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A B S T R A C T   

Bridge condition assessment by use of structural health monitoring (SHM) data has been recognized as a 
promising approach towards the condition-based preventive maintenance. In-service bridges are normally sub-
jected to multiple types of loads such as highway traffic, railway traffic, wind and thermal effect, resulting in 
heterogeneous and multimodal data structure of strain/stress responses. This study aims to develop an SHM- 
based bridge reliability assessment procedure in terms of parametric Bayesian mixture modelling. The para-
metric mixture model admits representation of multimodal structural responses, while the Bayesian paradigm 
enables both aleatory and epistemic uncertainties to be accounted for in modelling. By defining appropriate 
priors for the mixture parameters that are viewed as random variables to interpret the model uncertainty, an 
analytical form of the full conditional posteriors is derived. A Markov chain Monte Carlo (MCMC) algorithm in 
conjunction with Bayes factor is explored to determine the optimal model order and estimate the joint posterior 
of the mixture parameters. In full compliance with the Bayesian framework, a conditional reliability index is 
elicited with the parametric Bayesian mixture model by using the first-order reliability method. The estimated 
value of the reliability index, which serves as a quantitative measure of health condition for the in-service bridge, 
can be successively updated with the accumulation of monitoring data. The proposed method is exemplified by 
using one-year strain monitoring data acquired from the instrumented Tsing Ma Suspension Bridge, in which the 
evolution of the estimated reliability index is obtained.   

1. Introduction 

Large-scale bridges are vital components to the infrastructure sys-
tem. As time goes, in-service bridges suffer from inevitable deterioration 
due to material aging, harsh operational environment, increasing traffic 
demands as well as extreme events such as earthquake, typhoon and 
vessel collision. The continuous deterioration, if not repaired or 
revamped, cumulates into damage and affects the structural perfor-
mance to various degrees from non-optimal operation to catastrophic 
failure, resulting in great economic loss or even casualties. To ensure the 
serviceability and integrity of in-service bridges in their life cycle, effi-
cient inspection and maintenance strategies need to be planned and 
implemented in an optimal sense that make best use of limited budget 
available. 

Thanks to the significant advancement in sensing, signal processing, 
data transmission, data management and computing technologies over 
the past two decades, the application of structural health monitoring 

(SHM) technology to bridge structures has become increasingly popular 
[1–8]. By permanently deploying multiple types of sensing devices on 
bridges, the on-structure long-term SHM system enables to continuously 
acquire measurement data about the structural responses, external 
loadings and environmental effects in an automatic manner. Apparently, 
instrumentation with automatic SHM system acts as a beneficial com-
plement to bridge inspection that needs neither access to the bridge nor 
cease of traffic service. Integrating the SHM technology into practice of 
bridge inspection and assessment offers an ideal solution to condition- 
based preventive or predictive maintenance of in-service bridges. 

Due to the presence of uncertainties in response and load monitoring 
data, SHM-based methods for reliability assessment of bridge compo-
nents/system have been developed in view of the ability to account for 
the randomness associated with load effect and resistance, leading to a 
more rational condition assessment [9–14]. In the execution of SHM- 
based reliability assessment, probability distribution models are 
required for depicting the random variables associated with load effect 
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and resistance. The standard distribution models (e.g., normal, 
lognormal, Weibull, and Gumbel) have been adopted in the aforemen-
tioned studies to describe the statistical characteristics of load- and 
resistance-related variables. These unimodal distribution models, how-
ever, fail to characterize some complicated distributional features such 
as multimodality, skewness, or asymmetry arising from real-world SHM 
data. In reality, in-service bridges are normally subjected to multiple 
loads such as highway traffic, railway traffic, monsoons, typhoons, 
thermal effect and their combinations, leading to heterogeneous struc-
tural responses with multimodality [13,15–17]. The conventional 
unimodal distribution models are often inadequate to characterize the 
multimodal structural responses in that they tend to yield biased model 
estimation. 

Finite mixture modelling [18,19] is deemed as an ideal technique to 
capture the multimodal data structure. Through a finite number of 
weighted standard component densities (e.g. Gaussian component), the 
mixture distribution models can approach various irregular density 
shapes. In the context of SHM, researchers have made efforts to utilize 
finite mixture distributions to model the real datasets with heteroge-
neity. Nair and Kiremidjian [20] applied the Gaussian mixture distri-
bution to model a set of group-shaped vibration signals for structural 
damage identification. Ni et al. [21] proposed a Weibull-normal mixture 
distribution to model SHM-derived stress spectrum for fatigue life 
assessment. Xia et al. [22] developed a reliability-based condition 
assessment procedure by combining the Weibull mixture distribution 
and the expectation maximization algorithm. Enright and OBrien [23] 
used bimodal distribution models to describe the gross vehicle weights 
and wheelbase data collected by weigh-in-motion (WIM) system 
instrumented on bridges. Farhidzadeh et al. [24] modelled two bunches 
of acoustic emission parameters by a two-component Gaussian mixture 
distribution in performing crack mode classification. Li et al. [25] 
adopted the Gaussian mixture distribution to model vehicle-induced 
cable tension ratio for condition assessment of bridge cables. The 
mixture distribution models adopted in the above studies were all 
explored in the context of classical frequentist probability, where the 
model parameters (e.g. component means, variances, and mixing 
weights) were treated as fixed quantities to be estimated and therefore, 
uncertainty in the model parameters arising from variability and error in 
the observed data as well as due to model imperfection couldn’t be 
interpreted. 

Bayesian inference provides a dedicated framework for statistical 
modelling of unknown data, in particular, the ability of interpreting 
uncertainty in model estimation [26]. Over the past decades, Bayesian 
methods have been developed for uncertainty quantification [27–29], 
model updating [30–32], modal identification [33–36], and vibration- 
based damage detection [36–40] of engineering structures. Zhang and 
Mahadevan [41] and Garbatov and Soares [42] adopted Bayesian 
inference to update the parameters of probability distributions in line 
with fatigue reliability assessment. Papadimitriou et al. [43] presented a 
Bayesian approach to updating robust reliability using structural test 
data. Beck and Au [44] proposed an improved Metropolis-Hastings al-
gorithm for Bayesian updating of robust reliability. Der Kiureghian [45] 
proposed a Bayesian procedure to calculate predictive reliability index 
and the corresponding failure probability. Strauss et al. [46] provided a 
Bayesian approach to updating prediction functions in reliability 
assessment by using monitoring data and historical data knowledge. 
Ching and Leu [47] proposed a Bayesian updating procedure for reli-
ability assessment using condition-state inspection data and fault-tree 
model. Zhu and Frangopol [48] adopted Bayesian updating for reli-
ability assessment of a ship structure using SHM data. Ni et al. [49] 
combined Bayesian regression analysis and reliability principles to 
formulate an anomaly index for condition assessment of bridge expan-
sion joints using SHM data. 

