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ABSTRACT 

The extreme temperature induced by fire and hot smoke in tunnels threaten the trapped personnel and 

firefighters. To alleviate the potential casualties, fast while reasonable decisions should be made for 

rescuing, based on the timely prediction of fire development in tunnels. This paper targets to achieve a 

real-time prediction (within 1 s) of the spatial-temporal temperature distribution inside the numerical 

tunnel model by using artificial intelligence (AI) methods. A CFD database of 100 simulated tunnel fire 

scenarios under various fire location, fire size, and ventilation condition is established. The proposed 

AI model combines a Long Short-term Memory (LSTM) model and a Transpose Convolution Neural 

Network (TCNN). The real-time ceiling temperature profile and thousands of temperature-field images 

are used as the training input and output. Results show that the predicted temperature field 60 s in 

advance achieves a high accuracy of around 97%. Also, the AI model can quickly identify the critical 

temperature field for safe evacuation (i.e., a critical event) and guide emergency responses and 

firefighting activities. This study demonstrates the promising prospects of AI-based fire forecasts and 

smart firefighting in tunnel spaces. 
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ANN artificial neural networks LSTM long short-term memory 

CFD computational fluid dynamics ML machine learning 
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CVV critical ventilation velocity SVM support vector machine 

FDS fire dynamics simulator TCNN transpose convolutional neural network 
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1. Introduction 

Over the last few decades, the construction of underground space and tunnels has been a favorable 

option to meet the increasing demand for more efficient urban transportation system for megacities of 

a high population density (Dindarloo and Siami-Irdemoosa 2015). Although the probability of fire 

incidents happened in tunnels is smaller than those in open spaces (Ingason et al. 2015; Li and Ingason 

2018; Carvel 2019), the absolute annual number of tunnel fire accidents is still very high, considering 

a large number of tunnels around the world and their high traffic densities. Statistics show that China 

alone had been 161 medium and large tunnel fire accidents from 2000 to 2016 (Ren et al. 2019). 

Moreover, once a tunnel fire occurs, it could be fatal and cause a catastrophic economic loss (Beard 

2009; Beard and Carvel 2012; Casey 2020; Li and Liu 2020). In 1987, a catastrophic tunnel fire incident 

in Azerbaijan was induced by an electrical fault and finally caused 289 deaths (Haack 2002). In 2020, 

a fire accident occurred in the Samae 2 Tunnel, Korea, after the collision of dozens of tanks and trucks, 

which killed four people and injuring more than 40 others. The severe consequences of tunnel fire can 

attribute to challenging evacuation from poorly ventilated spaces with high-temperature and high-

density of smokes and toxic gases. Furthermore, the rapid and complex development of fire inside the 

tunnel makes it difficult to predict and guide the rescuing and firefighting actions. Therefore, an accurate 

and timely prediction of tunnel fire is in urgent need (Beard 2009; Wu et al. 2020; Zhang et al. 2021). 

Driven by the recent booming of artificial intelligence (AI) and high-performance computing, 

numerous studies have proposed AI-based fire detection and fire risk assessment, particularly in 

wildland fires (Cohen et al. 1989; Akhloufi et al. 2018; Sayad et al. 2019). Dubey et al. (2019) proposed 

a simple 2-layer feed-forward fully connected neural network (NN) for the detection of wildland fires, 

based on the input of wireless sensor networks. Massive images of smoke and flame have also trained 

via deep learning to improve the accuracy of fire detection and reduced the rate of false alarm (Cao et 

al. 2019; Govil et al. 2020). In particular, the convolutional neural networks (CNNs) has also been used 

in fast pinpointing the wildfire location (Ghoreishi 2019). Based on massive geographic information 

data and academic codes, the data-driven forecast has also been demonstrated and applied in wildland 

fire by applying the algorithm of logistic regression (LR) (De Vasconcelos et al. 2001), CNN (Hodges 

and Lattimer 2019), multilayer artificial neural network (ANN) (Zhai et al. 2020), and support vector 

machine (SVM) (Ngoc Thach et al. 2018).  

As to structural fire, sensor data from monitoring smoke, CO, and heat are often utilized for the 

detection of fire using multiple types of NN (Pei and Gan 2009; Xue 2010; Yao et al. 2010), because of 

the low cost and maturity of these sensor technologies. Camera images are more difficult for fast 

processing, and not available in many existing infrastructures, and more importantly, but their visibility 

quickly decays inside the structure in case of fire (Wu et al. 2020). Xue (2010) proposed a classic three-

layer ANN for detecting the occurrence of fire in tunnels based on sensor data of temperature and 

densities of smoke and CO. High accuracy and generalization ability were achieved with this method, 

although this NN was trained using numerical simulations due to the lack of sufficient on-site data. 

