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Abstract

We study how design decisions in project planning affect cost of execution. In organizing a

project’s tasks into work packages, tradeoffs arise. Defining small work packages increases project

complexity and workload, and reduces economies of scale. Whereas, defining large work packages

reduces concurrent processing and adversely affects cash flow. Our work is apparently the first

to study this tradeoff. We consider the objective of minimizing total project cost, subject to a

deadline on project makespan. For serial task networks, we describe an efficient algorithm that

finds optimal work package sizes. For acyclic task networks, we develop a heuristic method and

a lower bound for the unary NP-hard problem. A computational study shows that our heuristic

routinely delivers near-optimal solutions that substantially improve on those found by benchmark

procedures. Our results demonstrate the value of deliberately varying work package sizes within a

project, in contrast to typical project management practice. Related issues including multiple serial

paths in parallel, task incompatibility, and generalized precedence constrained work packages, are

also discussed. Our work enables more precise planning of work packages to improve performance,

documents the value of integrating the planning of work packages and schedules, and provides

insights that guide resource allocation decisions.

Keywords: project management; work breakdown structure; work package sizing; project perfor-

mance.



1 Introduction

One-fifth of the world’s economic activity, with an annual value of $12 trillion, is organized as

projects (Project Management Institute 2008). The growth of project management as a business

process has been fueled in recent years by a widely expanding range of applications. These applica-

tions include IT implementations, new product and service development, change management, soft-

ware development, and research and development projects. As a result, membership in the Project

Management Institute has increased from about 50,000 in 1996 to over 500,000 today. Meanwhile,

new planning methodologies for project management, including critical chain project management

(Goldratt 1997) and agile methods (agilemanifesto.org 2001), have emerged. Overviews of project

management planning methodology are provided by Klastorin (2011), Wysocki (2014), and Kerzner

(2017). Overviews of important research questions in project management are provided by Hall

(2012, 2015, 2016).

Despite these significant developments in project management methodology, the foundation of

project planning remains the relationship between the project as a whole and its discrete compo-

nents, which we study here. The work breakdown structure (WBS) planning tool was developed

jointly by the U.S. Department of Defense, NASA, and the aerospace industry (DOD and NASA

1962). It is now used for many widely varied project management applications, and is viewed as a

fundamental early step in project planning (Golany and Shtub 2001, Project Management Institute

2013). A WBS is an incremental decomposition of a project using a hierarchical tree structure. The

lowest level of the decomposition for planning and scheduling purposes is called a work package.

Work packages are composed of one or more elemental tasks. The responsibility for completion of

a work package is assigned to a single person or organizational unit. The contributions of WBS

planning include the following (Monnapappa 2013): (i) it provides project stakeholders with a

clear understanding of their roles and responsibilities; (ii) it allows for concurrent work on different

components of the project; (iii) it supports estimation of cost and time performance, including the

use of earned value management metrics; and (iv) it supports project risk management. Demeule-

meester and Herroelen (2002) describe the administrative process by which a company typically

develops a WBS for its projects.

Our research is motivated by the work of Globerson (1994), who comments that, “The cor-

rect use of a WBS contributes significantly to the probability of successful project completion.”

He illustrates how five distinctly different WBS structures can reasonably be generated for a new

1



restaurant development project, each based on a different sequence of breakdown criteria, level

by level, within the WBS. He discusses the relationship between the project WBS and the “orga-

nizational structures and management styles” that support it. However, our work assumes that

these structures and styles are determined by the culture of the organization. Hence, we take

the sequence of breakdown criteria within the WBS as given. Globerson (1994) also comments

about work package formation, “Too many levels in the WBS loads the organization with too much

information, and complicates the management process of that project. Too few levels generates

communication difficulties and poor coordination among organizational units.” Indeed, the main

decisions in WBS formation are the sizes of work packages and which tasks should be integrated

together into a single work package. Focusing on those decisions, we study the use of work package

formation to optimize project performance.

Various academic studies consider different issues in WBS design. Deckro et al. (1992) consider

a project scheduling problem with a time-cost tradeoff, where the tasks are already partitioned

into work packages, each with a given due date and budget. They study the impact of project and

work package due dates on cost and budget performance. Luby et al. (1995) discuss the applica-

tion of a customized component-based WBS to projects in naval shipyards. This design enables

continuous accountability for each component, while allowing flexibility for work plans. Jung and

Woo (2004) propose a WBS that allows different management approaches to be applied to different

work packages, in order to reduce the amount of information required in project planning. Danilovic

(2006) notes the benefits of having suppliers involved in new product development projects, but

demonstrates how functionally designed WBS and work package structures create barriers that

prevent this. Other researchers study WBS design from the perspective of systems development.

For example, Golpayegani and Emamizadeh (2007) apply neural networks to WBS planning, and

consider project control WBSs, functional WBSs, and relational WBSs. Bai et al. (2009) similarly

use domain tree structures, domain WBSs, and relational WBSs. Li and Ren (2013) focus on the

relationships between objects in cloud manufacturing, the availability of cloud services resources,

and service access issues. Still other researchers use matrix techniques to analyze interdependen-

cies between project tasks that may inform WBS design. Yu et al. (2009) use genetic algorithms

and dependency matrix clustering. Lee et al. (2010) use a design structure matrix approach. Ren

et al. (2013) use a fuzzy dependency structure matrix to model coupling issues such as two-way

dependence between a pair of tasks. Jia et al. (2014) develop mapping rules based on a product
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structure tree.

Regarding work package formation, we first review information from project management prac-

tice. Here, various rules of thumb are suggested. In 1972, the U.S. Department of Defense recom-

mended a work package size of six months of development time or $100,000 of cost, as reported by

Brown (1978). Some project managers recommend smaller work package size designs such as using

the 4/40 rule, which requires work packages to be at least 4 hours and at most 40 hours of work;

see Kennemer (2002). Gardner (2006) provides some practical guidelines for work package sizing

in the construction industry. However, there is apparently no research on how to customize work

package sizes for a particular project. The challenges of work package sizing are illustrated by the

following comments from practicing project managers:

– “Whichever maximum increment of time you choose to breakout your tasks will directly impact

your ability to track progress and give accurate project status reports to sr mgmt.” (Kastner

2001)

– “The first problem with managing tasks below a 40 hour or 20 hour limit (my personal floor) is

the [sheer] task of managing the value and dealing with the ramifications of a task that is not

completed in time. The second is that planning at that level of detail more than a week or two

in advance of the actual work - and hitting the target - is virtually impossible.” (McVey 2001)

– “I have no problem [in] breaking measurable tasks down to 4 or 8 hrs if the deliverable is only

estimated at 40 hrs overall. In general, I do think that trying to determine the task progress

over 40 hrs can introduce risk unless you are addressing it [in] some other way.” (Roche 2010)

– “There are trade-offs. Too high a level, the administrative burden to manage it is less in terms

of cost. However, you lose insight into what is going on in the work and to understand where

variances are accruing and why. This lack of insight increases your risk of successful ability to

mitigate those variances.” (Espina 2011)

– “One thing to note, the WBS should be a tool for your teams to decompose their work. Let them

get as granular as they want if it helps them figure out what needs to be done.” (Wilmot 2011)

The academic literature also addresses the issue of work package formation. Devi and Reddy

(2012) suggest that a work package should comprise between 8 and 80 hours of work. Raz and

Globerson (1998) identify the several factors and related costs discussed below as being important

for project managers to consider in determining the sizes of their work packages. Based on their

discussion and basic concepts of risk pooling, we discuss below whether each of these factors is in
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favor of larger or smaller work packages. We use “M” to denote an indication for more but smaller

work packages, and “F” to denote an indication for fewer but larger work packages. However, some

of these factors need to be implemented directly through constraints, which we denote by “D”.

• Workload: Decomposing the project into more but smaller work packages increases the amount

of effort spent on planning, measuring, and reporting progress, resulting in an increase in ad-

ministrative workload. It also incurs higher cost of supervision of work package operators. (F)

• Cost and Schedule Estimation: Estimates of cost and duration of the work package are relatively

more accurate for work packages with larger content, due to pooling of variance. (F)

• Monitoring and Control: Greater precision in measuring performance, and tighter control, can

be applied to work packages with smaller content. (M)

• Cash Flow: Smaller work packages lead to earlier completion of tasks and improve the project’s

cash flow. (M)

• Network Construction and Concurrent Processing: Formation of elemental tasks into work pack-

ages may reduce opportunities for concurrent processing. (M)

• Responsibility Assignment: It is necessary for a specific person or organizational unit to take

responsibility for the entire work package. (D)

• Internal Cohesion: Some groups of elemental tasks require close coordination without the dis-

traction of managing other tasks. (D)

• Risk Management: A high-risk activity should be assigned to a separate work package, allowing

more focused risk management attention. (D)

Another factor that the literature identifies as important in making work package sizing decisions

is the following:

• Economies of Scale: Bairstow (2009) comments on the U.K. aerospace industry, “As the industry

becomes more globalised industry there are fewer, larger work packages. Our small companies

cannot manage these on their own so we are helping them team up to bid together. They will

collaborate to get more resources and economies of scale.” (F)

However, none of the above works considers the issue of how to form work packages in a

given project, so as to optimize total project cost. Moreover, practitioners typically assume that

the same work package sizing rule should be applied across all work packages. Yet relative costs

and network topology may vary within the project, and both of these affect work package sizing

choices. Consequently, we question the validity of this assumption, and study its consequences for
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project cost. We observe that work package formation decisions affect the availability of concurrent

processing, and therefore the project makespan. Further, since many practical projects have strict

deadlines but flexible cost, we develop and analyze a work package sizing model to minimize cost,

subject to a deadline constraint.