The aim of this investigation is to develop an SHM-based bridge 
reliability assessment procedure in terms of parametric Bayesian 
mixture modelling. The unknown parameters in the Bayesian mixture 

model are treated as random variables rather than fixed quantities in the 
conventional (frequentist) probabilistic models, making the model un-
certainty be explicitly interpreted. Both aleatory and epistemic un-
certainties are thus accounted for in the modelling. To facilitate the 
subsequent derivation of an analytical expression of the conditional 
reliability index, the Gaussian (normal) distribution is adopted as 
component density in this study. By defining appropriate conjugate 
priors for the mixture parameters and introducing a component indi-
cator in conformance with a multinomial distribution for allocating the 
observed data to different components, the Gibbs sampler in conjunction 
with Bayes factor is pursued to numerically estimate the posterior dis-
tributions of the mixture parameters and determine the optimal model 
order, where a scale reduction factor is utilized to diagnose convergence 
of the iteration process. Then, a conditional reliability index in full 
compliance with the Bayesian mixture model is explicitly elicited by 
means of the first-order reliability method (FORM). The derived con-
ditional reliability index is a function of the uncertain model parameters; 
thus the estimate of the conditional reliability index reflects both the 
aleatory uncertainty and epistemic uncertainty depicted in the mixture 
model and can be updated with successively accumulated SHM data. 
The proposed procedure is exemplified through a case study using one- 
year strain monitoring data collected from the suspension Tsing Ma 
Bridge, in which the Bayesian mixture models for various bridge deck 
components and the evolution of the corresponding conditional reli-
ability indices are obtained. 

2. Parametric Bayesian mixture modelling 

2.1. Finite mixture model 

The general finite mixture distribution model has a parametric 
probability density function (PDF) which is the form of weighted sum of 
multiple component densities. Let p(∙) denote the PDF of a random 
variable. Consider an independent random variable Y arising from the 
finite mixture distribution, with its PDF being expressed as 

p(y) =
∑K

k=1
ωkf (y|θk) (1)  

where f(y|θk) is the kth component density parameterized by θk; ωk 
denotes the mixing weight of the kth component, satisfying 0 ≤ ωk ≤ 1 
and 

∑K
k=1ωk = 1; and K is the number of components (also termed as 

model order). In the Bayesian paradigm, ωk represents the probability of 
an observation coming from the kth mixture component. In the present 
study, the Gaussian (normal) distribution (N ) is adopted as component 
density, hence it becomes a finite Gaussian mixture (FGM) model that 
can be expressed as 

p(y) =
∑K

k=1
ωkN

(
y
⃒
⃒μk, σ2

k

)
(2)  

where θk = {μk, σ2
k} are the mean and variance of the kth Gaussian 

component. Let θ = {ω, μ,Σ} denote the entire set of unknown mixture 
parameters comprising the mixing weights ω = {ω1, ⋯, ωK}, the 
component means μ = {μ1,⋯, μK} and the component variances Σ =

{σ2
1,⋯, σ2

K}. The elements in the vector θ = {ω1,⋯,ωK, μ1,⋯, μK, σ2
1,⋯,

σ2
K} are treated as independent random variables that need to be esti-

mated in the Bayesian paradigm. 
The difficulty in estimating the mixture model is the uncertainty of 

allocating observations to a component. It is therefore necessary to 
introduce an uncertain component indicator zi = {zi1,⋯, ziK} for each 
observation yi(i = 1,⋯,N) [26,50], where zik is defined to be one or zero 
depending on whether yi comes from the kth component 

zik =

{
1, if yi comes from the kth component

0, otherwise (3) 
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A graphical illustration of the component indicator is depicted in 
Fig. 1. It follows that zi conforms to a multinomial distribution (Mult) 

zi ∼ Mult(1,ω) (4)  

and its probability mass function (PMF) can be expressed as 

p(zi1,⋯, ziK) =
1!

0!1!
ωzi1

1 ⋯ωziK
K = ωzi1

1 ⋯ωziK
K (5) 

Once the auxiliary variable zi is sampled from the multinomial dis-
tribution, the allocation of each observation can be determined, and thus 
the parameters of each component distribution can be estimated 
accordingly. The overall unknown parameters in the FGM model are 

θ =
{

ω1,⋯,ωK , μ1,⋯, μK , σ2
1,⋯, σ2

K

}
and z = {z1,⋯, zN} (6)  

2.2. Selection of prior distributions 

The Bayesian inference for the mixture model can be well defined 
once the prior distributions are appropriately determined [18]. The 
conjugate priors on the mixture parameters μ, Σ and ω are adopted in the 
present study, because the use of conjugate priors allows the same 
distributional types for the posteriors of the model parameters as their 
priors and thus the obtained posteriors can be readily used as priors for 
updating the conditional reliability index when newly observed data are 
available. Integrals in posterior inference can be sidestepped by modi-
fying the parameters in the prior distributions (so-called hyper-
parameters). For the mixture model, the full conditional posteriors can 
be explicitly derived if conjugate priors are adopted. 

The component means and variances are assumed to be mutually 
independent over the components. Under this assumption, the scaled 
inverse-chi-square prior (InvC) and the normal prior can be used for σ2

k 
and μk [26,50] 

σ2
k ∼ InvC

(
νk, s2

k

)
(7)  

μk

⃒
⃒σ2

k ∼ N
(
ξk, σ2

k

/
κk
)

(8)  

where {νk, s2
k} and {ξk, κk} are hyperparameters of the scaled inverse- 

chi-square density and the normal density for σ2
k and μk, respectively. 

The product of Eqs. (7) and (8) yields the joint prior distribution of θk =

{μk,σ2
k}, i.e., the normal-inverse-chi-square distribution, as 

p
(
μk, σ2

k

)
∝σ− 1

k

(
σ2

k

)− (νk/2+1)exp
(

−
νks2

k + κk(μk − ξk)
2

2σ2
k

)

(9) 

The mixing weights are assumed to be independent of the component 
means and variances. Thus, a suitable conjugate prior for ω is the 
Dirichlet distribution (Dir) [18] 

ω ∼ Dir(α1,⋯,αK) (10)  

which can be fully expressed as 

p(ω1,⋯,ωK) =
Γ(α1 + ⋯ + αK)

Γ(α1)⋯Γ(αK)
ωα1 − 1

1 ⋯ωαK − 1
K (11)  

where αk’s are hyperparameters in the Dirichlet distribution, and Γ(∙)
denotes the gamma function. 

