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ABSTRACT Mapping, as the back-end of perception and the front-end of path planning in the modern
UAV navigation system, draws our interest. Considering the requirements of UAV navigation and the
features of the current embedded computation platforms, we designed and implemented a novel multilayer
mapping framework. In this framework, we divided the map into three layers: awareness, local, and global.
The awareness map is constructed in cylindrical coordinate, enabling fast raycasting. The local map is a
probability-based volumetric map. The global map adopts dynamic memory management, allocating mem-
ory for the active mapping area, and recycling the memory from the inactive mapping area. We implemented
this mapping framework in three parallel threads: awareness thread, local-global thread, and visualization
thread. Finally, we evaluated the mapping kit in both the simulation environment and the real-world scenario
with the vision-based sensors. The framework supports different kinds of map outputs for the global or local
path planners. The implementation is open-source for the research community.

INDEX TERMS Mapping, reconstruction, unmanned aerial vehicle, navigation, simultaneous localization
and mapping, navigation.

I. INTRODUCTION
The autonomous UAV navigation system senses the envi-
ronment and reacts to it accordingly, so that the UAV can
move from one place to another safely even in an unknown
environment. A typical navigation system consists of a series
of modules of localization, mapping and path planning. The
localization module estimates the motion from the on-board
sensors while the path planningmodule plans a safe trajectory
[1], [2]. The mapping kit aims to bridge the gap between
the localization and path planning modules. It provides a
perception ability to reconstruct the surroundings, and the
reconstructed map is the foundation for safe and efficient
path planning. A good UAV navigation oriented mapping kit
should satisfy the following requirements:
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• Bridge the gap between perception and reactionmodules
and provide enough information for path planning.

• Provide human-readable representation. In UAV appli-
cations, humans often provide the high-level navigation
goal of the UAV, and therefore the mapping kit should
contain a visualization module.

• Be robust with respect to the sensor noise. The mapping
kit must deal with the uncertainties caused by the depth
measurement noises from the on-board sensors.

• Support a large mapping area with a limited overhead of
memory.

• Show good dynamic performance. The map should
update the occupancy information of newly detected
objects within a certain period of time.

• Can be processed on the limited resources of the onboard
computation platform in real-time.

In previous work, many mapping investigations have
focused on balancing the accuracy of the map and the
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overhead of storage and on achieving fast access to the
map elements. The approaches for meeting these objec-
tives include storing the map with the octrees data structure
[3]–[5], applying hash table to speed up the searching pro-
cess [6], and introducing the signed distance field (SDF)
information to achieve sub voxel accuracy of the surface
reconstruction [7].

Meanwhile, an examination of the contemporary embed-
ded systems shows that the memory size is no longer the
bottleneck of the embedded systems. We consider the task of
creating a navigation map in a 50m× 50m× 5m field with a
voxel dimension of 0.2m×0.2m×0.2m. If every voxel stores
64 bytes of information, the memory needed for such a map is
merely 100 MB. An embedded computer such as Raspberry
Pi 4 has a 4 GB memory. Therefore, the storage overhead
is a minor concern in the current mapping operation. The
dynamicmemorymanagement will be applied to the sub-map
instead of every single voxels.

In this novel mapping framework (Figure 1), voxels are
stored in an organized data structure. Every voxel is indexed
with its position information and can be modified directly.
Hence, the modification and update of the map can be fast.

FIGURE 1. Overview of multilayer mapping framework. The input of the
mapping framework consists of the point cloud and the estimated pose.
The output of the mapping framework consists of different
representations of the environment, that can be used for path planning.

In addition, depth measurement always involves some
uncertainties and random noises. The framework takes two
measurements to reduce the uncertainties and increase the

map’s robustness with the raycasting-based visibility check
and probability-based occupancy state. The measurement
data from the sensor only include the occupied information.
Applying the visibility check in the awareness map enables
measurement with the non-occupied information. The update
of the local map is based on both occupied and non-occupied
information. The local map occupancy state is represented
with a probability value that increases with the occupied
measurements and decreases with the non-occupied mea-
surements. Even if uncertainties exist in every measurement,
the robust estimation of the occupancy state can still be fused
from multiple measurements.