Research on work package sizing should not be confused with that on lot streaming. Within the

classical machine scheduling literature, lot streaming (Potts and Baker 1989, Trietsch and Baker

1993) is the process of splitting a job into sublots, in order to allows its operations to be overlapped.

However, the finite machine capacity constraint in such problems does not allow the concurrent

processing that is available in project management. Furthermore, the focus of the lot streaming

literature is on classical time-based scheduling objectives, without considering various costs that

are significant in project management.

Some planning processes inhibit work package design. In a top-down planning process, for

example, work packages are defined based on organizational convenience, but without detailed in-

formation that could enable precise planning. Such information includes task durations, precedence

relations among tasks, and costs. In such a planning process, this detailed information only be-

comes available at the task level, after work packages have already been formed (Demeulemeester

and Herroelen 2002, p. 9). However, the availability of this information creates the potential for

making more precise decisions about work package design to improve project performance. Our

work investigates this potential. To model these decisions, we assume that the project has been

planned into a given set of tasks that are elemental. That is, no further breakdown of those tasks

is possible, for reasons that may be technical, logistical, financial, administrative, or cultural. By

considering tasks at the elemental level, we recognize the maximum potential for concurrent pro-

cessing of work within the project. However, various cost considerations may motivate giving up

some concurrency, and thereby allowing an increase in the project makespan, as elemental tasks

are formed into work packages.

Our work is apparently the first to model the work package sizing tradeoff mathematically and

solve it for optimal project performance. We model all the nine work package sizing factors dis-

cussed above. The total project cost we consider has five components: fixed work package cost,

cost of inaccurate estimation, monitoring and control cost, economies of scale, and discounted

cash flow cost. These costs fall within standard cost accounting categories, which makes them

easy to estimate; hence, we model them using deterministic cost parameters. Our objective is to
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minimize total cost, subject to meeting a deadline on project makespan. This model represents

many projects, including a large class of “event” projects, for example preparation for hosting the

Olympic Games, with a fixed deadline. For networks of elemental tasks with serial precedence

constraints, we develop a computationally efficient solution procedure. For acyclic task networks,

we show that the cost minimization problem is unary NP-hard (Garey and Johnson 1979); hence,

we develop a heuristic method and a lower bound. A computational study shows that our heuris-

tic routinely delivers near-optimal solutions. Sensitivity analysis results show how optimal work

package solutions vary with problem parameters. We document the significant project cost savings

delivered by our model and algorithm, relative to a benchmark approach that is typically used in

practice. We also discuss variations of our model to consider networks with multiple serial paths

in parallel, task incompatibility, and generalized precedence constrained work packages. Overall,

our work enables more precise project planning, documents the value of integrating the planning

of work packages and schedules, and provides insights that guide resource allocation decisions.

The remainder of this paper is organized as follows. In Section 2, we provide our definitions and

discuss how we model the nine factors that affect work package sizing decisions. In Section 3, we

first describe an efficient algorithm for the special case with tasks in series, and we then describe

a heuristic and a lower bound for the unary NP-hard problem with an acyclic task network. In

Section 4, we test our solution procedures computationally and develop insights from our results. In

Section 5, we discuss several extensions and variants of our model. Section 6 contains a conclusion

and suggestions for future work. The proofs of all lemmas and theorems, as well as the formulations

of several dynamic programs, are provided in online appendices.

2 Model

We consider a project consisting of a set N = {1, 2, . . . , n} of elemental tasks (hereafter referred to

as “tasks”) and precedence constraints between the tasks. Each task a ∈ N has a given duration

ta ≥ 0 and a given work content xa ≥ 0. Work content xa, which can be measured in worker-hours

or in monetary units, represents the size of the task. The project is required to complete by a given

deadline d. Using the standard activity-on-node (AoN) representation, we define a node set N and

an arc set A ⊆ {a → a′ | 1 ≤ a < a′ ≤ n}, where a → a′ ∈ A if task a′ is an immediate successor

of task a. We refer to a task with no predecessor as a beginning task and a task with no successor

as an ending task. We assume that two dummy tasks with zero work contents and zero durations
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have been added at the beginning and the end of the task network, respectively. Hence, there is

exactly one beginning task, exactly one ending task, and n−2 other tasks. Following the academic

literature, we also assume that all input parameters are integers, i.e., d ∈ Z
+ and xa, ta ∈ Z

+ for

each non-dummy task a, where Z
+ is the set of all positive integers.

We need to group the tasks into work packages to minimize the total project cost. Consider

a work package W = {a1, a2, . . . , ak} formed by grouping tasks a1, a2, . . . , ak ∈ N . Once the

processing of a task in W begins, the other tasks in W are processed as early as possible, subject to

the precedence constraints between tasks. Thus, tasks within work package W may be processed in

parallel if there is no precedence constraint between them. The work content of this work package

is xW =
∑

a∈W xa, which is the sum of the work content of the tasks in the work package. The

duration of this work package, denoted by tW , is the length of the critical path within W , which

equals the difference between the finish time of the last task in W and the start time of the first

task in W . Observe that tW ≤
∑

a∈W ta. We let CW denote the completion time of work package

W in a given schedule.

Project management practice and the related academic literature discuss two alternative per-

spectives about work packages. Under the first perspective, a work package is the lowest level of

the WBS for scheduling purposes. Then project scheduling, for example with the use of the critical

path method (Kelley and Walker 1959), is performed using work packages as activities; see Popescu

and Charaenngam (1995, p. 200), who explain, “The detailed schedule development is based on

. . . work packages, to schedule activities. To control the project in detail, one work package will

represent an activity in the network.” This perspective is also adopted by, for example, Baxendale

(1991), Eldin (1991), Jaskowski and Sabotka (2006), Harpum (2007), Powell (2010), and Nicholas

and Steyn (2017). Using this perspective, if task a in work package W is a predecessor of task

a′ in work package W ′, then all tasks in W precede all tasks in W ′. We refer to this first per-

spective about work packages as strict precedence constrained work packages. Under the second

perspective, a work package comprises one or more activities, and strict precedence relations exist

between activities instead of work packages. This perspective is adopted by, for example, Deckro

et al. (1992), Demeulemeester and Herroelen (2002), and Mubarak (2015). Under this perspective,

the processing of work packages W and W ′ may be partially overlapped even though one of the

tasks in W is a predecessor of one of the tasks in W ′. As a result, the precedence relations between

work packages are generalized precedence relations. We refer to this second perspective about work
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packages as generalized precedence constrained work packages.

Our work mainly considers the first perspective in the previous paragraph, strict precedence

constrained work packages. Our reasons for this choice are as follows. First, a major motivation for

companies to use work packages is simplification of the project, which is achieved by planning and

scheduling at the work package level and suppressing task information for those purposes. Second,

our review of the business literature suggests that few practicing project managers make use of

generalized precedence relations. Since we intend that our work should be used in practice, our

focus is on improving planning methods with which most project managers are already comfortable,

rather than imposing a new one on them. Nonetheless, as a guide to work package formation

for project managers who would accept a more complicated planning model, an analysis of the

generalized precedence constrained work packages model is provided in Section 5.3.

Two issues that affect work package sizing are feasibility and concurrency. Regarding feasibility,

strict precedence constrained work packages can only be formed if the resulting network is acyclic.

For example, consider the network with five tasks shown in Figure 1(a). Suppose we group tasks
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Figure 1: Feasibility of work package formation.

2 and 3 into a work package, and let tasks 1, 4, and 5 each form a separate work package. The

resulting network, shown in Figure 1(b), contains a cycle. Hence, this grouping of tasks into work

packages is infeasible.

Regarding concurrency, when a work package {a1, a2, . . . , ak} ⊆ N is formed, the completion

time of all tasks in the work package is equal to the completion time of the whole work package.

Hence, the formation of this work package may reduce opportunities for concurrent processing and

delay the completion of some tasks and the overall project. For example, consider the network

with seven tasks shown in Figure 2(a). If we let each task form a separate work package, then the

makespan of this project is 9. However, suppose we group tasks 2, 3, 4, and 6 into a work package,

and let tasks 1, 5, and 7 each form a separate work package. The resulting network, which has
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Figure 2: Network construction and concurrent processing.

strict precedence constraints between work packages, is shown in Figure 2(b). Now, tasks 5 and 6

cannot be processed concurrently and, as a result, the start time of task 5 is delayed from time 4

to time 7, and the makespan of the project is increased from 9 to 12.