2.3. Posterior distributions and Gibbs sampler 

Given the observation data y = {y1,⋯, yN}, the joint posterior dis-
tribution of the mixture parameters can be obtained by applying Bayes’ 
theorem 

p(θ|y, z ) =
p(y, z|θ)p(θ)

∫
p(y, z|θ)p(θ)dθ

(12)  

where p(θ) is the joint prior distribution; and p(y, z|θ ) is the likelihood 
function of the Gaussian mixture model in the following expression 

p(y, z|θ ) = p(z|ω)p(y|z, μ,Σ) =
∏N

i=1

∏K

k=1

(
ωkN

(
yi
⃒
⃒μk, σ2

k

) )zik (13)  

and 
∫

p(y|θ)p(θ)dθ is the normalizing constant which is the integral over 
all possible values of the mixture parameters. 

The direct inference of the joint posterior distribution using Eq. (12) 
is computationally intractable, especially when component number is 
large. In the past decades, various numerical algorithms based on Mar-
kov chain Monte Carlo (MCMC) simulation have been developed [26]. 
The basic idea behind MCMC-based algorithms is to generate a series of 
Markov chains from approximate distributions and then correct the 
samples so that the limiting distributions will approach the target dis-
tributions. The Gibbs sampler [51], one of the MCMC-based algorithms 
through full conditional sampling, is explored in this study to estimate 
the posterior distributions of the mixture parameters. Note that the 
introduction of z makes the mixture model a hierarchical conditional 
probability structure; therefore, one can effectively implement the Gibbs 
sampler as long as the full conditional posteriors can be articulated. 

The implementation of the Gibbs sampler contains two major steps 
[26]: (i) sampling from the full conditional posterior distributions of the 
mixture parameters θ given the current component indicators z; and (ii) 
sampling from the full conditional posterior distribution of the compo-
nent indicators z given the current mixture parameters θ. Given 
component indicators z, say the allocation of observations is known at 
the moment, the Gaussian mixture model reduces to K independent 
Gaussian components in which each pair of Gaussian parameters μk and 
σ2

k can be estimated individually and straightforward. For the kth 
component, multiplying the joint prior distribution in Eq. (9) by the 
normal likelihood function yields the joint posterior distribution for θk =

{μk, σ2
k} as 

p
(
μk, σ2

k |yk, z
)
∝σ− 1

k

(
σ2

k

)− (νk/2+1)exp

(

−
νks2

k + κk(μk − ξk)
2

2σ2
k

)

×
(
σ2

k

)− nk/2exp

(

−
1

2σ2
k

(
∑

i∈k

(

yi − yk

)2

+ nk

(

yk − μk

)2
))

(14)  

where yk = {yi : zik = 1, i = 1 : N} is the subset of y that contains the 
data points assigned to the kth component; nk is the length of yk; and yk is 
the sample mean of yk. Again Eq. (14) is the normal-inverse-chi-square 
distribution because of the conjugacy. The conditional posterior distri-
bution of μk given σ2

k is proportional to the joint posterior distribution 
with σ2

k holding constant, which is the Gaussian density: 

μk

⃒
⃒σ2

k , yk, z ∼ N
(
ξ*

k , σ2
k

/
κ*

k

)
(15)  

where the hyperparameters ξ*
k and κ*

k are given by 

Fig. 1. Allocation of observations to each component.  
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ξ*
k =

κkξk + nkyk

κk + nk
(16)  

κ*
k = κk + nk (17) 

Then the marginal posterior distribution of σ2
k can be derived by 

integrating the joint posterior distribution over μk, which is the scaled 
inverse-chi-square density: 

σ2
k |yk, z ∼ InvC

(
ν*

k , s
2*
k

)
(18)  

where the hyperparameters ν*
k and s2*

k are given by 

ν*
k = νk + nk (19)  

s2*
k =

1
νk + nk

(

νks2
k +

∑

i∈k

(

yi − yk

)2

+
κknk

κk + nk

(

yk − ξk

)2
)

(20) 

The posterior distribution of the mixing weights ω are derived using 
Bayes’ theorem 

p(ω|y, z )∝p(y, z|ω )p(ω) = ωn1
1 ⋯ωnK

K × ωα1 − 1
1 ⋯ωαK − 1

K =
∏J

j=1
ωαj+nj − 1

j (21)  

which has exactly the form of the Dirichlet distribution. Thus, it can be 
expressed as 

ω|y, z ∼ Dir
(
α*

1,⋯, α*
K

)
(22)  

where the hyperparameter α*
k is given by 

α*
k = αk + nk (23) 

Comparing the algebraic forms of the posterior distributions and the 
prior distributions on μ, Σ and ω, it is observed that the hyperparameters 
of the posteriors contain the information about both priors and 
observations. 

Now we proceed to the posterior distribution of the component in-
dicators z given mixture parameters θ. Eq. (4) tells that the distribution 
of zi relies on the mixing weights which shall be updated once the 
mixture parameters are given. Thus, the posterior distribution of zi for 
observation yi can be expressed as 

zi|yi,ω, μ,Σ ∼ Mult(1, τi) (24)  

where τi = {τi1,⋯, τiK} is the vector of updated mixing weights. The kth 
element τik of τi is the updated probability that yi belongs to the kth 
component with yi having been observed on it. By Bayes’ theorem, it can 
be obtained as 

τik = P(zik = 1|yi ) =
P(yi|zik = 1 )P(zik = 1)

∑K
k=1P(yi|zik = 1 )P(zik = 1)

=
ωkN

(
yi
⃒
⃒μk, σ2

k

)

∑K
k=1ωkN (yi|μk, σ2

k )

(25)  

where P(∙) denotes the probability of an event; and ωk is viewed as the 
prior probability that yi belongs to the kth component. 

Having obtained the full conditional posterior distributions for all 
unknown parameters, the implementation procedures of Gibbs sampler 
for the Gaussian mixture model can be illustrated in Fig. 2. Repeating the 
process, say t = 1, ⋯, T, the Gibbs sampler proceeds with generating 
random samples successively from the full conditional posterior distri-
butions and replacing the conditioning parameters. Early draws from the 
Gibbs sampler usually reflect the starting approximation rather than the 
target distributions. After discarding a certain number of early draws, 
referred to as burn-in samples B, the remaining G = T − B random 
samples can be regarded as samples from the joint posterior distribution 
of the mixture parameters. With the generated posterior samples, the 
posterior distributions can be summarized, and the moments, quantiles 
and other statistic metrics of interest can be obtained. For instance, the 
most plausible mixture parameters can be estimated by the posterior 
sample means as 

θ̂ = G− 1
∑G

g=1
θ(g) (26)  

where θ(g)(g = 1,⋯,G) are the Gibbs outputs. Likewise, the parametric 
uncertainty can be characterized by the standard deviations (std) or 
credible intervals (CI) of the posterior samples. It should be noted that, 
to start the Gibbs sampler, a crude estimate of the initial values of z and θ 
is needed. Here, the k-means algorithm [52] for parameter initialization 
is adopted in order to accelerate convergence of the Markov chains. 

