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Abstract. We establish an optimal strong convergence rate of a fully dis-

crete numerical scheme for second order parabolic stochastic partial differential

equations with monotone drifts, including the stochastic Allen–Cahn equation,
driven by an additive space-time white noise. Our first step is to transform the

original stochastic equation into an equivalent random equation whose solution
possesses more regularity than the original one. Then we use the backward

Euler in time and spectral Galerkin in space to fully discretize this random

equation. By the monotone assumption, in combination with the factorization
method and stochastic calculus in martingale-type 2 Banach spaces, we derive

a uniform maximum norm estimation and a Hölder-type regularity for both

stochastic and random equations. Finally, the strong convergence rate of the
proposed fully discrete scheme is obtained. Several numerical experiments are

carried out to verify the theoretical result.

1. Introduction

Strong approximations for stochastic partial differential equations (SPDEs)
with Lipschitz coefficients have been well studied, see, e.g., [1, 4, 7, 8] and ref-
erences therein. For certain types of SPDEs driven by colored noises with non-
Lipschitz coefficients, [9, 11, 13] obtained strong convergence rates for numerical
approximations by using the monotonicity or exponential integrability and Sobolev
embedding to control the maximum norm bounds of the exact and numerical solu-
tions. It is an interesting and difficult problem to derive strong convergence rates of
fully discrete schemes for second order parabolic SPDEs with non-Lipschitz coeffi-
cients driven by space-time white noise. In particular, to the best of our knowledge,
there exist few works on strong approximations of SPDEs with general monotone
drifts driven by space-time white noise. This is the main motivation for the present
study.

Our main concern in this paper is to derive the strong convergence rate of a
fully discrete scheme for the following parabolic SPDE with monotone drift driven
by an additive Brownian sheet W in a stochastic basis (Ω,F , (Ft)t∈[0,T ],P):

∂u(t, x)

∂t
=
∂2u(t, x)

∂x2
+ f(u(t, x)) +

∂2W (t, x)

∂t∂x
, (t, x) ∈ (0, T ]× (0, 1),(1.1)
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with the following initial value and homogeneous Dirichlet boundary condition:

u(t, 0) = u(t, 1) = 0, u(0, x) = u0(x), (t, x) ∈ [0, T ]× (0, 1).(1.2)

Here f satisfies certain monotone condition with polynomial growth derivative (see
Assumption 2.1). We remark that if f(x) = x − x3, then Eq. (1.1)-(1.2) is called
the stochastic Allen–Cahn equation or the stochastic Ginzburg–Landau equation,
which has been extensively studied mathematically and numerically in literature;
see, e.g., [12, 13, 14, 15, 16, 17] and references cited therein.

For a slightly different version of the stochastic Allen–Cahn equation with
space-time white noise, [20, Theorem 3.1] got a convergence rate in probability sense
for spectral Galerkin approximations. The first result on strong approximations of
second order SPDEs with monotone drifts driven by space-time white noise is given
in [3, Corollary 6.17] for SPDEs with polynomial drifts. There the authors obtained
the strong convergence rate for a temporally semidiscrete nonlinearity-truncated,
Euler-type scheme. Their method was then used in [2] to a nonlinearity-truncated,
fully discrete scheme for the stochastic Allen–Cahn equation with space-time white
noise. The authors proved that

sup
0≤m≤M

‖u(tm)− umN‖L2(Ω×(0,1)) = O
(
N−β +M−β/2

)
,(1.3)

for any β ∈ (0, 1/2), where umN denotes the numerical solution and N,M are the
dimension of spectral Galerkin and the number of temporal steps, respectively. The
authors in [5] analyzed strong convergence rates of some temporal splitting scheme
of the stochastic Allen–Cahn equation with space-time white noise based on the
explicit solvability of the phase flow of du/dt = (u − u3), and [19] gave sharp
strong convergence rate of a tamed fully discrete exponential integrator for SPDE
with cubic nonlinearity and negative leading coefficient.

In this work, we consider more general SPDEs with monotone drifts, which
include the stochastic Allen–Cahn equation studied in aforementioned references.
Our strong approximation of Eq. (1.1)-(1.2) consists of two steps. The first step
is to transform the original stochastic equation (1.1) into an equivalent random
equation (2.10) whose solution possesses more regularity than the original one.
The spatial spectral Galerkin approximation of Eq. (1.1)-(1.2) is exactly the sum
of the spectral Galerkin approximation of the aforementioned random equation
(2.10) and the spectral approximate Ornstein–Uhlenbeck process; see (3.3). Then
we use the natural backward Euler scheme (3.5) to discretize the random spectral
Galerkin approximate equation (3.3). To derive the strong convergence rate of this
fully discrete approximation, we make full use of the monotonicity of the random
equation, in combination with the factorization method and stochastic calculus in
martingale-type 2 Banach spaces, to derive a priori maximum norm estimation and
a Hölder-type regularity for the solutions of Eq. (1.1)-(1.2) and (2.10) (see Lemmas
2.1 and 2.2). It has been noted that such stochastic-random transformation was
used in [10, Section 7.2] and references cited therein to mathematically analyze
SPDEs driven by additive noise. We believe that this is the first work that uses
such strategy to analyze strong convergence rates of numerical schemes for SPDEs.

Our main result shows that the proposed fully discrete scheme possesses the
following convergence rate under the l∞t L

2
ωL

2
x ∩ l

q
tL

q
ωL

q
x-norm for certain q ≥ 2 and
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for any γ ∈ (0, 1/2) (see Theorem 3.1):

sup
0≤m≤M

E
[
‖u(tm)− umN‖2L2(0,1)

]
+

1

M

M∑
m=0

E
[
‖u(tm)− umN‖

q
Lq(0,1)

]
= O

(
N−2γ +M−1/2

)
.(1.4)

Taking into account of the optimal Sobolev regularity in Lemma 2.1 and a reverse
estimation (3.8), the convergence rate (1.4) is sharp. It should be noted that the
proposed scheme is implicit which avoids the truncation or tame of the nonlin-
earity, and its temporal mean-square convergence order is 1/4 which removes an
infinitesimal factor of (1.3) appeared in [2].