We now model each of the work package sizing factors identified in Section 1:

• Workload: Each work package has a fixed cost ω, which represents the cost of administration and

maintenance, and is independent of the contents of the work package. Raz and Globerson (1998)

motivate this cost component by describing potentially disproportionate time spent measuring

and reporting progress.

• Cost and Schedule Estimation: Inaccuracy in time estimation of a work package can be hedged by

allocating extra resources such as manpower, while inaccuracy in cost estimation can be hedged

by allocating a larger budget in advance. The amount of hedging required can be estimated from

experience with similar projects, or from industry standards. The cost of extra resources and

budget for hedging is dependent on the work content of the work package. We model this cost

as a function f(·) of the work content. This function is concave nondecreasing, since this factor

encourages having fewer but larger work packages.

• Monitoring and Control: We model the cost of monitoring and controlling the progress of the

work package as a function g(·) of its work content. This function is convex nondecreasing, since

this factor encourages having more but smaller work packages.

• Cash Flow: Consider tasks a1, a2, . . . , ak that are formed into a single work package W . Milestone

payments (Dayanand and Padman 2001) that are receivable in respect of tasks a1, a2, . . . , ak have

an opportunity cost that extends from the start of the project through completion of the work

package, that is, over the period [0, CW ]. We discount this opportunity cost at a rate α ≥ 0
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in continuous time, following the cash flow discounting method of Yang et al. (1992). At a

cost of ξ per unit of work content the total discounted cash flow cost of the work package is

ξxW (1 − e−αCW ).

• Network Construction and Concurrent Processing: If a task ai ∈ N \ {a1, a2, . . . , ak} is a suc-

cessor of one of a1, a2, . . . , ak, then the formation of the work package {a1, a2, . . . , ak} makes

ai a successor of all the tasks a1, a2, . . . , ak. As in Figure 2, this may reduce opportunities for

concurrent processing and thus increase the project makespan. The formation of a work package

is allowed only if the deadline constraint is not violated.

• Responsibility Assignment: Where the responsibility for a group of tasks R = {a1, a2, . . . , ak}

needs to be assigned to a specific person or organizational unit, we require R to be a single work

package without other tasks.

• Internal Cohesion: Where a group of tasks R = {a1, a2, . . . , ak} requires internal cohesion, we

require R to be a single work package without other tasks.

• Risk Management: Where a specific group of high-risk tasks R = {a1, a2, . . . , ak} needs to be kept

separate to allow focused risk management, we require R to be a single work package without

other tasks.

• Economies of Scale: We model economies of scale from repetition and similarity of tasks within

a work package as a function h(·) of its work content. This function is concave nondecreasing,

since this factor encourages having fewer but larger work packages.

We assume that f(0) = g(0) = h(0) = 0, and that the functions f(·), g(·), and h(·) can be

evaluated in constant time. Let

F (x) = f(x) + g(x) + h(x),

for x ≥ 0. Clearly, F (·) is a nondecreasing function. Then, the cost associated with a work package

W is

ω + F (xW ) + ξxW (1 − e−αCW ).

Let R1, R2, . . . , Rm denote all the subsets of tasks that are required to form their own work packages

due to responsibility assignment, internal cohesion, or risk management, where Rk ∩Rl = ∅ for any

1 ≤ k < l ≤ m. Let R̄ = N \ (R1 ∪ R2 ∪ · · · ∪ Rm) and n̄ = |R̄| > 0. We refer to the tasks in

R1 ∪ R2 ∪ · · · ∪ Rm as inactive tasks and the tasks in R̄ as active tasks. The two dummy tasks in
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the problem are inactive tasks, and each of them is required to form a work package by itself. We

let X̄ =
∑

i∈R̄ xi denote the sum of the work contents of all the active tasks.

Denote the number of work packages of active tasks as p, which is a decision variable. Thus,

the number of non-dummy tasks is p + m − 2. The objective of our problem is to partition R̄ into

work packages W1, W2, . . . , Wp to minimize the total cost:

TC = ω(p+m−2)+

p
∑

k=1

F (xWk
)+

m
∑

k=1

F (xRk
)+ξ

p
∑

k=1

xWk
(1−e−αCWk )+ξ

m
∑

k=1

xRk
(1−e−αCRk ), (1)

subject to the constraint that the precedence network of the work packages W1, W2, . . . , Wp,

R1, R2, . . . , Rm is acyclic, and that the project makespan is no greater than d.

Example 1

Consider an example with n = 18, N = {1, 2, . . . , 18}, m = 3, R1 = {1}, R2 = {9, 10, 11}, R3 =

{18}, ω = 50, ξ = 100, α = 0.001, f(x) = h(x) = 3x0.8, g(x) = x1.2, d = 64, (x1, x2, . . . , x18) =

(t1, t2, . . . , t18) = (0, 6, 2, 1, 1, 6, 1, 5, 7, 6, 5, 8, 9, 1, 10, 2, 6, 0), and the task network shown in Fig-

ure 3(a). Tasks 1 and 18 are dummy beginning and ending tasks, respectively, of the project. They

are represented by inactive tasks with zero work contents and durations. A feasible solution of this

instance is shown in Figure 3(b). In this solution, five work packages of active tasks are formed:

W1 = {2, 3, 16}, W2 = {4, 5, 6}, W3 = {7, 8, 17}, W4 = {12, 13}, and W5 = {14, 15}. Clearly, the

precedence network of the work packages is acyclic. This solution has a project makespan of 63 ≤

64 = d. Hence, this solution is feasible. In this solution, p = 5, (xW1, xW2, xW3, xW4, xW5, xR2) =

(10, 8, 12, 17, 11, 18), (tW1 , tW2, tW3, tW4 , tW5, tR2) = (8, 8, 6, 17, 11, 13), and (CW1 , CW2 , CW3, CW4,

CW5 , CR2) = (8, 16, 22, 52, 63, 35). Thus, F (xW1) = F (10) = 53.7, F (xW2) = F (8) = 43.8,

F (xW3) = F (12) = 63.5, F (xW4) = F (17) = 87.8, F (xW5) = F (11) = 58.6, F (xR2) = F (18) = 92.7,

1 − e−αCW1 = 0.0080, 1 − e−αCW2 = 0.0159, 1 − e−αCW3 = 0.0218, 1 − e−αCW4 = 0.0507,

1 − e−αCW5 = 0.0611, and 1 − e−αCR2 = 0.0344. The total cost of this solution is

TC = ω(p + m − 2) +

5
∑

k=1

F (xWk
) + F (xR2) + ξ

5
∑

k=1

xWk
(1− e−αCWk ) + ξxR2(1 − e−αCR2 )

= (50)(6) + (53.7 + 43.8 + 63.5 + 87.8 + 58.6) + (92.7) + (100)(10× 0.0080

+ 8 × 0.0159 + 12× 0.0218 + 17× 0.0507 + 11× 0.0611) + (100)(18× 0.0344) = 962.2.

We describe tasks a1, a2, . . . , ak as active serial tasks if (i) a1, a2, . . . , ak ∈ R̄; and (ii) ai is

the only immediate predecessor of ai+1, and ai+1 is the only immediate successor of ai, for i =

11
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Figure 3: Task network and network of work packages in Example 1.

1, 2, . . . , k − 1. For example, tasks 3, 4, 5 in Example 1 are active serial tasks (see Figure 3(a)). If,

besides the dummy beginning and ending tasks, the given task network contains only active serial

tasks, then the problem is denoted by PS. If the given task network is a directed acyclic network,

then the problem is denoted by PA.

3 Solution Methods

Section 3.1 provides an efficient algorithm for problem PS. Section 3.2 discusses issues of feasibility

and computational complexity, and presents a heuristic solution procedure and a lower bounding

procedure, for problem PA.

3.1 Networks with active serial tasks

In this section, we focus on the formation of work packages for a group of active serial tasks

a1, a2, . . . , ak with the precedence relations a1 → a2 → · · · → ak. Project management applications

which have precedence subnetworks with similar features include job shop scheduling (Beck et

12



al. 2003) and assembly of mechanical products (Wang et al. 2005).

Any work package constructed from tasks a1, a2, . . . , ak must be of the form {ai+1, ai+2, . . . , aj},

where 0 ≤ i < j ≤ k. Thus, the work package sizing decision for these tasks is to partition

{a1, a2, . . . , ak} into consecutive groups of tasks. Since the active tasks form a serial network, the

grouping of these active serial tasks does not affect the completion times of the tasks, and it does

not affect the feasibility or makespan of the project. Hence, the situations shown in Figures 1

and 2 do not arise. The work content of work package {ai+1, ai+2, . . . , aj} is
∑j

l=i+1 xal
. Thus,

the discounted cash flow cost of this work package is ξ
∑j

l=i+1 xal

(

1 − e−αCaj
)

, where Caj
is the

completion time of task aj, i.e., the completion time of the work package. For 0 ≤ i < j ≤ k, let

c(i, j) = ω + F

( j
∑

l=i+1

xal

)

+ ξ

j
∑

l=i+1

xal

(

1 − e−αCaj
)

, (2)

which is the total cost of work package {ai+1, ai+2, . . . , aj} if this work package is formed. In Ap-

pendix B, we describe a dynamic programming algorithm that groups the active tasks a1, a2, . . . , ak

into work packages with minimum total cost. This algorithm is the same as the shortest path al-

gorithm for acyclic networks, see Dreyfus and Law (1977, pp. 51–53), and shows that problem PS

with active tasks a1, a2, . . . , ak can be solved optimally in O(k2) time. A generalization of problem

PS with multiple serial paths in parallel is discussed in Section 5.1.