2.4. Quantitative convergence diagnosis 

Convergence is of the highest concern when performing MCMC- 
based algorithms. Only when the Markov chain converges to the equi-
librium distribution, the samples can then be representative of the target 
distribution, that is, the posterior distributions of the mixture 

Fig. 2. Flowchart of Gibbs sampler for mixture model estimation.  
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parameters in our case. Two practical tools have been widely used to 
examine the convergence issue. By displaying the iteration plots of the 
simulated Markov chains, one can perform visual inspection to check the 
convergence. It is commonly accepted that convergence is reached when 
the chain fluctuates within a certain region. Thus, longer iterations are 
needed to inspect the stationarity of the chain. Although the visual in-
spection is direct and easy to implement, it can be sometimes unreliable 
as subjective monitoring of convergence is still a puzzling task. More-
over, it fails to distinguish between local and global convergences in 
some cases [26]. 

Another way to diagnose convergence is using quantitative criteria. 
Based on the posterior sequences, the quantitative indicators tend to 
stabilize as the Markov chains converge. Gelman et al. [26] proved that 
the scale reduction factor R0 as defined below is a good indicator for 
convergence diagnosis by comparing between- and within-sequence 
variances. It works with simultaneously running several parallel 
chains from dispersed starting points. Suppose several Markov chains 
(named parallel chains) of a mixture parameter θ are generated from 
randomly dispersed initial values, which are labelled as θ(t)q (t = 1,⋯,T;
q = 1, ⋯, Q) where T is the total number of iterations and Q is the 
number of parallel chains generated from different initial values. The 
scale reduction factor is calculated by 

R0 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
T − 1

T
+

Vb

TVw

√

(27)  

where Vb is the between-sequence variance defined as 

Vb =
T

Q − 1
∑Q

q=1

(

θq − θ
)2

(28)  

with θq = T− 1∑T
t=1θ(t)q and θ = Q− 1∑Q

q=1θq; and Vw is the within- 
sequence variance defined as 

Vw =
1
Q

∑Q

q=1
s2

q (29)  

with s2
q = 1

T− 1
∑T

t=1(θ
(t)
q − θq)

2. 
After sufficient iterations, the parallel chains would properly mix 

together, implying the chains converging to the same target distribution. 
As a result, the difference between Vb and Vw approaches a minimum, 
and the value of R0 declines to 1 as T→∞. In this study, the convergence 
monitoring is performed by running two parallel chains for each 
parameter and convergence is reached when R0 for all parameters drop 
to below 1.001. 

2.5. Selection of optimal model order 

The determination of optimal model order K in the mixture model is 
a model selection problem, which can be addressed by various model 
selection criteria. In the Bayesian paradigm, model comparison can be 
made by means of Bayes factor [19,26,53]. Suppose two competing 
models M1 and M2 are concerned, the Bayes factor (BF) is defined as 

BF(M1;M2) =
p(y|M1 )

p(y|M2 )
=

∫
p(y|θ1,M1)p(θ1|M1)dθ1∫
p(y|θ2,M2)p(θ2|M2)dθ2

(30)  

where p(y|Mi) =
∫

p(y|θi,Mi)p(θi|Mi)dθi is the marginal likelihood (i.e., 
the normalizing constant) of model Mi(i = 1,2); p(y|θi,Mi) and p(θi|Mi)

are the likelihood function and prior density under model Mi(i = 1,2), 
respectively. If the observations y are more likely to come from model 
Mi, then the associated marginal likelihood p(y|Mi ) will be larger, and 
vice versa. Thus, a Bayes factor BF(M1;M2) > 1 implies that model M1 is 
in favor of being more plausible than M2 in featuring the observation 
data. In the case of multiple candidate models, e.g., the selection of 
optimal component number in a mixture model, it is usually more 

convenient to compare the logarithm of the marginal likelihood 
lnp(y|Mi) (LML) of each model, then optimal model is the one with 
maximum LML value. 

The calculation of the marginal likelihood p(y|Mi ) which involves 
integration over high dimensional parameter space is in general 
analytically untraceable for complex models. A variety of numerical 
approximation algorithms have been developed for estimating marginal 
likelihood [19]. In this study, the marginal likelihood is estimated using 
Chib’s method [53] which is based on the Gibbs outputs and Monte 
Carlo estimate. Recalling Eq. (12), the marginal likelihood can be 
rewritten as 

p(y|Mi ) =
p(y|θ)p(θ)

p(θ|y)
(31)  

in which the numerator is the product of the likelihood and prior den-
sity, and the denominator is the posterior density under model Mi. Note 
that this identity holds for any θ and an efficient choice is using the 
posterior mean values θ̂ to estimate the marginal likelihood since the 
density functions have more accurate estimation at the large density 
points. As such, the LML evaluated at θ̂ is given by 

lnp(y|Mi ) = lnp(y|θ̂ ) + lnp(θ̂) − lnp(θ̂|y) (32) 

The first two terms on the right-hand side of Eq. (32), i.e., the log 
likelihood and log prior density, can be readily evaluated by using the 
following expressions: 

lnp(y|θ̂ ) =
∑N

i=1

(

ln
∑K

k=1
ω̂kNk

(

yi; μ̂k, σ̂2
k

))

(33)  

lnp(θ̂) = lnp(Σ̂) + lnp(μ̂|Σ̂ ) + lnp(ω̂)

=
∑K

k=1
lnp
(

σ̂2
k

)
+
∑K

k=1
lnp
(

μ̂k

⃒
⃒σ̂2

k

)
+ lnp(ω̂1,⋯, ω̂K) (34)  

where μ̂ = {μ̂1, ⋯, μ̂K}, Σ̂ = {σ̂2
1,⋯, σ̂2

K} and ω̂ = {ω̂1,⋯, ω̂K} are the 
posterior mean values of the mixture parameters μ, Σ and ω. 

