l ∈ L, if l ∈ Ωk, t ≥ p̂l, and

t′ = t+ ε+lk ≤ q̂l, then ξl
(0,ρ′(ok),t),(k,ρ(ok),t′) = flk + c′l(t

′− t)−πk; otherwise, ξl
(0,ρ′(ok),t),(k,ρ(ok),t′) = +∞. This

arc allows locomotive l to pick up train k at station ok and change the state from 0 to k. The cost coefficient

ξl
(0,ρ′(ok),t),(k,ρ(ok),t′) includes not only the locomotive’s operating cost c′l(t

′− t) but also the locomotive-train

assignment cost flk. Since train k is picked up by locomotive l, the train is not canceled. Hence, a cost

reduction of πk is also included in the cost coefficient ξl
(0,ρ′(ok),t),(k,ρ(ok),t′). Note that this arc changes the

“space” component from ρ′(ok) to ρ(ok). This allows locomotive l to wait at station ok (which changes the

status from “arrival” to “departure”) before picking up train k, and allows train k to dwell at station ok for

passenger boarding (which also changes the status from “arrival” to “departure”) after being picked up by

locomotive l; see the descriptions of dwelling arcs and waiting arcs below.

• Drop-off arcs: For each k ∈ K and t, t′ = 0, 1, . . . , T , there is a drop-off arc (k, ρ′(dk), t) → (0, ρ(dk), t′) if

there exists at least one locomotive l ∈ Ωk such that t ≥ p̂l and t′ = t + ε−lk ≤ q̂l. For each l ∈ L, if l ∈ Ωk,

t ≥ p̂l, and t′ = t + ε−lk ≤ q̂l, then ξl
(k,ρ′(dk),t),(0,ρ(dk),t′) = c′l(t

′ − t); otherwise, ξl
(k,ρ′(dk),t),(0,ρ(dk),t′) = +∞.

This arc allows locomotive l to drop off train k at station dk and change the state from k to 0. Similar to

pickup arcs, this arc changes the “space” component from ρ′(dk) to ρ(dk).

• Light-running arcs: For each i → j ∈ E and t, t′ = 0, 1, . . . , T , there is a light-running arc (0, ρ′(i), t) →

(0, ρ(j), t′) if there exists at least one locomotive l ∈ L such that t ≥ p̂l, t′ = t+α̂l
ij , and t′ ≤ q̂l. For each l ∈ L,

if t ≥ p̂l, t′ = t + α̂l
ij , and t′ ≤ q̂l, then ξl

(0,ρ′(i),t),(0,ρ(j),t′) = cl(t′ − t); otherwise, ξl
(0,ρ′(i),t),(0,ρ(j),t′) = +∞.

This arc allows locomotive l to light run along track segment i→ j.

• Loaded-running arcs: For each k ∈ K, i → j ∈ E, and t, t′ = 0, 1, . . . , T , there is a loaded-running arc

(k, ρ′(i), t)→ (k, ρ(j), t′) if there exists at least one locomotive l ∈ Ωk such that:

(C1) t ≥ p̂l;

(C2) t′ = t + max{α̂l
ij , α

k
ij} ≤ q̂l;

(C3) track segment i→ j is along the path sk1 → sk2 → · · · → sk|Sk|;

(C4) pk ≤ t ≤ p′k if i = sk1; and

(C5) qk ≤ t′ ≤ q′k if j = sk|Sk|.

Let τk denote the departure time at station ok in train k’s ideal timetable. For each l ∈ L, if l ∈ Ωk,

conditions (C1)–(C5) are satisfied, and track segment i → j is along the path sk2 → sk3 → · · · → sk|Sk|,

then ξl
(k,ρ′(i),t),(k,ρ(j),t′) = cl(t′ − t) + γk(t′ − t− αk

ij). If l ∈ Ωk, conditions (C1)–(C5) are satisfied, and track

segment i→ j is sk1 → sk2, then ξl
(k,ρ′(i),t),(k,ρ(j),t′) = cl(t′ − t) + γk(t′ − t− αk

ij) + φk(|t− τk|). Otherwise,

ξl
(k,ρ′(i),t),(k,ρ(j),t′) = +∞. This arc allows train k to travel along track segment i→ j during the time period

[t, t′]. The cost coefficient ξl
(k,ρ′(i),t),(k,ρ(j),t′) includes locomotive l’s operating cost as well as the penalty of

train k’s stretch contributed by the traveling along track segment i → j. If station i is the origin station of

train k, then the penalty of train k’s shift is also included in ξl
(k,ρ′(i),t),(k,ρ(j),t′).
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• Dwelling arcs: For each k ∈ K, i ∈ S, and t, t′ = 0, 1, . . . , T , there is a dwelling arc (k, ρ(i), t)→ (k, ρ′(i), t′) if

there exists l ∈ Ωk such that t ≥ p̂l, t′ = t+βki ≤ q̂l, and i ∈ {sk1, . . . , sk|Sk|}. For each l ∈ L, if l ∈ Ωk, t ≥ p̂l,

t′ = t + βki ≤ q̂l, and i ∈ {sk1, . . . , sk|Sk|}, then ξl
(k,ρ(i),t),(k,ρ′(i),t′) = c′l(t

′ − t) + γk(t′ − t − βki); otherwise,

ξl
(k,ρ(i),t),(k,ρ′(i),t′) = +∞. This arc allows train k to spend a minimum required dwell time at station i,

during which passengers can alight and board the train. For each k ∈ K, i ∈ S, and t = 0, 1, . . . , T − 1, there

is also a dwelling arc (k, ρ′(i), t) → (k, ρ′(i), t + 1). For each l ∈ L, if l ∈ Ωk, i ∈ S, and t = 0, 1, . . . , T − 1,

then ξl
(k,ρ′(i),t),(k,ρ′(i),t+1) = c′l + γk; otherwise, ξl

(k,ρ′(i),t),(k,ρ′(i),t+1) = +∞. This arc allows train k to

continue to stay at station i after it has spent its minimum required dwell time there. The cost coefficients

ξl
(k,ρ(i),t),(k,ρ′(i),t′) and ξl

(k,ρ′(i),t),(k,ρ′(i),t+1) include locomotive l’s operating cost as well as the penalty of

train k’s stretch contributed by the dwelling at station i.

• Waiting arcs: For each i ∈ S and t = 0, 1, . . . , T − 1, there is a waiting arc (0, ρ′(i), t) → (0, ρ′(i), t + 1) if

there exists l ∈ L such that p̂l ≤ t ≤ q̂l − 1. For each l ∈ L, if p̂l ≤ t ≤ q̂l − 1, then ξl
(0,ρ′(i),t),(0,ρ′(i),t+1) = c′l;

otherwise, ξl
(0,ρ′(i),t),(0,ρ′(i),t+1) = +∞. This arc allows a locomotive to wait at station i when it is not serving

any train. For each i ∈ S and t = 0, 1, . . . , T , there is also a waiting arc (0, ρ(i), t) → (0, ρ′(i), t) if there

exists l ∈ L such that p̂l ≤ t ≤ q̂l. For each l ∈ L, if p̂l ≤ t ≤ q̂l, then ξl
(0,ρ(i),t),(0,ρ′(i),t) = 0; otherwise,

ξl
(0,ρ(i),t),(0,ρ′(i),t) = +∞. This arc allows a locomotive to switch from “arrival” to “departure” at station i

when the locomotive is not serving any train.

A path from vertex ō to vertex d̄ in this state-space-time network corresponds to a possible schedule of a

locomotive, and this schedule is feasible for locomotive l if and only if all the cost coefficients of commodity l

along this path are finite. Given this network, we would like to determine one unit of flow for each of the |L|

commodities from vertex ō to vertex d̄, such that some incompatibility constraints are satisfied, and that the

total cost is minimized. Descriptions of these incompatibility constraints are provided in Section 3.2.

