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Abstract
This article presents a novel transfer learning approach for evaluating structural conditions of rail in a progressive man-
ner, by using acoustic emission monitoring data and knowledge transferred from an acoustic-related database.
Specifically, the low-level layers of a model pre-trained on large audio data are leveraged in our model for feature extrac-
tion. Compared with conventional transfer learning approaches that transfer knowledge from models pre-trained on
normal images, the proposed approach can handle acoustic emission spectrograms more naturally in terms of both data
inner properties and the way of data intaking. The training and testing data used for rail condition evaluation contains
two months of acoustic emission recordings, which were acquired from an in situ operating rail turnout with an inte-
grated acoustic emission –based monitoring system. Results show that the evolving stages of rail from intact to critically
cracked are successfully revealed using the proposed approach with excellent prediction accuracy and high computation
efficiency. More importantly, the study quantitatively shows that audio source data are more relevant to the acoustic
emission monitoring data than Image data, by introducing a maximum mean discrepancy metric, and the transfer learning
model with smaller maximum mean discrepancy does lead to better performance. As a by-product of the study, it has
also been found that the features extracted by the proposed transfer learning model (‘‘bottleneck’’ features) already
exhibit a clustering trend corresponding to the evolving stages of rail conditions even in the training process before any
label is annotated, indicating the potential unsupervised learning capability of the proposed approach. Through the study,
it is suggested that selecting source data more correspondingly and flexibly would maximize the benefit of transfer learn-
ing in structural health monitoring area when facing heterogenous monitoring data under varying practical scenarios.
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Introduction

Acoustic emission (AE) is the radiation of acoustic
(elastic) waves in solids and occurs when a material
undergoes irreversible changes in its internal structure,
such as crack expansion or plastic deformation due to
aging, temperature gradients, or external mechanical
forces. In addition, some other processes that are rever-
sible, such as friction and impact, can also emit AE.
Structural changes subject to mechanical loadings are
localized sources of elastic waves, which are generated
when the accumulated elastic energy reaches the thresh-
old and is rapidly released. Based on this principle, AE-
based techniques have been used in various scenarios
from locating the event source to evaluating the inner
conditions of structures.1

In railway systems, non-destructive evaluation
(NDE) techniques, such as eddy current detection,2

magnetic induction tests,3 ultrasonic tests,4,5 guided

1Hong Kong Branch of National Transit Electrification and Automation

Engineering Technology Research Center, The Hong Kong Polytechnic

University, Kowloon, Hong Kong S.A.R
2Department of Civil and Environmental Engineering, The Hong Kong

Polytechnic University, Kowloon, Hong Kong S.A.R.
3College of Urban Transportation and Logistics, Shenzhen Technology

University, Shenzhen, China

Corresponding author:

Lu Zhou, Hong Kong Branch of National Transit Electrification and

Automation Engineering Technology Research Center, The Hong Kong

Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong S.A.R.

Email: lu.lz.zhou@polyu.edu.hk

uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/1475921720976941
journals.sagepub.com/home/shm
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1475921720976941&domain=pdf&date_stamp=2020-12-15


wave detection,6–8 non-contact ultrasonic inspec-
tion,9,10 and alternating current field measurement,11

are extensively used for regular inspection. Most NDE
techniques have to be conducted offline to avoid inter-
rupting normal rail service while getting to know the
real-time conditions of rail infrastructure is one of the
top concerns among rail operators and researchers.
There are also some methods that utilize axle box accel-
erations from onboard monitoring systems to identify
singular track defects such as squarts12 and bolt tight-
ness of fish-plated joints13 or to detect rail corruga-
tion.14 Although these methods can cover a long
distance, there may be a long interval between the
inspections for a specific location. In contrast, AE-
based techniques, as a type of passive inspection meth-
ods, enable online monitoring of rail conditions by cap-
turing the sudden energy release due to wheel–rail
interactions or crack expansion in rail tracks.15–17 The
applicability of AE for online monitoring of rail crack
progression was demonstrated in laboratory tests on
rail segments carried out under normal load.18 In previ-
ous research work done by the authors, an AE-based
online monitoring system had been developed for rail
turnout crack detection. Pilot lab investigations and
test line experiments proved the effectiveness of the sys-
tem in detecting AE bursts generated from abrupt
crack expansion.19 The system was then implemented
in an operating freight line and had been taking AE
recordings over a long period. However, unlike results
from the lab environment, the AE signals acquired
under in situ circumstances are often accompanied by
other signals including mechanical vibrations and
broadband noises induced by intense wheel–rail inter-
actions (especially wheel–rail creepage). These vibra-
tions and noises obscure the crack-induced AE
signatures of interest. As demonstrated in authors’ pre-
vious research work, for damage detection purpose,
conventional time–frequency methods (e.g. power spec-
trum density (PSD) analysis, wavelet analysis) are able
to identify large rail cracks before fractures at the point
rail;19,20 while detection of smaller cracks or damages
may refer to a frequency domain Structural Health
Index (SHI) updated under a Bayesian framework.21

However, beyond damage detection, rail operators are
keener on the condition evolvement of rail structures
over a period of time before significant cracks literally
take place, but both methods cannot well reveal the
structural health conditions of rail tracks in a progres-
sive manner using the AE data and are not sensitive
enough to identify the early stages of rail deterioration
when micro cracks are initializing. Yet, micro fatigue
cracks or subtle structural changes at early stages
would also generate tiny AE bursts subject to train
impacts, and implicitly influence the time–frequency
spectrogram with hidden features. However, AE bursts

are distributed in a wide frequency band depending on
different sizes, orientations, and distributions of the
early-stage micro cracks as well as different rail operat-
ing environment. Therefore, the optimal damage-
sensitive features can be varying from case to case and
it is often time-consuming to manually extract the opti-
mal one. In light of this, advancement from semi-auto
damage detection to automatic online condition eva-
luation is one target of this study, and deep learning
(DL), in this sense, would be a promising option to
adaptively find out the features and realize the target.