In the system implementation, we decoupled the visualiza-
tion part from the mapping kit, so that the onboard computer
only focuses on the mapping task and the heavy-load visu-
alization task is conducted by a stand-along thread on the
ground station computer.

To summarize, the contributions of this work are as
follows:
• Designed an awareness-local-global three levels map-
ping framework for UAV navigation. The framework
supports various kinds of map output format including
2D grid map, global map, local ESDFs, and local map.

• Adopted different measurements to increase the robust-
ness and feasibility of the mapping kit. These mea-
surements include efficient raycasting-based visibility
check, probability-based representation of the occu-
pancy state and dynamic memory management.

• Tested the mapping framework in the simulator and in
the real-world scenario.

• Provided the open-source framework to the research
community.

II. RELATIVE WORKS
Many autonomous UAV navigation works have been pub-
lished in recent years. The navigation framework’s work-
flow starts with the localization module, which estimated the
6-DoF pose from the camera or from LiDAR. Then, the map-
ping module stitches sensor measurements concerning their
associated poses and reconstructs the surroundings. Finally,
based on the reconstructed map, the motion planning module
generates obstacle-awareness and smooth trajectories. The
mapping module in the navigation work bridges the gap
between localization and planning modules and provides a
human-readable map to the system monitor. This section
reviews three kinds of map representation that are widely
used in the aerial robotics field.

A. POINT CLOUD MAP
The point cloud is the lowest-level representation of the
3D measurements. The most significant advantage of using
this kind of map is its ease of generation. The construc-
tion of a point cloud map can be carried out by stitching
the point clouds from different measurements. Adding every
new measurement into the map will rapidly increase the
size of the map. The voxel grid filter [8] keeps only one
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point in a size-defined region and filters out all other points,
preventing memory over-expansion. The periodical applica-
tion of such a filter to the whole map can eliminate the
redundancy points. However, the point cloud itself is in an
unorganized data structure. Accessing or modifying a certain
point is time-consuming because these operations must scan
the whole map. Since the sensor noises and dynamic objects
cannot be modified and updated in real time, this type of
map is generally suitable for high-precision sensors in static
environment scenarios. In the work of Gao et al. [9] and
Lin et al. [10], UAV obstacle avoidance was achieved using
an onboard LiDAR sensor. A KD-tree-based point cloud
map [11] was used in their navigation framework.

B. OCCUPANCY VOLUMETRIC MAP
As the most commonly used map type, the volumetric map
discretizes the entire mapping space into organized voxels
that are a grid of cubic volumes of equal size. The occupancy
status and other information are stores in each voxel. The
conventional map implementation is based on the fixed-size
grid, and the occupancy information only contains two states
(occupied or not occupied). Such a map is unresponsive to
noise and incurs a high overhead of memory. Elfes [12]
introduced the probabilistic sensor measurement model to
represent the observed and unknown spaces explicitly. In the
work by Nießner et al. [13], only the occupied voxels were
stored in the memory, and these voxels supported fast access
with the help of a hash table. The most notable work on the
volumetric occupancy map is that of the Octomap [5] that
uses a hierarchical data structure to store occupancy probabil-
ities for voxels. The Octomap is robust with respect to sensor
noises and supports the incremental growth of the map size.
Many successful works on autonomous navigation and path
planning [14]–[16] have been based on this mapping kit.