Consider the example and its feasible solution discussed in Section 2.3. Figure 3 depicts locomotive l1’s path

in network G. The path begins at vertex ō, traverses the starting arc ō→ (0, ρ(i1), 0), and traverses the waiting

arc (0, ρ(i1), 0) → (0, ρ′(i1), 0). Then, the path traverses the pickup arc (0, ρ′(i1), 0) → (k1, ρ(i1), 2), which

corresponds to the pickup of train k1 by locomotive l1. Next, the path traverses a series of dwelling and loaded-

running arcs until it reaches vertex (k1, ρ
′(i4), 6). Then, the path traverses the drop-off arc (k1, ρ

′(i4), 6) →

(0, ρ(i4), 8), which corresponds to the drop-off of train k1. Next, the path traverses a series of waiting and

light-running arcs until it reaches vertex (0, ρ′(i2), 11). Then, the path traverses the pickup arc (0, ρ′(i2), 11)→

(k2, ρ(i2), 13), which corresponds to the pickup of train k2, and so on.

Note that if all time-related parameters are positive, then besides the starting and ending arcs, each arc of

network G is either of the form (∗, ∗, t) → (∗, ∗, t′) with t′ > t, or of the form (∗, ρ(i), t) → (∗, ρ′(i), t). Thus,

network G is acyclic when all time-related parameters are positive. Note also that network G is very large.

However, the size of G can be reduced substantially by removing (i) all arcs of which all |L| components of the

cost coefficient vector are infinite; (ii) all non-dummy vertices with no incoming arcs as well as the outgoing
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Figure 3: Locomotive l1’s path in the state-space-time network.

arcs of these vertices; and (iii) all non-dummy vertices with no outgoing arcs as well as the incoming arcs of

these vertices.

3.2 Incompatibility Constraints

The state-space-time network G is constructed in such a way that any feasible flow with finite cost in this

network must satisfy the time window constraints described in Section 2.2. However, a flow in this network

may not satisfy the headway constraints and track capacity constraints. In addition, a flow in this network

may have some trains being served multiple times. Hence, besides the standard network flow constraints such

as flow balance constraints, supply/demand constraints, and capacity constraints, our multi-commodity flow

model also has the following incompatibility constraints:

• Train service constraints: Each time a locomotive picks up a train k, a cancellation penalty of πk can be

saved. For each k ∈ K, since train k should be served at most once (and the penalty πk can be saved at

most once), we impose a constraint that the total flow along the pickup arcs in the arc subset

C1
k = A ∩

{
(0, ρ′(ok), t)→ (k, ρ(ok), t′)

∣∣ t, t′ = 0, 1, . . . , T
}

is at most one.

• Arrival headway constraints: The time difference between two arrivals at the same station j should be no less

than the required arrival headway gj if both arrivals are arriving from the same station i. Hence, for each

i→ j ∈ E and each t1 = 0, 1, . . . , T−gj +1, no more than one locomotive may finish traversing track segment

i→ j during the time interval [t1, t1 + gj − 1]. Thus, for each i→ j ∈ E and each t1 = 0, 1, . . . , T − gj + 1,
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we impose a constraint that the total flow along the light-running and loaded-running arcs in the arc subset

C2
ijt1 = A ∩

{
(k, ρ′(i), t)→ (k, ρ(j), t′)

∣∣ k ∈ K̄; t, t′ = 0, 1, . . . , T ; t1 ≤ t′ ≤ t1 + gj − 1
}

is at most one.

• Departure headway constraints: The time difference between two departures from the same station i should

be no less than the required departure headway hi if both departures are leaving for the same station j.

Hence, for each i → j ∈ E and each t1 = 0, 1, . . . , T − hi + 1, no more than one locomotive may start

traversing track segment i→ j during the time interval [t1, t1 + hi − 1]. Thus, for each i→ j ∈ E and each

t1 = 0, 1, . . . , T−hi+1, we impose a constraint that the total flow along the light-running and loaded-running

arcs in the arc subset

C3
ijt1 = A ∩

{
(k, ρ′(i), t)→ (k, ρ(j), t′)

∣∣ k ∈ K̄; t, t′ = 0, 1, . . . , T ; t1 ≤ t ≤ t1 + hi − 1
}

is at most one.

• Track capacity constraints: A locomotive is not allowed to overtake another locomotive/train when traveling

on a track segment. Thus, for each i→ j ∈ E and each group of four distinct time points 0 ≤ t1 < t2 < t3 <

t4 ≤ T , we impose a constraint that the total flow along the light-running and loaded-running arcs in the arc

subset

C4
ijt1t2t3t4 = A ∩

[{
(k, ρ′(i), t1)→ (k, ρ(j), t4)

∣∣ k ∈ K̄
}
∪

{
(k, ρ′(i), t2)→ (k, ρ(j), t3)

∣∣ k ∈ K̄
}]

is at most one.

Denote

C = {C1
k | k ∈ K} ∪ {C2

ijt1 | i→ j ∈ E; t1 = 0, 1, . . . , T − gj + 1}

∪ {C3
ijt1 | i→ j ∈ E; t1 = 0, 1, . . . , T − hi + 1} ∪ {C4

ijt1t2t3t4 | i→ j ∈ E; 0 ≤ t1 < t2 < t3 < t4 ≤ T},

which is a collection of all the sets of incompatible arcs in network G. For any C ∈ C, the total flow along the

arcs in C cannot exceed one.

3.3 Integer Programming Formulation

For l ∈ L and u→ v ∈ A, let xl
u,v = 1 if arc u→ v is on the path traversed by locomotive l; and let xl

u,v = 0

otherwise. Then, the above minimum cost multi-commodity network flow problem with incompatible arcs and

integer flow restrictions can be formulated as the following integer program.

P : Minimize
∑

k∈K πk +
∑

l∈L

∑
u→v∈A ξl

u,vxl
u,v (1)

subject to
∑

{v:ō→v∈A} xl
ō,v = 1, for all l ∈ L (2)∑

{u:u→d̄∈A} xl
u,d̄

= 1, for all l ∈ L (3)∑
{u:u→v∈A} xl

u,v =
∑

{w:v→w∈A} xl
v,w, for all l ∈ L; v ∈ V \ {ō, d̄} (4)
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∑
u→v∈C

∑
l∈L xl

u,v ≤ 1, for all C ∈ C (5)

xl
u,v ∈ {0, 1}, for all l ∈ L; u→ v ∈ A (6)

In objective function (1), the constant term “
∑

k∈K πk” is the total cancellation penalty of all the trains.

The term “
∑

l∈L

∑
u→v∈A ξl

u,vxl
u,v” is the total cost of the solution minus the cancellation penalties saved by

successfully assigning compatible locomotives to trains. Thus, objective function (1) equals the total cost of

the solution. Constraints (2), (3), and (4) are the supply, demand, and flow balance constraints, respectively,

in a standard multi-commodity network flow model. Constraints (5) cover all the incompatibility constraints

presented in Section 3.2. These are also known as “clique constraints”; see Caprara et al. (2002). Constraints

(6) are the binary constraints of the decision variables.

4 Lagrangian Relaxation Heuristic

In this section, we present a Lagrangian relaxation heuristic for solving problem P. Lagrangian relaxation

is a widely used method in solving train routing and timetabling problems; see, for example, Brännlund et

al. (1998), Cacchiani et al. (2010a, 2010b, 2012), Meng and Zhou (2014), and Zhou and Teng (2016).

4.1 The Lagrangian Relaxation

Relaxing constraints (5) of problem P and bringing them into the objective function with associated La-

grangian multipliers λC ≥ 0 (C ∈ C), we obtain the following relaxed problem, where λ denotes the vector of

the λC values.

P(λ) : Minimize
∑

k∈K πk +
∑

l∈L

∑
u→v∈A ξl

u,vxl
u,v +

∑
C∈C λC(

∑
u→v∈C

∑
l∈L xl

u,v − 1)

subject to
∑

{v:ō→v∈A} xl
ō,v = 1, for all l ∈ L∑

{u:u→d̄∈A} xl
u,d̄

= 1, for all l ∈ L∑
{u:u→v∈A} xl

u,v =
∑

{w:v→w∈A} xl
v,w, for all l ∈ L; v ∈ V \ {ō, d̄}

xl
u,v ∈ {0, 1}, for all l ∈ L; u→ v ∈ A

After removing the constant
∑

k∈K πk −
∑

C∈C λC from the objective function, this Lagrangian relaxation

problem can be decomposed into |L| independent subproblems. The subproblem corresponding to each l ∈ L is

given as follows.