3.2 Acyclic task networks

In Section 3.2.1, we first discuss the feasibility and complexity of problem PA, and then present a

heuristic procedure for solving it. In Section 3.2.2, we present a procedure for generating a lower

bound on the optimal solution value.

3.2.1 Feasibility, complexity, and a heuristic

Let ∆ denote the project makespan when each active task forms its own work package. The

following result provides a condition for the feasibility of the problem.

Lemma 1 Problem PA is feasible if and only if ∆ ≤ d.

From Lemma 1, the feasibility of a given instance of problem PA is easily determined by giving

each active task its own work package. In our analysis presented below, we assume that the given

instance under consideration is feasible. The next result establishes the NP-hardness of the work

package sizing problem PA.

13



Theorem 1 The recognition version of problem PA is unary NP-complete, even if xa = ta for all

a ∈ N .

Theorem 1 implies that it is unlikely that a polynomial-time optimal algorithm exists, even for

a special case of problem PA. Hence, we propose the following Heuristic MergeTasks to solve this

problem. The heuristic first forms work packages in subnetworks of serial tasks. It then applies a

greedy procedure to combine elemental tasks into work packages, where doing so does not create

any cycle in the precedence network, and does not violate the deadline constraint.

Heuristic MergeTasks

Step 1. Identify all subsets of active serial tasks that are maximal by inclusion. For each such subset

{a1, a2, . . . , ak}, apply the algorithm described in Section 3.1 to form work packages. For

the other (non-serial) tasks, initialize each of them as a separate work package.

Step 2. Consider all possible pairs of work packages such that

(i) both work packages contain only active tasks;

(ii) merging those two work packages does not create any cycle in the network;

(iii) merging those two work packages decreases the total cost; and

(iv) merging those two work packages does not increase the project makespan.

If such a pair of work packages exists, then select a pair of work packages for which a merger

provides the largest decrease in total cost (with ties broken arbitrarily), merge them, and

return to Step 2.

Step 3. Consider all possible pairs of work packages such that

(i) both work packages contain only active tasks;

(ii) merging those two work packages does not create any cycle in the network;

(iii) merging those two work packages decreases the total cost; and

(iv) merging those two work packages does not increase the project makespan to a value

greater than d.

If such a pair of work packages exists, then select a pair of work packages for which a

merger provides the largest ratio of decrease in total cost to increase in project makespan

(with ties broken arbitrarily), merge them, and return to Step 2; otherwise, stop.

Step 1 of Heuristic MergeTasks forms work packages for the serial tasks only. Since doing so

does not create any cycle in the network and does not increase the project makespan, there is no

14



need to perform a cyclicity check or deadline violation check in this step. Step 2 performs pairwise

merging of work packages, where two work packages are merged only if (i) the resulting network

is acyclic, (ii) there is a decrease in total cost, and (iii) there is no increase in project makespan.

Step 3 similarly performs pairwise merging of work packages to reduce cost, but allows an increase

in project makespan, provided that the deadline constraint is not violated. Steps 2 and 3 are

executed repeatedly until no further cost reduction is possible.

Theorem 2 Heuristic MergeTasks delivers a feasible solution for problem PA in O(n̄3|A|) time.

3.2.2 Lower bound

Our overall strategy for finding a strong lower bound on the optimal solution value is to condition

on the number of work packages used. To achieve this, we define PA(p) as a restricted version of

problem PA with the additional requirement that the total number of work packages containing

active tasks is exactly p, for 1 ≤ p ≤ n̄. Moreover, the following procedure reduces the range of p

values that need to be examined, by determining a lower bound p̃ on the number of work packages

with active tasks.

Procedure pMin

Step 1. Given the task network (N, A) with work packages R1, R2, . . . , Rm of inactive tasks, con-

struct a new directed acyclic network (N ′, A′) with m nodes, where node k ∈ N ′ corresponds

to Rk, and there exists an arc k → l ∈ A′ if and only if Rk is a predecessor of Rl.

Step 2. Arc k → l has length 1 if there exists an active task a ∈ R̄ such that Rk is a predecessor

of a and Rl is a successor of a, and has length 0 otherwise.

Step 3. Determine the length, p̃, of the longest path in (N ′, A′).

Lemma 2 Any feasible solution to problem PA uses at least p̃ work packages for active tasks.

We now describe a method for generating a lower bound LB(p) for problem PA(p). The lower

bound LB(p) is obtained by solving a relaxation of PA(p), which determines the values of 2p

variables q1, q2, . . . , qp; χ1, χ2, . . . , χp. The values of q1, q2, . . . , qp satisfy some conditions that the

number of tasks in p work packages must satisfy, but they do not necessarily equal the number of

tasks of the work packages in a feasible solution of PA(p) for the given instance. Similarly, the

values of χ1, χ2, . . . , χp satisfy some conditions that the work contents in p work packages must

satisfy, but they do not necessarily equal the work contents of the work packages in a feasible
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solution of PA(p) for the given instance. Once LB(p) is determined for p = p̃, p̃ + 1, . . . , n̄, a lower

bound for problem PA is given by LB = minp=p̃,p̃+1,...,n̄{LB(p)}.

Since each group of inactive tasks Ri is required to form its own work package, for ease of

presentation, we replace each group of inactive tasks Ri by a single inactive task ai. For notational

convenience, we assume that the tasks are indexed in such a way that tasks 1, 2, . . . , n̄ are active and

tasks n̄+1, n̄+2, . . . , n̄+m are inactive. Denote NA = {1, 2, . . . , n̄} and NI = {n̄+1, n̄+2, . . . , n̄+m}.

Thus, N = NA ∪ NI . Denote C̃i as the completion time of task i for i = 1, 2, . . . , n̄ + m if each

active task forms its own work package. We also assume that the active tasks are indexed such

that C̃1 ≤ C̃2 ≤ · · · ≤ C̃n̄, where the values of C̃1, C̃2, , . . . , C̃n̄ are determined by the critical path

method. For each a ∈ N , we let Pred(a) denote the set of all predecessors of a, and let Succ(a)

denote the set of all successors of a.

To determine LB(p), we first derive two necessary conditions under which a work package can

be formed. Both conditions make use of the structure of the given task network and rely on the

requirement that the network of work packages cannot contain cycles. They restrict the feasible

combinations of q1, q2, . . . , qp; χ1, χ2, . . . , χp, based on the following two principles.

Network Inclusion Principle: Consider any active tasks s1, s2, . . . , sν and any work package W

that contains these tasks. If an inactive task a is a predecessor of some task si, 1 ≤ i ≤ ν, then

no predecessor of a is in W . Symmetrically, if an inactive task a′ is a successor of some task si,

1 ≤ i ≤ ν, then no successor of a′ is in W .

Network Exclusion Principle: Consider any inactive tasks r1, r2, . . . , rκ and any work package W

that contains active tasks. For i = 1, 2, . . . , κ, either no predecessor of ri is in work package W or

no successor of ri is in work package W .

We now provide a formal description of the necessary condition derived from each principle

above, as well as a result that establishes its validity.

For the Network Inclusion Principle, let s1, s2, . . . , sν be any ν active tasks, where ν is a pre-

specified value. Define

Vs1,...,sν =
⋂

r∈NI∩
Sν

i=1 Pred(si)

(NA \ Pred(r)) ∩
⋂

r∈NI∩
Sν

i=1 Succ(si)

(NA \ Succ(r)),

which is the set of active tasks that neither contains any predecessor of an inactive predecessor of

some task in {s1, s2, . . . , sν} nor contains any successor of an inactive successor of some task in

16



{s1, s2, . . . , sν}. For q = 1, 2, . . . , n̄, define

Θ̄′
s1,...,sν

(q) =































∅, if there exist r ∈ NI and i, i′ ∈ {1, 2, . . . , ν}

such that si ∈ Pred(r) and si′ ∈ Succ(r);
{

χ
∣

∣

∑

j∈Vs1,...,sν
yj = q;

∑

j∈Vs1,...,sν
xjyj = χ;

ys1 = · · · = ysν = 1; for some yj ∈ {0, 1}, j ∈ Vs1,...,sν

}

, otherwise.

If there exists r ∈ NI such that si ∈ Pred(r) and si′ ∈ Succ(r) for some i, i′ ∈ {1, 2, . . . , ν}, then

including both si and si′ in a work package creates a cycle in the network of work packages. In such

a case, Θ̄′
s1,...,sν

(q) is an empty set. Otherwise, any feasible work package with exactly q tasks that

contains s1, s2, . . . , sν must have the sum of its task contents equal to some χ ∈ Θ̄′
s1,...,sν

(q); see the

proof of Lemma 3 below for details. We determine Θ̄′
s1,...,sν

(q) using dynamic programming, where

the formulation is provided in Appendix B. For q = 1, 2, . . . , n̄, define

Θ′(q) =
⋃

s1,...,sν∈NA s.t. s1≤s2≤···≤sν

Θ̄′
s1,...,sν

(q).