C. SIGNED DISTANCE FIELDS
Unlike the occupancy map, in signed distance fields (SDFs),
the distance value is stored in every cell. This representation
is widely used in 3D computer graphics because it can achieve
surface reconstruction with sub-voxel accuracy [17], [18].
In robotics, Euclidean signed distance fields (ESDFs) have
been becoming increasingly popular recently. The distance
in ESDFs represents the Euclidean distance to the nearest
occupied voxel. The modern optimization-based path plan-
ning algorithms generate the collision-free trajectory by opti-
mizing a collision cost function that can be easily generalized
from the distance values. Moreover, it is straightforward to
perform a collision check on ESDFs. The ESDFs can be com-
puted from an occupancymap.Many approaches focus on the
acceleration of the ESDFs construction process. In the work
of Cao et al. [19], the generation of the ESDFs is accelerated
using GPU parallel computation. Lau et al. [20] divided the
entire mapping plane with the Voronoi diagram and carried
out an incremental update of the map. Another kind of SDFs
is the truncated signed distance fields (TSDFs), in which the
distance represents the distance from the occupied surface

to the center of the sensor along the ray direction. TSDFs
can be easily obtained from the depth camera. The ESDFs
map can be approximated by the multiple TSDFs captured
from different viewpoints. The notable methods following
this approach for map generation include Voxblox [21] and
Fiesta [22].

III. SYSTEM OVERVIEW AND NOTATION
As shown in Figure 2, there are five reference systems in this
multilayer mapping framework. They are: global frame (g),
local frame (l), awareness frame (a), body frame (b), and
sensor frame (s). In UAV applications, we use the IMU frame
as the body frame and the camera frame as the sensor frame.
The UAV is flying in a fixed inertial frame (global frame).
The vehicle’s pose is represented by the transformation from
the body frame to the global frame g

bT , and the installation
geometry of the perception sensor can be represented by the
transformation from the sensor frame to the body frame bsT .

FIGURE 2. Coordinated system of the awareness-local-global mapping
framework. In UAV application, the body frame in fixed on the IMU frame
and the sensor frame is fixed on the camera frame.

This multilayer mapping framework maintain the global,
local, and awareness maps on the global, local, and aware-
ness frames, respectively. The global and local maps are
based on the Cartesian coordinate system (x-y-z) while the
awareness map is established on the cylindrical coordinate
system (ρ-φ-z). The global frame is fixed on the map origin.
Both local and awareness frame have the same orientation
as the global map. The awareness ρ-axis (φ = 0) and local
x-axis are parallel to the global x-axis. The awareness z-axis
and local z-axis are parallel to the global z-axis.

The awareness frame is attached to the body frame.
This means that the translation part of the transformation
from awareness map to global map g

aT is the same as g
bT .

The local map represents the active mapping region, and
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every map cell in the local map can be directly accessed
and updated. The dynamic memory allocation mechanism
(see Section IV-C) dynamically adjusts the position of the
local frame to keep the body frame inside the central region
of the local map.

The input of the mapping framework is the synchronized
point cloud sPC and pose gbT . We note that the point cloud is
captured in the sensor frame. For every point in the input point
cloud (sp = (px , py, pz)T ∈ sPC), its position in the global
frame gp and awareness frame ap can be represented by:

gp = g
bT ·

b
s T ·

sp (1)
ap = a

gT ·
g
bT ·

b
sT ·

sp. (2)

According to the definitions of the coordinate systems,
the agT in Equation 2 can be derived from g

bT through

a
gT =

g
aT
−1
=


1 0 0 g

bT .tx
0 1 0 g

bT .ty
0 0 1 g

bT .tz
0 0 0 1


−1

, (3)

where gbT .tx,
g
bT .ty, and

g
bT .tz refer to the x, y, and z values of

the translation part of gbT . We note that ap is in the Cartesian
representation form (p = (px , py, pz)T ), and we need to trans-
form it into the cylindrical representation (p = (pρ, pφ, pz)T ).
The pz values are the same in both representation forms. The
pρ and pφ can be calculated by:

pρ =
√
p2x + p2y (4)

pφ = arctan
py
px
. (5)