Pl(λ) : Minimize
∑

u→v∈A ξl
u,vxl

u,v +
∑

C∈C λC

∑
u→v∈C xl

u,v

subject to
∑

{v:ō→v∈A} xl
ō,v = 1,∑

{u:u→d̄∈A} xl
u,d̄

= 1,∑
{u:u→v∈A} xl

u,v =
∑

{w:v→w∈A} xl
v,w, for all v ∈ V \ {ō, d̄}

xl
u,v ∈ {0, 1}, for all u→ v ∈ A
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Each subproblem Pl(λ) is a shortest path problem with arc length δl
u,v = ξl

u,v +
∑

{C∈C:u→v∈C} λC . This

shortest path problem in the acyclic network G can be solved efficiently using a standard dynamic programming

algorithm. Furthermore, subproblems Pl(λ) can be solved in parallel for different l ∈ L when they are solved

by a multicore computer processor.

4.2 The Subgradient Optimization Procedure

For any vector λ of nonnegative λC values, the optimal objective function value of P(λ) is a lower bound on

the optimal objective value of problem P. Near-optimal λC values can be obtained by a subgradient optimization

procedure. Because the number of relaxed constraints is very large, we use the dynamic constraint-generation

scheme similar to that in Caprara et al. (2002) to handle the relaxed constraints and generate the λC values.

Under this scheme, we dynamically identify constraints that the relaxed solution violates, and we use a constraint

pool to store these constraints.

Note that the violated constraints include four types of incompatibility constraints described in Section 3.2.

The number of train service constraints is relatively small. Thus, we include all train service constraints in

the constraint pool (i.e., the constraint pool initially contains all the train service constraints but none of the

other incompatibility constraints). We initialize all λC values to zero. At each iteration of the subgradient

optimization procedure, we identify arrival headway constraints, departure headway constraints, and track

capacity constraints that the relaxed solution violates. Specifically, at each iteration, we consider each pair

of locomotives l, l′ ∈ L and their paths in the relaxed solution. Whenever these two paths violate the arrival

headway constraint, we include the corresponding constraint in the pool. That is, when these two locomotives

traverse track segment i→ j and arrive at station j ∈ S at time t and t′ respectively, where t ≤ t′ ≤ t + gj − 1,

we add the violated constraint corresponding to set C2
ijt to the pool if that constraint is not yet in the pool.

Whenever these two paths violate the departure headway constraint, we include the corresponding constraint

in the pool. That is, when these two locomotives depart from station i ∈ S at time t and t′ respectively and

traverse track segment i → j, where t ≤ t′ ≤ t + hi − 1, we add the violated constraint corresponding to set

C3
ijt to the pool if that constraint is not yet in the pool. Whenever these two paths violate the track capacity

constraint, we include the corresponding constraint in the pool. That is, when these two locomotives traverse

track segment i → j during the time intervals [t1, t4] and [t2, t3] respectively, where t1 < t2 < t3 < t4, we add

the violated constraint corresponding to set C4
ijt1t2t3t4

to the pool if that constraint is not yet in the pool.

After adding these violated constraints to the constraint pool, we update the Lagrangian multipliers of the

constraints in the pool as follows. Consider the mth constraint in the pool. Let λm denote the Lagrangian

multiplier corresponding to this constraint, and ηm denote the left-hand side value minus the right-hand side

value of this constraint in the relaxed solution. Thus, ηm is the mth component of the subgradient vector

η corresponding to the current relaxed solution. For each m, the Lagrangian multiplier λm can be updated
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according to the formula (Held and Karp 1971):

λm ← max
{

λm + θ · UB − LB(λ)
‖η‖2

· ηm, 0
}

,

where UB is the value of the best feasible solution of problem P identified so far, LB(λ) is the optimal

objective value of P(λ) corresponding to the current Lagrangian multiplier values, and θ is a prespecified step

size parameter.

To improve the convergence of the procedure, we further apply a modified subgradient technique proposed

by Camerini et al. (1975). We use a modified subgradient vector η̃ instead of η to update the Lagrangian

multipliers λm. In each iteration of the procedure, the modified subgradient vector η̃ is updated by

η̃ ← η + bη̃,

where b is a scalar defined as

b =

{
−a · η̃·η

‖η̃‖2 , if η̃ · η < 0;
0, otherwise;

and a is a prespecified value between 0 and 2. This modified subgradient technique tends to avoid “zig-zag”

behavior of the λm values caused by subgradient vector η, and thus improves the convergence of the subgradient

optimization procedure (see Camerini et al. 1975, Sec. 2).

Each iteration of the subgradient optimization procedure comprises the following steps: (i) solve problem

P(λ) using dynamic programming to obtain a lower bound on problem P; (ii) obtain a feasible solution of

problem P using an upper bound heuristic (see Section 4.3 for details); (iii) identify constraints that the

current lower bound solution has violated; (iv) update the modified subgradient vector; and (v) update the

Lagrangian multipliers. However, in some iterations, step (ii) may be skipped in order to save computational

time (see Section 5.1 for details). This procedure is terminated when either the number of iterations reaches a

prespecified limit, or the gap between the upper bound and lower bound is less than a prespecified threshold.

4.3 Upper Bound Heuristic

We now present an upper bound heuristic that returns a feasible solution of problem P for any given vector

λ of Lagrangian multipliers λC ≥ 0 for C ∈ C. This heuristic is used in the subgradient optimization procedure

presented in Section 4.2 and contains the following two phases; see Algorithm 1 for a summary of this heuristic.

In Phase 1, the heuristic constructs a feasible solution to problem P based on the arc lengths δl
u,v =

ξl
u,v +

∑
{C∈C:u→v∈C} λC , u → v ∈ A, defined in Section 4.1. For each l ∈ L, the optimal objective value

of subproblem Pl(λ) represents the contribution of locomotive l to the optimal objective value of the relaxed

problem P(λ). Thus, the heuristic first ranks the locomotives l ∈ L in nondecreasing order of the optimal

objective values of Pl(λ) before constructing a schedule for each locomotive one by one according to this order.

The constructed schedule for each locomotive corresponds to a path from vertex ō to vertex d̄ in network G.

When the heuristic constructs a schedule for a locomotive l ∈ L, the schedules of those locomotives with higher
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Algorithm 1 Upper bound heuristic for constructing schedules for the locomotives in L

1: Phase 1: Construct initial schedules
2: Rank the locomotives in L in nondecreasing order of their optimal objective values of Pl(λ), and denote

the ranked order of locomotives as l1, l2, . . . , l|L|;
3: for l := l1, l2, . . . , l|L| do
4: apply the restricted labeling algorithm to construct a schedule for l, where the schedules of the

locomotives with higher ranks than l are kept unchanged
5: end for
6: Phase 2: Construct improved schedules
7: Rearrange l1, l2, . . . , l|L| in a random order;
8: for l := l1, l2, ..., l|L| do
9: apply the restricted labeling algorithm to construct a new schedule for l, where the schedules of all other

locomotives are kept unchanged;
10: if the new schedule of l is better than the schedule of l obtained in Phase 1, then assign the new schedule

to l

11: end for

ranks than l are already determined and will remain unchanged. To ensure that the schedule for locomotive

l does not violate any incompatibility constraints of problem P, we need to prevent its corresponding path in

network G from traversing the following arcs, where arc subsets C1
k , C2

ijt1
, C2

i,j,t1−gj+1, C3
ijt1

, C3
i,j,t1−hi+1, and

C4
ijt1t2t3t4

are defined in Section 3.2:

• Due to the train service constraints, for each k ∈ K, if train k has been picked up by one of the locomotives

of higher ranks than l, then no pickup arc in the arc subset C1
k can be traversed by l.

• Due to the arrival headway constraints, for each i → j ∈ E and each t1 = 0, 1, ..., T − gj + 1, if one of the

locomotives of higher ranks than l traverses track segment i→ j and arrives at station j at time t1, then no

light-running or loaded-running arc in the arc subset C2
ijt1
∪ C2

i,j,t1−gj+1 can be traversed by l.

• Due to the departure headway constraints, for each i→ j ∈ E and each t1 = 0, 1, ..., T − hi + 1, if one of the

locomotives of higher ranks than l departs from station i at time t1 and traverses track segment i→ j, then

no light-running or loaded-running arc in the arc subset C3
ijt1
∪ C3

i,j,t1−hi+1 can be traversed by l.