The following lemma states the necessary condition defined by Θ′(q) under which a work package

can be formed.

Lemma 3 Any feasible work package with exactly q active tasks must have work content equal to

some χ ∈ Θ′(q).

For the Network Exclusion Principle, let r1, r2, . . . , rκ be any κ inactive tasks, where κ is a

prespecified value. Define

Ur1,...,rκ =
{

NA \ (U1 ∪ U2 ∪ · · · ∪ Uκ)
∣

∣

∣
Ui ∈ {Pred(ri), Succ(ri)}, for i = 1, . . . , κ

}

.

For U ∈ Ur1,...,rκ and q = 1, 2, . . . , n̄, define

ΨU (q) =

{

χ

∣

∣

∣

∣

∣

∑

j∈U

yj = q and
∑

j∈U

xjyj = χ for some yj ∈ {0, 1}, j ∈ U

}

.

We determine ΨU (q) using dynamic programming, where the formulation is provided in Ap-

pendix B. For q = 1, 2, . . . , n̄, define

Θ̄′′
r1,...,rκ

(q) =
⋃

U∈Ur1,...,rκ

ΨU(q).

17



The set Θ̄′′
r1,...,rκ

(q) defines a necessary condition under which a single work package of q active

tasks can be formed; see the proof of Lemma 4 below for details. For q = 1, 2, . . . , n̄, define

Θ′′(q) =
⋂

r1,...,rκ∈NI s.t. r1≤r2≤···≤rκ

Θ̄′′
r1,...,rκ

(q).

The following lemma states the necessary condition defined by Θ′′(q) under which a work package

can be formed.

Lemma 4 Any feasible work package with exactly q active tasks must have work content equal to

some χ ∈ Θ′′(q).

Next, we consider a collection of work packages with given total work content. Note that for

q = 1, 2, . . . , n̄,

ΨNA
(q) =

{

χ

∣

∣

∣

∣

∣

n̄
∑

j=1

yj = q and

n̄
∑

j=1

xjyj = χ for some y1, . . . , yn̄ ∈ {0, 1}

}

.

Thus, there exist q active tasks such that the sum of their work contents is equal to χ if and only

if χ ∈ ΨNA
(q). Hence, the set ΨNA

(q) enables us to derive a necessary condition under which one

or more work packages containing a total of q active tasks from NA can be formed.

Next, we study how grouping tasks to form a work package increases the discounted cash flow

of those tasks. For i = 1, 2, . . . , n̄, define

Ξi = {j | j /∈ Pred(r) for all r ∈ NI ∩ Pred(i); j = 1, . . . , i},

which contains all of tasks 1, 2, . . . , i, except those tasks that are predecessors of some inactive

predecessor of task i. For i = 1, 2, . . . , n̄ and χ ∈ ∪n̄
q=1[Θ

′(q)∩Θ′′(q)] such that
∑

l∈Ξi
xl ≥ χ, define

θi(χ) = min

{

j

∣

∣

∣

∣

∣

∑

l∈{i−j,i−j+1,...,i}∩Ξi

xl ≥ χ; j = 0, 1, . . . , i− 1

}

.

For χ ∈ ∪n̄
q=1[Θ

′(q) ∩ Θ′′(q)], define

φ(χ) = min
i=1,2,...,n̄ s.t.

P

l∈Ξi
xl≥χ

{

∑

j∈{i−θi(χ)+1,i−θi(χ)+2,...,i}∩Ξi

xje
−α(d−C̃i+C̃j )

+

(

χ −
∑

j∈{i−θi(χ)+1,i−θi(χ)+2,...,i}∩Ξi

xj

)

e−α(d−C̃i+C̃i−θi(χ))

}

− χe−αd.

The quantity φ(χ) is used as a lower bound on the increase in total discounted cash flow when we

group some active tasks to form a work package with work content of at least χ; see the proof of
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Lemma 5 below for details. The index i on the right side of this equation specifies the last task in

the work package that is potentially being formed.

Let

Π =

{

(q1, . . . , qp; χ1, . . . , χp)

∣

∣

∣

∣

∣

p
∑

k=1

qk = n̄;

p
∑

k=1

χk = X̄;

qk, χk ∈ Z
+, χk ∈ Θ′(qk) ∩ Θ′′(qk), and

k
∑

j=1

χj ∈ ΨNA

( k
∑

j=1

qj

)

for k = 1, . . . , p

}

and

LB(p) = ω(p+m−2)+ min
(q1,...,qp;χ1,...,χp)∈Π

p
∑

k=1

[

F (χk)+ ξφ(χk)
]

+

n̄+m
∑

i=n̄+1

F (xi)+ ξ

n̄+m
∑

i=1

xi(1− e−αC̃i).

Lemma 5 For p = 1, 2, . . . , n̄, a lower bound on the total cost of problem PA(p) is given by LB(p).

For notational convenience, we define

Λ(p) = min
(q1,...,qp;χ1,...,χp)∈Π

p
∑

k=1

[

F (χk) + ξφ(χk)
]

.

Thus, LB(p) = ω(p + m− 2) + Λ(p)+
∑n̄+m

i=n̄+1 F (xi) + ξ
∑n̄+m

i=1 xi(1− e−αC̃i). The value of Λ(p) is

found using dynamic programming, where the formulation is provided in Appendix B.

Theorem 3 A lower bound on the total cost of problem PA is given by LB = minp=p̃,p̃+1,...,n̄{LB(p)},

and found in O(n̄ν+2X̄ + 2κmκn̄2X̄ + n̄3X̄2) time.

While the conditions “χ ∈ Θ′(q)” and “χ ∈ Θ′′(q)” in Lemmas 3 and 4 provide strong restrictions

on the search space of q1, q2, . . . , qp; χ1, χ2, . . . , χp, it is computationally difficult to implement the

sets Θ′(q) and Θ′′(q) for large values of ν and κ. Hence, our implementation of Θ′(q) and Θ′′(q)

is limited to ν = κ = 2, so that the overall time requirement for determining our lower bound is

O(n̄4X̄ + m2n̄2X̄ + n̄3X̄2) ≤ O(n̄2(n̄ + m)X̄2) = O(n̄2nX̄2). Nonetheless, these two conditions

enable us to find strong lower bounds, as reported in Section 4.1.

4 Computational Study and Insights

We conduct a computational study to evaluate the performance of Heuristic MergeTasks. In Sec-

tion 4.1, we test the performance of the heuristic against the lower bound described in Section 3.2.2,

and discuss how various parameter settings influence work package sizes. In Section 4.2, we first

describe a benchmark approach from the business literature, for comparison with our heuristic.
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We then test the performance of Heuristic MergeTasks against this benchmark approach. In Sec-

tion 4.3, we compare the effect on project makespan of our model of Section 2, relative to an

approach that considers work package costs and schedule issues separately.

4.1 Analysis of MergeTasks solutions

We test the performance of Heuristic MergeTasks using randomly generated data. To generate a

random problem, we first generate a task network using the network generator RanGen2 (Vanhoucke

et al. 2008). When using RanGen2, we specify the following network measures:

I1 (network size indicator): The number of non-dummy tasks, n − 2.

I2 (serial or parallel indicator): I2 = (η − 1)/(I1 − 1), where η is the depth of the network, and

0 ≤ I2 ≤ 1.

The network generated is close to a serial network if I2 is close to 1, and is close to a network

with all tasks in parallel if I2 is close to 0. For the other network measures of RanGen2, we use

their default settings. We generate the other parameter values of each random problem as follows.

Among the I1 non-dummy tasks in the network generated by RanGen2, we randomly select n̄ tasks

to be active, where each task is equally likely to be selected. We let each of the remaining I1− n̄+2

tasks in the network, including the two dummy tasks, represent a group of inactive tasks that is

required to form a single work package. Thus, m = I1 − n̄ + 2. The work content xa and duration

ta of each active task a are both uniformly distributed integers from {1, 2, . . . , 10}, where xa and

ta are correlated with a correlation coefficient ρ. The work content xa and duration ta of each

work package of non-dummy inactive tasks are uniformly distributed integers from {1, 2, . . . , 40}

and {1, 2, . . . , 20}, respectively, where xa and ta are correlated with a correlation coefficient ρ.

In our first experiment, we set I1 ∈ {40, 80, 120, 160} and I2 ∈ {0.2, 0.4, 0.6, 0.8, 1}, giving 20

combinations of I1 and I2. For each of these combinations, we generate 10 random test instances,

for a total of 200 instances. For each test instance, we set n̄ = 0.9 × I1 and ρ = 0.5. We set

the project deadline to d = 1.1 × ∆, where ∆ is the minimum project makespan that is achieved

when each active task forms its own work package. We set the discount rate as α = 0.00025, which

represents an annual discount rate of approximately 8.7% if each time unit represents a calendar

day. We set ω = 50, ξ = 50, f(x) = h(x) = 3x0.8, and g(x) = x1.2. These cost parameters

are selected in such a way that the five cost components, namely fixed cost, cost of inaccurate

estimation, monitoring/control cost, economies of scale, and discounted cash flow cost, have the

same order of magnitude in most test instances. We choose power functions of the form kxλ for
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Table 1: Accuracy, efficiency, and solution characteristics of Heuristic MergeTasks.