IV. MODELS OF MULTILAYER MAPPING FRAMEWORK
A. RAYCASTING ON CYLINDRICAL COORDINATE
One of the most significant advantages of establishing the
awareness map in the cylindrical coordinate system is that it
follows the nature of the sensor’s perceptionmode. Compared
to the sensor’s perception range, the displacement between
the body frame and the sensor frame is small and can be
neglected. Thus, we can use the center of the cylindrical coor-
dinate system to approximate the sensor center. As shown
in Figure 3, if we cast a ray from the sensor center to the
observed point, the ray will pass through several voxels. All
of these voxels share the same φ value, implying that the
three-dimensional raycasting can be simplified to the raycast-
ing in a two-dimensional plane (ρ − z plane).
The application of raycasting on a two-dimensional plane

can be implemented efficiently with the incremental phase
of the traversal algorithm [23]. That is, for a observed point
p = (pρ, pz), we incrementally decrease pρ and pz by the step
length of a voxel dρ and dz and set the state of the traversed
voxel to non-occupied (Algorithm 1).

B. PROBABILISTIC OCCUPANCY STATE
The probabilistic occupancy state was first introduce by
Moravec and Elfes [24]. It achieves the robust occupancy

FIGURE 3. Raycasting on the cylindrical coordinates. The gray line is the
casting ray, the orange triangle represents the occupied measurement
and the red cross represent non-occupied measurement.

Algorithm 1 Fast Raycasting Algorithm

1 foreach p = (pρ, pφ, pz) ∈ Observation do
2 while pρ > 0 do
3 pρ = pρ − dρ ;
4 pz = pz − dz ;
5 set voxel (pρ, pφ, pz) as non-occupied;
6 end
7 end

state estimation with the multiple measurements from a noisy
sensor. Pn is the probability that a certain voxel n is occupied.
Pn ranges from 0 to 1 (non-occupied to occupied). The sensor
measurement at time t (zt ) has two statuses (non-occupied
and occupied). Given the sensor measurements z1:t , the occu-
pancy probability Pn(z1:t ) of a voxel (with index n) can be
calculated according to:

Pn(z1:t )= (1+
1− Pn(zt )
Pn(zt )

·
1− Pn(z1:t−1)
Pn(z1:t−1)

·
1− Pn
Pn

)−1. (6)

In Equation 6, Pn refers to the initial probability. It is set
to 0.5 in the map initialization because the occupancy state
is unknown. Pn(z1:t−1) refers to the estimated probability of
the previous sample time (integrated from the 1st timestamp),
while term Pn(zt ) denotes the probability of voxel n in the
measurement zt . However, the direct storage and updating of
the probability is time-consuming because it requires a high
amount of floating point operations. The logit function, also
called the log-odd function in Equation 7 that maps the values
from (0, 1) to (−∞,+∞), is applied to the probability value
according to:

logit(Pn) = log(
Pn

1− Pn
). (7)

Equation 6 can be rewritten as:

logit(Pn(z1:t )) = logit(Pn(zt−1))+ logit(Pn(zt )). (8)
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Comparing Equations 6 and 8, the computationally intensive
update process of floating point computation is replaced by
the simple addition operation. For a given sensor model,
the log-odds values are fixed and do not need to be computed
in every update step. Similar to Octomap [5], the proba-
bility and log-odds values are the turning parameters for
the mapping framework. Experimentally, we found that
Pn(zt ) = 0.4 and logit(Pn(zt )) = −0.4 are suitable for both
the high-precision sensor (such as LiDAR or points clouds
in the simulation environment) and the low-precision sensor
(such as the depth camera) when the voxel is non-occupied.
It is only necessary to tune the probabilities and log-odds val-
ues of the occupied measurement (the recommended settings
are listed in Table 1). We note that the log-odds value can
be mapped into the probability and vice versa, and therefore
instead of the occupancy probability, we store this value for
each voxel.

TABLE 1. Probability and logit value of occupied/non occupied
measurement.