The third term on the right-hand side of Eq. (32) is the log posterior 
density which has implicit and high-dimensional form and cannot be 
calculated directly. As suggested by Chib [53], the joint posterior den-
sity can be factorized into the following three terms 

lnp(θ̂|y ) = lnp(Σ̂|y ) + lnp(μ̂|y, Σ̂ ) + lnp(ω̂|y, μ̂, Σ̂) (35)  

where each of these terms can be approximated by the Gibbs outputs. By 
running sufficient iterations of the Gibbs sampler for the so-called “first- 
phase simulation” where the full conditional distributions are 
p(μ|y,Σ, z), p(Σ|y, z), p(ω|y, z) and p(z|y,ω, μ,Σ), the approximate Monte 
Carlo estimate of the first term p(Σ̂|y ) can be obtained as 

p(Σ̂|y ) =
∫

p(Σ̂|y, z )p(z|y)dz ≈ G− 1
1

∑G1

g=1
p
(

Σ̂|y, z(g)
)

(36)  

where z(g) are drawn from the distribution p(z|y) corresponding to the 
first-phase Gibbs outputs of G1 samples after discarding the burn-in 
samples. Then, set Σ = Σ̂ and run again iterations of the Gibbs 
sampler for the so-called “second-phase simulation” where the full 
conditional distributions arep(μ|y, Σ̂, z), p(ω|y, z) and p(z|y,ω, μ, Σ̂). The 
Monte Carlo estimate of the second term p(μ̂|y, Σ̂ ) is given as 

p(μ̂|y, Σ̂ ) =

∫

p(μ̂|y, Σ̂, z)p(z|y, Σ̂)dz ≈ G− 1
2

∑G2

g=1
p(μ̂|y, Σ̂, z(g) ) (37)  

where z(g) are drawn from the distribution p(z|y, Σ̂) corresponding to the 
second-phase Gibbs outputs of G2 samples after discarding the burn-in 
samples. Lastly, set Σ = Σ̂ and μ = μ̂, and run again iterations of the 
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Gibbs sampler for the so-called “third-phase simulation” where the full 
conditional distributions are p(ω|y, z) and p(z|y,ω, μ̂, Σ̂). The Monte 
Carlo estimate of the third term p(ω̂|y, μ̂, Σ̂ ) is given as 

p(ω̂|y, μ̂, Σ̂ ) =

∫

p(ω̂|y, z)p(z|y, μ̂, Σ̂)dz ≈ G− 1
3

∑G3

g=1
p(ω̂|y, z(g) ) (38)  

where z(g) are drawn from the distribution p(z|y, μ̂, Σ̂) corresponding to 
the third-phase Gibbs outputs of G3 samples after discarding the burn-in 
samples. Substituting the estimates from Eqs. (36) to (38) into Eq. (35) 
yields the joint posterior density evaluated at θ̂. Together with Eqs. (33) 
and (34), the LML of model Mi can be calculated by Eq. (32). 

3. Reliability assessment with Bayesian mixture model 

3.1. Conditional reliability index 

Given structural resistance R and load effect S, the limit state func-
tion for reliability analysis can be defined as [54] 

h(X) = R − S (39)  

where X = {R, S} are the basic random variables with respect to the 
structural resistance and load effect. h = 0 denotes the limit state, while 
h < 0 denotes the failure state. When the PDFs of the structural resis-
tance and load effect are formulated by Bayesian inference using 
monitoring or test data, the uncertainties associated with R and S are 
accounted for through uncertain model parameters Θ = {θR, θS}

embedded in the limit state function: 

h(X,Θ) = R − S (40) 

Then the failure probability P̂f incorporating the uncertain model 
parameters Θ can be defined as 

P̂f = P(h(X,Θ) < 0 ) =
∫

h(X,Θ)<0

∫

pX(x|Θ )p(Θ|D)dΘdx (41)  

where pX(x|Θ ) is the joint PDF of X = {R,S}; and p(Θ|D) is the posterior 
PDF of Θ conditional on monitoring/test data D. If the posterior PDF 
p(Θ|D) is obtained by an MCMC algorithm, P̂f can be efficiently esti-
mated using the posterior samples Θ(g)(g = 1,⋯,G) :

P̂f = G− 1
∑G

g=1
Pf (Θ(g)) = G− 1

∑G

g=1

∫

h(X,Θ(g))〈0
pX(x|Θ(g) )dx (42)  

where Pf (Θ) is the conditional failure probability given the posterior 
samples of Θ. The existing computational tools for reliability analysis, 
such as the first-order reliability method (FORM), the second-order 
reliability method (SORM), and importance sampling (IS) method, can 
be applied to obtain the samples of Pf (Θ) [45]. 

The resistance R and load effect S can be viewed as mutually inde-
pendent random variables, i.e., pX(x|Θ ) = pR(r|θR )pS(s|θS ). In general, 
R can be properly expressed by a unimodal distribution model. In the 
present study, S is represented by the parametric Bayesian mixture 
model that is elicited from SHM data. In accordance with the posterior 
samples from Gibbs sampler, the samples of Pf (Θ) can be obtained as 

Pf
(
Θ(g) ) =

∫

h(X,Θ(g) )〈0
pR

(
r
⃒
⃒
⃒θ(g)

R

)(∑K

k=1
ω(g)

Sk
pSk

(
s
⃒
⃒
⃒θ(g)

Sk

))
drds

=
∑K

k=1
ω(g)

Sk

∫

hk(X,Θ(g) )〈0
pR

(
r
⃒
⃒
⃒θ(g)

R

)
pSk

(
s
⃒
⃒
⃒θ(g)

Sk

)
drds (43)  

where Sk denotes the kth component of the multi-load effect; pSk (s
⃒
⃒θSk )

and ωSk are the component density and the mixing weight associated 
with the kth component, respectively; and 

⋃K
k=1hk(X,Θ) = h(X,Θ) is the 

failure domain conditional on Θ. When R and Sk conform to the 
Gaussian distribution, Eq. (43) can be estimated by the FORM as 

Pf
(
Θ(g) ) ≈

∑K

k=1
ω(g)

Sk
Φ
(
− βk

(
θ(g)

R , θ(g)
Sk

))
(44)  

where βk(θR, θSk ) =
(
μR − μSk

)/(
σ2

R + σ2
Sk

)1/2 
is the reliability estimate 

associated with the kth component of load effect conditional on θR and 
θSk . It follows immediately that the samples of β(Θ), termed as the es-
timate of conditional reliability index, are obtained as 

β
(
Θ(g) ) = − Φ− 1( Pf

(
Θ(g) ) ) = − Φ− 1

⎛

⎜
⎝
∑K

k=1
ω(g)

Sk
Φ

⎛

⎜
⎝ −

μR − μ(g)
Sk̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ2
R + σ2(g)

Sk

√

⎞

⎟
⎠

⎞

⎟
⎠

(45)  

where Φ− 1 is the inverse cumulative probability density of the standard 
normal distribution; ω(g)

Sk
, μ(g)

Sk 
and σ2(g)

Sk 
(g = 1,⋯,G) are posterior samples 

of the mixture parameters from the Gibbs iteration. Eq. (45) provides a 
general expression to calculate the conditional reliability index in terms 
of the FGM model. It unveils that the sample value of the conditional 
reliability index β(Θ) is a function with respect to the uncertain model 
parameters Θ, leading β(Θ) itself to be a random variable due to the 
nature of uncertainty of Θ. In this sense, not only the intrinsic variability 
of the resistance and load effect, but also the uncertainty arising from 
parametric modelling and measurement error, have influence on the 
reliability assessment. The reliability index estimate β̂ considering both 
aleatory uncertainty and epistemic uncertainty can thus be determined 
as the sample mean of β(Θ): 

