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Highlights 

• Review the history, methods, and key parameters of tunnel fire research. 

• Establish an experimental database of full-scale and model-scale tunnel fire tests. 

• Database is open access online and available for updating by the fire community. 

• Application of machine learning and experimental database to predict tunnel fire. 

 

Abstract: Tunnel fire is one of the most severe global fire hazards and causes a significant amount of 

economic losses and casualties every year. Over the last 50 years, numerous full-scale and reduced-

scale tunnel fire tests, as well as numerical simulations have been conducted to quantify the critical 

fire events and key parameters to guide the fire safety design of the tunnel. In light of the recent 

advances in big data and artificial intelligence, this paper aims to establish a database that contains all 

existing experimental data of tunnel fire, based on an extensive literature review on tunnel fire tests. 

This tunnel-fire database summarizes seven key parameters of flame, ventilation, and smoke in a 

GitHub site: https://github.com/PolyUFire/Tunnel_Fire_Database. The test conditions, experimental 

phenomena, and data of each literature work were organized and categorized in a standard format that 

could be conveniently accessed and continuously updated. Based on this database, machine learning 

is applied to predict the critical ventilation velocity of a tunnel fire as a demonstration. The review of 

the current database not only reveals more valuable information and hidden problems in the 

conventional collection of test data, but also provides new directions in future tunnel fire research. The 

established database and methodology help promote the application of artificial intelligence and smart 

firefighting in tunnel fire safety. 
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Nomenclature 

Symbols  Greeks  

A cross-section area (m2) ρ density (kg/m3) 

𝐴𝑠 aspect ratio, H/w (-) k turbulence energy (m2/s2) 

b equivalent radius of fire source (m) 𝛼, 𝛾, 𝜀 experimental constants 

𝑏𝑓 radius of the fire source (m) β percentage of the tunnel slope 

cp specific heat of air (kJ/kg-K) 𝜑 blockage ratio 

ds thickness of smoke layer (m)   

DH hydraulic diameter (m) Superscripts  

D fire source diameter (m) * dimensionless parameter  

Fr Froude number   

g gravitational acceleration (m/s2) Subscripts  

hsm smoke layer height (m) a ambient or air 

𝐻  height (m) c critical  

ΔH heat of reaction (MJ/kg) ef effective 

𝐻 hydraulic diameter of tunnel (m) f flame 

I integration of equation F full scale 

K fitting constant g gas 

l flame length (m) i smoke layer interface 

Lb back-layering distance (m) l lower 

L* dimensionless backlayering length max maximum 

𝐿𝑓  flame length (m) M model scale 

�̇�  mass flow rate (kg/s) r radiation 

N value in the N-percentage rule sm smoke 

NL value of buoyancy frequency (s-1) sh shaft 

�̇� 
′′ heat flux (kW/m2) u upper 

�̇�  heat release rate (MW)   

𝑄′ heat release rate per unit length (kW/m) Abbreviation  

�̇�∗ dimensionless heat release rate (-) AI artificial intelligence  

�̇�𝑐
 
 convective heat release rate (MW) CFD computational fluid dynamics  

r radial distance (m) CNN convolutional neural network 

Ri Richardson number (-) CVV critical ventilation velocity 

𝑅𝑖′  modified Richardson number (-) FDS fire dynamics simulator 

𝑅𝑒  Reynolds number (-) FFFS fixed fire fighting system  

t time (s) HGV heavy goods vehicle 

T temperature (K) HRR heat release rate (MW) 

𝑇𝑖  smoke layer interface temperature (K) LPG liquefied petroleum gas 

𝑇𝑚𝑎𝑥  maximum ceiling temperature (K) LSTM long short-term memory  

∆𝑇 temperature difference (K) MSE mean squared error  

v velocity (m/s) NVS natural ventilation system  

V ventilation velocity (m/s) OD optical density (-) 

𝑉∗ dimensionless ventilation velocity pHRR peak heat release rate (MW) 

w width of tunnel (m) RNN recurrent neural network  

z vertical height (m) SVM support vector machines 

𝑧0  virtual origin height (m) TCNN transpose convolutional neural network  

  TST Tunnel Safety Test 
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1. Introduction  

Tunnels have played an essential role in modern transportation systems since the mid-20th century, owing 

to their high utility and flexibility in mountainous areas and their effectiveness in tackling the tight land supply 

of crowded metropolitan areas. However, as a significant infrastructure hazard, fires in tunnels cause a great 

deal of economic and social losses each year (Beard and Carvel, 2012; Carvel, 2019; Casey, 2020; Ingason et 

al., 2015a; Li and Liu, 2020).  