A voxel’s occupancy status (occupied or non-occupied) is
evaluated with a threshold value of the occupancy probability
Psh. A voxel is considered to be occupied only when the
probability reaches the threshold. The default log-odd value
in Equation 7 ranges from−∞ to+∞. However, in practical
implementation, this value is limited to a certain range with
a saturation module (Equation 9) because the same type of
consecutive measurements will push the absolute log-odd
value to a large number. Notably, switching the status will
become impossible because many new measurements will
be necessary to compensate for the previous record, i.e., the
system will lack dynamic performance.

L = logit(Pn(zt−1))+ logit(Pn(zt ))

logit(Pn(z1:t )) =


Lmax L > Lmax
Lmin L < Lmin
L L ∈ [Lmin,Lmax]

(9)

C. MEMORY MANAGEMENT
The framework adopts the dynamic memory allocation that
empowers the system to reconstruct a large mapping with a
limited overhead of memory and without the prior knowledge
of the size of the mapping area. The basic idea is to allocate a
fixed size of memory for every voxel in the activate mapping
area (local map) and to only store the occupied voxels for the
inactive area.

As shown in Figure 4, the local map is divided into
25 submaps. The red dot represents the position of the robot
and is located in the center submap of the local map. When
the robot leaves the center submap, it will trigger the map

FIGURE 4. Expanding the global map from (a) to (b). Every local map is
divided into 25 submaps and can extend in 8 different directions. The
dynamic memory management mechanism will allocate new submaps to
extend the active mapping area and recycle the memory from the inactive
mapping area. Notably, the figure is drawn in 2D but the algorithm is
implemented in 3D.

extension operation. That is, the algorithm calculates the
distances between the robot position and the center positions
of eight neighborhood submaps. The neighborhood submap
with the minimum distance indicates the extension direction.

After moving the center submap of the local map to one of
the neighborhoods, the framework will allocate the memory
to every voxel of the new submaps. The memory of the
submaps outside the active mapping area will be recycled,
which means that only the information of the occupied voxels
are stored. The memory for the non-occupied voxels will be
freed.

We note that we explain this mechanism using 2D schemat-
ics, while the mechanism is implemented in 3D; in other
words, the local map is divided into 125 regions and has
26 potential extension directions.

V. IMPLEMENTATION OF THE MAPPING FRAMEWORK
A. SYSTEM OVERVIEW
Figure 5 shows the mapping framework that consists of
the three independent threads: the awareness map thread,
the local-global map thread, and the visualization thread.
These threads are coordinated by ROS messages and run in
parallel. The mapping module’s input consists of the esti-
mated pose from the localization module and the point cloud
from the depth sensor. The input will be synchronized and
sent to the awareness map thread. The awareness map thread
conducts the range and visibility checks and passes the update
information to the local-global map thread. Then, the local-
global thread updates the probability of all of the relevant
voxels. The framework also supports the projected 2D map
and local ESDFmap output. Users can enable or disable these
two functions according to the requirements. Furthermore, all
maps provide the information to the visualization thread. The
visualization thread is independent and can run on the ground
station computer.
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FIGURE 5. System architecture of the mapping framework. The awareness
map thread, the local-global map thread, and the visualization thread are
colored in yellow, green, and blue, respectively.

B. AWARENESS MAP UPDATE WORKFLOW
The awareness map will be updated upon receiving the syn-
chronized point cloud cPC and pose w

BT information. The
update process consists of two steps. The first step is to update
the awareness map from the previous awareness map with the
newest pose. The transformation between two sample times
4T can be calculated by the wBT and the previous pose wBT last
according to Equation 10. After making a screenshot of the
original awareness map, we reset the occupancy state of the
awareness map. For every occupied cell in the original map,
we applied the transformation4T to it, and found its position
in the new awareness map. We set the occupancy of the voxel
state as occupied.