• Due to the track capacity constraints, for each i → j ∈ E and each group of four distinct time points

0 ≤ t1 < t2 < t3 < t4 ≤ T , if one of the locomotives of higher ranks than l traverses track segment i → j

during time period [t1, t4] or time period [t2, t3], then no light-running or loaded-running arc in the arc subset

C4
ijt1t2t3t4

can be traversed by l.

Let C̄l
1 be the collection of these arcs. In order to ensure that no arc in C̄l

1 is traversed by locomotive l, we

revise their arc lengths to +∞. Letting χl
u,v denote the revised arc length of u→ v ∈ A, we have

χl
u,v =

{
+∞, if u→ v ∈ C̄l

1;
δl
u,v, otherwise.

Using the arc lengths {χl
u,v | u → v ∈ A}, we aim to construct a schedule for locomotive l by finding a

shortest path from vertex ō to vertex d̄ in network G subject to a side constraint that each train k ∈ K can be
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picked up by l at most once. This side constraint is necessary because χl
u,v may be negative for some pickup

arc u → v and thus a shortest path from ō to d̄ without this side constraint may pick up a train more than

once. We develop a labeling algorithm for finding such constrained shortest path for locomotive l. Labeling

algorithms have been widely used in solving constrained shortest path problems in vehicle routing analyses (see,

e.g., Ioachim et al. 1998 and Righini and Salani 2008). For each u ∈ V , we introduce a two-dimensional label

(Ku, Fu) to indicate the status of a partial path from vertex ō to vertex u with no train being picked up more

than once, where Ku indicates the set of trains that have been picked up, and Fu indicates the length of the

partial path. Vertex ō has only one label, while each of the other vertices may have multiple labels. Initially,

we set the label of vertex ō to (Kō, Fō) = (∅, 0). For any label (Ku, Fu) of u ∈ V that has been obtained, if arc

u → v ∈ A is not a pickup arc of any train k ∈ Ku, then we can extend the labeling to vertex v ∈ V with the

label for vertex v being (Kv, Fv), where

Kv =

{
Ku ∪ {k}, if u→ v is a pickup arc of train k ∈ K \Ku;
Ku, otherwise;

and

Fv = Fu + χl
u,v.

By repeatedly extending the labels, we can generate labels for all vertices in V .

Noting that G is an acyclic network, we extend the labeling of the vertices following a topological vertex

order of G from v = ō to v = d̄. In order to save computational time, we sacrifice the optimality and find

only an approximated constrained shortest path for locomotive l. This is achieved by imposing a restriction

on the labeling algorithm, so that for each vertex v ∈ V , only the label (Kv, Fv) with the smallest Fv value is

maintained. We refer to this algorithm as the restricted labeling algorithm.

The collection of the paths (or schedules) constructed in Phase 1 for all the locomotives forms a feasible

solution to problem P. In Phase 2, we aim to obtain a better feasible solution by identifying locomotives with

schedules that can be improved, where the schedule of a locomotive l ∈ L corresponds to a path in network

G and the length of the path is measured using the arc lengths {ξl
u,v | u → v ∈ A}. Similar to a local search

algorithm, we consider each locomotive l in an arbitrary sequence and examine whether or not the schedule

of locomotive l can be replaced by any improved schedule, while keeping the schedules of other locomotives

unchanged. To ensure that the improved schedule of locomotive l does not violate any incompatibility constraint

of problem P, we need to prevent its corresponding path in network G from traversing arcs in an arc subset C̄l
2.

Arc subset C̄l
2 has the same definition as C̄l

1, except that C̄l
2 is defined based on the schedules of all locomotives

other than l, while C̄l
1 is defined based on the schedules of the locomotives with higher ranks than l. We revise

the lengths of the arcs in C̄l
2 to +∞ accordingly and let Kl be the set of trains assigned to locomotive l in the

schedule obtained in Phase 1. In order to ensure that the improved schedule of locomotive l obtained in Phase 2

can serve at least all those trains that have already been assigned to it by Phase 1, we let the trains in Kl have

higher priorities to be assigned to l by revising the lengths of pickup arcs of these trains to −M , where M is a
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large number. Thus, for arc u→ v ∈ A, the revised arc length χl
u,v is defined as follows:

χl
u,v =


+∞, if u→ v ∈ C̄l

2;
−M, if u→ v is a pickup arc of a train in the set Kl;
ξl
u,v, otherwise.

With the arc lengths {χl
u,v | u → v ∈ A} defined above, we apply the restricted labeling algorithm described

in Phase 1 to find an approximated constrained shortest path for locomotive l. This approximated constrained

shortest path is a new schedule for locomotive l. If this new schedule has a length (measured using arc lengths

ξl
u,v) smaller than that of the schedule obtained in Phase 1, then we assign this new schedule to locomotive l.

The heuristic returns a collection of the schedules for the locomotives in L, which forms a feasible solution

to problem P, and the objective value of this feasible solution is an upper bound on the optimal objective value

of P.

5 Computational Study

We implement our Lagrangian relaxation heuristic in C# using a personal computer with a 3.40 GHz quad-

core processor (Intel Core i7-6700 Processor) and 32 GB RAM. We conduct a computational study to evaluate

the performance of the heuristic. In addition to reporting the optimality gaps of the heuristic solutions, we

compare the performance of the heuristic with two benchmark solution methods. The generation of test data

is described in Section 5.1. Descriptions of the benchmark solution methods are provided in Section 5.2, and

our computational results are presented in Section 5.3.

5.1 Generation of Test Instances

In our computational study, we adopt the two railway networks presented in Meng and Zhou (2014, Sec. 6.1),

where the first network is originated from INFORMS RAS (2012), and the second network is an extension of

the first one with a larger size. In order to convert these two single-track railway networks into our model’s

setting, we modify them as follows:

• Each siding track and its corresponding main track in the given single-track railway network are regarded as

a station in our double-track railway network.

• Each joint point in the given single-track railway network is regarded as a station in our double-track railway

network.

• All stations are uncapacitated.

• Each group of serial arcs between two stations is regarded as a track segment in our double-track railway

network, and the length of this track segment is equal to the total length of the serial arcs in this group.

• All track segments are changed from single-track to double-track.

The two double-track railway networks obtained, namely Network 1 and Network 2, are shown in Figure 4.

Network 1 has 16 stations i0, i1, . . . , i15 and 36 track segments, while Network 2 has 23 stations i0, i1, . . . , i22
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Figure 4: Double-track networks modified from Meng and Zhou’s (2014) single-track networks.

and 56 track segments. Each station i has a 4-minute minimum headway for arrivals (i.e., gi = 4) and a

2-minute minimum headway for departures (i.e., hi = 2). The length (in miles) of each track segment is shown

on the corresponding arc in the two network diagrams. Note that some of the arcs in these two networks such

as i6 → i11 and i11 → i6 correspond to crossovers in Meng and Zhou’s (2014) original networks, and thus they

are relatively short. In reality, the two ends of a crossover are not two separate train stations. However, for

simplicity, in Networks 1 and 2, we treat the two ends of each crossover as separate stations. For test instances

with underlying Network 1, we set the length of the planning horizon to T = 720 minutes (i.e., 12 hours). For

test instances with underlying Network 2, we set T = 1440 minutes (i.e., 24 hours).

For test instances with underlying Network 1 and Network 2, we consider the 4 train routes R1, R2, R3, R4 and

the 8 train routes R1, R2, R3, R4, R5, R6, R7, R8, respectively, as listed in Table 3. Routes R1 and R2 correspond

to the two different directions (i.e., eastbound and westbound) of the longest path in these networks. Routes

R3 and R4 correspond to the two different directions of a shorter path that passes through stations i10, i11, and

Table 3: Data for computational study: Train routes.

R1: i0 → i1 → i2 → i3 → i4 → i5 → i6 → i7 → i8 → i9 → i13 → i14 → i15

R2: i15 → i14 → i13 → i9 → i8 → i7 → i6 → i5 → i4 → i3 → i2 → i1 → i0

R3: i5 → i10 → i11 → i12 → i13

R4: i13 → i12 → i11 → i10 → i5

R5: i16 → i17 → i18 → i19 → i22 → i14

R6: i14 → i22 → i19 → i18 → i17 → i16

R7: i18 → i19 → i20 → i21 → i22

R8: i22 → i21 → i20 → i19 → i18
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Table 4: Data for computational study: Train types.