Fig. 1 shows some recent severe tunnel fire accidents. For instance, two trucks collided in 2001 at the 

Gottard Road Tunnel in Switzerland, causing a fire in the tunnel (Fig. 1a). Since then, new fire regulations limit 

the number of trucks inside the tunnel. In 2008, a fire occurred to a heavy goods vehicle (HGV) in the Channel 

tunnel of the France side. The fire quickly spread from the burning truck to the next 6 cars (Fig. 1b). The 

firefighting lasted for around 16 hours, and many people were injured due to the smoke inhalation. In 2014, a 

coal truck collided with a methanol-tanker truck inside the Yanhou Tunnel, China. The liquid methanol flame 

triggered a rapid fire spread and a series of explosions, causing more than 30 deaths (Fig. 1c). Statistics showed 

there had been 161 medium and large tunnel fire accidents in China from 2000 to 2016 (Ren et al., 2019). In 

2015, an oil tank truck hit the wall inside Skatestraum tunnel, Norway, sparking about 16,500 L gasoline, and 

the fire fast spread over 500 meters. Despite no major injuries, the tunnel wall was severely damaged (Fig. 1d). 

In 2019, a fire broke out in a single medium-sized car at Rannersdorf tunnel, Austria, due to vehicle defects (Fig. 

1e). In 2020, a fire accident occurred in the Samae 2 Tunnel, Korea, where dozens of tanks and trucks collided, 

killing four people and injuring more than 40 others (Fig. 1f). The damage was severe because of no scraper 

and ventilation system. 

 
Fig. 1. Recent tunnels after fire accidents. 

Table 1 further lists some major fire accidents that took place inside the tunnel with severe casualties over 

the last 50 years, and more detailed database of tunnel fire accidents are available online with continuous updates 

https://github.com/PolyUFire/Tunnel_Fire_Database. Despite continuous researches and improved fire safety 

regulations for modern road and rail tunnels, disastrous fire accidents continue breaking out all over the world. 

In many tunnel fires, the structural integrity of the tunnel was severely damaged due to the long-lasting fire 

thermal impact, as shown in Fig. 1. The frequent occurrence of tunnel fires around the world re-emphasizes the 

importance of the tunnel fire safety design, early detection, and the initial fire suppression. In the event of a 

tunnel fire accident, to prompt a safe evacuation, initial suppression is the most important thing, due to the fast 

fire development and limited regress time. Many studies have been carried out on the optimization of tunnel 
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design to mitigate the impact of the fire hazard. For tunnels, early detection of fire is a cost-effective way to 

prevent fires from developing into a potentially catastrophic event. It is also important to identify the real-time 

fire scenarios, and predict the fire evolution based on toxic substances, and flame propagation in various 

scenarios by using fire detectors, sensors, and other more advanced methods. 

Table 1. Selected major tunnel fire accidents with severe casualties over the last 50 years (Casey, 2020; Ingason et 

al., 2015a; Ren et al., 2019; Vianello et al., 2012). 