Hodges et al. (2018, 2019) adopted a transpose convolutional neural network (TCNN) to predict the 

steady-state temperature distribution inside a compartment, based on training a numerical database. 

While in this study, it was assumed that the information of room geometry, ventilation, fire size, and 

fire location was available, which is quite unrealistic. 

So far, very few studies have realized the fire forecast in the urban fire environment. Previously, the 

https://doi.org/10.1007/s12273-021-0775-x


X. Wu, X. Zhang, X. Huang, F. Xiao, A. Usmani (2021) A Real-time Forecast of Tunnel Fire Based on 

Numerical Database and Artificial Intelligence, Building Simulation, doi: 10.1007/s12273-021-0775-x 

3 

FireGrid framework was proposed to collect real-time sensor data and predict the evolution of 

compartment fires based on a zone model (Han et al. 2010). Carvel et al. (2005) employed Bayesian 

methods to forecast the probability of downstream flame extension length. Ji et al. (2018) proposed 

inverse modeling with an ensemble Kalman filter to predict the temperature distribution and smoke 

layer thickness in tunnels. Dexters et al. (2020) proposed an LR model to predict the occurrence of 

flashover in a compartment utilizing the information of fire intensity, fire duration, and the thickness of 

combustible materials from past experiments. In our previous work, we proposed a long short-term 

memory (LSTM) model to successfully identify the size and location of fire inside the tunnel, based on 

the training of 100 tunnel-fire numerical simulations (Wu et al. 2020); and predict the required critical 

ventilation velocity by training an organized fire-test database (Zhang et al. 2021).  

In this work, we aim to predict the temperature distribution inside tunnels in advance based on 

limited temperature sensor data. First, a numerical database of 100 tunnel fire scenarios under various 

fire locations, fire sizes, and ventilation conditions was established. The temperature at multiple 

locations near the ceiling of the tunnel was recorded during the fire development to mimic the heat 

sensor in the real tunnel. Then, the sensor data and thousands of temperature-field images were post-

processed to form a sizeable numerical database for the training of LSTM and TCNN layers. Finally, 

the AI model can achieve a fast prediction (within 1 s) of the tunnel temperature distribution 60 s 

afterward under various fire scenarios. 

2. Methodology 

2.1. Background of AI algorithms 

The proposed model consists of two main types of algorithms, i.e., LSTM and TCNN. In this section, 

the fundamental concepts and architectures of these two algorithms are briefly introduced. 

LSTM model. The recurrent neural network (RNN) is designed to extract the feature hidden in 

sequential data (Chehreh Chelgani et al. 2018). The data chain is imported into the RNN model 

sequentially, and certain data can then be reserved inside the model. This type of model has been widely 

adopted in speech recognition (Lee et al. 2017). However, RNN cannot accurately figure out the 

information of long sequences (Bengio et al. 1994). Then, LSTM, as a special type of RNN introduced 

by Hochreiter (Hochreiter 1997), effectively tackles long-term dependency problems. After importing 

a piece of data, useful information can be remembered and translated for designed output. A more 

detailed structure of the network can refer to our previous work (Wu et al. 2020). 

CNN. The CNN algorithms have been widely adopted in many fields related to computer vision, 

such as image recognition, analysis, classification, and recommendation (Hayou et al. 2019). Compared 

with convolutional ANN, CNN is more efficient due to its distinguishing feature of shared weight. 

Technically, the input images pass through a series of convolutional, pooling, and fully-connected layers 

defined in a CNN model (He et al. 2016). Fig. 1(a) shows a typical process of extracting features 

between convolutional layers. Often the volume of the input (Layer 1) is larger than that of the output 

(Layer 2). The value of each neuron on Layer 2 is computed by performing a dot product between the 

weights (filter layer) and the corresponding local spatial region on Layer 1. The values on filter layers 

will be updated during the training process. 
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Fig. 1. Data transfer between (a) convolutional layer of CNN, and (b) transposed convolutional layers of TCNN. 

TCNN. As the decoder of CNN, the TCNN behaves in the opposite direction to transform simple 

input data into higher-dimensional space (Dumoulin and Visin 2016). Fig. 1(b) depicts the data 

transformation between transposed convolutional layers. As shown, the calculation procedure is similar 

to that of CNN layers, while after padding with zero values, a larger size of output (Layer 2) is generated 

compare with that of the input (shaded values in Layer 1). In the current study, the TCNN architecture 

is adopted to generate images showing the temperature distribution in tunnels. 