The rest of this article is organized as follows. Some preliminaries and a pri-
ori maximum norm estimation and a Hölder-type regularity for the solutions of
Eq. (1.1)-(1.2) and (2.10) are given in the next section, followed by the strong
convergence analysis for the proposed fully discrete scheme in Section 3. Several
numerical experiments are given to support theoretical claims in the last section.

2. Preliminaries

In this section, we give some commonly used notations and the optimal spatial
Sobolev and temporal Hölder regularity for the solution of Eq. (1.1)-(1.2). They
are used in the next section to deduce the sharp strong convergence rate of a fully
discrete scheme.

2.1. Notations. Let p ≥ 1, r ∈ [1,∞], q ∈ [2,∞], θ ≥ 0 and δ ∈ [0, 1].
Here and after we denote Lqx := Lqx(0, 1) and H := L2

x with norm ‖ · ‖ and inner
product 〈·, ·〉. Similarly, Lpω and Lrt denote the related Lebesgue spaces on the
filtered probability space (also called stochastic basis) (Ω,F , (Ft)t∈[0,T ],P) and
(0, T ), respectively. For convenience, sometimes we use the temporal, sample path
and spatial mixed norm ‖ · ‖LpωLrtLqx in different orders, such as

‖u‖LpωLrtLqx :=

(∫
Ω

(∫ T

0

(∫ 1

0

|u(t, x, ω)|qdx
) r
q

dt

) p
r

dP(ω)

) 1
p

(2.1)

for u ∈ LpωLrtLqx, with the usual modification for r =∞ or q =∞.
Denote by A the Dirichlet Laplacian on either H or Lqx. Then A is the infinitesi-

mal generator of an analytic C0-semigroup S(·) on H or Lqx, and thus one can define

the fractional powers (−A)θ of the operator −A. Let θ ≥ 0 and W θ,q
x (Ḣθ := W θ,2

x )
be the domain of (−A)θ/2 equipped with the norm ‖ · ‖θ,q (‖ · ‖θ := ‖ · ‖θ,2):

‖u‖θ,q := ‖(−A)θ/2u‖Lqx , u ∈W θ,q
x .

For a Banach space (B, ‖ · ‖B) and a bounded closed subset O ⊂ Rd, we use
C(O;B) to denote the Banach space consisting of B-valued continuous functions
f such that ‖f‖C(O;B) := supx∈O ‖f(x)‖B < ∞, and Cδ(O;B) with δ ∈ (0, 1] to
denote the B-valued function f such that

‖f‖Cδ(O;B) := sup
x∈O
‖f(x)‖B + sup

x,y∈O,x 6=y

‖f(x)− f(y)‖B
|x− y|δ

<∞.
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In the following, when B = R and O = [0, 1] we simply denote Cδ([0, 1];R) = Cδ.
Similarly, we use Lp(Ω; C([0, T ];B)) to denote the Banach space consisting of B-
valued a.s. continuous stochastic processes u = {u(t) : t ∈ [0, T ]} such that

‖u‖Lp(Ω;C([0,T ];B)) :=

(
E
[

sup
t∈[0,T ]

‖u(t)‖pB
]) 1

p

<∞,

and Lp(Ω; Cδ([0, T ];B)) with δ ∈ (0, 1] to denote B-valued stochastic processes
u = {u(t) : t ∈ [0, T ]} such that

‖u‖Lp(Ω;Cδ([0,T ];B)) : =

(
E
[

sup
t∈[0,T ]

‖u(t)‖pB
]) 1

p

+

(
E
[(

sup
t,s∈[0,T ],t6=s

‖u(t)− u(r)‖B
|t2 − t1|δ

)p]) 1
p

<∞.

The main condition on the nonlinear function f is the following monotone-type
assumption.

Assumption 2.1. There exist constants b ∈ R, Lf , L̃f > 0 and q ≥ 2 such that

(f(x)− f(y))(x− y) ≤ b|x− y|2 − Lf |x− y|q, x, y ∈ R;(2.2)

|f(0)| <∞, |f ′(x)| ≤ L̃f (1 + |x|q−2), x ∈ R.(2.3)

It is clear from (2.3) that f grows at most polynomially of degree (q − 1) by
the mean value theorem:

|f(x)| ≤ C(1 + |x|q−1), x ∈ R,(2.4)

where C = C(|f(0)|, L̃f ) is a positive constant. A motivated example of f such
that Assumption 2.1 holds true is a polynomial of odd degree (q− 1) with negative
leading coefficient perturbed with a Lipschitz continuous function; see, e.g., [10,
Exmple 7.8].

In order to apply the theory of stochastic analysis in infinite dimensional set-
tings, we need to transform the original SPDE (1.1) into an infinite dimensional

stochastic evolution equation. To this end, let us define F : Lq
′

x → Lqx by the
Nemytskii operators associated with f :

F (u)(x) := f(u(x)), x ∈ [0, 1].

where q′ denote the conjugation of q, i.e., 1/q′+ 1/q = 1. Then by Assumption 2.1,

the operator F has a continuous extension from Lq
′

x to Lqx and satisfies

Lq
′
x
〈F (x)− F (y), x− y〉Lqx ≤ b‖x− y‖

2 − Lf‖x− y‖qLqx , x, y ∈ Lqx,(2.5)

where
Lq
′
x
〈·, ·〉Lqx denotes the dual between Lq

′

x and Lqx.

Denote by WH the H-valued cylindrical Wiener process in the stochastic basis
(Ω,F , (Ft)t∈[0,T ],P), i.e., there exists an orthonormal basis {hk}∞k=1 of H and a
sequence of mutually independent Brownian motions {βk}∞k=1 such that

WH(t) =

∞∑
k=1

hkβk(t), t ∈ [0, T ].(2.6)

Then Eq. (1.1)-(1.2) is equivalent to the following stochastic evolution equation:

du(t) = (Au(t) + F (u(t)))dt+ dWH(t), t ∈ (0, T ]; u(0) = u0.(SACE)
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Note that for any q ≥ 2 and θ ≥ 0, the function space W θ,q
x is a martingale-type

2 Banach space. We need the following Burkerholder inequality in martingale-type
2 Banach space (see, e.g., [6, Theorem 2.4]):∥∥∥∥ ∫ t

0

Φ(r)dWH(r)

∥∥∥∥
LpωL

∞
t L

q
x

≤ C
∥∥Φ
∥∥
Lp(Ω;L2(0,T ;γ(H,Lqx)))

,(2.7)

for p, q ≥ 2, where γ(H,Lqx) denotes the radonifying operator norm:

‖Φ‖γ(H,Lqx) :=

∥∥∥∥ ∞∑
k=1

γkΦhk

∥∥∥∥
L2(Ω′;Lqx)

.