DL models learn nonlinear representations that dis-
entangle different underlying factors of variation.22,23

Conventional methods requiring manually analyzing
signals or proposing health-relevant features. For
example, component analysis was performed to extract
AE features, which were then fed to a multi-class rele-
vance vector machine to extract and identify various
types of defect bearings.24 The study in Pandya et al.25

manually extracted statistical and acoustic features by
Hilbert–Huang transform and then used K-nearest
neighbor algorithm to classify five bearing conditions.
In comparison, DL can directly map the acquired raw
data to the targets, and thus prevent subjective judg-
ments or labor-intensive feature handcrafting. Thus,
DL-based approaches have been gradually introduced
to structural health monitoring (SHM) in recent
years.26,27 Among the DL models, convolutional neural
networks (CNNs), through the hierarchical architecture
consisting of multiple convolutional and pooling layers,
are able to capture robust representations of a given
image.28 For audio data, CNNs also exhibit their capa-
bility of digging out suitable salient features that typi-
cally outperform handcrafted features in a variety of
scenarios including acoustic event detection29 and
music onset detection.30 It is also possible to diagnose
faults of roller bearings using acoustic recordings and
CNN model.31 The good performance of CNNs in
audio recognition promotes their application in AE-
based monitoring. For fault diagnosis of mechanical
systems, the diagnostic accuracy can be enhanced by
fusing the vibration signals with AE signals32 and inte-
grating CNNs with another kind of network.33 For
plate-like structures, the reflections and reverberations
generated by irregular geometric features may hinder
the performance of AE source location. This drawback
was overcome by some recent work in the study by
Ebrahimkhanlou and colleagues34,35 that leveraged the
power of DL (specifically, stacked autoencoders) of
capturing complex patterns. Regarding the monitoring
of railway systems, a CNN model was formulated to
classify the rail state based on the AE signals collected
by tensile testing machines, which involved the prob-
ability analysis of multiple AE events to improve the
classification performance.36 CNNs were also used to

2 Structural Health Monitoring 00(0)



identify three mechanisms that induce AE in the rail-
way field: operational noise, impact, and crack propa-
gation.37 Bayesian optimization was utilized to tune the
hyper-parameters and transfer learning (TL) was
involved to improve efficiency.

DL relies on large datasets to discover the complex
relationship between the raw data and the desired out-
put.22 However, the amount of monitoring data col-
lected from engineering field scenarios, for example.,
AE data from the rail turnout in this study, is often rel-
atively limited (normally hundreds or thousands of
data sequences) and not sufficiently ‘‘large’’ for a
‘‘deep’’ learning process. For example, the study by Li
et al.37 had to mix up both field and lab data to handle
the data insufficiency of crack propagation-induced AE
waves. When the signature of interest caused by struc-
tural damage is altered, the DL model may suffer from
the overfitting issue and fail to separate factors of var-
iation. This issue is particularly obvious and tricky for
rail circumstances where the structural and operating
conditions are remarkably different under various open
environment. To compensate for the data insufficiency,
there has been some limited but pioneering research
work in DL-based SHM by introducing TL as a novel
improvement of conventional DL methods that learn
from scratch. For a typical CNN structure, the low-
level layers trained on a large database (e.g. ImageNet)
have learned to extract low-level features such as edges,
corners, and shapes, which can be shared across
tasks.38 Therefore, they can be frozen and transferred
to a new model and only the high-level layers need to
be fine-tuned using the data of interest. In this way,
sufficient data can be guaranteed for new model train-
ing, and the training process is dramatically acceler-
ated. Specifically, for civil infrastructures, a pioneering
study has been conducted on TL-aided SHM,39 in
which a relatively small number of images (2000) about
structural damages were available. The low-level layers
of VGGNet,40 which had been pre-trained on a large-
scale off-the-shelf dataset named ImageNet41 contain-
ing more than 1000 types of objects, were utilized for
extracting features from structural damage images for
four structural damage recognition tasks: component
type identification, spalling condition check, crack level
evaluation, and damage type determination. In a
population-based SHM scenario,42 three kinds of TL
approaches were used so that models trained on the
labeled feature data obtained from one structure can be
applied to the unlabeled data of a different structure.

For AE-based SHM cases, there has been a very
recent work that utilizes TL.37 This study leverages the
low-level layers of a model pre-trained on images
(Alexnet) to extract features from the time–frequency
wavelet spectrograms. This practice, however, has one
limitation: AE spectrograms (in target domain) and

natural images (in source domain) are not analogous to
each other in nature. An AE spectrogram is the time–
frequency representation of acoustic waves and not
necessarily exhibits edges, corners, or shapes, which
appear in an image presenting the spatial distribution
of electromagnetic wave frequency. Thus, it is crude
and questionable to utilize image-oriented models for
spectrograms of AE. The data insufficiency issue men-
tioned in the previous paragraph could have been over-
come if a more reasonable source domain was selected.
After all, when the source domain and target domain
are more related, less amount of data are required and
fewer layers need to be fine-tuned.28 In contrast, each
crack-induced AE burst can be considered as an acous-
tic event and a segment of online audio recording also
contains one or multiple acoustic events. Thus, online
audio databases that contain various kinds of sound
events can be a good alternative source, based on which
our ‘‘acoustic-homologous’’ approach is proposed.
This is the second and core objective of the study.

This article presents a TL approach to evaluate the
rail condition in a progressive manner with AE moni-
toring data and a large-scale online audio database
AudioSet. The AE monitoring data were acquired by
an AE-based monitoring system previously developed
by the authors and implemented on an operating rail
freight line. The low-level layers of the CNN model
leverage knowledge transferred from AudioSet, and the
remaining layers of the model are trained on AE moni-
toring data for condition assessment of the rail struc-
ture. To the authors’ knowledge, it is for the first time
pre-trained model from audio database rather than
image database is adopted to more precisely extract the
acoustic-specific features of our AE monitoring data.
Furthermore, a maximum mean discrepancy (MMD)
metric is introduced to quantitatively measure the rele-
vancy between different source data (AudioSet,
ImageNet) and target data. The effectiveness of the
proposed approach is demonstrated by comparing the
performance of the developed network (NA-AE) with
two baselines: one network (NI-AE) relies on the knowl-
edge from ImageNet in VGGNet, another network
(NAE) is learned from scratch without the involvement
of TL. This study stresses the importance of data
source selection correspondingly in TL-aided SHM,
which can be highly beneficial when facing various
types of SHM data.

The organization of this article is as follows: The
section ‘‘TL and MMD’’ briefly introduces the basic
principles of TL and the concept of MMD; the section
‘‘In-situ AE-based monitoring system’’ describes in
detail the in situ AE-based monitoring system and AE
monitoring data used for this study; the section
‘‘Methodologies’’ presents the detailed procedures of
the proposed approach and the methodologies to
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validate its effectiveness; the section ‘‘Results and dis-
cussion’’ demonstrates and discusses the results; and
the section ‘‘Conclusion and future work’’ summarizes
the article with conclusions and future work.

TL and MMD

This section introduces the basic principles of TL and
the concept of MMD in the context of supervised DL.
Given a dataset X , Yf g, X = x1, x2, . . . , xnf g 2 X con-
tains n samples and Y = y1, y2, . . . , ynf g 2 Y consists of
their corresponding label. The task of supervised learn-
ing is to learn a model to map x to y or a conditional
probability distribution P Y jXð Þ. The space X and the
marginal probability distribution P Xð Þ constitute a
domain D= X ,P Xð Þf g and the task is denoted as T .