Train type Speed multiplier πk φk(νk) γk p′k − pk

Type 1 1 400 2.5νk 5 15

Type 2 0.9 360 2.0νk 4 15

Type 3 0.8 320 1.5νk 3 15

Type 4 0.7 280 νk 2 20

Type 5 0.6 280 νk 2 20

Type 6 0.5 280 νk 2 20

i12. Routes R5 and R6 correspond to the two different directions of a path in the top part of Network 2. Routes

R7 and R8 correspond to the two different directions of a shorter path that passes through stations i20 and

i21 of Network 2. For each test instance that belongs to Network 1, the route of train k is randomly selected

from {R1, . . . , R4}, where each route is selected with probability 1/4. For each test instance that belongs to

Network 2, the route of train k is randomly selected from {R1, . . . , R8}, where each route is selected with

probability 1/8.

We set the maximum speed of the fastest train to 80 miles per hour (mph) and round the travel time of each

train along a track segment to the nearest minute. We consider 6 train types as shown in Table 4, where each

train type has a speed multiplier (see, e.g., INFORMS RAS 2012). For example, if train k’s speed multiplier

is 0.8, then train k’s maximum speed is (0.8)(80) = 64 mph, and this train’s minimum travel time required to

traverse track segment i3 → i4 with a length of 15.9 miles is αk
i3i4

= (15.9/64) · 60 ≈ 15 minutes. The minimum

travel time required to traverse the short track segments i5 → i10, i10 → i5, i6 → i11, i11 → i6, i8 → i12,

i12 → i8, i9 → i13, and i13 → i9 is set equal to 1 minute. For each train k in a test instance, we randomly select

one of these 6 train types, where the probability of each type being selected is 1/6. The cancellation penalty

πk, the shift penalty function φk(·), the unit stretch penalty γk, and the departure time window size p′k − pk of

each train type are provided in Table 4. The earliest allowed departure time pk of train k at the origin station

ok is randomly generated from a discrete uniform distribution between 0 and T − 240. The arrival time window

[qk, q′k] of train k at the destination station dk is set equal to [0, T ]; that is, there is no time window constraint

imposed on the arrival time. The minimum required dwell time βki of train k at each station i is randomly

selected from the set {0, 3, 6}, where the probability of each value being selected is 1/3. The ideal timetable of

train k is the timetable that departs from ok at time pk and traverses the train path with minimum duration.

We set the maximum speed of the fastest locomotive to 80 mph. We consider 2 locomotive types with

speed multiplier 1 and 0.7 respectively. Locomotives with speed multiplier 1 can serve trains of all types, while

locomotives with speed multiplier 0.7 can serve trains of types 4, 5, and 6. For each locomotive l in a test

instance, we randomly select one of these 2 locomotive types, where the probability of each type being selected

is 1/2. Then, the values of parameters Ωk and α̂l
ij can be obtained accordingly. The origin-destination pair

of locomotive l is randomly selected from the set {(i0, i0), (i15, i15), (i0, i15), (i15, i0)}, where the probability of

each pair being selected is 1/4. Other parameters of locomotive l are set equal to the following: p̂l = 0, q̂l = T ,

cl = 1, c′l = 0.9, flk = 20 (for each train k), and ε+lk = ε−lk = 8 (for each train k).
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In our computational study, we consider two railway networks (i.e., Networks 1 and 2) and seven problem

sizes with |K| = 16, 32, 48, 64, 80, 96, 112. Thus, there are 14 combinations of railway network and problem size.

For Network 1, we set |L| = 6, 12, 18, 24, 30, 36, 42 for the seven problem sizes, respectively. Since the train

routes in Network 2 are shorter than the train routes in Network 1 on average, we use a smaller number of

locomotives for Network 2. Thus, for Network 2, we set |L| = 3, 6, 9, 12, 15, 18, 21 for the seven problem sizes,

respectively. For each combination, we generate 5 random test instances. Hence, there are 70 test instances in

total. We solve each test instance using the abovementioned Lagrangian relaxation heuristic and two benchmark

solution methods described in Section 5.2. For the solutions of each test instance obtained by these methods,

and we determine their optimality gaps defined as

Gap =
UB − LB

LB
× 100%,

where LB is the lower bound value generated by the Lagrangian relaxation procedure, and UB is the objective

value of the corresponding solution method. We also record the number of canceled trains, the average shift of

the uncanceled trains, and the average stretch of the uncanceled trains, denoted as |Kc|, ν̄, and µ̄, respectively,

of each heuristic solution.

In our implementation of the subgradient optimization procedure, parameter a is set to 1.5. The initial

value of the step size parameter θ is set to 2. In the solution process, θ is reduced by 20% if the best lower

bound identified has no improvement for 10 consecutive iterations. The computation is terminated if it meets

one of the following conditions: (1) the number of iterations has reached 1000, or there is no improvement of

the best lower bound for 100 consecutive iterations; (2) the best upper bound identified does not exceed 101%

of the best lower bound identified by the subgradient optimization procedure. For the first 300 iterations of the

subgradient optimization procedure, we execute the upper bound heuristic and update UB at each iteration.

After 300 iterations, since the upper bound heuristic becomes less likely to be able to identify a better upper

bound, we execute the upper bound heuristic only with probability 0.1 at each iteration.

5.2 Benchmark Solution Methods

In the computational study, we compare the performance of our solution method with that of two benchmark

methods. The first benchmark method is a priority heuristic (or PR for short), which constructs schedules for

locomotives one by one based on a pre-determined priority sequence of locomotives. This heuristic is simple and

efficient. It mimics the manual decision making process where locomotives are scheduled one after another. To

implement this heuristic, we first relax the incompatibility constraints (5) of problem P. The relaxed problem,

which is equivalent to the Lagrangian relaxation problem P(λ) with λC = 0 for C ∈ C, can be decomposed into

|L| shortest path problems on the acyclic network G. The decomposed problem corresponding to locomotive l,

denoted Pl(0), has arc lengths {ξl
u,v | u → v ∈ A}. A priority sequence of the locomotives is then determined

based on the nondecreasing order of the shortest path lengths of problems {Pl(0) | l ∈ L}, with ties broken

arbitrarily. That is, locomotives corresponding to smaller shortest path lengths are of higher priority. Following
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this sequence, heuristic PR applies the restricted labeling algorithm described in Section 4.3 to construct

schedules for the locomotives one by one. When the heuristic constructs the schedules for locomotives with

lower priorities, the schedules for locomotives with higher priorities are kept unchanged.

The second benchmark method is a sequential heuristic (or SQ for short) that solves the problem by following

a traditional approach, where train timetabling decision is made before the locomotive assignment decision. This

heuristic first solves a train timetabling subproblem, followed by a locomotive assignment subproblem. Since

both subproblems are special cases of problem P, we can apply the Lagrangian relaxation heuristic described

in Section 4 to each subproblem. More specifically, since the train timetabling subproblem is solved without

taking into account the locomotives’ availability, this subproblem is equivalent to the special case of problem P

in which each train k ∈ K can only be served by a distinct dummy locomotive lk. Thus, in this subproblem,

we set the compatible locomotive set to Ωk = {lk} for each train k. For each dummy locomotive lk, we set the

origin station ôlk to ok and the destination station d̂lk to dk. We also set the earliest start time of operation to

p̂lk = 0, the latest completion time of operation to q̂lk = T , the minimum time to traverse each arc i→ j when

light-running to α̂lk
ij = 0, the fixed pickup and drop-off service times to ε+lkk = ε−lkk = 0, the fixed assignment

cost to flkk = 0, and the operating costs per unit time to clk = c′lk = 0. A solution of the train timetabling

subproblem can be obtained by solving this revised problem P with the locomotive set {l1, . . . , l|K|} via the

Lagrangian relaxation heuristic described in Section 4. We let K ′ ⊆ K denote the subset of trains in this

solution that have feasible timetables.

After obtaining the timetable for each train k ∈ K ′ and canceling the train in K \ K ′, we need to assign

locomotives to the trains in K ′. This locomotive assignment subproblem is equivalent to a special case of

problem P, in which each train k ∈ K ′ is either canceled or assigned a locomotive in L. When a train k is

assigned a locomotive in L, it needs to follow its timetable generated by the train timetabling subproblem. This

is achieved by revising the arc lengths in G to +∞ for those loaded-running arcs (k, ρ′(i), t) → (k, ρ(j), t′),

dwelling arcs (k, ρ(i), t) → (k, ρ′(i), t′), and dwelling arcs (k, ρ′(i), t) → (k, ρ′(i), t + 1) that are not included

in the timetable of train k, for each k ∈ K ′. Then, the locomotive assignment subproblem can be solved by

solving problem P with these revised arc lengths. Thus, we apply the Lagrangian relaxation heuristic described

in Section 4 to determine the locomotive assignment and the locomotive schedule.