Here {hk}∞k=1 is any orthonormal basis of H and {γn}n≥1 is a sequence of indepen-
dent N (0, 1)-random variables on a probability space (Ω′,F ′,P′), provided that the
above series converges. We also note that Lqx with q ≥ 2 is a Banach function space
with finite cotype, and then Φ ∈ γ(H;Lqx) if and only if (

∑∞
k=1(Φhk)2)1/2 belongs

to Lqx for any orthonormal basis {hk}∞k=1 of H; see [18, Lemma 2.1]. Moreover, in
this situation,

‖Φ‖2γ(H;Lqx) '
∥∥∥∥ ∞∑
k=1

(Φhk)2

∥∥∥∥
L
q/2
x

, Φ ∈ γ(H;Lqx).(2.8)

For convenience, we frequently use the generic constant C, which may be dif-
ferent in each appearance and is independent of the discrete parameters N and M
or equivalently, τ , respectively.

2.2. A Priori Estimation. Recall that a predictable stochastic process u :
[0, T ]×Ω→ H is called a mild solution of Eq. (SACE) if u ∈ L∞(0, T ;H) a.s. such
that

u(t) = S(t)u0 +

∫ t

0

S(t− r)F (u(r))dr +WA(t), a.s. t ∈ [0, T ],(2.9)

where S = {S(t) := eAt : t ∈ [0, T ]} is the analytic C0-semigroup generalized by A,

S ∗ F (u) =

{∫ t

0

S(t− r)F (u(r))dr : t ∈ [0, T ]

}
is the deterministic convolution and

WA =

{
WA(t) =

∫ t

0

S(t− r)dWH(r) : t ∈ [0, T ]

}
is the so-called Ornstein–Uhlenbeck process. The uniqueness of the mild solution
of Eq. (SACE) is understood in the sense of stochastic equivalence.

Set z(t) := u(t)−WA(t), t ∈ [0, T ]. Then it is clear that u is the unique solution
of Eq. (SACE) if and only if z is the unique mild solution of the following random
partial differential equation:

ż(t) = Az(t) + F (z(t) +WA(t)), t ∈ [0, T ]; z(0) = u0.(2.10)

The mild solution of the above equation is equivalent to its variational solution
(see, e.g., [10, Theorem 5.4]), i.e., for any subdivision {0 = t0 < t1 < · · · < tm <

tm+1 < · · · < tM = T} with M ∈ N+ of the time interval [0, T ] and v ∈ Ḣ1 it holds
a.s. that

〈z(tm+1)− z(tm), v〉+

∫ tm+1

tm

〈∇z,∇v〉dr =

∫ tm+1

tm

〈F (u), v〉dr,(2.11)
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for any m ∈ ZM−1 := {0, 1, · · · ,M − 1}.
The existence of a unique mild solution of Eq. (2.9) under the monotone con-

dition (2.5), and thus Eq. (1.1)-(1.2) under Assumption 2.1, had been established
in [10, Theorem 7.17]. We will give a uniform moments’ estimation of this solution
in Lemma 2.1 with the aforementioned monotone condition (2.5) following some
ideas of [16, Proposition 3.1]. For simplicity, we assume that the initial datum
u0 is a deterministic function; the case u0 is random possessing certain bounded
p-moments can also be handled by similar arguments as in [16].

As in [16, Lemma 2.1] where we have shown that the Sobolev and Hölder
regularity of the Ornstein–Uhlenbeck process WA, our main tool is the following
factorization formula which is valid by deterministic and stochastic Fubini theorems:

S ∗ F (u)(t) =

∫ t

0

S(t− r)F (u(r))dr =
sin(πα)

π

∫ t

0

(t− r)α−1S(t− r)Fα(r)dr,

WA(t) =

∫ t

0

S(t− r)dWH(r) =
sin(πα)

π

∫ t

0

(t− r)α−1S(t− r)Wα(r)dr,

where α ∈ (0, 1) and

Fα(t) : =

∫ t

0

(t− r)−αS(t− r)F (u(r))dr,

Wα(t) : =

∫ t

0

(t− r)−αS(t− r)dWH(r), t ∈ [0, T ].

It was proved in [6, Lemma 3.3] that, when p > 1 and 1/p < α < 1, the linear
operator Rα defined by

Rαf(t) :=

∫ t

0

(t− r)α−1S(t− r)f(r)dr, t ∈ [0, T ],

is bounded from Lp(0, T ;Lqx) to Cδ([0, T ];W θ,q
x ) with δ < α − 1/p when θ = 0 or

δ = α− 1/p− θ/2 when θ > 0 and α > θ/2 + 1/p.

Lemma 2.1. Let β ∈ (0, 1/2). Assume that u0 ∈ Ḣβ∩L∞x . Then for any p ≥ 1,
there exists a constant C = C(T, p, b, q, Lf , β) such that

‖u‖LpωL∞t L∞x + ‖u‖LpωL∞t Ḣβ + ‖z‖LpωL∞t L∞x + ‖z‖LpωL∞t Ḣβ

≤ C
(

1 + ‖u0‖q−1
L∞x

+ ‖u0‖q−1

Ḣβ

)
,(2.12)

and that

‖u(t)− u(s)‖Lp(Ω;H) ≤ C|t− s|β/2, t, s ∈ [0, T ].(2.13)

Moreover, if u0 ∈ Ḣ1/2 ∩ L∞x . Then

‖u(t)− u(s)‖Lp(Ω;H) ≤ C|t− s|1/4, t, s ∈ [0, T ].(2.14)

Proof. For the initial term in Eq. (2.9), by the property of the semigroup S,

‖S(t)u0‖L∞x + ‖S(t)u0‖β ≤ C(‖u0‖L∞x + ‖u0‖β),(2.15)

‖S(t)u0 − S(s)u0‖ ≤ C|t− s|β/2‖u0‖β .(2.16)
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Let p, q ≥ 2 and t ∈ (0, T ]. Applying Fubini theorem and the Burkholder inequality
(2.7), we have∥∥Wα

∥∥p
LpωL

p
tL

q
x

=

∫ T

0

E
[∥∥∥∥ ∫ t

0

(t− r)−αS(t− r)dWH(r)

∥∥∥∥p
Lqx

]
dt

≤ C
∫ T

0

(∫ t

0

r−2α‖S(r)‖2γ(H;Lqx)dr

) p
2

dt.