Year Tunnel Location Accident type Casualties Comments 

1972 Hokuriku tunnel, Japan short circuit 744 No extinguisher, no smoke exhaust system 

1976 Crossing BP - A6, France Lorry fire 12 Serious damage over 150 m 

1978 Velsen tunnel, Nederland Collision 10 Serious damage over 30 m 

1979 Nihonzaka Tunnel, Japan Collision 8 Serious damage over 1,100 m 

1980 Sakai, Japan Collision 10 Serious damage to structure 

1982 Caldecott, USA Collision 9 Serious damage over 580 m 

1983 Pecrile, Italy Collision 31 - 

1984 San Benedetto tunnel, Italy Bomb attack 137 Railway tunnel 

1986 L’Arme, France Collision 8 - 

1993 Serra Ripoli Tunnel, Italy Collision 8 - 

1993 Hovden, Norway Collision 5 111 m insulation material destroyed 

1994 Hugouenot, South Africa Electrical fault 29 Serious damage on tunnel lining 

1995 Pfander Tunnel, Austria Collision 7 Serious damage to structure 

1995 
Baku underground railway, 

Azerbaijan 

Electrical 

malfunction 
559 

- 

1996 Channel Tunnel, Britain-France Cargo fire - Widespread damage on tunnel region 

1996 Isola delle Femmine, Italy Collision 25 Serious damage to tunnel, closed for 2.5 days 

1999 Mont Blanc, France-Italy Oil leakage Motor 39 Serious spalling on tunnel lining 

1999 Tauren Tunnel, Austria Multi-car collision 61 Part of tunnel vault collapsed 

2000 Seljestad tunnel, Norway Multi-car collision 6 Structural damage and closed for 1.5 days 

2000 Gletscherbahn Kaprun, Austria Electric fan heater 155 Fire had burned through a 16-kW power cable 

2001 Gothard, Switzerland 
Collision of two 

trucks  
21 

Serious spalling on tunnel lining 

2001 Gleinalm tunnel, Austria Collision 9 Tunnel structures seriously damaged 

2001 Prapontin tunnel, Italy Self-ignition of tire 11 - 

2001 Madaoling Tunnel, China Engine fire 18 - 

2003 Vicenza, Italy Bus turnover 56 - 

2003 Daegu subway, South Korea Subway fire 340 
Rapid spread of flames and smoke due to petrol 

incendiary incidents 

2003 Baregg Tunnel, Switzerland Collision 6 - 

2004 Takayama, Japan Collision 5 Surface concrete damage 

2005 Frejus, France-Italy Car accident 23 Serious damage on tunnel lining 

2005 Feiluanling tunnel, China 
Passenger car brake 

failure 
8 

- 

2006 Viamala, Switzerland Car-bus collision 15 - 

2007 San martino, Italy Collision 12 - 

2007 Chongqing Univ. tunnel, China Technical problems 6 Lighting and ventilation system are paralyzed 

2007 Newhall Pass tunnel, USA Multi-truck collision 13 
It took 24 hours to control the fire, and structure 

was severely damaged 

2008 Ofenauer, Austria Collision 17 - 

2009 Gubrist, Switzerland Collision 4 - 

2009 Eiksund Tunnel, Norway Collision 5 - 

2010 Huishan Tunnel, China Man-made arson 43 Damage on mechanical and electrical facilities 

2012 Xueshan Tunnel, China Collision 24 - 

2013 Liushiliang Tunnel, China Multi-car collision 18 Damage on tunnel facilities 

2014 Yanhou, China Collision 31 Serious damage on tunnel lining 

2017 Taojiakuang tunnel, China Arson 11 - 

2019 Maoliling Tunnel, China Self-ignition of tire 36 - 

2020 
Central Park North–110th Street 

station, USA 
Possible arson 17 

Severe damages in the station and the train cars 

2020 Samae 2 Tunnel, Korea Collision 47 
Tank truck carrying nitric acid ran into some 

cars involved in an earlier accident 
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1.1. Tunnel fire research 

From the mid-19th century, early researchers had noticed the disastrous influence of tunnel fire and the 

importance of securing evacuation safety. Later, statistics further confirmed that most casualties of tunnel fire 

were induced by smoke inhalation (Beard, 2009), which is similar to the residential fire accidents. However, 

not many tunnel fire tests were done. It is because, with limited understanding of fire science, it is difficult to 

guarantee researchers’ life safety in the large-scale fire test. By the 1950s, studies on tunnel fire were still limited 

and mainly focused on construction safety (ANDERSON, 1936), ventilation systems (Ole and Cruthers, 1947), 

and fire protection systems (Sevcik, 1928). Since then, more and more fire research have been conducted in 

tunnels of different scales, and new tunnel fire safety codes have been applied to alleviate and limit the threats 

of toxic gases and smoke (Carvel, 2019). For all these studies, the most important issue is the efficiency of the 

Fixed Fire Fighting System (FFFS), particularly the ventilation system, that ensures the safety of evacuees.  