2.2. CFD modeling of tunnel fire 

Plenty of real-scale and reduced-scale tunnel fire tests have been conducted to quantify the key 

parameters related to the fire safety of the tunnel, including maximum temperature, smoke layer, and 

critical ventilation velocity (CVV) (Beard 2009; Li and Ingason 2018; Zhang et al. 2021). Most of these 

studies installed many temperature sensors (e.g., thermocouple trees) and laser scanners for visualizing 

the smoke layer, while it is practically difficult to quantify the full temperature fields of a tunnel fire. 

Moreover, the thick dark smoke inside an under-ventilated tunnel (Hu et al. 2010) quickly lowers the 

visibility. Thus, even if visual and infrared cameras are pre-installed, it is difficult to monitor the tunnel 

fire continuously (Gong et al. 2016). Recently, Computational Fluid Dynamics (CFD) has been widely 

applied to simulate tunnel fires. Particularly,  the open-source program of Fire Dynamics Simulator 

(FDS) developed by NIST (Mcgrattan and Mcdermott 2015) has been extensively verified and validated 

and used as a standard tool for the performance-based fire safety design of the tunnel. Moreover, the 

CFD modeling results can provide much more detailed temperature information than any experiment, 

which is ideal for the verification of the proposed AI method for the fire forecast.  

Fig. 2 shows a representative real-scale tunnel having a length of 160 m, a width of 6 m, and a 

height of 6 m, which mimics the full-scale road tunnel at Sichuan Fire Research Institute (SCFRI). The 

3-D numerical tunnel model is constructed in FDS 6.7 (Mcgrattan and Mcdermott 2015), which was 

upgraded from the previous 2-D model (Wu et al. 2020). The inner surfaces of the tunnel were assumed 

as perfectly smooth. Thermally, the default inert wall and an ambient temperature of 20 ℃ were 

assumed. The left entrance of the tunnel was set as an open boundary, and the right exit was also set to 

open unless there was ventilation. The modeled fire with a fixed HRR was a rectangular burner, which 

was 3 m along the x-axis, 6 m along the y-axis, and 0.5 m above the ground to represent a vehicle fire.  
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The non-dimensional expression D*/δx is a criterion to evaluate the quality of grid resolution, where 

D* is the characteristic fire diameter, and δx is the nominal length of the cell edge (Mcgrattan and 

Mcdermott 2015). Studies showed that accurate predictions of airflow velocity and temperature could 

be achieved if D*/δx was in a range of 4-16 in regions near the fire source(Mcgrattan and Mcdermott 

2015). The calculated maximum cell size increased from 0.2 m to 0.54 m with the increase of HRR 

from 5 MW to 80 MW. For all the models, the mesh size of 0.2 m is adopted along x-, y-, and z-axises, 

which also coincide with the settings by other researchers (Ji et al. 2015).   

 
Fig. 2. Key parameters for the computational domain of the tunnel fire model (not to scale). 

Three key parameters, namely, heat release rate (HRR), fire location, and ventilation velocity, were 

varied in the model to simulate different fire scenarios.  

(1) HRR is one of the most significant fire parameters (Babrauskas and Peacock 1992), and for 

tunnel fire, the primary fuel is the vehicle. The HRR of the vehicle is affected by the vehicle dimension, 

type, separation, as well as ventilation conditions (Ingason and Lönnermark 2012; Hurley et al. 2016; 

Li and Ingason 2018; Sun et al. 2020). Ingason and Lönnermark (Ingason and Lönnermark 2012) 

summarized that the peak HRRs are 1.7-4.6 MW for a passenger car, 29-35 MW for a bus, and 60-200 

MW for a heavy-duty vehicle or a tanker truck, respectively. Therefore, five constant HRR values, i.e., 

5 MW, 10MW, 20 MW, 50 MW, and 80 MW, are set for the numerical models. 

(2) The location of fire plays a key role in the temperature distribution inside the tunnel, but it is 

difficult to locate in cases where large quantities of smoke are produced. A survey (Nævestad and Meyer 

2014) showed that most of the fire incidents occurred near the middle of the tunnel, while only small 

amounts of them happened near the exit or entrance zones. To cover different possible tunnel fire 

scenarios, different fire locations should be considered. Specifically, five fire locations are defined 

relative to the tunnel length of 0.1, 0.2, 0.4, 0.6, and 0.8, that is, 16 m, 32 m, 64 m, 96 m, and 128 m 

from the left entrance (Fig. 2). 