Then by (2.8) and the uniform boundedness of {ek =
√

2 sin(kπ·)}∞k=1, we get

‖S(t)‖2γ(H;Lqx) '
∥∥∥∥ ∞∑
k=1

(S(t)ek)2

∥∥∥∥
L
q/2
x

≤
∞∑
k=1

e−2λkt‖ek‖2Lqx ≤ Ct
− 1

2 ,

where the elementary inequality
∑∞
k=1 e

−2λkt ≤ Ct− 1
2 is used. Then

∥∥Wα

∥∥
LpωL

p
tL

q
x
≤ C

(∫ T

0

(∫ t

0

r−(2α+ 1
2 )dr

) p
2

dt

) 1
p

,

which is finite if and only if α ∈ (0, 1/4). As a result of the Hölder continuity
characterization, WA ∈ Lp(Ω; Cδ([0, T ];W θ,q

x )) for any δ, θ ≥ 0 with δ + θ/2 < 1/4.

By the Sobolev embedding W θ,q
x ↪→ L∞x ∩ Ḣβ with sufficiently large q and β ≤ θ <

1/2, we conclude that

E
[

sup
t∈[0,T ]

‖WA(t)‖pL∞x
]

+ E
[

sup
t∈[0,T ]

‖WA(t)‖pβ
]
≤ C,(2.17)

‖WA(t)−WA(s)‖Lp(Ω;H) ≤ C|t− s|γ , t, s ∈ [0, T ],(2.18)

for any p ≥ 1, β ∈ (0, 1/2) and γ ∈ (0, 1/4).
In terms of (2.17) and the relation z = u−WA, to show the estimation (2.12)

for u and z it suffices to show one of them. Let L ≥ 1. Testing both sides of Eq.
(2.10) by |z|2(L−1)z and integrating by parts yield that

1

2L
‖z(t)‖2LL2L

x
+ (2L− 1)

∫ t

0

〈|z(r)|2(L−1), |∇z(r)|2〉dr

=
1

2L
‖u0‖2LL2L

x
+

∫ t

0

〈(F (u(r)), |z(r)|2(L−1)z(r)〉dr.

It follows from the condition (2.2) and Young inequality that∫ t

0

〈(F (u(r)), |z(r)|2(L−1)z(r)〉dr

=

∫ t

0

〈F (z(r) +WA(r))− F (WA(r)), z2L−1(r)〉dr −
∫ t

0

〈WA(r), z2L−1(r)〉dr

≤ C
∫ t

0

‖z(r)‖2LL2L
x

dr − Lf
∫ t

0

‖u(r)‖q+2(L−1)

L
q+2(L−1)
x

dr + C

∫ t

0

‖WA(r)‖2LL2L
x

dr.

Thus we obtain

1

2L
‖z(t)‖2LL2L

x
+ Lf

∫ t

0

‖u(r)‖q+2(L−1)

L
q+2(L−1)
x

dr

≤ 1

2L
‖u0‖2LL2L

x
+ C

∫ t

0

‖z(r)‖2LL2L
x

dr + C

∫ t

0

‖WA(r)‖2LL2L
x

dr.
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Now taking L1
ωL
∞
t -norm, we conclude from Grönwall inequality and (2.17) that

E
[

sup
t∈[0,T ]

‖z(t)‖2LL2L
x

]
+

∫ T

0

E
[
‖u(r)‖q+2(L−1)

L
q+2(L−1)
x

]
dt ≤ C

(
1 + ‖u0‖2LL2L

x

)
.

Similarly, one gets by taking L
p/2
ω L∞t -norm with general p ≥ 2 and the relation

z = u−WA that

E
[

sup
t∈[0,T ]

‖u(t)‖p
L2L
x

]
+ E

[
sup
t∈[0,T ]

‖z(t)‖p
L2L
x

]
≤ C

(
1 + ‖u0‖pL2L

x

)
, p ≥ 2.(2.19)

Consequently, for any α ∈ (0, 1) we get

‖Fα‖pLpωLptL2L
x
≤
∫ T

0

E
[(∫ t

0

(t− r)−α‖S(t− r)F (u(r))‖L2L
x

dr

)p]
dt

≤ C
(

1 + ‖u‖p(q−1)

L
p(q−1)
ω L∞t L

2L(q−1)
x

)
≤ C

(
1 + ‖u0‖p(q−1)

L
2L(q−1)
x

)
.

Therefore, S ∗ F (u) ∈ Lp(Ω; Cδ([0, T ];W θ,2L
x )) for any δ, θ ≥ 0 with δ + θ/2 < 1.

Then by Sobolev embedding we have

E
[

sup
t∈[0,T ]

‖S ∗ F (u)(t)‖pL∞x
]

+ E
[

sup
t∈[0,T ]

‖S ∗ F (u)(t)‖pβ
]
≤ C,(2.20)

and ∥∥S ∗ F (u)(t)− S ∗ F (u)(s)
∥∥
Lp(Ω;H)

≤ C|t− s|γ , t, s ∈ [0, T ],(2.21)

for any p ≥ 1, β ∈ (0, 1/2) and γ ∈ (0, 1).
Combining (2.15)-(2.20) and the relation that u = z +WA, we get the estima-

tions (2.12) and (2.13). To show the last inequality (2.14), we only need to give a
refined estimation of (2.18):

‖WA(t)−WA(s)‖Lp(Ω;H) ≤ C|t− s|1/2, t, s ∈ [0, T ].(2.22)

Due to the fact that WA is Gaussian, we only need to show (2.22) for p = 2.
Without loss of generality, assume that 0 ≤ s ≤ t ≤ T . By Itô isometry, we have

E
[
‖WA(t)−WA(s)‖2

]
= E

[∥∥∥∥ ∫ t

s

S(t− r)dWH(r)

∥∥∥∥2]
+ E

[∥∥∥∥ ∫ s

0

(S(t− r)− SN (s− r))dWH(r)

∥∥∥∥2]
=

∫ t−s

0

[ ∞∑
k=1

e−2λkr

]
dr +

∞∑
k=1

1− e−2λks

2λk

(
1− e−λk(t−s)

)2

≤
∫ t−s

0

[ ∞∑
k=1

e−2λkr

]
dr +

1

2

∞∑
k=1

1− e−λk(t−s)

λk

=

∫ t−s

0

[ ∞∑
k=1

e−2λkr

]
dr +

1

2

∫ t−s

0

[ ∞∑
k=1

e−λkr
]
dr ≤ C(t− s).