Unlike conventional machine learning (ML)
approaches that require preliminary hand-crafting fea-
tures from x, DL models can directly map the acquired
data x in its raw form to the desired output y.22 The
process of feature extraction is embedded in the model.
A typical DL model, such as a CNN, consists of a
series of layers. Each layer intakes the output of its pre-
vious layer, conducts some operations and outputs the
features. Each output is a more abstract representation
of the original input. It should be noted that lower the
level of a layer, less task-specific it is.28 For example,
the low-level layers in a CNN can only detect edges
and corners in an image, while the high-level layers can
output the feature maps that indicate the existence and
location of shapes or objects. This finding motives the
application of TL in DL applications to increase effi-
ciency and prevent overfitting.

Technically, there has been some knowledge learned
from the source domain DS = XS ,P XSð Þf g for the
source task T S , and the purpose of TL is to leverage
this knowledge to handle the target task T T with the
data from the target domain DT = XT ,P XTð Þf g.43
Specifically, the low-level layers of models pre-trained
from a large database in DS have learned to extract
some low-level features, which are not specific for T S .
Therefore, these layers constitute a general feature
exactor with well-trained parameters, which can be
transferred to other models. Only the high-level layers
need to be re-trained on the data of interest in DT for
T T .

38 This kind of TL is called ‘‘parameter-based TL.’’
The feature extractor can be approximately shared

as long as the DS and DT are sufficiently close. In con-
trast, if P XSð Þ is too discrepant from P XTð Þ, the feature
extractor suitable for XS may not be useful for XT , and
sometimes even corrupt XT and reduce the overall per-
formance on the T T .

44,45 Therefore, it is critical to eval-
uate the discrepancy between P XSð Þ and P XTð Þ, which
can be measured quantitatively by some metrics in

addition to being intuitively evaluated. One may adopt
correlation coefficient (CC) as a more concise metric,
but CC only quantifies relevance between two isolated
signals/waveforms and cannot truly reflect the closeness
of inherent properties (homology) between two
domains of data from a more overall perspective. In
this study, a non-parametric distance estimate between
distributions named MMD46 is used. The biggest merit
of MMD is that it can quantify the discrepancy between
distributions of high-dimensional elements, making it
highly suitable for our case.

Basically, MMD is a concept in functional analysis
defined by the distance between Kernel embedding of
two distributions in the reproducing kernel Hilbert
space (RKHS) K.47 The illustration is shown in
Figure 1. A source domain dataset XS = xs, if gm

i = 1 and a
target domain dataset XT = xt, if gn

i = 1 in space X follow
the probability distribution p and q, respectively. For a
kernel function k x, yð Þ, k x, �ð Þ represents an implicit
way to map a sample x to the RKHS K. When all sam-
ples are embedded to the K, the expectation E k x, �ð Þ½ � is
named ‘‘the kernel embedding of distribution’’ and
MMD is defined as

MMD K, p, q½ �= Ep k xS , �ð Þ½ � � Eq k xT , �ð Þ½ �
�� ��

K

= mp � mq

�� ��
K

ð1Þ

The inner products of embedding samples can be
simply calculated by the kernel trick
k x, �ð Þ, k y, �ð ÞK = k x, yð Þ.48 Therefore

MMD2 K, p, q½ �= mp � mq

�� ��2

K

= hmp � mq,mp � mqiK
= hmp,mpiK + hmq,mqiK � 2hmp,mqiK
= Ep hk xS , �ð Þ, k x0S , �ð ÞiK

� �
+ Eq hk xT , �ð Þ,½ k x0T , �ð ÞiK�
� 2� 2Ep, q hk xS , �ð Þ, k xT , �ð ÞiK

� �
= Ep k xS , x0Sð Þ½ �+ Eq k xT , x0Tð Þ½ �
� 2Ep, q k xs, xTð Þ½ � ð2Þ

Finally, the empirical estimate based on XS and XT is

MMD K,XS ,XT½ �

=
1

m

Xm

i, j = 1

k xS, i, xS, j

� �
+

1

n

Xn

i, j = 1

k xT , i, xT , j

� �
� 1

mn

Xmn

i, j = 1

k xS, i, xT , j

� �" #1
2

ð3Þ

As a non-parametric estimate, MMD does not
require an intermediate density estimate, unlike other
metrics such as the Kullback–Leibler (KL) divergence.
Besides, KL divergence is mainly used to determine
information loss rather than discrepancy. To map the
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terms of TL and MMD into the AE-based SHM case
of this study, DT refers to the collection of AE monitor-
ing data and TT refers to our rail condition evaluation
task, both of which will be introduced in the section
‘‘In situ AE-based monitoring system.’’ The full con-
struction of the ‘‘acoustic-homologous’’ TL approach
will be introduced in the section ‘‘Methodologies’’ with
details of MMD calculation.

In-situ AE-based monitoring system

Monitoring system

An AE-based monitoring system was previously devel-
oped by the authors19,21,49 for online rail turnout crack
detection. The system includes a set of encapsulated
piezoelectric (PZT) sensors, a four-channel National
Instrument 9223 Pickering card (1 MHz sampling rate)
that is able to collect data from four sensors simultane-
ously, and a computer for data storage. Specific para-
meters of the PZT sensors are displayed in Table 1. The
schematic of the system can be seen in Figure 2, and
the collected data were eventually stored in the data-
base located in the control room near the rail turnout
area for further analysis.

The system was initially deployed at a rail turnout
area of an in-service freight line near a freight station in
mainland China. According to reports from the partner
rail operators, the point rails on the two sides are most
vulnerable to damages due to the irregular rail profile,
frequent switching, and constant impacts from freight
trains. In recognition of this, four PZT sensors were
mounted at the rail foot of the point rails on the
inbound route (two sensors numbered as A and C on
the left rail and two sensors numbered as B and D on
the right rail), as shown in Figure 3, covering a 10 m
monitoring area. When any train passes through the
monitored rail turnout area, the data acquisition com-
ponent would be triggered and start taking measure-
ments for 8 s adequate to record full responses induced
by a common eight-cargo freight train that normally
passes at a speed of around 20–40 km/h within the sta-
tion’s nearby area. It has been investigated in the pilot
study that the acoustic burst frequency caused by rail
crack expansion mostly lies in a range from ultrasonic
frequency (20 kHz) to 140 kHz,19 and the sampling rate
is set to be 600 kHz to fully capture the frequency range
of interest. The monitoring system was in-service for
three years taking acoustic recordings intermittently.
Despite the large number of data points (4.8 million) in
every 8 s recording, it should be noted that each record-
ing is treated as one sample for DL, and thus the num-
ber of samples is relatively small due to the trigger-
measure mechanism. Passing locomotives are either
multiple-cargo freight trains (in normal operation
hours) or one-cargo train (in rail shunting period).
Typical recordings triggered by one-cargo train and
multiple-cargo train is shown in Figure 4. It can be
observed from Figure 4 that in one single recording,
each passing cargo induced significant and relevant

Figure 1. Mean discrepancy between source domain and target domain.