(3) The smoke ventilation capability remains the central issue for tunnel fire safety. CVV is 

defined as the minimum longitudinal ventilation velocity that prevents the upstream movement of the 

combustion product from fire and the back-layering (Oka and Atkinson 1995). In this study, a simple 

but classical longitudinal ventilation is assumed to be mounted at the right-hand exit to extract smoke 

from the tunnel. This is realized by defining a constant velocity across the whole tunnel section. Given 

that a CVV of 2.8 m/s is required to prevent smoke back-layering from an 80 MW fire (Danziger and 

Kennedy 1982; Ingason et al. 2015; Zhang et al. 2021), four different ventilation speeds of 0 m/s, 1 m/s, 

2 m/s, and 4 m/s, were modeled. Overall, 5 fire locations, 5 HRRs and 4 ventilation conditions constitute 

100 (= 5 × 5 × 4) fire scenarios. 

For all the cases, 32 sensor devices 0.5 m below the ceiling were evenly distributed along the tunnel 
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to mimic thermocouples (i.e., one sensor every 5 m) and record the gas temperature every 1 s, which is 

sufficient to describe the temperature evolution inside the tunnel. A temperature-contour slice was 

defined at the mid-width location y = 3 m to monitor the spatial variation of temperature. This definition 

enables the visualization of the temperature contour animation using the visualizing tool SmokeView 

(Forney 2010). Each tunnel fire scenario was calculated for 10 min (600 s), which was long enough for 

all fire scenarios to reach the steady stage in the previous work (Wu et al. 2020). 

2.3. Dataset generation 

We constructed a large database containing the temperature measurements of 32 thermocouples 

every 5 m (sensor data) and the temperature field of the central plane (slice images) every 1 s. Fig. 3 

presents the post-processing process of numerical results to form the database. The temperature sensor 

data were recorded into files in the format of Comma Separated Values (CSV) at an interval of 1 s 

continuously from the ignition of fire (t = 0). In other words, each temperature datasheet is a matrix of 

32 (No. of the sensor) × 600 (s). Then, the first 9 min of datasheets were chosen to form 505 data groups 

with a temporal length of 30 s as the input, i.e., 0-30 s, 1-31 s, 2-32 s, …, 504-534 s. These 505 data 

samples multiplying 100 scenarios form a database of 50,500 samples. 

 

Fig. 3. Generation of the training database 

The temperature field can be output as the grey or color image through the default software 

Smokeview or an in-house code. For the greyscale image, essentially, the value of temperature in each 

pixel is linearly normalized from 0 (white for the ambient temperature 20 ℃) to 255 (black for the 

highest temperature, depending on the HRR). If the upper limit of temperature is set higher, such as 
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1,000 ℃ for flame, the greyscale contrast in the low-temperature regions far away from the fire source 

becomes too low to recognize accurately. On the other hand, converting the temperature field into a 

color image enhances the image contrast, but it triples the database and requires a much longer training 

time. Three imaging mapping methods are tested in the preliminary training. 

(i) The greyscale images of the temperature field in the central plane were exported at a constant rate 

of 1 fps with a resolution of 600 × 30 pixels for the first 9 min, i.e., 505 original greyscale images. 

(ii) The exported greyscale images were averaged by their respective antecedent and subsequent 5 

images, that is, temporally smoothed in a period of 10 s. The averaged image hides the unnecessary 

details of the temperature distribution, such as the turbulent vortex structure.  

(iii) Color images were exported at the same rate of 1fps and temporally smoothed in a period of 10 s.  

After training, the forecast quality of mapping Method (i) is found to be quite low, probably because 

the training is influenced by the periodical vortex motion. The forecast quality of methods (ii) and (iii) 

are much better, but the training time is much longer for color images due to the larger number of 

coefficients correlated to 3 channels of RGB images. Thus, method (ii) is chosen. The averaged images 

with a resolution of 600 × 30 pixels are then linearly scaled into 432 × 30 pixels, which matches the 

size of the output layer of the proposed AI model. Fig. A1 of the Appendix shows an example of images 

before and after scaling. The good similarity indicates the feasibility of scaling. 

 

Fig. 4. Architecture of the proposed AI model. 
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For supervised learning algorithms, true values of the output have been already known. To evaluate 

the forecast quality, the predicted temperature field 60 s after the collection of the sensor data was 

compared with the original CFD modeling results. Then, the samples in the database were randomly 

disordered using the function of “random.shuffle” available in numpy library, and then they were split 

into 60% (the training dataset), 20% (the validation dataset), and 20% (the test dataset), respectively. 

The training dataset is used for training the model, the validation dataset is used to evaluate the fitted 

model while training, and the test dataset is used to quantify the forecast quality. 

2.4. Proposed framework 

Fig. 4 describes the details of the proposed framework composed of LSTM, dense, and TCNN 

layers. The input layer of the model sequentially receives a vector of sensor temperature data of each 

training sample. The features hidden in the input data are extracted by 2 LSTM and 1 dense layer, and 

then they are enriched by another 2 dense layers, and finally, high-dimension output, i.e., images 

showing the spatially varied temperature distribution 60 s in advance, is exported after passing through 

6 TCNN layers and 1 CNN layer. 

The architecture of the LSTM layers is much similar to that of our previous model (Wu et al. 2020). 