This completes the proof of (2.22). �

Next, we use the uniform estimation in Lemma 2.1 to derive the following
Hölder-type regularity of the solutions u and z of Eq. (1.1)-(1.2) and (2.10), re-
spectively.
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Lemma 2.2. Let β ∈ (0, 1/2]. Assume that u0 ∈ Ḣβ ∩L∞x . Then for any p ≥ 1,
there exists a constant C = C(T, p, b, Lf , β, u0) such that for any 0 ≤ s ≤ t ≤ T
there holds that

E
[
‖F (u(t))− F (u(s)‖2

]
≤ C(t− s)β .(2.23)

Moreover, if u0 ∈ Ḣ1+β , then

E
[
‖∇z(t)−∇z(s)‖2

]
≤ C(t− s)β .(2.24)

Proof. We start with the first estimation (2.23). By the mean value theorem,
the condition (2.3), the moments’ estimation (2.12) and Hölder-type regularity
(2.13)-(2.14) of u, we get

E
[
‖F (u(t))− F (u(s)‖2

]
≤ C

(
1 + sup

t∈[0,T ]

‖u(t)‖2(q−2)

L
2(q−1)
ω L∞x

)
× ‖u(t)− u(s)‖2

L
2(q−1)
ω H

≤ C(t− s)β ,

which proves (2.23).
Next, we prove the last inequality (2.24). By the smoothness property of the

semigroup S and the regularity of u0, we get

‖S(t)u0 − S(r)u0‖1 ≤ C‖u0‖1+β(t− s)β/2, u0 ∈ Ḣ1+β .(2.25)

By Minkovskii inequality, the condition (2.3) and the moments’ estimation (2.12)
of u, we obtain

‖S ∗ F (u(t))− S ∗ F (u(r))‖L2(Ω;Ḣ1)

≤
∫ t

s

‖S(t− r)F (u(r))‖L2(Ω;Ḣ1)dr

+

∫ s

0

‖(S(t− s)− IdH)S(s− r)F (u(r))‖L2(Ω;Ḣ1)dr

≤ C sup
t∈[0,T ]

‖F (u(t))‖L2(Ω;H) ×
(∫ t

s

(t− r)− 1
2 dr + (t− s) 1

2

)
≤ C(t− s) 1

2 ,

Combining the above two estimations, we get (2.24). �

3. Fully Discrete Approximation

In this section, we study a fully discrete scheme of Eq. (2.10) and derive its
optimal strong convergence rate.

3.1. Backward Euler–Spectral Galerkin Approximation. Let M,N ∈
N+. Denote by PN the orthogonal projection operator from H to its finite di-
mensional subspace VN spanned by the eigenvectors {ek =

√
2 sin(kπ·)}Nk=1 corre-

sponding to the first N eigenvalues {λk = (kπ)2}Nk=1 of negative Dirichlet Laplacian
−A:

〈PNu, vN 〉 = 〈u, vN 〉, u ∈ H, vN ∈ VN .(3.1)
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Denote by AN the restriction of the Laplacian operator A on VN . Then the spectral
approximation of Eq. (1.1)-(1.2) is to find an Ft-adapted VN -valued process uN =
{uN (t) : t ∈ [0, T ]} such that

duN (t) = (ANuN (t) + PNF (uN (t)))dt+ PNdWH(t), t ∈ [0, T ]; uN (0) = PNu0.

(3.2)

The mild solution of Eq. (3.2) is given by

uN (t) = SN (t)PNu0 +

∫ t

0

SN (t− r)PNF (uN (r))dr +WN
A (t), t ∈ [0, T ],

where SN = {SN (t) := eAN t : t ∈ [0, T ]} is the analytic C0-semigroup generated by

AN and WN
A = {WN

A (t) =
∫ t

0
SN (t− r)PNdWH(r) : t ∈ [0, T ]} is the approximate

Ornstein–Uhlenbeck process. Define zN = uN −WN
A . Then zN solves the following

random partial differential equation:

żN (t) = ANzN (t) + PNF (zN (t) +WN
A (t)), t ∈ [0, T ]; zN (0) = PNu0.(3.3)

Let M ∈ N+ and denote ZM := {0, 1, · · · ,M}. Similarly to Eq. (2.11), it is clear
that the spectral Galerkin approximation (3.2) of Eq. (1.1)-(1.2) is equivalent to
find a VN -valued process uN = zN + WN

A such that for all subdivision {tm : m ∈
ZM} of [0, T ] and vN ∈ VN it holds a.s. that

〈zN (tm+1)− zN (tm), vN 〉+

∫ tm+1

tm

〈∇zN ,∇vN 〉dr =

∫ tm+1

tm

〈F (uN ), vN 〉dr.(3.4)

The backward Euler approximation of Eq. (3.4) is to find a VN -valued discrete
process {zmN : N ∈ N+, m ∈ ZM} such that for all vN ∈ VN it holds a.s. that

〈zm+1
N − zmN , vN 〉+ τ〈∇zm+1

N ,∇vN 〉 = τ〈Fm+1
N , vN 〉,(3.5)

where Fm+1
N := F (zm+1

N + WN
A (tm+1)), m ∈ ZM−1. We call the fully discrete

scheme (3.5) the backward Euler–spectral Galerkin scheme of Eq. (2.10). Set

umN = zmN +WN
A (tm), m ∈ ZM .(3.6)

Then umN is an approximation of the solution u of Eq. (1.1)-(1.2) at tm, m ∈ ZM−1.
In this sense, (3.5)–(3.6) can be seen as the backward Euler–Galerkin scheme of
Eq. (1.1)-(1.2). For simplicity, throughout this section we assume that {Im :=
(tm, tm+1] : m ∈ ZM−1} is an equal length subdivision of (0, T ] and denote by
τ = tm+1 − tm, m ∈ ZM−1, the temporal step size of this subdivision.