4T =wB T ·
w
B T
−1
last (10)

Algorithm 2 Awareness map thread workflow

Input: UAV pose wBT , point cloud
BPC

Output: Occupied/Non-occupied list Lo[ ]/Ln[ ]
1 for i← 0 to SAMPLE_CNT by 1 do
2 random pick a point Bp from BPC;
3 transfer Bp to awareness frame lp with Equation 2;
4 if lp inside of awareness map’s range then
5 PCsample[ ]← lp;
6 end
7 end
8 foreach lp ∈ PCsample do
9 Lo[ ]← lp;

10 set the relevant voxel to occupied;
11 apply raycasting (Algorithm 1), add non-occupied

measurement to Ln[ ] ;
12 end
13 return Lo[ ]/Ln[ ] ;

The second step is to update the occupancy state with the
point cloud and apply the raycasting. The occupied list and
non-occupied list will be filled during the second step and
then sent to the global map thread. Since the input point cloud

may consist of too many points, the first step is to randomly
downsample the point cloud and apply the range filter that
filters out the points outside the awareness map range. For
each point in the downsampled point cloud, we find the
located voxel, set it as occupied voxel and add it to the
occupied measurement list. Then, we apply the ray-casting
from the center of the awareness map to the voxel. The voxels
lying on the ray are set to non-occupied and are pushed
into the non-occupied measurement list. The workflow of the
awareness map update is shown in Algorithm 2.

C. LOCAL-GLOBAL MAP UPDATE WORKFLOW
The local-global map thread received the occupied/non-
occupied measurements and the robot pose from the
awareness map thread w

BT . The first step is to determine
whether it is necessary to update the region of local area. If wBT
exceeds the center submap of the local map, the algorithm
will find its closest neighborhood submaps, and move the
center of the local map to this submap. Then, the algorithm
will allocate the memory for the new submaps inside the new
local map area and recycle the memory from the submaps
in the inactive area. The occupied/non-occupied measure-
ments information is then used to update the occupancy
probability (represented using log-odds value) on the local
map (Equation 8 and Table 1). The local-global map thread
contains two independent modules to generate the project
2D map and local ESDFs (Figure 6). The projected 2D map
projects all of the occupied voxels to the ground level. Such
a map can be used for global planning. The ESDFs generator
extracts a batch of voxels from the global map. For every
voxel in the batch, we calculate its distance to all other
occupied voxels. The lowest values is then selected as the dis-
tance. This map can be used for optimization-based trajectory
generation.

FIGURE 6. Local map, projected 2d grid map, and ESDFs (slide at z = 0.3).

VI. EXPERIMENT
A. EXPERIMENT PLATFORM
We first evaluated the mapping framework on the simulation
platform (Figure 7a). The simulator is developed based on the
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Algorithm 3 Local-global map thread workflow
Input: UAV pose wBT , Occupied/Non-occupied list

Lo[ ]/Ln[ ]
1 if wBT exceed the range of center submap then
2 switch the localmap to the new region, allocate

memory for new submaps, and recycle submap in
inactive area (see IV-C).

3 end
4 foreach lp ∈ Lo[ ] do
5 update relevant voxels in local map with occupied

measurement.
6 end
7 foreach lp ∈ Ln[ ] do
8 update relevant voxels in local map with

non-occupied measurement.
9 end
10 if enable 2d grid map output then
11 project the localmap to the 2d plane and generate the

2d grid map.
12 end
13 if enable ESDFs output then
14 calculate ESDFs inside the defined batch.
15 end

ROS-GAZEBO-PX4 toolchain. A depth camera is attached
to a UAV. The user can command the UAV to move in the
simulation world [25]. We note that we did not add noise in
this simulator. This means that the input data (point cloud and
UAV pose) for the mapping framework are highly accurate.
Then, we evaluated the mapping framework with two sen-
sor suites. Figure 7b shows the D435 camera. The camera
can only output the point cloud. The pose information is
collected from the motion capture system or using the pose
estimator. Figure 7c shows another sensor suite. In this suite,
a D515 camera and a T265 sensor are installed on a 3d print-
ing framework. The D515 camera can output the high-quality
point cloud, and the T265 sensor can output the real-time pose
of the sensor suite. In Figure 7d, a D435 camera is installed on
a UAV platform. The UAV is equipped with resource-limited
embedded computer and we achieve autonomous navigation
in the indoor environment. All of the navigation algorithms,
including this mapping kit are executed on the on-board
computer.