Table 1. Parameters of the PZT sensors.

Parameter Value

Diameter of PZT disk 22 mm
Frequency range 100–600 kHz
Sensitivity range 100 mV/N
Measurement range Up to 60 MPa
Piezoelectric constant 380

Chen et al. 5



vibrations and noises, manifested as acoustic peaks
with amplitude ranging from 0.4 to 15 V. While accord-
ing to our pilot lab testing, the acoustic peaks excited
by crack expansion are often relatively small, obscured
by wheel–rail interaction-induced waveforms in the
time domain.

Data description

A significant crack at the railhead of the right point rail
corresponding to the inbound direction was spotted in
mid-November 2014 by manual detection (Figure 5).
The crack occurred 2 m away from sensor C but was

Figure 2. The AE-based monitoring system for rail turnout crack detection.

Figure 3. Sensor implementation position at rail turnout area.
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missed by the monitoring system. The point rail was
confirmed by our partner rail operator to be intact
before early October. Therefore, the data recorded
from September to November 2014 was used in this
study covering a continuous deterioration period of the
point rail from intact to cracked. When the rail was
intact, no AE induced by crack expansion can be mea-
sured. When microcrack had initialized, it would
increase in size every time a freight train passed by and
generated AE burst hidden in the strong background

noises. The pattern of the burst, in turn, reflected its
current condition. This is the basic assumption of mon-
itoring turnout crack based on AE techniques. To
reveal the progressing crack, we divided the crack
growing period into several stages. The dataset is
divided into four stages: Stage I-intact, Stage II, Stage
III, and Stage IV-significantly cracked. This four-stage
option is a balance between sufficiency and necessity in
proving the concept. According to the mechanism of
fatigue growth, a typical rail crack growing under
heavy freight loading condition where the crack growth
rate is increasing with respect to time,50–54 the period of
each stage should be decreasing, as schematically
shown in Figure 6. Therefore, 1-month AE recordings
(3524 samples) were used as Stage I data, 2-week
recordings as Stage II data (946 samples), 1-week
recordings (482 samples) as Stage III data, and 4-day
recordings (584 samples) as Stage IV data. Time gaps
are reserved between neighboring stages of data selec-
tion to guarantee distinction, and more recordings were
chosen in Stage IV for better training performance.
Figure 7 demonstrates the AE recordings of rail under
four stages and the PSDs of these signals are shown in
Figure 8, focusing on the frequency interval between 20
and 140 kHz. It should be noted that Figures 7 and 8
are just samples grabbed from the dataset for demon-
stration and we do not expect to directly observe the
pattern that can reflect the crack progress in either time
domain or frequency domain.

Methodologies

The flowchart of the proposed approach is illustrated
in Figure 9. First of all, the raw AE signals were repre-
sented in the time–frequency domain. An audio source
domain that is closely related to our target domain as
well as the model NA pre-trained on it with a sophisti-
cated source task (527 categories) was selected.
Subsequently, the low-level layers of NA were trans-
ferred to our model and the parameters were frozen.

Figure 4. AE recordings triggered by (a) one-cargo train and
(b) eight-cargo train.

Figure 5. The rail with significant crack.
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Then, the high-level layers were further developed and
trained using the AE monitoring data in the target
domain. When new AE monitoring data arrives, it first
goes through the frozen layers and then the trainable
layers to evaluate the stages of rail conditions. MMD
was calculated between the output of audio source data
and AE monitoring data to quantify the relevance. The

proposed approach is demonstrated in detail through
the following subsections.

Time–frequency representation

Before the construction of the model, it is necessary to
conduct pre-processing on the AE monitoring data.
For acoustic waveforms, time–frequency spectrograms
that contain rich information in both time and fre-
quency domains are often used for further analysis.55

Specifically, we conducted short-term Fourier trans-
form (STFT) to the AE signals and obtained their spec-
trograms as

XSTFT n, k½ �=
X‘

m =�‘

x m½ �w n� m½ �e�j2pk
N

n ð4Þ

where w is a window function and x ½m�w ½n� m� is a
short-time section of signal x ½m� at time n.

One AE signal was divided into 4688 segments using
a Hann window with a size of 2048 (assuming that the
signal within 3.41 ms is stationary) and overlap of
1024. The PSD was calculated for each segment to gen-
erate a spectrogram.

Stage I Stage II Stage III Stage IV

Time/Accumulated Loading Tonnage

C
ra

ck
 L

en
gt

h

Figure 6. Progress of rail crack and stage classification.

Figure 7. AE recordings of rail under four stages subject to impact of eight-cargo trains.
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According to our previous study,21 the PSD values
of signals containing damage information reaches 90 to
140 kHz among all the frequency bands. To ensure the
information in the ultrasonic level is fully made use of,
we adopted the spectrum under a frequency range
between 20 and 140 kHz. The PSD values were then
combined into 128 frequency bins. Therefore, the size
of the spectrogram is 128 3 4688. Figure 10(a) and (b)
illustrate one AE signal and its spectrogram. It should
be noted that the spectrum is displayed in Gray Plot
because we were using the direct PSD values rather
than the red, green and blue (RGB) decompositions as
input to our model, and this will be further explained
in the section ‘‘Construction of A-AE TL model.’’

Selection of source domain

As illustrated at the beginning of this article on source
domain selection, we would like the source data to be as
close as possible to the target data. Basically, each AE
burst (subject to impact, noise, and crack expansion) is
considered as an audio event, and a segment of online
audio recording also contains one or multiple audio
events. This motivates us to use an online audio database
as the source domain aiming at a better performance.
The intuitive thinking is validated through MMD and
will be elaborated in the section ‘‘MMD comparison.’’

There are multiple online open-access audio data-
base options, among which AudioSet dataset,56 a large-

Figure 8. Power spectral density of AE recordings of four stages.

Figure 9. Flowchart of the proposed approach.
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scale dataset of manually annotated audio events, is
considered to be a good source dataset. The dataset
consists of around 2.1 million 10 s audio recordings for
527 sound events,57 each of which at least contains 59
samples. The advantages of this dataset are two-fold.
First, it has a close domain relation to our dataset,

which contains different kinds of sound events. One
recording is shown in Figure 10(c). The waveform is
found similar to ours. More importantly, it has a large
vocabulary (527 kinds of sound events), which makes
the model it nurtures able to extract robust enough fea-
tures for generic tasks. These sound events include
sounds of things (engine, bell, alarm, mechanisms, etc.)
and source-ambiguous sounds (generic impact sounds,
surface contact, deformable shell, etc.) among others.
Another typical audio dataset, in comparison, ESC-50
dataset58 is too small because it consists a total of only
2000 recordings of 50 sound events.