3.2. Strong Convergence Rate. This section is devoted to establishing the
strong convergence rate for the backward Euler–spectral Galerkin scheme (3.5)-(3.6)
of Eq. (1.1)-(1.2).

We begin with the following essentially optimal error estimation between the
Ornstein–Uhlenbeck process WA and its approximation WN

A , as well as a uniform
L∞x -bound for PNu with respect to N .

Lemma 3.1. Let p ≥ 1. There exists a constant C = C(p) such that

sup
t∈[0,T ]

(
E
[
‖WA(t)−WN

A (t)‖p
]) 1

p ≤ CN− 1
2 .(3.7)
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Proof. The difference of the Ornstein–Uhlenbeck processes can be rewritten
as

WA(t)−WN
A (t) =

∫ t

0

(S(t− r)− SN (t− r)PN )dWH(r), t ∈ [0, T ].

Since WA−WN
A is Gaussian, we only need to show (3.7) for p = 2. By Itô isometry

and elementary calculations, we get

sup
t∈[0,T ]

E
[
‖WA(t)−WN

A (t)‖2
]
≤
∞∑
k=1

∫ T

0

‖(S(r)− SN (r)PN )ek‖2dr

=

∞∑
k=N+1

1− e−2λkT

2λk
≤ 1

2π2
N−1.

This completes the proof of (3.7). �

Remark 3.1. The estimation (3.7) is sharp in the sense that

E
[
‖WA(t)−WN

A (t)‖2
]

=

∞∑
k=N+1

1− e−2λkt

2λk
≥ t

2(1 + 2π2t)
N−1,(3.8)

for t > 0, where we have used the elementary estimation ex ≥ 1 + x for any x ≥ 0.

Lemma 3.2. Let ε > 0 and u0 ∈ Ḣ
1
2 +ε. Then for any p ≥ 1, there exists a

constant C = C(T, p, ε) such that

sup
N∈N+

sup
t∈[0,T ]

‖PNu(t)‖Lp(Ω;L∞x ) ≤ C
(

1 + ‖u0‖q−1
L∞x

)
.(3.9)

Proof. It is clear that

PNu(t) = S(t)PNu0 + PN
[ ∫ t

0

S(t− r)F (u(r))dr

]
+WN

A (t).

By stochastic Fubini theorem, the approximate Ornstein–Uhlenbeck process WN
A

possesses the following factorization formula:∫ t

0

SN (t− r)PNdWH(r) =
sin(πα)

π

∫ t

0

(t− r)α−1SN (t− r)WN
α (t)dr,

where α ∈ (0, 1) and WN
α (t) :=

∫ t
0
(t − r)−αSN (t − r)PNdWH(r), t ∈ [0, T ]. Let

p, q ≥ 2 and t ∈ (0, T ]. Applying Fubini theorem and the Burkholder inequality
(2.7) as well as the equivalence (2.8) of γ-norm, we get similarly to Lemma 2.1 that∥∥WN

α

∥∥p
LpωL

p
tL

q
x

=

∫ T

0

E
[∥∥∥∥ ∫ t

0

(t− r)−αSN (t− τ)PNdWH(r)

∥∥∥∥p
Lqx

]
dt

≤ C
∫ T

0

(∫ t

0

r−2α‖SN (r)PN‖2γ(H;Lqx)dr

) p
2

dt

≤ C
∫ T

0

(∫ t

0

r−2α

∥∥∥∥ ∞∑
k=1

(SN (r)PNek)2

∥∥∥∥
L
q/2
x

dr

) p
2

dt

≤ C
∫ T

0

(∫ t

0

r−(2α+ 1
2 )dr

) p
2

dt.
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The last integral is finite if and only if α ∈ (0, 1/4). As a result of the Hölder
continuity characterization and Sobolev embedding, WN

A ∈ Lp(Ω; Cδ([0, T ]; Cκ)) for
any δ, κ ≥ 0 with δ + κ/2 < 1/4 uniformly with respect to N . In particular, there
exists a constant C = C(T, p) such that

sup
N∈N+

E
[

sup
t∈[0,T ]

‖WN
A ‖

p
L∞x

]
≤ C.(3.10)

It is shown in Lemma 2.1 that
∫ ·

0
S(· − r)F (u(r))dr ∈ Lp(Ω; Cδ([0, T ];W θ,2L

x )) for

any δ, θ ≥ 0 with δ+θ/2 < 1. In particular,
∫ ·

0
S(·−r)F (u(r))dr ∈ Lp(Ω; C([0, T ]; Ḣγ))

for any p ≥ 1 and γ ∈ (0, 2). Therefore, by the Sobolev embedding Ḣ1/2+ε ⊂ L∞x
there exists a constant C = C(T, p, ε, u0) such that

sup
N∈N+

E
[

sup
t∈[0,T ]

‖PN [S ∗ F (u)(t)]‖pL∞x
]

≤ C sup
N∈N+

E
[

sup
t∈[0,T ]

‖PN [S ∗ F (u)(t)]‖p1
2 +ε

]
≤ C sup

N∈N+

E
[

sup
t∈[0,T ]

‖S ∗ F (u)(t)‖p1
2 +ε

]
≤ C.

Similarly,

sup
N∈N+

E
[

sup
t∈[0,T ]

‖S(t)PNu0‖pL∞x

]
≤ C‖u0‖p1

2 +ε
.

Therefore, (3.9) holds. �

Now we can give and prove our main result on convergence rate of the backward
Euler–spectral Galerkin scheme (3.5)-(3.6) under the l∞t L

2
ωL

2
x ∩ l

q
tL

q
ωL

q
x-norm for

Eq. (1.1)-(1.2). Here the l∞t L
2
ωL

2
x-norm and lqtL

q
ωL

q
x-norm are temporally discrete

norms similarly to the continuous norm given in (2.1).