β̂ = μβ = G− 1
∑G

g=1
β
(
Θ(g) ) (46)  

and the sample standard deviation of β(Θ) quantifies the variation in the 
reliability index estimate induced by various uncertainties: 

σβ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(G − 1)− 1
∑G

g=1
(β(Θ(g) ) − μβ )

2

√
√
√
√ (47)  

3.2. Successive updating of reliability index 

With successively collected SHM data, the conditional reliability 
index β (the symbol Θ is omitted hereafter for brevity) can be updated at 
regular intervals in order to evolutionarily assess the structural condi-
tion. Assume that β conforms to the Gaussian distribution with uncertain 
parameters θβ = {μβ,σ2

β}, and suppose the samples of βm ∼ N
(
β
⃒
⃒θm

β
)

in 
relation to the mth monitoring period have been obtained using Eq. (45) 
with the monitoring data Dm. When newly collected monitoring data 
Dm+1 become available, the samples of βm+1 in relation to the (m+ 1)th 
monitoring period can be obtained by following the same manner. It is 
apparent that βm+1 estimated solely using the dataset Dm+1 is inadequate 
to portray the current structural condition, but rather it should be 
combined with the historical knowledge of the earlier reliability esti-
mate βm. By applying Bayes’ theorem, the following formula can be 
reached to seek the posterior distribution of θm+1

β : 

p
(
θm+1

β

⃒
⃒βm+1 )∝p

(
βm+1⃒⃒θm

β

)
p
(
θm

β

)
(48)  

where p
(
θm

β
)

is the posterior distribution of θβ for the mth monitoring 
period and it is also the prior distribution of θβ for the (m+ 1)th 
monitoring period. The successive reliability index updating of β is 
achieved by repeatedly evaluating the posterior predictive distribution: 
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p
(
β̃

m+1⃒
⃒βm+1 ) =

∫

p
(
β̃

m+1⃒
⃒θm+1

β , βm+1 )p
(
θm+1

β

⃒
⃒βm+1 )dθm+1

β (49)  

where ̃β
m+1 

is the predictive reliability index in relation to the (m+ 1)th 

monitoring period. Apparently, β̃
m+1 

is more informative than βm+1 in 
evaluating the structural condition in that the former incorporates the 
previously inferred structural condition knowledge. When the moni-
toring data are cumulatively available, the Bayesian updating scheme 
enables to generate the condition assessment results evolutionarily over 
the entire monitoring period. Note that Eq. (49) can be solved analyti-
cally if the conjugate prior of θβ is employed [26]. 

4. Application to instrumented Tsing Ma bridge 

4.1. Tsing Ma bridge and its instrumentation 

The Tsing Ma Bridge (TMB) as illustrated in Fig. 3 is a suspension 
bridge with a main span of 1377 m in Hong Kong, carrying both highway 
and railway traffic between the airport and city center. With awareness 
of the importance of the bridge, a sophisticated long-term SHM system 
has been instrumented on the TMB by the Hong Kong SAR Government 

Highways Department. Apart from other categories of sensors, a total of 
110 strain gauges were installed at three bridge deck sections denoted by 
CH23488.00, CH23623.00 and CH24662.50 in Fig. 3, providing 
continuous dynamic strain measurements. Fig. 4 shows a typical deck 
cross-section as well as two instrumented longitudinal trusses where 
three types of strain gauges (single, pair and rosette) are deployed on the 
truss elements (top chords, diagonal struts and bottom chords). The 
sampling rate for strain data acquisition was set to 51.2 Hz. In-service 
monitoring captures authentic strain responses experienced by the 
bridge under operational condition, which can help track the safety 
reserve of structural components and provide information regarding the 
load-carry capacity of the whole bridge. 

One-year continuous monitoring data of strain under the routine 
operation of the TMB are collected for this study. Fig. 5(a) shows the raw 
strain sequence in one day measured by sensor SP-TLN-01 deployed at 
the top chord of the north longitudinal truss at Section CH24662.50, 
where positive value denotes compressive strain and negative value 
denotes tension strain. The measured strain is mainly generated by 
highway traffic, railway traffic, wind, and temperature. The static strain 
due to initial dead loads is not measurable because the sensors were 
installed after the completion of bridge construction. It is observed from 
Fig. 5(a) that the strain between 2:00 and 5:00 am is obviously small 

1377.0355.5 300.0

Ma Wan Tower Tsing Yi Tower

Ma Wan Island Tsing Yi Island

76.523.0

CH
23

48
8.

00

Fixed 
Bearing

Expansion 
Joint

SS(12); SP(17) SS(8); SP(22); SR(2) SS(25); SP(22); SR(2)

SS: Strain gauge - Single
SP: Strain gauge - Pair
SR: Strain gauge - Rosette

CH
23

62
3.

00

CH
24

66
2.

50

Fig. 3. TMB and sections instrumented with strain sensors.  

Fig. 4. Deck cross-frame and longitudinal truss of TMB.  
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since the railway traffic ceased to operate during that period. It is also 
found that there is a trend ingredient in the strain sequence over 24-hour 
time period, which has been demonstrated to be the effect of daily 
temperature variation [17]. The temperature-induced strain, although 
quite large, contributes little to the stress because the majority of it is 
released by free movement of the bridge deck at the expansion joints. 
Hence, in subsequent reliability analysis, the temperature-induced 
strain as absorbed by the expansion joint is excluded from the total 
strain. A wavelet-based multi-component decomposition procedure [17] 
has been developed to separate the temperature-induced strain as 
depicted in Fig. 5(b), and the strain sequence after eliminating the 
temperature effect is illustrated in Fig. 5(c). Discrete Wavelet Transform 
(DWT) enables a signal to be decomposed into various resolution scales: 
the decomposed ones with coarse resolution (approximations) contain 
the information about low-frequency components, and the decomposed 
ones with fine resolution (details) contain the information about high- 
frequency components. Making use of the wavelet-level selection and 
perfect reconstruction (PR) properties of DWT for multi-resolution 
analysis, the strain ingredient caused by daily temperature variation 
can be extracted from the raw measurement data. 