Running time Running time Mean number Standard deviation
I1 (n̄) I2 e (%) of MergeTasks of lower bound of tasks in a of number of tasks

(sec.) procedure (sec.) work package in a work package

0.2 7.09 6.6 13.3 9.1 4.3
0.4 3.90 4.2 10.9 10.0 5.1

40 (36) 0.6 3.20 1.7 6.1 9.4 5.7
0.8 2.35 0.2 5.4 9.8 5.9
1.0 1.76 0.0 3.0 8.3 4.7

0.2 4.87 89.0 253.0 13.1 6.5
0.4 4.20 52.8 140.5 11.9 6.5

80 (72) 0.6 3.10 18.1 109.2 10.8 6.0
0.8 2.54 2.4 90.2 9.9 6.4
1.0 1.88 0.0 43.1 8.5 5.4

0.2 6.19 645.8 843.3 10.8 7.1
0.4 4.77 362.4 585.4 10.7 7.2

120 (108) 0.6 3.51 144.2 500.4 10.6 6.6
0.8 2.77 18.9 487.7 9.6 6.6
1.0 2.03 0.0 253.8 8.4 5.8

0.2 5.03 2222.2 4523.1 12.9 9.2
0.4 4.02 1257.6 2261.3 11.2 7.5

160 (144) 0.6 3.98 260.2 1424.4 9.3 7.4
0.8 2.81 37.6 1203.5 8.9 6.2
1.0 1.79 0.0 679.2 8.7 5.8

f(·), g(·), and h(·), in order to allow a simple robustness check in the second experiment below.

For each test instance, we run Heuristic MergeTasks, and let zH denote the total cost, as defined

by (1), of the heuristic solution. For each test instance, we also compute a lower bound LB on

the cost function (1), as described in Section 3.2.2. The performance of the heuristic, relative to a

lower bound on total cost for any test instance, is given by:

e =
zH − LB

LB
× 100%.

Heuristic MergeTasks and the lower bound procedure are coded in Excel VBA, and the experiments

are run on a PC with a 3.40 GHz Intel Core i7-6700 processor.

Table 1 summarizes our results, where each row represents the mean result of the 10 random

test instances. We observe that the performance gap of the heuristic is less sensitive to problem

size than it is to network shape as defined by I2. The performance gap tends to be higher when

I2 is smaller. The results in Table 1 also demonstrate that Heuristic MergeTasks finds accurate

solutions to problem PA in an amount of time that is reasonable within the context of project

planning. The last two columns of Table 1 show the mean and standard deviation of the number

of tasks in the work packages of active tasks in the heuristic solutions. The results indicate that,

especially for large size problems, the solutions tend to form work packages with more tasks and less
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consistent number of tasks when the task network is closer to a parallel network. This is because

when there are more parallel active tasks, the discounted cash flow costs of the work packages tend

to be relatively smaller and less important, and this effect is particularly strong when the problem

size is large. Thus, for large size problems, there is less incentive to form more but smaller work

packages, or to form work packages with consistent sizes. The solutions also typically form work

packages with less consistent number of tasks when the problem size is larger.

A discussion of the serial network case provides useful insights about our results. When I2 = 1,

the task network contains only serial tasks, and thus Heuristic MergeTasks obtains the optimal

solution in Step 1. As a result, we know that the remaining gap e, with average ranging between

1.76% and 2.03%, arises entirely from approximation of the lower bound. Hence, the performance

gaps shown in Table 1 typically overestimate the relative errors of the heuristic solutions found.

In our second experiment, we fix I1 = 100 and I2 = 0.6. We let f(x) = h(x) = 3xλ, g(x) = xµ,

d = ζ × ∆, and n̄ = I1 − m + 2. We initially set ρ = 0.5, ω = 50, ξ = 50, α = 0.00025, λ = 0.8,

µ = 1.2, ζ = 1.1, m = 12, and test the heuristic by varying the values of ρ, ω, ξ, α, λ, µ, ζ, and

m one at a time. Figure 4 shows our results, where each point on a graph represents the average

result of the 10 test instances. We observe that the performance gap increases modestly as ω, ξ,

and α increase and as λ and µ decrease. The performance gap increases sharply as ζ drops to 1.

This is the special situation where the project deadline is equal to the minimum possible project

makespan. Overall, the results in Figures 4(a)–(h) demonstrate that Heuristic MergeTasks finds

accurate solutions for most parameter settings.

In our third experiment, we study the work package sizes found in the instances of the previous

experiment. We compute the mean and standard deviation of the number of tasks in the work

packages of active tasks for each test instance. Figure 4 also shows these results, where each point

on a graph represents the average result of the 10 test instances. We observe that the mean number

of tasks per work package tends to increase as ω and ζ increase, and as ξ, α, λ, µ, and m decrease.

The reasons are as follows. As ω increases, the fixed cost becomes relatively more important, hence

the solution tends to form fewer but larger work packages. As ζ increases, the deadline constraint

becomes less restrictive to the formation of work packages, and thus the solution tends to form

larger work packages. As λ decreases, the concavity of functions f(·) and h(·) becomes stronger.

Thus, accurate cost/schedule estimates and economies of scale become relatively more significant,

and the solution tends to form fewer but larger work packages. As ξ, α, and µ decrease, the
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Figure 4: Impact of parameters on the performance gap and number of tasks per work package.
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discounted cash flow cost and monitoring/control cost become relatively less important, hence the

solution tends to form fewer but larger work packages. As m decreases, the acyclicity constraint

becomes less restrictive to the formation of work packages, and thus the solution tends to form

larger work packages. Figure 4(a) shows that parameter ρ has little impact on work package sizes.

From Figure 4, we also observe that the standard deviation of the number of tasks in a work

package tends to increase as ω increases and as ξ, α, λ, and µ decrease. The ratio of the standard

deviation to the mean of the number of tasks per work package, which reflects the relative variability

of work package size, remains stable as ρ varies, and tends to increase modestly as ω increases and

as ξ, α, λ, and ζ decrease. However, this ratio increases significantly as m increases. This is

because having more groups of inactive tasks results in fewer choices for forming work packages,

hence the feasible work packages tend to have less consistent sizes as m increases. This ratio also

decreases significantly as µ increases. This is because the monitoring and control cost is a convex

nondecreasing function of the work package size. When the convexity of the cost function is strong,

using large work packages is costly; therefore, using more consistent work package sizes provides a

lower cost solution.

4.2 MergeTasks vs. constant target work package size

As discussed in Section 1, a common practice among project managers is to use rules of thumb

to determine work package sizes. These rules of thumb typically have the characteristic that the

same rule applies to all work packages throughout the project. Such rules include, for example,

“six months of development time or $100,000 of cost” (Brown 1978), “4/40 rule” (Kennemer 2002),

etc. In this section, we computationally compare the performance of Heuristic MergeTasks with a

benchmark procedure designed to implement this characteristic. This benchmark procedure applies

a constant target work package size across all work packages.

Let X denote the target work package size. The procedure keeps at most one work package open

at any time, and constructs it by adding active tasks one at a time. We say that an active task a is

available if a is not included in a work package and each of the predecessors of a is either included

in some work package or is inactive. Let x̂ denote the work content in the currently open work

package. Let N ′ denote the precedence network that contains the constructed work packages and

the work packages of inactive tasks. In designing the procedure, we ignore the effect of the deadline

constraint on work package decisions. We do so, first for simplicity, and second for comparability

with the work package sizing rules used in practice and discussed in Section 1. A formal statement
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of the procedure follows.

Procedure Benchmark

Step 1. If all active tasks are included in work packages, then stop. Otherwise, open a new work

package; put the smallest available active task a in this work package; set x̂ := xa; and

update the set of available active tasks.

Step 2. Search for the next smallest available active task a such that adding task a to the current

work package does not create a cycle in network N ′. If no such task a exists or if xa ≥

2(X − x̂), then close the current work package and go to Step 1.

Step 3. Add task a to the current work package. Set x̂ := x̂+xa. Update the set of available active

tasks. Go to Step 2.

In Step 2 of Procedure Benchmark, we add the next available task a to the current work package

only when xa < 2(X − x̂). This ensures that the content of the work package formed is close to the

target X .

Let zB(X) denote the total cost of the solution delivered by Procedure Benchmark using a

constant target work package size X . Let zH denote the solution delivered by Heuristic Mer-

geTasks with deadline d set equal to infinity. Let bye denote the closest integer to y, for any

real number y. We define three performance measures: ε = [zB(X∗) − zH ]/zB(X∗) × 100%,

ε− = [zB(X−) − zH ]/zB(X−) × 100%, and ε+ = [zB(X+) − zH ]/zB(X+) × 100%, where X∗ =

argminX=1,2,...{z
B(X)}, X− = b(0.8)X∗e, and X+ = b(1.2)X∗e. Thus, X− and X+ represent

underestimation and overestimation of the optimized target X∗ by 20%, respectively.