In our implementation of Heuristic SQ, the maximum number of iterations for solving the train timetabling

subproblem and that for solving the locomotive assignment subproblem are both set to 500, so that the maximum

total number of iterations is 1000, the same as the maximum number of iterations we set for the Lagrangian

relaxation heuristic when solving the integrated problem P. In the subgradient optimization procedure of both

subproblems, parameter a is set to 1.5. The initial value of the step size parameter θ is set to 2. In the solution

process, θ is reduced by 20% if the best lower bound identified has no improvement for 10 consecutive iterations.

For the first 150 iterations, we execute the upper bound heuristic and update UB at each iteration. After 150

iterations, we execute the upper bound heuristic only with probability 0.1 at each iteration.

24



5.3 Computational Results

Table 5 summarizes the computational results with each row representing the mean result of 5 test instances.

The “Gap” column reports the mean optimality gap. The “|Kc|” column reports the mean number of canceled

trains. The “ν̄” column reports the mean value of ν̄, where ν̄ is the average shift of the uncanceled trains in a

test instance. The “µ̄” column reports the mean value of µ̄, where µ̄ is the average stretch of the uncanceled

trains in a test instance. The “κ” column reports the mean value of

κ =
∑

l∈L (amount of serving time of locomotive l)∑
l∈L (amount of available time of locomotive l)

× 100%,

where the available time of locomotive l equals q̂l− p̂l, and the serving time of locomotive l includes the amount

of time locomotive l spends on loaded-running, light-running, dwelling, picking up trains, and dropping off

trains. Thus, κ measures the percentage of available time the locomotives are utilized. The “Time” column

reports the mean computational time (in CPU seconds) for solving a test instance in the problem set.

From these computational results, we observe that Heuristic PR is highly efficient, but the optimality gaps

of the solutions that it generates are significantly larger than those generated by the Lagrangian relaxation

heuristic. The solutions generated by Heuristic PR have higher ν̄ and µ̄ values than the Lagrangian relaxation

heuristic solutions, implying that Heuristic PR generates solutions with worse train schedules. We also observe

that the solutions generated by Heuristic PR tend to have higher |Kc| values and lower κ values than the

Lagrangian relaxation heuristic solutions, implying that Heuristic PR tends to generate solutions with more

canceled trains and lower locomotive utilization. Both the Lagrangian relaxation heuristic and Heuristic SQ

require a lot of computational time, but the solutions generated by Heuristic SQ have significantly larger

optimality gaps. This observation suggests that making train timetabling and locomotive assignment decisions

Table 5: Computational results.

Lagrangian relaxation heuristic Heuristic PR Heuristic SQ

|L| |K| Gap |Kc| ν̄ µ̄ κ Time Gap |Kc| ν̄ µ̄ κ Time Gap |Kc| ν̄ µ̄ κ Time

Network 1

6 16 0.8% 3.2 1.98 0.00 38% 19.4 8.3% 4.2 2.30 0.19 34% 0.2 5.8% 4.0 0.16 0.04 36% 82.4

12 32 1.8% 4.0 3.37 0.41 41% 220.4 10.3% 6.4 3.81 0.53 36% 0.6 10.2% 7.0 0.61 0.28 37% 339.8

18 48 4.4% 8.0 3.37 0.44 36% 623.8 12.3% 9.6 4.09 0.61 36% 1.2 12.7% 11.6 1.21 0.66 34% 1023.8

24 64 8.5% 5.6 4.12 0.84 41% 1313.8 17.4% 8.4 4.07 1.46 40% 2.4 16.1% 11.2 1.96 0.68 36% 1538.3

30 80 10.9% 9.8 4.62 1.20 39% 2185.0 17.3% 13.0 5.25 1.63 38% 3.4 20.8% 18.8 2.38 0.94 34% 3200.6

36 96 15.6% 10.8 5.30 1.44 38% 3702.4 22.6% 11.0 5.90 2.84 40% 5.4 26.6% 20.4 3.05 1.26 33% 4041.4

42 112 16.8% 15.6 5.28 1.64 38% 5733.8 22.9% 19.2 5.99 2.45 37% 7.7 30.8% 29.4 2.97 1.62 32% 7093.2

Network 2

3 16 0.7% 3.2 1.33 0.00 25% 14.4 5.6% 3.6 1.91 0.00 24% 0.2 11.4% 4.8 0.14 0.00 20% 70.9

6 32 0.9% 3.8 1.54 0.04 28% 159.2 4.5% 3.6 1.91 0.03 29% 0.5 9.8% 5.4 0.07 0.01 27% 312.6

9 48 1.4% 3.4 1.93 0.03 30% 641.8 8.2% 3.4 1.44 0.02 31% 1.0 9.0% 5.8 0.13 0.00 28% 1492.9

12 64 2.0% 4.2 2.68 0.05 30% 844.2 12.0% 5.4 2.55 0.12 30% 1.7 12.5% 7.6 0.27 0.03 28% 3340.9

15 80 4.9% 1.2 2.74 0.11 32% 1608.2 13.6% 2.0 3.15 0.22 32% 2.8 20.2% 6.4 0.28 0.11 29% 3864.5

18 96 5.9% 3.0 2.79 0.10 32% 2497.4 14.9% 3.8 3.40 0.15 32% 3.8 19.4% 9.8 0.47 0.05 29% 6604.1

21 112 9.8% 2.6 3.32 0.32 31% 3790.0 15.2% 2.4 4.00 0.36 32% 5.9 23.4% 9.2 0.65 0.16 29% 10090.7
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Table 6: Lagrangian relaxation heuristic solutions under different values of |L|.
Network 1 Network 2

|L| |K| Gap |Kc| ν̄ µ̄ κ Time |L| |K| Gap |Kc| ν̄ µ̄ κ Time

16 64 5.1% 9.8 3.96 0.34 53% 750.0 8 64 1.7% 8.8 2.59 0.03 40% 481.2

20 64 6.3% 6.8 4.13 0.40 46% 983.6 10 64 2.1% 6.0 2.58 0.03 34% 659.8

24 64 8.1% 4.0 4.30 0.81 41% 1201.8 12 64 2.2% 4.6 2.40 0.05 30% 917.2

28 64 8.8% 4.2 4.05 0.83 35% 1490.2 14 64 2.2% 2.2 2.66 0.08 27% 1117.0

32 64 9.4% 4.0 4.33 0.69 31% 1693.8 16 64 2.6% 1.2 2.42 0.04 24% 1337.4

separately will result in solutions with much worse quality. The solutions generated by Heuristic SQ have lower

ν̄ and µ̄ values than the solutions generated by the Lagrangian relaxation heuristic but with a significantly

higher number of canceled trains. This implies that making locomotive assignment decision after making train

timetabling decision could result in more train cancellations.

From Table 5, we also observe that the performance gap of all three heuristics tend to be larger as |L| and

|K| increase; that is, as traffic in the railway network increases. This indicates that either the problem becomes

harder to solve as traffic increases, or the Lagrangian relaxation lower bound is less tight as traffic increases.

Next, we study how the computational results are affected by the number of available locomotives. We

consider the case with |K| = 64 and rerun the experiments by varying the value of |L|, with the other parameters

kept unchanged. Table 6 summarizes the results with each row representing the mean result of 5 test instances.

From these results, we observe that both the number of canceled trains and the locomotive utilization tend to

decrease as the number of locomotive increases, but the ν̄ and µ̄ indicate that the quality of the train schedules

is not necessarily improved by having more locomotives. We also observe that both the optimality gaps of

the Lagrangian relaxation solutions and the computational time of the Lagrangian relaxation heuristic tend to

increase as the number of locomotives increases. This indicates that both the effectiveness and efficiency of the

heuristic can be affected by an increase in number of locomotives. Nevertheless, the results in Tables 5 and

6 demonstrate that the Lagrangian relaxation can generate fairly effective solutions to all the test instances.