The live load-induced stress responses are then obtained by multi-
plying the strains by the elastic modulus E of steel in view of the fact that 

the bridge is in elastic state under normal operational environment. 
Fig. 6 shows the monitoring-derived stress sequences in 30 min under 
live loads for the top chord, diagonal strut and bottom chord of the north 
longitudinal truss at Section CH24662.50. From the stress time histories, 
peak stress points are extracted by using an adaptive peak counting 
method [55] to construct the peak stress sequences as shown in Fig. 7. It 
is observed that the peak stress values are randomly dispersed but 
mostly clustered to two stress levels of different amplitudes. The peak 
values around the higher amplitude level are recognized as railway- 
induced stress responses, while the peak values around the lower 
amplitude level are mainly caused by highway traffic. The action of 
wind loading is a non-stationary process, and its effect under normal 
wind conditions in general causes the in-between values among the two 
levels. The peak stress values above the higher amplitude level are pri-
marily stemming from two scenarios: (i) two trains passing each other in 
opposite directions on the bridge (approximately two such events occur 
in one hour) and (ii) strong winds (e.g. typhoons) hitting the bridge in 
combination with highway/railway traffic. The histograms of the peak 
stresses are obtained as shown in Fig. 8. It is obviously observed that all 
the stress distributions exhibit multimodal response feature. 

a) raw data of measured strain responses 

b) temperature-induced strain ingredient

c) strain after eliminating temperature-induced ingredient 
Fig. 5. 24-hour strain time history at top chord.  
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4.2. Formulation of parametric Bayesian mixture models 

The parametric Bayesian mixture modelling procedure presented in 
Section 2, including the Gibbs sampler and Bayes factor-based model 
order selection, is applied to the peak stress sequences for the estimation 
of uncertain model parameters and quantification of uncertainties. For 
illustration purpose, the stress responses of top chord in January are 
taken as an example. At the stage of parameter estimation, the Gibbs 
sampler is set to run for T = 10000 iterations. Fig. 9 plots the Gibbs it-
erations for each mixture parameter. It is seen that the Markov chains 
quickly reach stationary after only few dispersed samples coming from 
the early draws. To quantitatively examine the convergence of the 
Markov chains, the scale reduction factor R0 of each mixture parameter 
is monitored through the Gibbs run as illustrated in Fig. 10. As the 
iteration continues, the values of R0 for all parameters quickly decline to 
1, indicating the iterations converge globally. From the convergence 
statistics listed in Table 1, it is found that the variances (σ2) reach 
convergence fastest, following by the mixing weights (ω), while the 
stabilization of the means (μ) is the slowest in this case. Based on the 
convergence results, the number of burn-in samples of the Gibbs 

iterations is determined as B = 5000. Then the rest of G = T − B = 5000 
Gibbs outputs are deemed as stationary posterior samples of the target 
distributions, which are then used for parameter estimation. 

Table 2 lists the identified number of mixture components and the 
estimated parameters (including mean value and 95% confidence in-
terval) of the posterior FGM models for multimodal load effects of the 
top chord, diagonal strut and bottom chord. To verify the efficacy of the 
proposed Bayesian approach, the parameter estimation obtained by the 
conventional frequentist approach using expectation maximization al-
gorithm [22] is also provided in Table 2. It is seen that the mean values 
elicited from the Bayesian approach are close to the point estimates of 
the frequentist approach. Given the posterior FGM models, the predic-
tive PDFs and associated 5–95 uncertain bounds are constructed as 
depicted in Fig. 11. The predictive PDFs fit well with the histograms of 
multimodal stress responses for all the three truss members. The upper 
and lower uncertain bounds unveil the variability in PDF estimation of 
the FGM models due to parametric uncertainty. By comparing the Bayes 
factor (logarithm of the marginal likelihood) of each candidate model as 
illustrated in Fig. 12, the optimal model order (number of mixture 
components) is identified to be 4 for the top and bottom chords and 3 for 

a) top chord 

b) diagonal strut

c) bottom chord 

Fig. 6. Stress responses and identified peak stresses in 30-minute temporal scale.  
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the diagonal strut. Although four mixture components are needed for the 
top and bottom chords, the weight (ωk) of the fourth component is much 
less than those of the first three components while the variance (σ2

k) of 
the fourth component is much larger than the first three. It is worth 
mentioning that extreme load effects due to heavy-duty railway traffic, 
gust wind during strong typhoons, and their combination, as compared 
with regular loading, are far more indeterminate, causing sparse and 
dispersed values in the tail region, which may have an marked influence 
on the reliability assessment. The mixture models equipped with suffi-
cient components enable to capture the tail characteristics reasonably 
and thus facilitate a high-fidelity estimate of reliability index. 

4.3. Successive assessment of reliability index 

According to the design documents of the TMB, the maximum 
allowable stress for the truss members under live loads in serviceability 
limit state is specified as 60 MPa [56]. The coefficient of variation is 
taken as γ = 0.075 [11,57]. These statistics serve as the probability 
descriptors of resistance R, which yield a mean value μR = 60 MPa and a 
standard deviation (std) σR = γμR = 4.5 MPa for assessment (since no 
durability-relevant sensors were installed on the TMB, we are unable to 
formulate the distribution and deterioration models of resistance from 
SHM data). With the load effect (stress) formulated in terms of 

parametric Bayesian mixture models, the samples of conditional reli-
ability index can be readily evaluated using Eq. (45). Fig. 13 provides 
the obtained conditional reliability indices (in the form of probability 
distributions) in regard to the Bayesian mixture models formulated 
using one-month data (as shown in Table 2 and Fig. 11) for the top 
chord, diagonal strut and bottom chord. It is seen that the diagonal strut 
has the highest reliability index (mean = 11.482, std = 0.032), the top 
chord comes to the second (mean = 9.089, std = 0.218), and the bottom 
chord stands to have the lowest reliability index (mean = 7.882, std =
0.207). In addition, the reliability index for the diagonal strut has much 
less uncertainty than the top and bottom chords. For comparison, the 
reliability indices obtained from the conventional frequentist approach 
using the same data set are also provided in Table 3. It is found that the 
mean values of the conditional reliability indices obtained by the 
Bayesian approach are in favorable agreement with those obtained by 
the conventional frequentist approach. 

The conditional reliability index can be gradually updated with 
successively collected SHM data. It is illustrated in Figs. 14 and 15. In 
Fig. 14(a), the blue curve denotes the conditional reliability index of the 
top chord obtained using SHM data collected in the first month 
(January), same as shown in Fig. 13. When SHM data in the second 
month (February) are obtained as depicted by the gray curve, the 

a) top chord 

b) diagonal strut 

c) bottom chord 

Fig. 7. Extracted peak stresses in one-month temporal scale.  

a) top chord 

b) diagonal strut

c) bottom chord 

Fig. 8. Histograms of peak stresses derived from one-month data.  
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conditional reliability index is updated by combining the previously 
obtained conditional reliability index (as prior distribution) and the 
newly collected monitoring data (as likelihood), with the updated result 
shown by the red curve. The conjugate priors adopted greatly facilitate 
the Bayesian updating of conditional reliability index. Because one-year 
monitoring data are available for the case study, the conditional reli-
ability index can be gradually updated month-by-month as shown in 
Fig. 15(a) if SHM data acquired in one month are used to formulate 
Bayesian mixture models each time. Similarly, reliability updating re-
sults of the diagonal strut are depicted in Fig. 14(b) and Fig. 15(b), and 
those of the bottom chord are given in Fig. 14(c) and Fig. 15(c). 