Theorem 3.1. Let τ ∈ (0, 1) when b < 0 and τ < 1/(4b) when b > 0. Assume

that u0 ∈ Ḣ3/2. Let u and umN denote the solutions of Eq. (SACE) and the
scheme (3.5)-(3.6), respectively. Then for any γ ∈ (0, 1/2), there exists a constant
C = C(T, b, Lf , γ, ‖u0‖3/2) such that

sup
m∈ZM

E
[
‖u(tm)− umN‖2

]
+
∑
m∈ZM

E
[
‖u(tm)− umN‖

q
Lqx

]
τ ≤ C

(
N−2γ + τ1/2

)
.

(3.11)

Proof. Let γ ∈ (0, 1/2). Define emN := PNz(tm)− zmN , m ∈ ZM . Then noting
the relation between u and z, we get emN ∈ VN and

u(tm)− umN = (IdH − PN )u(tm) + emN , m ∈ ZM .
By triangle inequality and the moment’s estimation (2.12), we get

sup
m∈ZM

E
[
‖u(tm)− umN‖2

]
+
∑
m∈ZM

E
[
‖u(tm)− umN‖

q
Lqx

]
τ

≤ sup
m∈ZM

E
[
‖(IdH − PN )u(tm)‖2

]
+
∑
m∈ZM

E
[
‖(IdH − PN )u(tm)‖q

Lqx

]
τ

+ sup
m∈ZM

E
[
‖emN‖2

]
+
∑
m∈ZM

E
[
‖emN‖

q
Lqx

]
τ.(3.12)
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By the standard estimation of spectral Gakerin approximation that ‖(IdH −
PN )u‖ ≤ CN−γ‖u‖γ for any u ∈ Ḣγ and the Sobolev embedding that Ḣ1/2−1/q ↪→
Lqx for q ≥ 2, we obtain

sup
m∈ZM

E
[
‖(IdH − PN )u(tm)‖2

]
≤ CN−2γ sup

t∈[0,T ]

E
[
‖u(t)‖2γ

]
,

and ∑
m∈ZM

E
[
‖(IdH − PN )u(tm)‖q

Lqx

]
τ

≤ sup
t∈[0,T ]

E
[
‖(IdH − PN )(−A)

1
2 ( 1

2−
1
q )u(t)‖q

]
T

≤ CN−q(γ̃− 1
2 )−1 sup

t∈[0,T ]

E
[
‖u(t)‖qγ̃

]
.

for any γ, γ̃ ∈ (0, 1/2). In particular, for γ ∈ (0, 1/2) one can choose

γ̃ =
1

2
− 1− 2γ

q
∈
(

0,
1

2

)
and get

sup
m∈ZM

E
[
‖(IdH − PN )u(tm)‖2

]
+
∑
m∈ZM

E
[
‖(IdH − PN )u(tm)‖q

Lqx

]
τ

≤ CN−2γ
(

sup
t∈[0,T ]

E
[
‖u(t)‖2γ

]
+ sup
t∈[0,T ]

E
[
‖u(t)‖qγ̃

])
≤ CN−2γ , ∀ γ ∈

(
0,

1

2

)
.

In terms of (3.12) and the above estimation, to show the estimations (3.11) we only
need to prove

sup
m∈ZM

E
[
‖emN‖2

]
+
∑
m∈ZM

E
[
‖emN‖

q
Lqx

]
τ ≤ C

(
N−2γ + τ1/2

)
, ∀ γ ∈

(
0,

1

2

)
.(3.13)

Subtracting (2.11) from (3.5) with v = vN = em+1
N ∈ VN ⊂ Ḣ1, we get

〈(IdH − PN )(z(tm+1 − z(tm))), em+1
N 〉+ 〈em+1

N − emN , em+1
N 〉

= −
∫ tm+1

tm

〈∇(Y − zm+1
N ),∇em+1

N 〉dr +

∫ tm+1

tm

〈F (u)− Fm+1
N , em+1

N 〉dr.(3.14)

Since PN is an L2-projection, we have

E
[
〈(IdH − PN )(z(tm+1 − z(tm))), em+1

N 〉
]

= 0.

By the elementary identity (a− b)a = 1
2 (a2 − b2) + 1

2 (a− b)2, we get

E
[
〈em+1
N − emN , em+1

N 〉
]

=
1

2

(
E
[
‖em+1
N ‖2

]
− E

[
‖emN‖2

])
+

1

2
E
[
‖em+1
N − emN‖2

]
.

(3.15)

Applying the fact that 〈∇(IdH − PN )u,∇vN 〉 = 0 for any u ∈ Ḣ1 and vN ∈ VN ,
Cauchy–Schwarz inequality and the estimation (2.24) with β = 1/2, we obtain

E
[
−
∫ tm+1

tm

〈∇(z(r)− zm+1
N ),∇em+1

N 〉dr
]
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= −
∫ tm+1

tm

E
[
〈∇(z(r)− z(tm+1)),∇em+1

N 〉
]
dr − E

[
‖∇em+1

N ‖2
]
τ

≤ 1

2

∫ tm+1

tm

E
[
‖∇(z(r)− z(tm+1))‖2

]
dr − 1

2
E
[
‖∇em+1

N ‖2
]
τ

≤ Cτ3/2 − 1

2
E
[
‖∇em+1

N ‖2
]
τ.(3.16)

For the third term in Eq. (3.14), the monotone condition (2.2) of f , Hölder
and Young inequalities and the relation (3.6) imply that

E
[ ∫ tm+1

tm

〈F (u(r))− F (um+1
N ), em+1

N 〉dr
]

=

∫ tm+1

tm

E
[
〈F (u(r))− F (u(tm+1)), em+1

N 〉dr
]

+ E
[
〈F (u(tm+1))− F (PNu(tm+1)), em+1

N 〉
]
τ

+ E
[
〈F (PNu(tm+1))− F (um+1

N ), em+1
N 〉

]
τ

≤ C

ζ

∫ tm+1

tm

E
[
‖F (u(r))− F (u(tm+1))‖2

]
dr

+
C

ζ
E
[
‖F (u(tm+1))− F (PNu(tm+1))‖2

]
τ

+ (b+ ζ)E
[
‖em+1
N ‖2

]
τ − LfE

[
‖em+1
N ‖q

Lqx

]
τ,

where ζ is an arbitrary positive number. By the estimation (2.23) with β = 1/2,
we get

C

ζ

∫ tm+1

tm

E
[
‖F (u(r))− F (u(tm+1))‖2

]
dr ≤ C

ζ
τ3/2.