B. DYNAMIC PERFORMANCE OF THE MAPPING KIT
To test the dynamic performance of the mapping, we placed
the D435 depth camera toward a wall, and then a person
walked across the sensor. As shown in Figure 8, when the
person started to walk into the mapping area, the mapping
framework reacted to this event, and people appeared on
the map. When the person walked away, the unoccupied
measurement from raycasting kept updating the map, and
the previously occupied voxels transformed into unoccupied
voxels.

FIGURE 7. Verification of the mapping framework using different
platforms. (a) Simulation platform; (b) Realsene d435 depth camera,
(c) sensor setup of a Realsense l515 camera and Realsense t265 camera,
(d) UAV platform with a mounted Realsene d435 depth camera.

C. MAPPING IN THE INDOOR ENVIRONMENT
We conduct the simulation on the ROS-GAZEBO-PX4
toolchain. A depth camera is attached to a quadcopter.
We manually command the quadcopter to perform explo-
ration in the simulation world. The simulation world is a
30m×20m room. We add obstacles such as walls, cylinders,
boxes, and spheres to the simulation world. We map the
environment with the resolutions of 0.1 m cubes. The bird’s
eye view and side view of the reconstructed map and the
ground truth are shown in Figure 9 and a good agreement
between them can be observed.

We then conduct the real-world experiment in our lab.
We place boxes and artificial obstacles in the Lab. In this
experiment, we choose to use the real-sense d435 as the
perception sensor. The pose information of the sensor is pro-
vided by the motion capture system. We held the sensor and
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FIGURE 11. Large-scale mapping inside the teaching building. The length of a single corridor is 60 meters and the height of the building is 31 meters. The
green region in the map represent the active mapping area (local map).

walk around the test field. The reconstructed map is shown
in Figure 10. The voxel size of this map is 0.1 m.

D. LARGE-SCALE MAPPING
We design this experiment to evaluate the performance of
this mapping framework on the balance between the memory
overhead and the size of the mapping area. In this experiment,
we hold the T265+L515 sensor suite (Figure 7c) and walk
inside the teaching building. Figure 11 shows the result. The
voxel size of this map is 0.15 m. The total length of the
traveled path is 246 m. The mapping started from the corridor
on the first floor. Then, we mapped the laboratory and went
up to the fifth floor. Then, we walk through 3 corridors to
another side of the building. Finally, we went up to the top
floor of the building. The full video of this experiment can be
found in the supplementary materials.

Figure 12 plots the memory usage of the mapping
framework in this experiment. We observe that initially,
the algorithm allocates 192 MB for every voxel in the aware-
ness map and local map. Then, with the expansion of the
mapping area, the memory usage increase incrementally. The
total memory consumption is 258 MB. The map is divided
into active (local map) and nonactive mapping areas. The
dynamic memory allocation mechanism keep recycling the
memory from non-occupied voxels in the nonactive mapping
area. Therefore, the increasing trend of memory usage is not
proportional to the map’s size, but rather to the occupied
voxels in the map. The system can describe a large mapping
scenario with a limited overhead of memory.

E. AUTONOMOUS UAV NAVIGATION WITH THE MAPPING
FRAMEWORK
Finally, we integrated this mapping kit into our UAV navi-
gation system. The UAV navigation system’s hardware con-
sists of a D435 camera and a LattePandeTM 864 embedded
computer (Figure 7d). In the software part, the mapping

TABLE 2. Processing time of mapping framework in different
computation platform.

kit works together with our previously developed local-
ization and path-planning kits to achieve the click-and-fly
level autonomy in an unknown environment. That is to say,
the UAVhas no prior knowledge of the environment setup and
needs to sense the surrounding and reacts to it accordingly.