The input layer read a data of 32 (No. of the sensor) × 30 (s) (length of a data sample). The following 2 

fully connected dense layers having more neurons are used to enrich the information extracted by the 

LSTM layers. The reshape layer packs up the flow of data into a box having a size of (3, 6, 4), which 

represents the height and width of a matrix and the number of stacked matrixes, respectively. The same 

size format applies to the following TCNN and CNN layers. After up-sampling through for 6 TCNN 

layers 1 CNN layer with various padding and stride parameters, a greyscale image with dimensions of 

(30, 432) illustrating its height and width can be generated. The generated image can then be compared 

with the actual one, and their difference will be minimized during the training process. 

It should be noted that severe overfitting problems could be induced if too detailed characteristics 

or noises from the input data are learned during the fitting process. The performance of the model would 

then be too perfect on trained data, meanwhile unsatisfactory on untrained data (Tetko et al. 1995). To 

lower the occurrence of overfitting, 4 dropout layers with a rate of 0.1 were allocated to the model. 

2.5. Implementation details 

Deep learning algorithms have been reported to achieve satisfactory results in many areas. However, 

unlike some machine learning methods such as LR and decision tree whose mechanisms can be easily 

interpreted (Chen 2011), the models adopted deep learning algorithms are regarded as “black box” (Wu 

et al. 2013), and their parameters need to be verified to gain a good generality. 

Generally, better performance of deep learning can be achieved with more coefficients, while larger 

databases and training resources are unavoidable. Thus, the amount of these coefficients should be 

determined by balancing the training efficiency and prediction accuracy. The volume of the weights 

largely depends on the number of layers, hidden states, neurons, and filters in the proposed model, 

LSTM layers, dense layers, and TCNN layers, respectively. Though the coefficients attached to each 

layer can be automatically updated through training, attention still has to be paid to the settings of the 

model for achieving high performance. 

First, various standard methods (Glorot and Bengio 2010), i.e., “he_uniform,” “he_normal,” and 

“glorot_uniform,” can be adopted as an initializer to assign the initial values to the coefficient. Then, 
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the weighted layer output can be linearly or nonlinearly transformed with activation functions like 

“tanh,” “relu,” and “sigmoid” (Arora et al. 2018). For the output of the end layer, suitable loss functions, 

options including “mean squared error,” “mean absolute error,” and “binary cross-entropy” (Sun et al. 

2017), should be defined to be compared with the actual value. The error between the predicted and 

true values is then minimized by optimizer function, e.g., “adam” and “RMSprop” (Morales et al. 2018). 

Here, “he_uniform,” “tanh,” “binary cross-entropy,” and “adam” are adopted for the AI model after a 

verification study on these set parameters. More details about the verification are given in Section 3.1.  

Fig. 5 summarizes the detailed training process of the proposed AI model. It is crucial to ensure that 

the samples in the training dataset, validation dataset, and test dataset are representative of the overall 

database. In this study, all samples were randomly divided into these three datasets. It is reported that 

the feature having a broad range would be difficult to be trained (Aksoy and Haralick 2001). Thus, the 

pixel values in images are normalized to the range between 0 and 1 with the “MinMaxScaler” function 

(Komer et al. 2014). The normalized samples are then used to train the proposed AI model for a large 

number of epochs, which is the number of times all of the training samples are used once. A preliminary 

study showed that 1,000 epochs would be enough to obtain a minimum loss while not causing 

overfitting. Generally, the batch size determining how many samples would be trained in an iteration 

should better be large, while this is limited by the physical memory of the computer or server on which 

an AI model is trained. In this study, 30,300 (i.e., 60% of 50,500) samples were trained in a batch on a 

server having 32 cores and 124 GB physical memories, which lasted for about 9 h. 

  
Fig. 5. Flow chart for model training: normalization and divide the database; build up the model; train the 

model; and calculate the metrics. 

Normalization
Form the 

database

Divide into training 

validation and test datasets

LSTM layers Dense layers TCNN layers

Initializer: he_uniform,

Activation function: tanh

Loss function: Binary cross-entropy

Optimizer: Adam, Metrics: R2

Epoch number:1000

Batch size: 1000

Calculate Binary cross-entropy and R2 on training 

and validation dataset

Build up the model

Train the model

After training
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3. Results and discussions 

3.1. Model Verification 

The impacts of these properties on the prediction accuracy of the model were verified and shown 

in Fig. 6. To save computing time, these preliminary cases were trained for 100 epochs. The 

performance of the trained model can be evaluated with the defined loss functions or a judging metric 

such as the coefficient of determination R2. Compared with loss functions, one distinct characteristic of 

R2 is its scale independence (Koekkoek and Booltink 1999; Adamowski and Karapataki 2010), so it is 

adopted in this study to evaluate the model performance.  