It is found that CNN-like structures work well on
audio classification by analyzing popular CNN archi-
tectures such as VGG,40 ResNet59 for large-scale sound
event classification on web videos.60 The import proper-
ties of CNNs are local connectivity and parameter shar-
ing in convolutional layers, which means that the filters
can extract local features even when the frequency
range is different between spectrograms of source data
and target data. Thus, a CNN trained on AudioSet,61

dominated as NA, is leveraged in our study.
NA can be divided into two parts. The first part is a

feature extractor, which intakes the spectrogram of an
audio recording, such as Figure 10(d), and outputs gen-
eric features, based on which, the second part, a classi-
fier, can identify 527 sound events occurred within 10 s.
Due to the underneath relation between audio data and
AE data, the feature extractor is very likely to be appli-
cable for AE data, and thus be transferred as the frozen
layers in our model. The construction of our model is
detailed in the section ‘‘Construction of A-AE TL
model.’’

Construction of A-AE TL model

The developed model is named NA-AE, which means
that it is a ‘‘Network trained on AE data with knowl-
edge transfer from Audio.’’ NA-AE intakes a spectro-
gram directly, and, like a typical CNN model,
transforms this input into a more and more abstract
and composite representation layer by layer, and finally
predicts the rail condition. This process is forward
propagation.

Figure 11 shows the architecture of NA-AE, which
consists of seven blocks (each block with multiple
layers) for segment-level feature extraction, a fusion
layer for the integration of extracted features and two
layers for mapping the bottleneck features to the pre-
diction of condition. The output representation x of
each block (layer) is summarized in Table 2. The three
dimensions donate [depth, height, width], that is., [fea-
ture, time, frequency]. The operations conducted in a
Block for an input volume, including Convolution
(Conv), Batch Normalization (BatchNorm), Restricted

Figure 10. (a) AE recording, (b) AE spectrogram, (c) audio
recording, and (d) audio spectrogram.
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Linear Unit (ReLU), Maximum Pooling (MaxPool),
Global Pooling (GlobalPool), and Fully Connected
(FC) feedforward, will be introduced in the sub-
subsections.

Frozen layers. Block 1 to Block 5 consists of two Conv
layers (with BatchNorm) followed by a MaxPool.
Block 6 consists of one Conv layer, followed by a
MaxPool layer. ReLU is used in all cases. For convolu-
tional layers in all six blocks, 333 filters are used.
Stride and padding are fixed to 1. The numbers of fil-
ters used in convolutional layer(s) from Block 1 to
Block 6 are 16, 32, 64, 128, 256, 512, respectively.
MaxPool is done over a 2 3 2 window, with a stride of
2 3 2. In Block 7, 1024 filters of size 2 3 2 are used
with a stride of 1. The parameters, including the w l½ �,
b l½ �, g l½ �, and b l½ �, are transferred from the pre-trained
model and frozen NA. The input volume (spectrogram
of AE signal) is denoted as x 0½ � with size of nD3nH 3nW .

Conv layer consisting of a set of learnable filters is
used to extract local feature maps. Each filter is spa-
tially small but extends through the full depth of the
input volume. During the forward propagation, each
filter slides across the width and height of the input vol-
ume and compute dot products between the weights of
the filter and the entries of the receptive field (the region
that the filter is looking at). This convolution can be
considered as feature extraction and finally produces a
two-dimensional (2D) feature map containing the acti-
vations of that filter at every spatial position. The set of
filters generates a number of feature maps. In summary,
in a Conv layer numbered l½ � with n

l½ �
D learnable filters,

the jth filter generates a feature map x
l½ �

j from an input
volume x l�1½ �

x
l½ �

j = w
l½ �

j � x l�1½ � + b
l½ �

j ð5Þ

where � represents the convolutional operator; w
l½ �

j and
b

l½ �
j are the weight volume and bias volume of the jth fil-
ter, respectively. The stacked n

l½ �
D feature maps give the

activations x l½ �.
BatchNorm62 is used to mitigate this internal covari-

ate shift issue and thus accelerate the convergence of
the training. During training, in the intermediate layers,
the distribution of activations from the previous layer is
constantly changing, which slows down the training
process because each layer must learn to adapt them-
selves to a new distribution at every training step.
Given the activations from the previous layer numbered
l � 1½ � over a mini-batch: B : x l�1½ � 1ð Þ, . . . , x l�1½ � mð Þ� �

, the
BatchNorm layer, with two learnable parameters g l½ �

and b l½ �, conduct the following operations to normalize,
scale, and shift the activations

mB =
1

m

Xm

k = 1

x l�1½ � kð Þ ð6aÞ

s2
B =

1

m

Xm

k = 1

x l�1½ � kð Þ � mB

	 
2

ð6bÞ

x̂ l½ � kð Þ =
x l�1½ � kð Þ � mBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
B + 2

p ð6cÞ

BatchNormg,b x l�1½ � kð Þ
	 


[x l½ � kð Þ = g l½ �x̂ l½ � kð Þ + b l½ � ð6dÞ

The feature maps are passed through a nonlinear
activation function, ReLU,63 which is elementwise and
remains the size of the volume

ReLU xð Þ=max x, 0ð Þ ð7Þ

Pooling layer is used to shrink the volume of repre-
sentation and reduce the number of parameters in the
next layer to train. MaxPool is commonly used, which
takes the max over four numbers in every 2 3 2 region
of the input volume. The layer can maintain the depth

Figure 11. Architecture of the proposed model.
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dimension nD and disregard 75% of the previous acti-
vations by using MaxPool operation with a stride of 2
on every depth slice.

Segment integration and trainable layers. As shown in
Table 2, the frozen layers intake the spectrogram of
[1 3 4688 3 128] and produce the plate-like represen-
tation (after Block 7) of [1024 3 72 3 1] (order: fea-
ture, time, frequency). These segment-level features
retain the information on the time axis. To integrate
the segment-level representation into recording-level
representation, GlobalPool is used. Basically, it takes
the largest value along the time axis and generates 1024
features for the whole recording. This process enables
our approach to flexibly handle AE recordings with dif-
ferent lengths. The 1024 features can be considered as a
highly condensed version of the whole recording and
they are called bottleneck features because they exactly
locate in the bottleneck position before the classifier.