In general, a typical tunnel fire research adopts three approaches, namely, full-scale fire test in a real tunnel, 

reduced-scale test in the laboratory, and numerical simulation based on computational fluid dynamics (CFD). 

The results of full-scale tunnel fire tests are considered as most reliable and valuable, which are used to verify 

the results of reduced scale fire tests or guide the tunnel fire-safety design. Some well-known full-scale tests 

include the EUREKA EU499 tests (Norway, 1990-92) (Haack, 1998), Memorial tunnel tests (USA, 1993–95) 

(Giblin, 1997), and METRO tests (Sweden, 2009-12) (Ingason et al., 2012). However, real-scale tests are costly 

and dangerous, so to date, full-scale tunnel fire test data are still quite limited (Ingason et al., 2015a). On the 

other hand, the model-scale or reduced-scale laboratory tests, based on the scaling laws, provide a greater 

number of experimental data (Ingason and Zhen, 2010). In addition to the conventional studies on smoke motion, 

model-scale tests have also been used to evaluate the performance of the water spray system and the evacuation 

model (Ingason and Zhen, 2010; Li and Ingason, 2013).  

With the recent improvement of the computational capacity, the CFD simulations techniques have been 

more widely applied in tunnel fire research and tunnel fire safety design, like other fire research areas. The most 

popular CFD tool is the Fire Dynamics Simulator (FDS) (McGrattan et al., 2019) developed by National 

Institute of Standards and Technology (NIST). The numerical simulations can potentially provide much more 

information that is difficult to measure in experiments. In fact, combining the experiments of various scales and 

numerical simulations has become a common approach in recent tunnel fire researches (Li et al., 2012; Weng et 

al., 2015), as well as the performance-based design for tunnel fire safety (Ingason et al., 2015a; Meacham et al., 

2005). The tunnel fire research has also helped develop the development the international standards (AIPCR, 

1999; Bendelius et al., 2007; Egger, 2001; NFPA, 2014, 2011) and handbooks (Blennemann and Girnau, 2005; 

Cote, 2008; Kennedy, 1976; Kuesel et al., 2012) related to tunnel fire safety, such as NFPA 130 and NFPA 502. 

Many other countries have also developed their own regulations or guidelines, such as Japan (Japan Road 

Association, 1985).  

However, many tunnel-fire problems remain that need further research, like the early detection, emergency 

evacuation, and the prediction of tunnel fire behaviors. Once a fire occurs in the tunnel, the real-time information 

on site like fire location and size, as well as the location and number of people, are essential for the firefighting 

and the emergency decision making. Various fire detection technologies have been adopted for tunnel fire 

engineering. Although existing techniques such as a line-type heat detectors and cameras can locate the fire, 

these techniques become invalid in a short time due to the rapid development fire and smoke transport, and their 

installation and maintenance costs are too high (Jevtić and Blagojević, 2014). Therefore, besides preventing the 

tunnel fire, smart fire detection, and real-time forecast capability will play a central role in future research.  

1.2. Big data and AI on fire research 

The concept of artificial intelligence (AI) was initially proposed on a workshop held in Dartmouth College 

in 1956 for dealing with computational problems related to language understanding, storage of data, and pattern 

matching (Russell and Norvig, 2016). Since then, AI approaches, as well as other cutting-edge technologies 

such as remote monitoring, high-resolution sensor, high-speed computation, data-driven methods have been 
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increasingly applied in fire safety engineering (Grant et al., 2015). For example, Choi et al. (2016) proposed a 

data-driven system for detecting flame with a virtual camera, which showed a high accuracy using a nonlinear 

classifier. Deep learning models imitating the human brain, including convolutional neural networks (CNNs) 

and recurrent neural networks (RNNs) have been proposed by researchers (Jaafari et al., 2019; Mahdevari and 

Torabi, 2012). Compared with conventional AI and machine-learning models, deep learning models require 

more data to automatically learn hidden features from the massive data.  