Fig. 6 shows that both the initializer and loss functions have an insignificant influence on model 

performance. For the loss function (Fig. 6c), after a stage where almost the same accuracies attained for 

models adopting different loss functions, the “binary cross entropy” gained a slightly higher score than 

the loss functions of “mean squared error” and “mean absolute error.” 

The activation function affects both the training efficiency and final accuracy. The model adopted 

the function of “tanh” attained a high accuracy of prediction immediately after training, indicating that 

“tanh” is more suitable than “relu” (Fig. 6b). Regarding the optimizer, “adam” achieved a higher 

accuracy after an initial lower performance (Fig. 6d). The difference in model performance adopting 

these various properties revealed the importance of the model verification. 

 

Fig. 6. Impacts of (a) initializer, (b) activation function, (c) loss function and (d) optimizer on the 

prediction accuracy. 

(a) (b)

(c) (d)
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3.2. Forecast quality 

Fig. 7 shows (a) the loss and (b) R2 on the training dataset and validation dataset evolving with 

training epochs. The loss decreases with the number of training epochs on the training dataset, as 

expected. The training accuracy is extremely high at the starting of training, while no apparent 

minimization is observed after 50 epochs, indicating that the model has almost converged, and the pre-

set training epoch number of 1,000 is sufficiently large.  

 

Fig. 7. The evolvements of (a) loss and (b) R2 during the training process 

The coefficient of determination R2 on the training dataset increases quite fast at the beginning. 

Finally, R2 on both training validation dataset converges to 97%. The high score approaching 100% 

indicates the high performance of the trained model on the prediction of temperature distribution 60 s 

after the collection of sensor data. It is worth noting that the loss and accuracy on the validation dataset 

are comparable to those on the training dataset, meaning that the overfitting problem was not caused. 

The setting of dropout layers causes a smaller loss and higher accuracy in validating the dataset. The 

slight fluctuation observed on loss accuracy is a common consequence of machine learning (Kavzoglu 

and Mather 2003; Alzubaidi et al. 2020).  

The forecasting accuracy during a fire scenario, where fire location, fire size, and ventilation are 32 

m, 20 MW, and 1 m/s, is presented in Fig. A2 of the Appendix and Video S1. High accuracy is achieved 

from the start of the fire, which could be due to the setting of a constant fire source without considering 

the growth or spreading of the fire. Note that the current database (including only constant HRRs), so 

that the prediction of a transient fire HRR by AI will have lower accuracy and a time delay, as illustrated 

by Fig. A3 in Appendix. To achieve an accurate real-time prediction for a more realistic fire scenario in 

the future, a larger database, including more fire cases with transient HRRs, is required. 

3.3. Spatial varied temperature distribution 

This section quantifies the quality of the forecast and the difference between the forecasted and true 

temperature fields. Figs. 8-10 show the current temperature field (at 30 s, temperature profile as input) 

and the forecasted temperature field at 90s, for cases of various HRR, fire location, and ventilation 

velocity, respectively. Note that once inputting the data, it took less than 1 s for the AI model to output 

the forecasted temperature field, so it is a dynamic process and almost real-time. To avoid 

misunderstanding on the images of temperature distributions with those of smoke, the original grey 

images were converted to colorful images for visualization. Specifically, white (RGB value 255, 255,2 

(a) (b)
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55) representing a temperature of 20 ℃ and black (RGB value 0, 0, 0) representing a temperature of 

250 ℃ are respectively mapped to blue (RGB value 0, 0, 255) and red (RGB value 255, 0, 0). Fig. A1 

in the Appendix shows a comparison of the images before and after color mapping. 

Fig. 8(a-e) compare the true and forecasted temperature fields at 90 s, where the data of 32 

temperature sensor at the first 30 s are used as the input for the AI model. For all cases, the fire is located 

64 m from the left boundary, the ventilation velocity is 2 m/s, and the fire HRR varies from 5 MW to 

80 MW. As shown, the AI model is able to predict the hotter regions near fire sources and tunnel ceiling, 

as well as the cooler regions far away from the fire. Video S2 compares the AI prediction with simulated 

temperature distribution evolving with time. 