A multi-layer perceptron (MLP) consisting of several
fully connected layers is used as a classifier after the glo-
bal pooling to nonlinearly map the bottleneck features
to the evaluation of rail condition corresponding to the
AE data. For an input volume x l�1½ �, the output of one
layer is

x l½ � =ReLU w l½ �3x l�1½ � + b l½ �
	 


ð8Þ

The final score for four classes is given by

ŷ = s w L½ �3x L�1½ � + b L½ �
	 


ð9Þ

where s is the Softmax function.
The hyper-parameters of MLP, including the num-

ber of layers and the size of each hidden layer, are
selected using fivefold cross-validation.64 Specifically,
the training dataset is randomly partitioned into five
equal-sized sub-datasets. For each sub-dataset, the

remaining four sub-datasets are used for training. For
one hyper-parameter setting, the evaluation is con-
ducted for five sub-datasets and the average cost (cross
entropy) reflects the performance of current setting.
Finally, a two-layer (Layer 2 and Layer 3) perceptron
with a hidden layer size of 64 is selected due to its low-
est cost.

In the process of training, the model typically takes a
mini-batch with m samples and compares the final pre-
dictions to the ground truth. The cost (error) is back-
propagated to update the parameters of each layer and
thus gradually reduced by traversing all mini-batches
within the training set for many epochs. The cost func-
tion is cross entropy

J =
1

m

Xm

k = 1

� y kð Þ log ŷ kð Þ + 1� y kð Þ
	 


log 1� ŷ kð Þ
	 
h i

ð10Þ

where for the kth sample in the mini-batch, yk is a one-
hot vector that indicates the true class, such as 0100½ �T ;
and ŷk is a vector that contains the probability of each
class.

The training set contains 2880 samples, taking
around 55% of the data. Of them, 320 samples are used
as a validation set during the training. Based on these
samples, the NA-AE was trained in the Pytorch frame-
work. As described in the section ‘‘Construction of A-
AE TL model’’, the parameters of Block 1 to Block 7
were frozen and those in Layer 9 to Layer 10 were
tuned. Dropout65 with a rate of 0.5 was used in Layer
2 to prevent overfitting. The cost function was cross
entropy. The optimization was conducted using an
Adam optimizer66 with a learning rate of 0.0001. The
training will be conducted until the cost function on
the validation set converges. The minibatch size was
set as 32 so there are 90 mini-batches in the training
set.

Table 2. Representations generated by each block (layer).

Block/Layer Operations Conv filters Size of output representation

Input None 1 3 4688 3 128
Block 1 (Conv!BatchNorm!ReLU) 3 2!MaxPool 16 3 3 3 filters 16 3 2344 3 64
Block 2 (Conv!BatchNorm!ReLU) 3 2!MaxPool 32 3 3 3 filters 32 3 1172 3 32
Block 3 (Conv!BatchNorm!ReLU) 3 2!MaxPool 64 3 3 3 filters 64 3 586 3 16
Block 4 (Conv!BatchNorm!ReLU) 3 2!MaxPool 128 3 3 3 filters 128 3 293 3 8
Block 5 (Conv!BatchNorm!ReLU) 3 2!MaxPool 256 3 3 3 filters 256 3 146 3 4
Block 6 (Conv!BatchNorm!ReLU) 3 1!MaxPool 512 3 3 3 filters 512 3 73 3 2
Block 7 (Conv!BatchNorm!ReLU) 3 1 1024 2 3 2 filters 1024 3 72 3 1
Layer 1 GlobalPool None 1024 3 1 (bottleneck features)
Layer 2 FC!ReLU None 64 3 1
Layer 3 FC!Softmax None 4 3 1

Conv: convolution; BatchNorm: batch normalization; ReLU: restricted linear unit; MaxPool: maximum pooling; GlobalPool: global pooling; FC: fully

connected.
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After learning from the training data, the model rep-
resents an inferred function, which can be used to map
new samples. The performance of the NA-AE is investi-
gated in the section ‘‘Performance comparison’’ in com-
parison with other baselines.

Baseline methods

VGGNet40 is a highly successful model in the field of
computer vision (CV) for image classification, which
has been pre-trained on ImageNet.41 Its ability to
extract robust features from normally taken photos
have been proved. On this basis, one baseline network,
named NI-AE is developed. The formulation of NI-AE

basically follows the idea of NA-AE. VGGNet consists
of five convolutional blocks (Conv1–Conv5) and three
fully connected layers (FC0–FC2). The convolutional
blocks and FC0 are frozen and copied to NI-AE

followed by an MLP with two FC layers. The whole
NI-AE is then retrained on AE data.

The process is illustrated in Figure 12. The source
model NI requires an input of a three-channel image
with a size of 224 3 224. Since the spectrogram itself is
typically wider and has only one channel, it has to be
cropped or resized and then either stacked three times
or decomposed into RGB compositions to pretend a
three-channel image to fit the requirement of VGGNet.
The matrix stacking or RGB decomposing behavior in
NI-AE may be brutal and does not increase any informa-
tion compared to the straightforward data intaking way
in NA-AE as shown in Figure 9. In addition, it should be
noted that the source domain seems to be far away
from the target domain in nature, especially in compari-
son with the case in Figure 10. The MMD results

measuring their discrepancy are also shown in the sec-
tion ‘‘MMD comparison.’’

Another baseline network for comparison is a con-
ventional CNN model that is trained from scratch,
noted as NAE. The parameters in the frozen layers
(referred to Figure 11) are unfrozen and randomly initi-
alized rather than transferred from NA, and the whole
model is trained on AE data.

To make the comparison more comprehensive,
another method without the involvement of DL is also
used. One MLP is developed so as to learn and evalu-
ate the rail condition based on the PSD of the AE
waveforms. It should be noted that an MLP is a classic
feedforward neural network with an input layer, an
output layer, and several trainable weight layers. This
method is named ‘‘PSD + MLP.’’

MMD calculation

Calculating MMD between distributions of input spec-
trograms is certainly possible, but normally we would
like to know the discrepancy of inner essence (e.g.
acoustic-specific) between datasets, while an original
spectrogram may contain a lot of unwanted informa-
tion that would dilute the MMD outcomes. Therefore,
in practice, many studies tend to measure the domain
discrepancy between distributions of bottleneck fea-
tures rather than those of the original data (spectro-
grams),44,45 and this is what we use in this study.

General MMD calculation is demonstrated in the
section ‘‘TL and MMD.’’ For the case of this study,
given data XA (audio data from AudioSet) from the
source domain DA and XAE (AE monitoring data) from
the target domain DAE, and STFT were conducted to
generate 2D time–frequency spectrograms. The low-

Figure 12. Flowchart of TL model NI-AE.
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level layers of the well-trained model NA construct a
feature extractor, which can intake the spectrogram of
audio data and generate bottleneck features X 0A.
Similarly, bottleneck features X 0A�AE corresponding to
XAE can be obtained, as shown in Figure 9. MMD
between DA and DAE is calculated based on the bottle-
neck features

MMDA,AE = MMD K,X 0A,X 0A�AE½ �

=
1

m

Xm

i, j = 1

k x0A, i, x0A, j

� �
+

1

n

Xn

i, j = 1

k x0A�AE, i, x0A�AE, j

� �
� 1

mn

Xmn

i, j = 1

k x0A, i, x0A�AE, j

� �" #1
2 ð11Þ

In this study, three kinds of kernels were used includ-
ing linear kernel k xi, xj

� �
= xi, xj, polynomial kernel

k xi, xj

� �
= xi, xj

k (where xi, xj
k denotes the kth power of

the inner product between xi and xj), and radial basis
function (RBF) kernel

k xi, xj

� �
= exp � xi � x0j

�� ��2
= 2s2
� �	 


ð12Þ

where s is the kernel width parameter.
For TL model NI-AE, MMD between the source

domain DI (ImageNet) and DAE was calculated through
the same procedures. MMD results are shown in the
section ‘‘MMD comparison.’’