From these results, we believe that using a more powerful computing facility, and allowing the heuristic to run

for more iterations, better solutions and lower bounds can be obtained for larger-size instances.

6 Extensions

In this section, we discuss several extensions of our model and their solution methods.

6.1 Generating Solutions with Cyclic Locomotive Schedules

In some railway applications, the train timetable is repeated daily or weekly for a certain period of time. In

such applications, it is more desirable to have each locomotive finish a cycle’s operation at a station at which the

locomotive can start its next cycle’s operation. To satisfy this requirement, one approach is to simply set d̂l = ôl

for each locomotive l. A drawback of this approach is that it allows no flexibility in selecting the destination

stations for the locomotives. An alternative approach is as follows. For each group of identical locomotives
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{l1, l2, . . . , lζ}, the locomotives’ origin stations ôl1 , ôl2 , . . . , ôlζ are given, but the decision maker may choose

these locomotives’ destination stations d̂l1 , d̂l2 , . . . , d̂lζ , subject to the constraint that (d̂l1 , d̂l2 , . . . , d̂lζ ) must be

a permutation of (ôl1 , ôl2 , . . . , ôlζ ).

A given problem with this new setting can be transformed into our model, and is therefore solvable by our

Lagrangian relaxation heuristic, as follows. Consider any instance of this new problem. For ease of presentation,

we assume, without loss of generality, that q̂l < T for each locomotive l ∈ L. For each group of identical

locomotives {l1, l2, . . . , lζ}, we add a dummy station d′ and add a dummy track segment ôli → d′ for each

i = 1, 2, . . . , ζ to the railway network N . For i = 1, 2, . . . , r, the time for locomotives l1, l2, . . . , lζ to traverse

the dummy track segment ôli → d′ when light-running is set equal to T − q̂li , while the time for locomotives in

L \ {l1, l2, . . . , lζ} to traverse ôli → d′ when light-running is +∞. The minimum headway between arrivals from

the same track segment at station d′ is set equal to T . The destination stations of locomotives l1, l2, . . . , lζ are

changed to d′, and the latest completion time of operation of locomotives l1, l2, . . . , lζ are changed to T .

In the transformed problem, for i = 1, 2, . . . , r, because the latest completion time of operation of locomotive

li is T and the time for li to traverse a dummy track segment is T − q̂li , locomotive li needs to complete its

service at one of stations ôl1 , ôl2 , . . . , ôlζ no later than q̂li . Since the minimum headway between arrivals from

the same track segment at station d′ is T , at most one locomotive can traverse each dummy track segment

ôlj → d′ for j = 1, 2, . . . , r. Hence, a feasible solution of the original problem with a total cost Γ exists if and

only if a feasible solution of the transformed problem with a total cost Γ +
∑

l∈L cl(T − q̂l) exists, where the

constant term “
∑

l∈L cl(T − q̂l)” is the total operating cost for the locomotives to run on the dummy track

segments. Therefore, solving the transformed problem yields an optimal solution of the original problem.

6.2 Handling Train Services that Require Multiple Locomotives

In some railway applications, there are situations in which a train service requires more than one locomotive,

where grouping and splitting of locomotives are required. To model this requirement, consider the situation

where each element ω of Ωk is a subset of locomotives that can put together to serve train k simultaneously.

For example, if ω = {l1, l2, . . . , lζ} ∈ Ωk, then locomotives l1, l2, . . . , lζ can form a consist for serving train k.

For any k ∈ K and any ω ∈ Ωk, let cωk be the operating cost per unit time when consist ω is running with

train k, let c′ωk be the operating cost per unit time when consist ω is serving train k but is not running, let fωk

be the fixed cost for assigning consist ω to train k, let ε+ωk be the amount of time needed for assembling consist

ω and picking up train k, and let ε−ωk be the amount of time need for dropping off train k and disassembling

consist ω. We let p̂ωk = maxl∈ω p̂l and q̂ωk = minl∈ω q̂l denote the earliest start time and the latest completion

time, respectively, of consist ω’s operation. We let α̂ωk
ij denote the running time for consist ω to traverse track

segment i→ j with train k, for i→ j ∈ E.

To represent this extended problem by a state-space-time network, we modify network G = (V,A) in such

a way that a path from ō to d̄ may either represent a sequence of changes in state and location of a locomotive

over time, or represent a sequence of changes in state and location of a consist over time. To do so, each arc
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u→ v ∈ A has not only a cost coefficient ξl
u,v for each locomotive l but also a cost coefficient ξωk

u,v for each train

k ∈ K and each consist ω ∈ Ωk. Different types of arcs in G and their cost coefficients are modified as follows:

• Starting and ending arcs: We construct the starting arcs that connect ō to the locomotives’ origin stations

and the ending arcs that connect the locomotives’ destination stations to d̄ the same way as described in

Section 3.1. In addition to these arcs, we add a new set of starting and ending arcs for the consists. For each

i ∈ S and t = 0, 1, . . . , T , there is a new starting arc ō→ (0, ρ(i), t) if this arc is not yet in network G and if

there exists at least one train k ∈ K and one consist ω ∈ Ωk such that i = ok and t ≥ p̂ωk. For each k ∈ K

and ω ∈ Ωk, if i = ok and t ≥ p̂ωk, then ξωk
ō,(0,ρ(i),t) = 0; otherwise, ξωk

ō,(0,ρ(i),t) = +∞. This arc allows consist

ω to start its operation for serving train k at station ok at or after time p̂ωk. In each original starting arc

ō→ (0, ρ(i), t), if ξωk
ō,(0,ρ(i),t) is not yet defined for some k and ω, then we set ξωk

ō,(0,ρ(i),t) to +∞. In each new

starting arc ō → (0, ρ(i), t), if ξl
ō,(0,ρ(i),t) is not yet defined for some l, then we set ξl

ō,(0,ρ(i),t) to +∞. New

ending arcs are added to G in a similar fashion.

• Light-running and waiting arcs: We construct the light-running and waiting arcs the same way as described

in Section 3.1. On these arcs, the cost coefficients ξωk
u,v are set to +∞, since consists are in operation only

when serving trains.

• Pickup, drop-off, loaded-running, and dwelling arcs: The pickup, drop-off, loaded-running, and dwelling arcs

are constructed by the same method as described in Section 3.1 but with the following differences. Instead

of having these arcs constructed for each locomotive l using parameters p̂l, q̂l, max{α̂l
ij , α

k
ij}, cl, c′l, flk, ε+lk,

and ε−lk, these arcs are now constructed for each consist ω using parameters p̂ωk, q̂ωk, α̂ωk
ij , cωk, c′ωk, fωk, ε+ωk,

and ε−ωk, respectively. On these arcs, the cost coefficients ξl
u,v are set to 0.

Let A1 denote the set of all light-running and waiting arcs in network G, and A2 denote the set of all pickup,

drop-off, loaded-running, and dwelling arcs in network G. Set C is defined the same way as in Section 3.1, but

the incompatibility constraints (5) are rewritten as follows:

∑
u→v∈C∩A1

∑
l∈L xl

u,v +
∑

u→v∈C∩A2

∑
k∈K

∑
ω∈Ωk

xωk
u,v ≤ 1, for all C ∈ C. (7)

In other words, the incompatibility constraints on the light-running and waiting arcs are imposed on the xl
u,v

variables, while the incompatibility constraints on the pickup, drop-off, loaded-running, and dwelling arcs are

imposed on the xωk
u,v variables. The integer programming formulation P becomes:

P′ : Minimize
∑

k∈K πk +
∑

l∈L

∑
u→v∈A ξl

u,vxl
u,v +

∑
k∈K

∑
ω∈Ωk

∑
u→v∈A ξωk

u,vxωk
u,v (8)

subject to (2), (3), (4), (6), and (7)∑
ω∈Ωk

∑
{v:ō→v∈A} xωk

ō,v ≤ 1, for all k ∈ K (9)∑
{u:u→v∈A} xωk

u,v =
∑

{w:v→w∈A} xωk
v,w, for all k ∈ K; ω ∈ Ωk; v ∈ V \ {ō, d̄} (10)

xl
u,v =

∑
k∈K

∑
{ω∈Ωk:l∈ω} xωk

u,v, for all l ∈ L; u→ v ∈ A2. (11)

xωk
u,v ∈ {0, 1}, for all k ∈ K; ω ∈ Ωk; u→ v ∈ A (12)
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Constraints (9) ensure that at most one consist will serve each train. Constraints (10) are the flow balance

constraints for the consists. Constraints (11) ensure that locomotive l traverses an arc in A2 if and only if

exactly one consist containing l is traversing that arc. Constraints (11), together with constraints (2), (3), (4),

and (6), imply that a consist can serve at most one train at a time.