 

Fig. 8. Comparison between the true and forecasted temperature fields at 90 s, where inputs are 32 

temperature sensor data of the first 30 s (left); and the deviation of forecasted temperature (right), where 

the fire location is 64 m from the left boundary, the ventilation velocity is 2 m/s, and the fire HRR is (a) 5 

MW, (b) 10 MW, (c) 20 MW and see Video S2, (d) 50 MW and (e) 80 MW. 
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To quantify the quality of the forecast, the right column of Fig. 8 shows the distribution of the 

difference between the simulated and forecasted temperature field. The mean value of temperature 

difference (μ) and standard deviation (σ) of the temperature difference are roughly within ±5 ℃ and 

20 ℃, respectively. μ > 0 (or μ < 0) means the predicted temperature field is higher (or lower) than the 

true field. The larger σ of 20 ℃ for the 20 MW case in Fig. 8b could be attributed to the inaccurate 

prediction of downstream temperature near the fire source. This indicates that the extreme temperature 

near the fire source is harder to be learned by the AI model due to the lack of expert knowledge. This 

prediction error is acceptable, considering the large variety of fire-induced environment temperature 

inside the tunnel in practice. The current temperature distribution and the sensor data at 30 s are also 

shown for comparison. The difference in temperature distribution between current and 60 s afterward 

indicates the importance of forecasting. 

 

Fig. 9. Comparison between the true and forecasted temperature fields at 90 s, where inputs are 32 

temperature sensor data of the first 30 s (left); and the deviation of forecasted temperature (right), where 

the fire HRR is 50 MW, the ventilation velocity is 2 m/s, and the fire location is (a) 16 m, (b) 32 m, (c) 64 

m, (d) 96 m and (e) 128 m from the left boundary. 
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A similar phenomenon that higher temperature occurred near the fire location can be well predicted 

for cases with various fire locations (Fig. 9) and various ventilation conditions (Fig. 10). The mean 

values of the temperature difference (μ) also range within ±5 ℃, while the deviation (σ) generally 

decreases as the distance of fire source moves closer to the ventilation side (Fig. 9) and as the ventilation 

speed increases (Fig. 10). This could be attributed to that it is easier for the temperature field to reach a 

steady stage under a better ventilation condition. 

A fire scenario with a larger HRR of 130 MW, which out of the scope the AI model has learned, is 

modeled to further check the forecasting capability of the proposed model. Fig. A4 in Appendix gives 

the comparison between the predicted and forecasted temperature distribution in this case. The mean 

value and the standard deviation of the temperature difference are around -9.7 ℃ and 21.8 ℃, 

respectively. High forecasting accuracy of 97% is achieved throughout the fire. These good 

performances demonstrate the capacity of the AI model even for unseen fire scenarios. It is worth noting 

that modeling a case of fire scenario in the current study for 600 s using FDS on a single core requires 

around 24 hours. In contrast, it needs only 3.4 ms for the trained model to give a prediction on the 

temperature distribution. The negligible computing time demonstrates the feasibility of adopting a well-

tuned AI model in guiding emergency actions during a fire incident. 

 

Fig. 10. Comparison between the true and forecasted temperature fields at 90 s, where inputs are 32 

temperature sensor data of the first 30 s (left); and the deviation of forecasted temperature (right), where 

the fire is located 128 m from the left boundary, the fire HRR is 20 MW, and the ventilation velocity is (a) 

0 m/s, (b) 1 m/s, (c) 2 m/s, and (d) 4 m/s. 
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3.4. Identification of critical gas temperature 

In case of a fire, it is crucial to predict the occurrence of critical events, such as flashover and 

backdraft for compartment fires, and smoke back layering, and the lack of available egress time for 

tunnel fires. Successful identification of these critical events can support the decision making of the fire 

commander and reduce the casualties of trapped personnel and firefighters. On top of the AI prediction, 

expert knowledge can be further applied to judge the severity of the fire incident as well as the egress 

situation. Then, the AI model could send an early alert to firefighters before the fire develops into 

uncontrollable situations. Typical critical conditions of tunnel fire include the gas temperature above 

60 ℃ at the height of 2 m, a CO concentration above 1500 ppm, a radiation intensity above 6.3 kW/m2, 

and the visibility below 10 m (Chen et al. 2009). As the proposed AI model has demonstrated the 

capability of forecasting the temperature field, the forecast of critical gas temperature is performed.   

As shown in Figs. 8-10, the hot smoke inclines toward downstream and mixes with cool gases under 

strong ventilation conditions. By excluding the high-temperature fatal zone near the fire source, the 

critical condition is reached if the average temperature of the downstream region below 2 m exceeds 

the maximum tolerant body temperature of 60 ℃ (Chen et al. 2009). Two approaches can be used to 

identify this critical event, (I) directly calculating the average temperature with the predicted 

temperature field, and (II) defines the classification model. Approach I may be easily misled by the 

deviation between the true and predicted temperature field images. The performance of classification 

models is generally evaluated by a confusion matrix (Salhi et al. 2019; Sayad et al. 2019). As shown in 

Fig. 11, the four cells of  

• True positive (TP), cases critical are correctly identified as critical; 

• False positive (FP), cases not critical are wrongly identified as critical; 

• False negative (FN), cases critical are wrongly identified as not critical; and  

• True negative (TN), cases not critical are correctly identified as not critical.  