Results and discussion

Performance comparison

Model training, validating, and testing process was con-
ducted on a workstation with an Intel(R) Core(TM) i7-
7700HQ 2.8 GHz processor, 12 GB RAM, and an
Nvidia GTX1070 Graphic Card. The well-trained NA-

AE was used to infer the unseen data (size = 2656) in
the testing set. The inferred rail condition is the cate-
gory with the highest probability. Table 3 shows the
confusion matrix. The recall and precision for each
condition are also calculated. It is found that the model
can well classify the AE recordings of each condition.
The high precision of Stage I means that false alarm is
very rare. On the contrary, the high recall of Stage II

and Stage III means that the development of crack can
be identified as early as possible, although few Stage III
recordings are mistaken as Stage II.

The F1 score for each class i is shown in the first col-
umn of Table 4, which is calculated by

F1i = 2
recalli3precisioni

recalli + precisioni

� 
ð13Þ

The mean of F1 for four classes, called macro-F1
was used as a summarized metric. Overall, the macro-
F1 of NA-AE is 97.5%. In comparison, the macro-F1 of
NI-AE and NAE is 86.1% and 87.5%, respectively. This
indicates that the knowledge transferred from
ImageNet has no benefits or even negative influences
on the evaluation performance. Details for each stage
are shown in Table 4. Although all three models can
well identify the Stage IV, that is., the existence of criti-
cal crack, the F1 score of Stage III in NI-AE and NAE

recordings is only 60.2% and 64.5%, respectively,
which means these two models can hardly distinguish
the middle transition stages of rail conditions, while
NA-AE can classify Stage II and Stage III with satisfac-
tory performance.

It should be noted that the method without the
involvement of DL does not perform well in terms of
F1 score, which should be blamed on the non-optimal
features. After all, the PSD throws out the time
information.

It is worth mentioning that it is also possible to
unfreeze and fine-tune more high-level layers as an
attempt to elevate the performance of NI-AE for a more
comprehensive comparison with NA-AE. For NI-AE,
three configurations of fine-tuning are investigated: (1)
Tuning F0; (2) Tuning F0 and Conv5; and (3) Tuning
F0, Conv5, and Conv4. The corresponding models are
named NI-AE-1, NI-AE-2, and NI-AE-3, respectively. The

Table 3. Confusion matrix of NA-AE.

Ground truth Prediction

Stage I Stage II Stage III Stage IV Recall (%)

Stage I 1694 0 0 0 100.0
Stage II 4 437 8 0 97.3
Stage III 0 20 211 0 91.3
Stage IV 0 0 0 282 100
Precision (%) 99.8 95.6 96.3 100
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average macro-F1 scores under different fine-tuning
configurations are plotted in Figure 13. It can be seen
from Figure 13 that despite the increasing F1 score
under more layers unfrozen and profound fine-tuning,
NA-AE without any fine-tuning process still outper-
forms NI-AE for all configurations. Moreover, unfreez-
ing more layers would definitely increase the labor of
training and lower the status and function of trans-
ferred knowledge in TL. Under the extreme state when
all low-level layers are unfrozen, the TL model degener-
ates back into a conventional CNN model.

MMD comparison

Following the calculation procedures in the section
‘‘MMD calculation,’’ the MMD between X 0I and X 0I�AE

(denoted as MMDI,AE), as well as X 0A and X 0A�AE

(denoted as MMDA,AE) can be obtained. For NI-AE, it
should be noted that X 0I consists of the bottleneck fea-
tures extracted by NI from 5536 images randomly
selected from ImageNet. Since X 0A and X 0A�AE are 1024-

element vectors and X 0I and X 0I�AE are 4096-element vec-
tors, MMD is calculated between the 1024-dimensional
or 4096-dimensional joint distributions. Certainly, such
high-dimensional distributions cannot be directly
plotted as figures, but we can plot distributions of ele-
ments in the bottleneck features separately to catch a
glimpse of the whole view and necessity of using MMD
here. Figure 14(a) shows distribution comparisons of
some elements in X 0A and X 0A�AE, and Figure 14(b)
shows distribution comparisons of some elements in X 0I
and X 0I�AE.

Table 4. Comparisons between NA-AE and baseline methods in terms of F1.

NA-AE (%) NI-AE (%) NAE (%) PSD + MLP (%)

Stage I 99.9 98.9 99.7 99.9
Stage II 96.5 85.5 86.0 79.6
Stage III 93.8 60.2 64.5 52.9
Stage IV 100.0 100.0 99.8 100.0
Average 97.5 86.1 87.5 83.1

PSD: power spectrum density; MLP: multi-layer perceptron.

Figure 13. F1 score of NI-AE after fine-tuning.

Figure 14. Distribution comparison between elements in (a)
X0A and X0A�AE and (b) X0I and X0I�AE.
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To guarantee the MMD comparison is sufficiently
general and convincing, four kernel functions under
three types (RBF, Linear, and Polynomial) were used
in this study. As introduced in the section ‘‘TL and
MMD,’’ each kernel represents one kind of mapping to
RKHS. The kernel width parameter s of RBF kernel is
chosen to be 5 and 10, respectively, and the degree k of
polynomial kernel is 2. The comparison is shown in
Figure 15. Note that the vertical scales are different
due to the different kernels. It can be observed that
under four kernel functions, the values of MMDA,AE

are all significantly smaller than MMDI,AE values. This
result coincides with our intuitive sense and is in align-
ment with the performance of the corresponding mod-
els in Table 4 and Figure 13.

Visualization of bottleneck features

There are 5536 AE recordings totally. When they are
fed to NA-AE or NI-AE, 5536 sets of bottleneck features
can be generated, denoted as X 0A�AE or X 0I�AE, respec-
tively. To obtain a straight view of the bottleneck fea-
tures, t-distributed Stochastic Neighbor Embedding (t-
SNE)67 is used to visualize the bottleneck features
X 0A�AE and X 0I�AE generated by NA-AE and NI-AE. The t-
SNE is a nonlinear dimensionality reduction technique
for embedding high-dimensional data for visualization
in a low-dimensional space of two or three dimensions.
It should be noted that the process of feature extraction
and dimension reduction is without any involvement of
supervised training.