In fire engineering, deep learning algorithms with big data and high-speed computation have also been 

adopted in tunnel fire and compartment fire. For example, Hodges et al. (2018;2019) used transpose 

convolutional neural network (TCNN) and simulating results conducted by FDS to predict the temperature 

distribution inside compartment rooms. Ghoreishi ( 2019) compared the performance of various models and 

demonstrated the feasibility of their faster regional CNNs in detecting fire, meanwhile limiting the false positive. 

Cao et al. (2019) proposed an enhanced bidirectional LSTM model to predict wildland fire with video images. 

It was reported that this method could provide more accurate prediction since it can take tempo-spatial features 

into account to detect fire. These studies explored the potential application of AI methods in the detection and 

forecasting of fire (Kim et al., 2019; Mahdevari and Torabi, 2012; Naser, 2019; Wu et al., 2020a).  

However, all AI models need to be fine-tuned before being applied to practical problems. Often this is 

realized through sufficient training iterations on a database containing a large volume of data. A well-structured 

database is thus inevitable for the training of the AI models. The establishment of the database could be a 

challenging task since a sufficient amount of data need to be extracted from previous works, and then these data 

should be organized in a format to be conveniently used for further training. Besides, this task requires expertise 

knowledge knowing the important factors related to tunnel fire, such as the fire size, ventilation type and fan 

performance, burning material. For example, Naser et al. (2019) built up a database by collecting large amounts 

of data on material components of timber structures and correlated equations derived from fire tests. The fire 

resistance of timber structures was predicted by an AI model and the established database. For tunnel fires, Wu 

et al. (2020a; 2020b) established a big tunnel-fire database of numerical simulations for varying fire locations 

and sizes, and ventilation conditions, and then demonstrated the use of AI and deep learning to identify the fire 

source and forecast the temperature field and evolution of tunnel fire.  

To date, though tunnel fire research have been well reviewed by top researchers (Barbato et al., 2014; Carvel, 

2019; Casey, 2020; Li and Ingason, 2018; Ntzeremes and Kirytopoulos, 2019; Pei and Zhang, 2019; Singh and 

Khurana, 2019), most of these reviews did not extract test results to form a standardized database that can be 

accessed freely and easily. Other researchers still have no choice but to repeatedly devote massive time and 

energy to developing their own databases and analysis. Compared with experimental data, numerical data could 

not only be too massive to present and analyze, but also questionable before careful verifications. Thus, a 

database containing sufficient and precious experimental data would be most useful and preferable for AI 

applications and smart firefighting. 

This paper targets to establish a comprehensive experimental database on tunnel fire specialized for the 

application of AI algorithms. Section 2 reviewed the available sources of experimental results on multi-scaled 

tunnel fire tests. Section 3 classified these studies into several critical parameters in tunnel fire, including flame 

characteristics, ventilation, smoke layer conditions, and so on. Then, experimental data or empirical correlations 

were extracted and organized in a consistent manner. Afterward, a demonstration was given in Section 4 to 

vividly illustrate how to train an AI model with the established experimental database to predict the critical 

velocity of tunnel fires. 

2. Overview of tunnel fire tests 

2.1. Real-scale test and data 

It is challenging to conduct real-scale (or full-scale) fire tests in a real tunnel, because of their high cost, 

safety concerns, and environmental issues. Nevertheless, the limited number of real-scale experiments have 

already made a great contribution to the understanding of tunnel fire, because they are most close to the real 
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tunnel-fire accidents and can form the foundation for other small-scale experiments and numerical simulations. 

Fig. 2 shows several recent full-scale fire tests in actual tunnels and the road map of these valuable tests. Table 

2 summarizes the information on these tests, including tunnel conditions and goals. More detailed descriptions 

can be found in (Beard and Carvel, 2012). These tests aim to ensure safe evacuation in case of tunnel fire, and 

most emphasized on the FFFS, such as ventilation system and sprinklers, that operated in fire incidents. It is 

worth noting that full-scale fire tests are not perfect in practice, but restricted by many factors, such as the 

geometry and shape, as well as the fire protection systems, i.e., less flexible. As these parameters are essentially 

fixed for a given test tunnel, it is difficult to examine them in a real-scale tunnel fire test. 