 

Fig. 11. Confusion matrix for training and testing, (a) Approach I, and (b) Approach II. 
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Ideally, all the data should be along with the diagonal cells, indicating that the predicted and true 

values match perfectly. As shown, most of the cases in training, validation, and test datasets can be 

accurately classified for both methods. Further attention could be paid to the FN cases since they are 

critical while they are not figured out, which may lead to difficult situations due to the absence of 

necessary actions. The method leveraging the classification method performs better than the method 

using predicted images directly. Overall, both methods behave quite well, considering the limited 

amount of error cases. 

4. Conclusions 

In this work, we achieve a real-time prediction (within 1 s) of the spatial-temporal temperature 

distribution inside the numerical tunnel model by using artificial intelligence (AI) methods. A numerical 

database of 100 tunnel fire scenarios under various fire location, fire size, and ventilation condition is 

established. The proposed AI model combines a Long Short-term Memory (LSTM) model and a 

Transpose Convolution Neural Network (TCNN). The real-time ceiling temperature profile by 32 

sensors with an interval of 5 m and thousands of temperature-field greyscale images are used as the 

training input and output.  

Results show that the predicted temperature field 60 s in advance achieves a high accuracy of around 

97%. The phenomenon that higher temperature occurred near the fire location and tunnel ceiling can be 

well predicted. While it should be noted that the extreme temperature near the fire source is harder to 

be learned by the AI model, which could be attributed to that expert knowledge is not input into the 

model. Quantitative checking on the prediction error shows that the average of the difference between 

predicted and simulated temperature distribution is roughly within 10 ℃. This prediction error is 

acceptable, considering the large variety of fire-induced environment temperature inside the tunnel in 

practice. Moreover, the proposed fire forecast is able to quickly identify the critical temperature field 

(i.e., a critical event) in the order of ms, showing its capacity for guiding emergency responses and 

firefighting activities in real-time. 

This study demonstrates the promising prospects of AI-based real-time fire forecast and set an 

example for applying smart firefighting technologies in tunnel spaces. However, it should be noted that 

in practice, there are many uncertainties related to fire development or fire spreading, which has not 

been considered in the CFD models. A larger database containing the simulation results of more realistic 

fire scenarios could be constructed in the future to train the proposed AI model before being applied in 

practical firefighting. 
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Appendix 

 

Fig. A1. Images showing the temperature field: (a) before scaling; (b) after scaling; (c) after colour 

mapping. 

 

Fig. A2. The evolvement of forecasting accuracy with time. 

To further check the trained AI model’s capacity in forecasting the fire scenarios with transient HRR. 

Typical t2-growth HRRs (HRR = αt2) with a subsequent constant maximum period are modeled. The 

moderate value of α is suggested as 0.1 kW/s2 for a fire burning from a bus (Ingason and Lönnermark 
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2012), and another fast (α = 0.333 kW/s2) and slow (α = 0.02 kW/s2) fires are also modeled (Fig. A3a). 

Fig. A3b shows the forecasting accuracy (R2) evolving with time calculated by comparing the 

simulation and predicted results 60 s afterward.  

 

Fig. A3. (a) HRR growth curves and (b) AI-prediction accuracy for fast, moderate, and slow fire scenarios. 

As expected, the accuracy is lower at the initial growth stage. One reason is that the HRR at the 

initial stage is lower than the minimum value of 5 MW the AI model has learned. Counterintuitively, 

higher prediction accuracy is gained for the faster-growth HRR. It is because the AI model is trained 

with constant HRR cases (i.e., the infinite-fast growth). The accuracy increases rapidly to a level higher 

than 90% after 60 s, 120 s, and 270 s for the fast, moderate, and slow fire-growth scenarios, respectively. 

After 600 s while the HRR is still increasing for the slow fire scenario, the predicting accuracy keeps 

almost constant at 97% for all the scenarios. This demonstrates that the constant HRR could be a 

reasonable simplification of the complicated fire scenarios when constructing the training database. 

However, to achieve higher accuracy at the initial stage, the AI model needs to be trained with fire 

scenarios with smaller and more transient HRRs. 

 

Fig. A4. Fire scenario where the fire is located at 64 m from the left boundary, the fire HRR is 

130 MW and the ventilation speed is 2 m/s, (a) comparison between the true and forecasted 

temperature fields at 40 s; (b) evolvement of forecasting accuracy with time. 
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