The results are illustrated in Figure 16. Each point in
the figure represents the embedding features of an AE
record. In Figure 16(a), bottleneck features from NA-AE

seem to exhibit several clusters; while in Figure 16(b), fea-
tures from NI-AE seem to mix up. When they are colored
according to the type, it can be found that features from
the same rail condition tend to cluster and there exists
obvious borders between clusters in Figure 16(c). It should
be noted that there is also a subtle trend of the points that
reflect the progress of cracks. This result shows that the
frozen layers of NA-AE are able to extract meaningful fea-
tures for further classification. In comparison, the features
of Stage I to class Stage III from NI-AE are mixed up in
Figure 16(d). This indicates that the useful information is
corrupted by a not-so-relevant model and to some degree
lead to a performance decay.

After labels were annotated in Figure 16(c), when we
investigate 16(a) again it is found that although Stage
II and Stage III cannot be clearly separated in the fig-
ure, the clustering phenomena of features from Stage I
(intact) and Stage IV (critically cracked) implies the
possibility to evaluate the rail condition in an unsuper-
vised way.

Computation time comparison

To demonstrate the effectiveness of TL, the training
processes with and without TL were traced and shown
in this section. One-ninth training data (320 samples)
were taken out as a separate validation set during the
training. The cost (cross entropy) and the F1 score on
the validation set were measured when each epoch of
training is finished. The results of 50 epochs are shown
in Figure 17.

It is found that the NA-AE can learn to reduce the
validation cost much faster than NAE since it has much
fewer parameters to be tuned. Without calculation

Figure 15. Domain discrepancy between AE and Audio and that between AE and Image.
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details given, the number of parameters in NAE to be
trained is 4,527,732, while this number in NA-AE is only
65,860. To achieve an acceptable cost lower than 0.2,

the NAE requires around 700 s, which is seven times the
time of NA-AE. Although 700 s seems to be acceptable,
this only corresponds to one rail turnout zone in this

Figure 16. Visualization of bottleneck features X0A�AE and X0I�AE: (a) Features from NA-AE, (b) features from NI-AE, (c) colored
features from NA-AE, and (d) colored features from NI-AE.

Figure 17. Training progress of NAE and NA-AE on the validation set.
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study. Once AE-monitoring systems are implemented
in a large scale, considering numerous rail turnouts
with various operating environments, passing trains
and rail conditions, computation efficiency is extremely
vital in quickly establishing corresponding models in
time.

Even neglecting the time limit, the cost curve of NAE

eventually converges at a higher level than NA-AE. This
is owing to the overfitting problem. The model volume
is relatively large in comparison with the training size,
and its continuous learning on the training set is not
helpful for its performance on the validation set, as well
as the unseen testing set. Although the F1 score on the
training set is almost 100%, on the unseen testing set,
the NAE only shows moderate performance with
macro-F1 of 87.5%. As mentioned in the section
‘‘Performance comparison,’’ the F1 score on the testing
set reaches 97.5% using NA-AE.

Conclusion and future work

In this study, a TL approach has been developed using
in-situ AE monitoring data and a pre-trained model
from an audio source. In summary, the study contains
three primary contributions. (1) The approach is able
to evaluate the structural conditions of in-service rail
tracks in a progressive manner from intact to critically
cracked, as an advancement of crack detection in the
authors’ previous work. It enables alarming of rail
cracks at early stages and would help rail operators to
conduct in-time maintenance work. (2) Compared to
conventional CNN models, the proposed CNN model
(NA-AE) transfers lower-layer knowledge from a pre-
trained AudioSet model, to help extract the acoustic-
specific features of the time–frequency spectrograms of
two months AE monitoring data collected from an in-
service point rail, and only higher layers of the pro-
posed model needs to be trained. To the authors’
knowledge, it is the first time we use massive audio
recordings as ‘‘acoustic-homologous’’ source data to
AE-based SHM evaluation. Testing results demonstrate
that the developed model NA-AE performs well on the
rail condition assessment task based on AE data, with
a high macro-F1 score of 97.5% and relatively short
computation time. While subject to the lack of training
data amount and overfitting problem, the model learn-
ing from scratch (NAE) has a macro-F1 score of 87.5%
and tripled computation time. Although the advantage
of TL computation efficiency is not obvious in this
study for one rail turnout, it will definitely be mani-
fested upon numerous operating rail lines implemented
with monitoring systems. (3) The closeness between
source data (ImageNet, AudioSet) and the target AE
monitoring data are quantitatively determined with a

metric MMD, and the influence of different source data
on the learning performance is investigated. It is found
that the training model with knowledge transferred
from images has no positive or even negative influence
on the performance with a result of 86.1% macro-F1
score. This result aligns with the image-AE data MMD
values, which are obviously higher than those between
audio data and AE monitoring data under different cal-
culating Kernel functions. The study provides a sugges-
tion that when using TL in SHM evaluation, selecting
source data correspondingly and appropriately would
be necessary facing heterogenous monitoring data in
varying SHM scenarios. It should be noted that the AE
technique can only monitor a small portion of any rail.
Therefore, it is more applicable for the critical zones of
rail such as the rail turnout in this study or for critical
components in other mechanical systems. For long-
distance rails, some vehicle-based inspection methods
may be more suitable, such as those based on track
inspection trains.

Apart from the contributions listed above, several
improvements can be made in our future work based
on findings in this study:

� In this study, the discrepancy between the source
domain and target domain is measured by MMD
as guidance for source domain selection. Recently,
there are some inspiring research efforts on another
kind of TL named domain adaptation, where the
source task and the target task are exactly the same
while the P XSð Þ is invariant to the P XTð Þ.42,68 In this
case, the MMD can be put into the cost function to
boost the learning of domain-invariant features so
that the well-trained classifier for the same task can
be shared. Following this idea, we are working on
transferring a model from one turnout to another.

� Despite the excellent performance of the proposed
model, the optimization of hyperparameters is still
worth investigating, such as the optimum layer to
be unfrozen. Besides, the window width of STFT
on acoustic waveforms can also be further studied
for a better representation. Moreover, it is worth
looking into whether using more relevant data cate-
gories (crackle, crack, shatter) available on
AudioSet as source data rather than the entire
database will achieve better evaluation performance
on rail crack identification.

� The clustering phenomenon of visualized bottleneck
features is observed in Figure 12(c) where the AE
data from healthy turnout exhibit obvious borders
from other conditions. This provides a possibility of
unsupervised learning, and it is expected that rail
condition evaluation can be conducted even when
only healthy data are available. Histogram-based
Outlier Score (HBOS)69 and k Nearest Neighbors
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(KNN) are all potentially effective algorithms for
this, and the authors are currently researching into
this.
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