The localization kit we used is the FLVIS [26], a stereo
visual-inertial SLAM. It adopts the feed-forward and feed-
back loops to fuse the IMU and camera data and achieves
high accuracy pose estimation in the resources limited com-
putation platform. The output from this localization module
and the raw point cloud measurement from the D435 camera
were feed into the mapping framework as the input.

We used the Fuxi Planner as our path planning kit, which
searches and plans the obstacle awareness and trajectory
based on the reconstructed map. The planner composes two
parallel running planner. The global planner works on the
2D grid map to find the shortest 2D path with the improved
Jump Point Search algorithm, and output the local setpoint
to the local planner. The local planner works directly on the
awareness map to avoid the potential collision and plans a
kinematically feasible trajectory.

To verify the capability of the UAV navigation system,
we place some artificial obstacles in the test field. We com-
mand the UAV to take off and fly to the target destination
point behind the obstacle. The estimated pose and the point
cloud from D435 are fed into the mapping kit to reconstruct
the surroundings. Based on the reconstructed map, the path
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FIGURE 8. A person walked across a wall from right to left. (a)-(c)-(e)-(f)
are the camera views, (b)-(d)-(f)-(h) are the reconstructed maps.

planning kit generates the obstacle awareness trajectory to
the destination and forwards it to the UAV (Figure 13). In this
experiment, the projected 2D grid map, local map, and aware-
ness map are used for path planning. The full video of this
experiment can be found in the supplementary materials.

F. PERFORMANCE OF THE MAPPING FRAMEWORK
To evaluate the processing speed of our mapping framework,
we test the mapping framework in both a personal computer
and resources-limited embedded computer platform using
the building dataset (See VI-D). The configuration used for
running the dataset is as follows:

• The awareness map consists of 450000 voxels (100,
180 and 25 discretization steps in ρ, φ and z directions,
respectively).

• The size of the voxel is 0.2 m and the size of local map
is 19 m∗19 m∗7 m.

FIGURE 9. Ground truth and the reconstruct map.

FIGURE 10. Reconstruct the lab environment.

• All of the features and functions are enabled, including
the raycasting, ESDFs generator and 2D grid map gen-
erator.
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FIGURE 12. Memory usage of the mapping framework in large-scale
mapping.

FIGURE 13. UAV navigation in the unknown environment.

Table 2 shows the performance of our mapping kit. The
mapping framework can satisfy the real-time requirement for
UAV navigation (replan the trajectory 10 times per second)
even with the limited computational resources.

TABLE 3. Comparison of features and performance of our mapping kit
with Octomap and Voxblox.

We also compared the features and performance of our
mapping kit with two other widely used mapping kits:
Octomap [5] and Voxblox [21]. We list the results in Table 3.
The proposed mapping kit support various map represen-
tation with relatively high processing speed and affordable
memory consumption.

VII. CONCLUSION
In this article, we present a novel open-source three-
dimensional mapping framework. Our approach uses a
three-layer awareness-local-global map design and achieves
a fast raycasting-based visibility check in the local map.
By adopting the probabilistic occupancy state, our frame-
work can represent volumetric 3D models robustly. The map
visualization part is decoupled from the map maintenance
thread and can run on another computer separately. This
design can decrease the computational load of the on-board
computer. We evaluated our approach with the simulation
and the real-world data sets. The results demonstrate that
our approach can model the environment in the embedded
computation platform in real time. We also integrated our
mapping framework into the UAV navigation system and
achieved click-and-fly level autonomy in the indoor environ-
ment without prior knowledge. The open-source framework
is provided to the research community. The verification data
sets are also available online for to enable the reproduction
and comparison of our experimental results.
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