By the condition (2.3) and the moments’ estimations (2.12) and (3.9), we have

C

ζ
E
[
‖F (u(tm+1))− F (PNu(tm+1))‖2

]
τ

≤ C

ζ

[
1 +

(
E
[
‖u(tm+1)‖4(q−2)

L∞x

]) 1
2

+
(
E
[
‖PNu(tm+1)‖4(q−2)

L∞x

]) 1
2
]

×
(
E
[
‖(IdH − PN )u(tm+1)‖4

]) 1
2

τ ≤ C

ζ
N−2γτ.

Consequently,

E
[ ∫ tm+1

tm

〈F (u(r))− F (um+1
N ), em+1

N 〉dr
]

≤ C

ζ

(
N−2γ + τ1/2

)
τ + (b+ ζ)E

[
‖em+1
N ‖2

]
τ − LfE

[
‖em+1
N ‖q

Lqx

]
τ.(3.17)

Combining the above estimations (3.15)–(3.17), we derive

1

2

(
E
[
‖em+1
N ‖2

]
− E

[
‖emN‖2

])
+

1

2
E
[
‖∇em+1

N ‖2
]
τ

≤
(
C +

C

ζ

)(
N−2γ + τ1/2

)
τ + (b+ ζ)E

[
‖em+1
N ‖2

]
τ − LfE

[
‖em+1
N ‖q

Lqx

]
τ.
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Then we deduce that(
1− 2(b+ ζ)τ

)
E
[
‖em+1
N ‖2

]
+ E

[
‖∇em+1

N ‖2
]
τ + 2LfE

[
‖em+1
N ‖q

Lqx

]
τ

≤ E
[
‖emN‖2

]
+
(
C +

C

ζ

)(
N−2γ + τ1/2

)
τ.

Summing over m = 0, 1, · · · , l − 1 with 1 ≤ l ≤M , we obtain(
1− 2(b+ ζ)τ

)
E
[
‖elN‖2

]
+

l∑
m=0

E
[
‖∇emN‖2

]
τ + 2Lf

l∑
m=0

E
[
‖emN‖

q
Lqx

]
τ

≤
(
C +

C

ζ

)(
N−2γ + τ1/2

)
τ + 2(b+ ζ)

l−1∑
m=0

E
[
‖emN‖2

]
τ.

When b < 0 we set ζ = −b and τ ∈ (0, 1), while when b > 0 we set τ < 1/(4b)
and ζ sufficiently small. Through the discrete Grönwall inequality, we conclude the
estimation (3.13). This completes the proof of (3.11). �

4. Numerical Experiments

In this section, we give several numerical tests to verify the optimality of the
strong convergence rate under the l∞t L

2
ωL

2
x ∩ l

q
tL

q
ωL

q
x-norm in Theorem 3.1 for the

backward Euler–spectral Galerkin scheme (3.5)-(3.6).
Due to Lemma 3.1 and Remark 3.1, the spatial convergence rate of the back-

ward Euler–spectral Galerkin scheme (3.5)-(3.6) is sharp. Our main concern here
is to simulate the temporal strong convergence rate, under the l∞t L

2
ωL

2
x ∩ l

q
tL

q
ωL

q
x-

norm (with q = 6), of the fully discrete scheme (3.5) for the following SPDE driven
by an additive Brownian sheet W :

∂u

∂t
=
∂2u

∂x2
+
(
u4 − u5

)
+
∂2W

∂t∂x
,(4.1)

with homogeneous Dirichlet boundary condition (1.2) and the initial value

u0(x) =

∞∑
k=1

ek(x)

k2
, ek(x) =

√
2 sin(kπx), x ∈ (0, 1).

We use the backward Euler–spectral Galerkin scheme (3.5)-(3.6) with f(x) =

x4 − x5 and the initial datum zN0 = PNu0 =
∑N
k=1 k

−2ek to fully discretize Eq.
(4.1). To simulate the approximate Ornstein–Uhlenbeck process WN

A , it is clear
that

WN
A (tm) =

∫ tm

0

S(tm − r)PNdWH(r) =

N∑
k=1

[ ∫ tm

0

e−λk(tm−r)dβk(r)

]
ek,

where {∫ tm

0

e−λk(tm−r)dβk(r) ∼ N
(

0,
1− e−2λktm

2λk

)
: m ∈ ZM

}
is a sequence of independent centered Gaussian random variable. Thus

WN
A (tm) =

N∑
k=1

√
1− e−2λktm

2λk
ζkek,

where {ζk}k∈ZN is a sequence of independent normally distributed random vari-
ables.
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To simulate a reference solution, we perform the full discretization by N = 512
for the dimension of spectral Galerkin approximation and by τ = 2−13 for the
temporal step size of the scheme (3.5). The expectation is approximated from the
average of 1000 sample paths. To simulate the temporal strong convergence rate of
the scheme (3.5), we take the step size by τ = 2−i with i = 7, 8, 9, 10.

Figure 1 displays the temporal mean-square convergence rate (under the l∞t L
2
ωL

2
x-

norm) and another type of temporal strong convergence rate under the l6tL
6
ωL

6
x-

norm of the backward Euler–spectral Galerkin scheme (3.5)-(3.6) for Eq. (4.1).
By Theorem 3.1, the strong convergence orders under the l∞t L

2
ωL

2
x-norm and the

l6tL
6
ωL

6
x-norm are 1/4 and 1/2q = 1/12, respectively. The temporal mean-square

convergence rate O(τ1/4) of the scheme (3.5)-(3.6) can be confirmed in Figure 1
(a), and the temporal convergence rate O(τ1/12) of the scheme (3.5)-(3.6) can be
confirmed in Figure 1 (b).

=10-3 10-2

M
e

a
n

-s
q

u
a

re
 E

rr
o

r 
L

2

10-6

10-5

order ref. 1/4

numerical order

(a)
=10-3 10-2

S
tr

o
n

g
 E

rr
o

r 
L

6

10-6

10-5

10-4

order ref. 1/12

numerical order

(b)

Figure 1. Temporal convergence rates under the norms of (a)
l∞t L

2
ωL

2
x and (b) l6tL

6
ωL

6
x.
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