Fig. 16 illustrates the evolution of the means and standard deviations 
of the predictive reliability indices for the top chord, diagonal strut and 
bottom chord in one year. It is seen that the predictive reliability index 
for the diagonal strut approaches to be stationary very soon with small 
standard deviation. The predictive reliability indices for the top and 
bottom chords reach stationarity after updating with SHM data acquired 
in about six months. After being stationary, the standard deviations of 
the predictive reliability indices for the top chord and bottom chord are 
nearly identical, but the mean values are different. It is observed that the 
predictive reliability indices obtained for the top chord and bottom 
chord in March significantly deviate from those in other months. This is 
due to the insufficient SHM data collected in March because the data 
acquisition station was malfunctioning for days in that month, as 

evidenced by Fig. 17. It concludes that the data (sample) size is influ-
ential to the estimate of conditional reliability index. According to the 
relationship between reliability index and maintenance action [58], it is 
judged that the diagonal strut (β > 11) is in excellent condition with no 
need of inspection; the top chord (β > 8 with its mean around 9) is in 
good condition just needing preventive inspection; and the bottom 
chord (β > 6 with its mean less than 8) is in satisfactory condition but 
needs regular inspection. In addition to the mean value, the standard 
deviation of the conditional reliability index is also helpful in risk 
assessment when the bridge owner schedules bridge inspection and 
maintenance strategy. 

a) Gibbs iterations for 

b) Gibbs iterations for 

c) Gibbs iterations for 

Fig. 9. Gibbs iterations for mixture parameters.  

a) scale reduction factor for 

b) scale reduction factor for 

c) scale reduction factor for 

Fig. 10. Convergence evaluation based on scale reduction factor.  

Table 1 
Convergence statistics for Gibbs sampler.  

Component Parameterμ  Parameterσ2  Parameterω   

Gibbs iterations needed to reach convergence (R0 < 1.001)  
No. 1 2982 453 1798 
No. 2 1160 392 1815 
No. 3 378 614 617 
No. 4 1937 491 1113  
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5. Conclusions 

A monitoring-based bridge component reliability assessment method 
in terms of parametric Bayesian mixture modelling was developed in 
this study. In contrast with the conventional frequentist approach, the 
Bayesian treatment enriches the mixture model by providing not only 

Table 2 
Modelling of multimodal stress responses.  

Component Parameterμ  Parameterσ2  Parameterω  

Bayesian estimation Frequentist 
estimation 

Bayesian estimation Frequentist 
estimation 

Bayesian estimation Frequentist 
estimation 

5% Mean 95% 5% Mean 95% 5% Mean 95% 

Top chord 
No. 1  0.952  0.972  0.992  0.871  0.110  0.119  0.128  0.066  0.449  0.474  0.499  0.370 
No. 2  1.784  1.832  1.882  1.694  0.357  0.387  0.419  0.330  0.299  0.323  0.347  0.423 
No. 3  7.775  7.820  7.865  7.835  0.602  0.663  0.728  0.539  0.161  0.170  0.178  0.162 
No. 4  7.285  7.896  8.519  7.378  12.730  15.595  19.016  13.827  0.027  0.034  0.041  0.045 
Diagonal strut 
No. 1  1.145  1.174  1.204  1.074  0.097  0.108  0.120  0.065  0.319  0.350  0.382  0.262 
No. 2  1.971  2.014  2.060  1.916  0.300  0.324  0.348  0.310  0.427  0.460  0.490  0.542 
No. 3  5.661  5.771  5.877  5.694  2.393  2.631  2.894  2.766  0.182  0.191  0.199  0.196 
Bottom chord 
No. 1  1.493  1.539  1.585  1.297  0.246  0.272  0.301  0.128  0.476  0.523  0.570  0.327 
No. 2  2.399  2.492  2.596  2.242  0.588  0.651  0.720  0.484  0.234  0.280  0.326  0.471 
No. 3  10.424  10.480  10.537  10.488  0.886  0.981  1.083  0.766  0.149  0.157  0.166  0.150 
No. 4  9.757  10.396  11.058  9.725  19.872  24.008  28.773  22.328  0.033  0.039  0.046  0.051  

a) top chord 

b) diagonal struct 

c) bottom chord 

Fig. 11. Estimated mixture PDF of stress response with uncertain bounds.  

Fig. 12. Optimal model order based on Bayes factor.  

Fig. 13. Conditional reliability indices based on one-month monitoring data.  

Table 3 
Comparison of Bayesian approach and frequentist approach on reliability 
estimate.   

Reliability estimate 

Top chord Diagonal strut Bottom chord 

Bayesian FGM model  9.089  11.482  7.882 
Conventional FGM model  9.349  11.462  8.075  
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most plausible parameter estimates but also the associated uncertainty 
levels. In this connection, the formulated Bayesian mixture model is 
capable of accommodating multimodal structural responses while 
considering parametric uncertainty; the estimated conditional reliability 
index allows accounting for both aleatory and epistemic uncertainties 
arising from resistance and load effect characterization and can be 
successively updated with the accumulation of monitoring data. Because 
of the presence of various uncertainties and incompleteness of the 
monitoring data, the estimated conditional reliability index is no longer 
a fixed value but rather a random variable that is affected by un-
certainties arising from resistance and load effect, inclusive of the 
measurement error, uncertain model parameters, as well as incom-
pleteness and heterogeneity of the monitoring data. The Bayesian 
paradigm offers an adequate avenue to incorporate prior knowledge 
retained in the previous data into the estimate of reliability index using 
the current data. 

The feasibility of the proposed method is demonstrated by using one- 
year strain monitoring data collected by an SHM system deployed on the 
suspension Tsing Ma Bridge (TMB). The case study comes to the 
following points: (i) the parametric Bayesian mixture models embracing 
a few component densities can favorably characterize the heterogeneous 
stress responses with multimodality, resulting from the combined action 
of multiple live loads such as highway traffic, railway traffic, monsoons 
and typhoons; (ii) in the situation of having only insufficient monitoring 

data, the estimated results of the conditional reliability index may be 
noticeably biased, but more persuasive results can be achieved with the 
accumulation of monitoring data; (iii) stationary estimates of the con-
ditional reliability index can be reached after successive updating with 
sufficient monitoring data lasting for several months; and (iv) the esti-
mated reliability indices (including means and standard deviations) 
from different structural members can be linked up to scheduling and 

a) top chord

b) diagonal strut

c) bottom chord

Fig. 14. One-month reliability updating for top chord, diagonal strut and 
bottom chord. 

a) top chord

b) diagonal strut

c) bottom chord

Fig. 15. One-year reliability updating for top chord, diagonal strut and bot-
tom chord. 

Fig. 16. Evolution of predictive reliability indices over time.  
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prioritizing bridge inspection and maintenance activities in compliance 
with a certain risk threshold. 
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