To extend our Lagrangian relaxation heuristic to problem P′, besides relaxing the incompatibility constraints

(7), we also relax constraints (11) to ensure that the relaxed problem is computationally tractable. Thus, there

are |C| + |L| · |A2| Lagrangian multipliers in total. After relaxing these constraints, the Lagrangian relaxation

problem can be decomposed into |L| + |K| independent subproblems, each of them corresponds to either a

locomotive l ∈ L or a train k ∈ K. Each subproblem can be solved as a shortest path problem in the acyclic

network G. We can apply the subgradient optimization procedure to obtain a lower bound on the optimal

objective value of the extended model.

For any given vector of Lagrangian multipliers, after solving the relaxation problem, we obtain a path for

each locomotive, as well as the timetable and consist assignment for each uncanceled train service. We may

utilize this information to construct heuristic solutions of problem P′. The construction of heuristic solutions

can be challenging, since we need to satisfy not only the incompatibility constraints but also the new constraints

(11). We therefore leave the detailed development of the heuristic as well as the performance test of the solution

method to future study.

Note that in this extended model, we have assumed that consist disassembling is always needed when the

consist finishes serve a train. However, in practice, consist busting can be avoided if the same consist can pick

up another train at the same station after it drops off a train. In such a case, the state-space-time network and

the incompatibility constraints need to be modified further.

6.3 Other Extensions

In our model we assume that all track segments consist of one-way tracks. However, in reality, some track

segments may be bi-directional. Our model can be extended to handle bi-directional tracks as follows. We

represent each bi-directional track segment between stations i and j by two arcs i → j and j → i in network

N . Then, we impose incompatibility constraints on the corresponding light-running arcs and loaded-running

arcs in the state-space-time network G to disallow i→ j and j → i from being traversed simultaneously. This

extension, however, will increase the size of the state-space-time network as well as the number of incompatibility

constraints in problem P, and will affect the performance of the Lagrangian relaxation heuristic.

In our model we also assume that the train stations are uncapacitated. In reality, the capacity of some

stations may be limited. Our model can be extended to handle station capacity constraints as follows. Suppose

station i can accommodate at most ni locomotives or locomotive-train pairs at any time. Then, we add an

incompatibility constraint to problem P to limit the total flow along the dwelling arcs, waiting arcs, pickup

arcs, and drop-off arcs that involve station i at each time point t to be at most ni. The proposed Lagrangian

relaxation heuristic can be applied to this extended problem. This extension will also increase the number of
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incompatibility constraints.

7 Conclusions

We have modeled and solved an integrated train timetabling and locomotive assignment problem with a

general underlying railway network. The problem is formulated as a minimum cost multi-commodity network

flow model with incompatible arcs and integer flow restrictions in a three-dimensional state-space-time network.

We presented a Lagrangian relaxation heuristic for this network flow model. We conducted a computational

study to test the performance of the Lagrangian relaxation heuristic, and compared the Lagrangian relaxation

heuristic solutions with the solutions generated by two benchmark solution methods. The computational re-

sults demonstrate the effectiveness of the Lagrangian relaxation heuristic and report the benefits obtained by

integrating the train timetabling and locomotive assignment decisions.

The state-space-time network is an important tool in our solution process, as it allows our model to be mod-

ified easily to accommodate additional train timetabling and locomotive planning requirements. For example,

if some locomotives are not allowed to traverse certain track segments during certain time intervals, then the

state-space-time network can be modified easily to accommodate this requirement by setting the cost of some

arcs to infinity. One drawback of using this three-dimensional network is that the network size is very large,

making the Lagrangian relaxation heuristic very time-consuming to execute. Hence, one interesting future re-

search topic would be to develop mathematical techniques to identify the arcs in this three-dimensional network

that can be eliminated without affecting the optimal solution of the problem.

Besides the extended model with multiple locomotives per train discussed in Section 6.2, several other

extensions of our work are worth investigating. First, the objective function of our model includes various costs

of each locomotive and each train. However, it does not attempt to balance locomotives’ service times, and thus

in the solution some locomotives may have much longer work hours than other locomotives. Extending our model

to include an additional cost term to control the imbalance in the locomotives’ service times and developing

solution methods for the extended model is an interesting research topic. Second, although our Lagrangian

relaxation heuristic can generate good solutions and tight lower bounds, it requires a lot of computational

time. Thus, this solution method has its limitation when the underlying railway network is large. It would be

worthwhile to develop more efficient solution methods such as meta-heuristics for integrated train timetabling

and locomotive assignment based on the state-space-time network model proposed in this paper. Finally,

applying our modeling framework and solution techniques to other logistics planning problems would also be of

future research interest.
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Kroon, L., Huisman, D., Maróti, G., 2014. Optimisation models for railway timetabling. In: Hansen, I.A., Pachl,

J. (Eds.), Railway Timetabling & Operations: Analysis, Modelling, Optimisation, Simulation, Performance

Evaluation, 2nd edition, DVV Media Group, Hamburg, Germany, pp. 155–173.

Kuo, C.-C., Nicholls, G.M., 2007. A mathematical modeling approach to improving locomotive utilization at a

freight railroad. Omega 35(5), 472–485.

32



Lusby, R.M., Larsen, J., Ehrgott, M., Ryan, D., 2011. Railway track allocation: Models and methods. OR

Spectrum 33(4), 843–883.

Mahmoudi, M., Zhou, X., 2016. Finding optimal solutions for vehicle routing problem with pickup and de-

livery services with time windows: A dynamic programming approach based on state-space-time network

representations. Transportation Research Part B 89, 19–42.

Meng, L., Zhou, X., 2014. Simultaneous train rerouting and rescheduling on an N -track network: A model

reformulation with network-based cumulative flow variables. Transportation Research Part B 67, 208–234.

Nourbakhsh, S.M., Ouyang, Y., 2010. Optimal fueling strategies for locomotive fleets in railroad networks.

Transportation Research Part B 44(8–9), 1104–1114.

Piu, F., Speranza, M.G., 2014. The locomotive assignment problem: A survey on optimization models. Inter-

national Transactions in Operational Research 21(3), 327–352.

Raviv, T., Kaspi, M., 2012. The locomotive fleet fueling problem. Operations Research Letters 40(1), 39–45.

Righini, G., Salani, M., 2008. New dynamic programming algorithms for the resource constrained elementary

shortest path problem. Networks 51(3), 155–170.

Szpigel, B., 1973. Optimal train scheduling on a single track railway. In: Ross, M. (Ed.), Operational Research

’72, North-Holland, Amsterdam, pp. 343–352.

Vaidyanathan, B., Ahuja, R.K., Liu, J., Shughart, L.A., 2008a. Real-life locomotive planning: New formulations

and computational results. Transportation Research Part B 42(2), 147–168.

Vaidyanathan, B., Ahuja, R.K., Orlin, J.B., 2008b. The locomotive routing problem. Transportation Science

42(4), 492–507.

Wright, M.B., 1989. Applying stochastic algorithms to a locomotive scheduling problem. Journal of the Opera-

tional Research Society 40(2), 187–192.

Xu, X., Li, K., Lu, X., 2017. Simultaneous locomotive assignment and train scheduling on a single-track rail-

way line: A simulation-based optimization approach. Computers & Industrial Engineering, forthcoming,

http://dx.doi.org/10.1016/j.cie.2017.11.002

Zhou, W., Teng, H., 2016. Simultaneous passenger train routing and timetabling using an efficient train-based

Lagrangian relaxation decomposition. Transportation Research Part B 94, 409–439.

Zhou, X., Zhong, M., 2007. Single-track train timetabling with guaranteed optimality: Branch-and-bound

algorithms with enhanced lower bounds. Transportation Research Part B 41(3), 320–341.

33



Zhu, E., Crainic, T.G., Gendreau, M., 2014. Scheduled service network design for freight rail transportation.

Operations Research 62(2), 383–400.
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