The results in Table 2 estimate the value delivered by our model and algorithm, relative to

traditional project management practice. The test instances used are the same as in Section 4.1,

and each cell in Table 2 reports the average result of the test instances. For the largest instances

studied, with 144 active tasks, the fourth column shows that our model delivers up to a 3.40% cost

reduction, compared to an optimized choice of work package size target. In reality however, most

companies would find it difficult to optimize this choice. Hence we investigate, in the third and

fifth columns, the relative cost reduction from our model, compared to suboptimal choices that are

too low and too high, respectively, by 20%. These results show an increase of several percentage

points in the relative cost reduction achieved by our model, for most ranges of data. While the

relative cost reductions are smaller at large values of I2, i.e., as networks become closer to serial,

there are many practical projects for which I2 ≤ 0.4 (Vanhoucke et al. 2016). Furthermore, there is
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Table 2: Comparison with benchmark solutions.

I1 (n̄) I2 ε− (%) ε (%) ε+ (%)

0.2 3.62 0.47 1.26
0.4 2.79 0.36 0.85

40 (36) 0.6 2.96 0.20 0.67
0.8 2.61 0.07 0.20
1.0 2.82 0.00 0.08

0.2 5.06 2.65 3.60
0.4 3.17 1.48 1.74

80 (72) 0.6 3.15 0.78 1.09
0.8 2.64 0.69 0.86
1.0 1.57 0.03 0.10

0.2 4.79 2.95 3.69
0.4 4.30 2.21 2.72

120 (108) 0.6 2.78 1.42 1.93
0.8 2.72 1.10 1.33
1.0 0.92 0.02 0.16

0.2 5.02 3.40 4.29
0.4 4.77 3.19 4.08

160 (144) 0.6 3.25 1.83 2.38
0.8 1.84 0.81 1.06
1.0 0.73 0.07 0.21

improvement in the cost reductions achieved by our model as projects become larger. Based on this

evidence, we believe that the cost reductions achieved would still be substantial in larger projects.

As an additional comment, our work is apparently the first to provide estimates of the effectiveness

of the long-established project management practice of applying the same work package sizing rule

to all work packages. Those estimates suggest that, especially for projects with less close to serial

network structures, the traditional rule of thumb approach incurs avoidable costs that most project

companies and their clients would find unacceptable.

4.3 Integrated planning

Traditionally, work breakdown structure planning is performed without consideration of the schedu-

lability of the resulting work packages (see, e.g., Nicholas and Steyn 2017). This often results in

delays in project completion time. Our model, however, takes into account the precedence con-

straints between tasks when making work package sizing decision. Hence, it can be viewed as an

integration of work package sizing and scheduling decisions. In this section, we study the value of

this integrated planning approach. Specifically, we use our model to study the typical effect on

project makespan of two different approaches. The first approach is similar to solving problem PA,

but with the removal of the elements that are related to the schedule or makespan. We use this

simplified model to represent the optimization of work breakdown structure costs without regard to
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Table 3: Comparison of decomposed and integrated approaches.

I1 (n̄) I2 ∆D ∆I εI (%)

0.2 73.6 54.6 25.8
0.4 107.4 101.3 5.5

40 (36) 0.6 154.4 150.0 2.8
0.8 191.1 189.6 0.8
1.0 237.8 237.8 0.0

0.2 131.6 111.2 15.3
0.4 219.6 207.8 5.3

80 (72) 0.6 306.2 304.4 0.6
0.8 388.6 386.9 0.4
1.0 481.5 481.5 0.0

0.2 233.6 186.9 20.1
0.4 364.8 336.0 7.7

120 (108) 0.6 471.0 457.0 3.0
0.8 602.1 595.8 1.0
1.0 735.0 735.0 0.0

0.2 335.4 291.1 12.9
0.4 496.8 463.8 6.6

160 (144) 0.6 678.5 654.6 3.5
0.8 830.4 820.7 1.2
1.0 968.7 968.7 0.0

scheduling considerations. Having designed the work packages using this approach, they are then

scheduled to evaluate the makespan. We refer to this approach as a decomposed approach. The

second approach, which we refer to as an integrated approach, is to solve problem PA, where the

scheduling considerations are integrated into the work package formation decisions.

We computationally compare the project makespans of the solutions generated by the decom-

posed approach with those generated by the integrated approach. To implement the integrated

approach, we execute Heuristic MergeTasks. To implement the decomposed approach, we re-

lax the deadline constraint, remove the discounted cash flow terms “ξ
∑p

k=1 xWk
(1 − e−αCWk ) +

ξ
∑m

k=1 xRk
(1 − e−αCRk )” from the total cost function (1), and then execute Heuristic Merge-

Tasks. Let ∆D denote the makespan of the solution generated by the decomposed approach,

and ∆I denote the makespan of the solution generated by the integrated approach. Then, εI =

(∆D − ∆I)/∆D × 100% represents the percentage reduction in project makespan accomplished

through integrated planning.

The test instances used are the same as in Section 4.1, and each cell in Table 3 reports the

average result of the test instances. For instances with I2 = 1, both approaches generate solutions

with the same makespan, which is independent of work package formation decisions, for a serial

network. From Table 3, we observe that the decomposed approach delays project completion more

significantly when the task network is closer to a parallel network. On the other hand, the problem

27



size does not have consistent impact on the increase in project makespan caused by the decomposed

approach.

5 Extensions

In Section 5.1, we analyze a special case of PA in which the given task network is a group of serial

paths in parallel. Section 5.2 considers the issue of incompatibility between tasks. Section 5.3

discusses the model with generalized precedence constrained work packages.

5.1 Multiple serial paths in parallel

In this section, we analyze the solvability of a special case of problem PA in which the given task

network is a group of u serial paths in parallel. In this case, there is a set {aij | i = 1, . . . , u; j =

1, . . . , ki} of active tasks, where (i) ai1, ai2, . . . , aiki
are serial tasks for i = 1, 2, . . . , u, and (ii) aij is

neither a predecessor nor a successor of ai′j′ whenever i 6= i′. We denote this problem by PSP .

Theorem 4 The recognition version of problem PSP is binary NP-complete for any fixed u ≥ 2,

even if xa = ta for all tasks a.

Theorem 4 implies that it is unlikely that a polynomial-time optimal algorithm exists for problem

PSP , even when there are only two serial paths in parallel.

Theorem 5 If u is fixed, then problem PSP with active task set {aij | i = 1, . . . , u; j = 1, . . . , ki}

can be solved optimally in O(k2
1k

2
2 · · ·k

2
udu) time.

Theorem 5 implies that when the number of serial paths is fixed, problem PSP is solvable in

pseudopolynomial time. However, the complexity of the pseudopolynomial time algorithm is high,

even when there are few serial paths.

5.2 Task incompatibility

In various project management applications, some tasks are incompatible with others. As a result,

they should not be placed in the same work package under close proximity. Examples include high

and low temperature operations, processes involving mutually antagonistic chemicals, or tasks that

require work by two or more aggressively competitive subcontractors. In this section, we consider

an extension of our model in which some pairs of active tasks are mutually incompatible. Pairwise

incompatibility between the active tasks of a project can be represented by an n̄ × n̄ symmetric
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binary matrix, where a “1” in row i and column j means that tasks i and j can be placed within the

same work package, and a “0” means that they are incompatible. We denote these generalizations

of problems PS and PA as problems P′
S and P′

A, respectively.

The algorithm for PS can be extended to solve problem P′
S by setting c(i, j) = +∞ if there

exists a pair of incompatible tasks among tasks {ai, ai+1, . . . , aj}. For problem P′
A, the methodology

described in Section 3 for problem PA can also be extended. For finding feasible solutions, we

propose the use of Heuristic MergeTasks with the following changes:

(1) In Step 1, apply the extended algorithm for problem P′
S to active serial task subsets.

(2) In Steps 2(ii) and 3(ii), merge two work packages that do not create any cycle in the network,

or put a second incompatible task into the same work package.

The existing lower bound method presented in Section 3.2.2 is valid for problem P′
A. Further-

more, we strengthen the lower bound in the presence of pairwise incompatible tasks by limiting

the range considered for the number of work packages, using the following strengthened version of

Procedure pMin.

Procedure pMin2

Step 1. Given the task network (N, A) with work packages R1, R2, . . . , Rm of inactive tasks, con-

struct a new directed acyclic network (N ′, A′) with m nodes, where node k ∈ N ′ corresponds

to Rk, and there exists an arc k → l ∈ A′ if and only if Rk is a predecessor of Rl.

Step 2. For each arc k → l ∈ A′:

(a) If there is no active task a ∈ R̄ such that Rk is a predecessor of a and Rl is a successor

of a, then arc k → l has length 0.

(b) Otherwise, determine the length of arc k → l as follows: Construct a directed acyclic

network (N ′′
kl, A

′′
kl), where each node i in N ′′

kl corresponds to an active task i such that

Rk is a predecessor of i and Rl is a successor of i, and an arc i → j exists in A′′
kl if and

only if i is a predecessor of j in the task network. In network (N ′′
kl, A

′′
kl), an arc i → j

has length 1 if tasks i and j are incompatible, and has length 0 otherwise. The length

of arc k → l ∈ A′ is set equal to the length of the longest path in network (N ′′
kl, A

′′
kl)

plus one.