 
Fig. 2. Real-scale tunnel fire tests and facilities, (a) Benelux tunnel 2nd test in 2002, (b) Runehamar tunnel in 2003 

(Ingason et al., 2015b), (c) Metro research project from 2009 to 2012, (d) San Pedro tunnel in 2012, (e) Morgex north 

tunnel in 2012, and (f) Applus test facility.  

In terms of experimental data, although it is almost impossible to directly obtain the on-site measurements 

of carbon monoxide, carbon dioxide, and temperature distribution of fire in the existing tunnels, the information 

of tunnel dimension, fire source location, and the heat release rate (HRR) can still be collected. In particular, 

the HRR was measured in almost all experiments, because other fire information, such as flame temperatures 

and height, can be easily derived from the HRR. The factors influencing the transient HRR and the maximum 

HRR, including fire size and ventilation conditions, attracted extensive studies. It is also worth noting that HRR 

is also regarded as a key factor for performance-based design. Apart from the HRR, most of existing tunnel-fire 

tests were also conducted for the purpose of studying the smoke transport and control, as smoke is the leading 

cause of casualties. To alleviate the tunnel fire hazard, fire suppression systems are generally designed and 

installed in tunnels (Ingason et al., 2015a). Table 2 also listed the real-scale tunnel fire tests on fire suppression 

systems, such as sprinklers and fire extinguishers, under different fire scenarios.  
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Fig. 3. Footprints of real-scale tunnel fire experiments with year, name, and major test parameters. 

Recent full-scale tunnel fire tests have served as the core data for both theoretical and numerical analyses 

(Hu et al., 2006; Liu et al., 2017), which presented the distribution of ceiling temperature in tunnels under a 

natural ventilation system. The temperature distributions in horizontal and vertical directions were suggested to 

be correlated with dimensionless coefficients. For example, the decay of temperature in the longitudinal 

direction could be correlated with the dimensionless HRR (𝑄∗) and fire locations. Ji et al. (2010) analyzed the 

effect of smoke vent height and exhaust velocity on mechanical ventilation. The phenomenon of plug-holing 

under the natural ventilation system is rarely studied. Hinkley (1970) proposed a formula for the analysis of the 

occurrence of the plug-holing phenomena (see Section 3.7). Currently, we are still unclear about the boundary 

layer for the mixture of fresh air and smoke, which often occurs in the vertical shaft area where only limited 

devices are available. 

These real-scale tunnel fire tests demonstrated the important effects of fan position and wind speed on fire 

spread, temperature distribution, smoke distribution, and evacuation strategies. So far, researches have made 

lots of efforts to investigate the fundamental fire parameters, such as HRR, temperature distributions (Hu et al., 

2006; Liu et al., 2017; Wang et al., 2016, 2015), ventilation performances (Feng et al., 2020; Yu et al., 2018; 

Zhou et al., 2019), and wind (Węgrzyński and Lipecki, 2018). Some of these results are listed in Table 3. detailed 

in Section 3. However, only limited studies have addressed more complex tunnel fire phenomena, including 

plug-holing (Jie et al., 2010) and back-layering (Hu et al., 2008), because these parameters are more difficult to 

quantify a real-scale tunnel. In short, more tunnel-fire tests are needed in future research to quantify the influence 

of the type of tunnels and fans on these complicated fire phenomena. 
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Table 2. Summarization of results on real-scale experiments 

Test program, 

country, year 

Length 

[m] 

Height 

[m] 

A  

[m2] 
Fire source 

pHRR 

[MW] 

No. of 

tests 
Measurements  Comments 

Ofenegg, Switzerland, 

1965 (Ingason et al., 

2015a) 

190 6 23 
Gasoline (6.6, 47.5, 95 m2) 

11-80 11 
T, CO, O2, visibility Single trail tunnel, dead end, 

sprinkler 

Main purpose: Investigating the ventilation capacities depending on types of ventilation such as natural, longitudinal, and semi-transverse. 