Step 3. Determine the length, p̄, of the longest path in (N ′, A′).

Lemma 6 Any feasible solution to problem P′
A uses at least p̄ work packages for active tasks.
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Because of the complexity involved in the detailed development of an accurate lower bound for

problem P′
A, such work belongs within a study of specific applications for which task incompatibility

is documented as a major issue. Since our focus is on generic project management applications, we

leave this study as a topic for future research.

5.3 Generalized precedence constrained work packages

In this section, we consider a variant of problem PA with generalized precedence constrained work

packages, as briefly described in Section 1. In this problem, if a task ai ∈ N \ {a1, a2, . . . , ak} is

a successor of one of tasks a1, a2, . . . , ak, then the formation of the work package {a1, a2, . . . , ak}

does not necessarily make ai a successor of all the tasks a1, a2, . . . , ak. However, this problem has

the following requirements: (i) If task ai is a successor of task aj in the given task network, then

the start time of task ai must be no earlier than the start time of task aj after the work packages

are formed. (ii) For each work package W , once any task in W has started, the other tasks in W

are required to be processed as early as possible, subject to the precedence constraints between

tasks within W . Requirement (ii) is motivated by the fact that a work package is conventionally

managed by a single person or organizational unit, and thus its operations should be scheduled

independently of the detailed schedules of other work packages. Note that this requirement implies

that the duration of a work package is the length of the critical path of the tasks within the work

package. We denote this problem by PG.

Consider any pair of work packages W = {a1, a2, . . . , ak} and W ′ = {a′1, a
′
2, . . . , a

′
k′} where at

least one task in W ′ is a successor of a task in W . For i = 1, 2, . . . , k, let σi denote the difference

between the start time of task ai and the start time of work package W when the tasks in W are

processed as early as possible within W . For j = 1, 2, . . . , k′, let σ′
j denote the difference between

the start time of task a′j and the start time of work package W ′ when the tasks in W ′ are processed

as early as possible within W ′. The “Start-to-Start” or “SS” relation between these two work

packages is given by sW ′ ≥ sW + τW,W ′ , where sW and sW ′ are the start times of work packages W

and W ′, respectively, and

τW,W ′ = max
ai∈W ; a′

j∈W ′;ai→a′

j∈A
{σi + tai

− σ′
j}.

Thus, the network of work packages for problem PG is a network with generalized precedence

relations (see, e.g., Elmaghraby and Kamburowski 1992 for a discussion of generalized precedence

relations). To check whether a solution is feasible, we compute the start times of all work packages
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using these SS relations between work packages, and check whether the start time of the work

package that contains the dummy ending task is d or less. This is equivalent to solving a longest

path problem in the network of work packages in which the length of each arc W → W ′ is given

by τW,W ′ , where the existence of a positive length cycle in this network implies that the solution is

infeasible.

Consider problem PG with Example 1, where the task network is shown in Figure 3(a). Consider

the solution where the active tasks are grouped into work packages W1 = {2, 3, 16}, W2 = {4, 5, 6},

W3 = {7, 8, 17}, W4 = {12, 13}, and W5 = {14, 15}. The network of work packages and the SS

relations between work packages are shown in Figure 5(a). The SS relation between W2 and W3,

for example, can be explained as follows. The precedence relations between the tasks in W2 and

the tasks in W3 include 5 → 7 and 6 → 8. The precedence relation 5 → 7 requires task 7 to start

no earlier than the completion time of task 5, which implies that task 7 cannot start earlier than

sW2 + 2. The precedence relation 6 → 8 requires task 8 to start no earlier than the completion

time of task 6, which implies that task 8 cannot start earlier than sW2 + 8. Since task 7 must start

at sW3 and task 8 must start at sW3 + 1, we have sW3 ≥ sW2 + 2 and sW3 + 1 ≥ sW2 + 8. Hence,

sW3 ≥ sW2 + 7; see Figure 5(b) which shows a schedule with the earliest possible start time of W3

relative to that of W2.
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31



We discuss several similarities and differences between problem PA and problem PG. First,

it is easy to check that Lemma 1 and Theorem 1 remain valid for problem PG. The condition

“
∑k

j=1 χj ∈ ΨNA
(
∑k

j=1 qj)” in set Π remains valid for the lower bound on the total cost of problem

PG. However, the condition “χk ∈ Θ′(qk)∩Θ′′(qk)” is no longer valid for problem PG, since negative

length cycles are allowed in the work package network. The value of p̃ generated by Procedure pMin

is also invalid for problem PG.

Assuming that the given instance is feasible, Heuristic MergeTasks can be adapted to find feasi-

ble solutions for problem PG, with the elimination of any steps which create positive length cycles

in the network of work packages. Hence, in Steps 2(ii) and 3(ii) of MergeTasks, the detection of “cy-

cle” is replaced by the detection of “positive cycle.” The implementation of Heuristic MergeTasks

for problem PG requires more computation time than it does for problem PA, since the network of

work packages for PG is not necessarily acyclic, as summarized in the following result.

Theorem 6 The modified Heuristic MergeTasks delivers a feasible solution for problem PG in

O(n̄3n|A|) time.

We note that when Heuristic MergeTasks is applied to problem PA, Steps 2(ii) and 3(ii) dis-

allow a merger due to the formation of a cycle, and the logic behind the formation of cycles is

straightforward. However, in problem PG, when two work packages are merged, the formation of

positive cycles may be due to the creation of slack time within another work package. Consider an

example with ω = 1, ξ = α = 0, f(x) = h(x) = 0 for x ≥ 0,

g(x) =

{

0, if 0 ≤ x ≤ 6;

+∞, if x > 6,

d = 10, and a task network shown in Figure 6. Tasks 2, 3, 4, 5, and 6 are active tasks, while

tasks 1 and 7 are dummy tasks. Suppose work packages {1}, {3}, {5}, {7}, and {2, 4, 6} have been

formed. Merging work packages {3} and {5} can reduce the total cost. However, Steps 2 and 3
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Figure 6: Work package formation in problem PG.
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of MergeTasks disallow this merger, because merging these two work packages implies that tasks 3

and 5 must start processing simultaneously, which makes work package {2, 4, 6} unable to process

its tasks without inserting slack time between them. Hence, this merger creates a positive cycle

in the generalized precedence network of work packages. A more complex heuristic that takes this

characteristic of problem PG into account should perform better than MergeTasks for this problem.

As a result of the above differences between PA and PG, problem PG requires substantially

different solution and lower bound techniques that would form part of a separate paper.

6 Concluding Remarks

In this paper, we study how tradeoffs in work package sizing decisions affect project performance.

Our work is apparently the first to evaluate these tradeoffs in order to optimize project performance.

We study the objective of minimizing the total of several costs identified in the project manage-

ment literature, subject to a project makespan deadline. For serial task networks, we develop

a computationally efficient algorithm. For acyclic task networks, the cost minimization problem

is unary NP-hard, hence we develop a heuristic method and a lower bound. A computational

study shows that this heuristic routinely delivers near-optimal solutions that improve substantially

on benchmarks from project management practice. Moreover, our computational results identify

problem characteristics where the benefits from our work package sizing methodology are typi-

cally greatest. We demonstrate the improvement in project makespan that results from integrating

scheduling considerations into decisions about work breakdown structure design. We also discuss

several extensions and variants of the work package sizing problem.

Project companies can benefit from our work in several ways. First, they can achieve a better

understanding of the mechanisms by which various factors related to work package sizing affect

project performance. Second, they can estimate the cost increase from using equal target size work

packages throughout the project. Third, they can use our solution procedures to develop work

packages that significantly reduce project cost. Fourth, work package sizes identified by our model

can be used to allocate resources more efficiently. Fifth, project companies can use our results

to identify for which projects the cost reduction from using our methodology is likely to be most

significant. A further benefit of our work is that companies will be motivated to obtain more

accurate data about their work package sizing costs.

Besides the extensions and variants discussed in Section 5, several other topics remain open
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for future research. First, for particular project management applications, the factors that affect

work package sizing may vary from the generic ones described here. It would be useful to identify

such factors for those applications. Second, it would be valuable to conduct an empirical study to

estimate the relative influence of the various factors we consider on project performance. Third, the

crashing of tasks using a budget or other resources shared by tasks within the same work package is

relevant. Fourth, it would be interesting to generalize our model to allow stochastic task times and

study how task uncertainty affects work package sizing decisions. Extensions of our model in such

directions would be valuable. Finally, we note that our work focuses on work package sizing, rather

than on the sequence of criteria that are used to break the project down. It may be possible to

develop a more complicated model that simultaneously optimizes the sequence of criteria used and

the work package sizes. The difficulty of such an approach is that, as Globerson (1994) notes, the

sequence of criteria interacts strongly with organizational and managerial culture. In conclusion,

we hope that our work will encourage further research on this topic, with the potential to enhance

the performance of many projects.
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