Main implication and conclusion: Results proved the importance of using deluge sprinkler nozzles in Europe 

Glasgow, UK 

1970 (Heselden and 

Hinkley, 1970) 

620 5.2 39.5 Kerosene (1.44, 2.88, 5.76 m2) 2-8 5 T, OD Disused railway tunnel 

Main purpose: Investigating smoke spread in an enclosed shopping mall. Main conclusion: Smoke layers were distributed horizontally. 

Zwenberg, Australia,  

1974-75 (Ingason et 

al., 2015a) 

390 3.9 20 
Gasoline (6.8, 13.6 m2)  

wood, and rubber 
8-21 30 

T, CO, CO2, NOx, CH, O2, v, OD Disused railway tunnel 

Main purpose: Investigating the effects of different types of ventilation on the smoke spreading, heat and toxic gases considering evacuees. 

Main conclusion: (1) Ventilation systems beyond adequate capacity exacerbated the distribution of smoke and damage areas; (2) Longitudinal ventilation should 

be shut down to hinder the introducing of longitudinal flow; and (3) Results have become a guidance of designing ventilation systems around the world.   

P.W.R.I, Japan, 1980 

(Ingason, 2006) 

700 ~6.8 57.3 
Gasoline (4, 6 m2), 9-14 

passenger car, bus 
- 16 

T, CO, CO2, v, OD, �̇�𝑟
′′ Special test tunnel, sprinkler 

Main purpose: Determining the environments for evacuees. 

Main conclusions: (1) It is the fact that the wind velocity increased, the smoke spreading throughout whole areas of tunnels affect evacuees perilously; (2) Wind 

speed to prevent back-layering is 3.5 m/s, but wind speed above that exacerbates the spread of smoke and heat; and (3) Sprinklers can make a precaution. 

P.W.R.I, Japan, 1980 

(Mashimo, 1993) 

3277 ~6.8 58 Gasoline (4 m2), 9 bus - 8 T, CO, CO2, O2, v, OD, �̇� 
′′ In use road tunnel sprinkler 

Main purpose: Determining the behaviour of smoke and to control smoke and wind velocities considering evacuees. 

TUB-VTT, Finland, 

1985 (Ingason et al., 

2015a) 

140 5 24-31 
Wood cribs (simulate subway 

coach and collision of two cars) 
1.8-8 2 

HRR, T, m, CO, CO2, O2, v, OD Disused cavern system 

Main conclusion: Theoretical calculation from the existing room fire codes did not reliably predict the occurrence of flashover 

EUREKA EU499, 

Norway, 1990-92 

(Haack, 1998; Ingason 

et al., 2015a) 

2300 4.8-5.5 25-35 
Wood cribs, heptane pool, cars, 

metro car, rail cars, HGV trailer  
2-120 21 

HRR, T, CO, m, CO2, O2, SO2, 

CxHy, NO, visibility, soot, m, v 

Disused transportation tunnel 

Main purpose: Investigating the fire behavior of different type of fuels including real road and rail vehicles. 

Main conclusion: (1) Measuring lots of HRR for real vehicles using the oxygen consumption calorimetry; and (2) the wood crib tests showed a good agreement 

when increasing fire growth rate while increasing ventilation rate.                   

Memorial, USA, 1993-

95 (Giblin, 1997) 

853 4.4, 7.9 36, 60 Fuel oil (4.5-45 m2) 10-100 98 HRR, T, CO, CO2, v, visibility Disused road tunnel, sprinkler 

Main purpose: Investigating the effect of varying types of ventilation system for managing smoke and temperature. 

Main conclusions: (1) Ventilation rate for controlling the temperature and smoke spreading cannot be distinguished by considering extraction capabilities. 

Furthermore, there should be clear criteria for emergency ventilation as it affects ventilation performances; (2) Effects of various ventilation type (full transverse, 

partial transverse, natural ventilation) were represented; and (3) A huge quantity of oxygen was fired propagation of combustion. 

Shimizu No.3, Japan, 1120 8.5 115 Gasoline (1,4,9 m2), cars, bus 2-30 10 T, v, OD, �̇�𝑟
′′ New road tunnel, sprinkler tests 
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2001 (Ingason et al., 

2015a) 

Main purpose: Effect of fire behaviors according to combustion rate, smoke layers, longitudinal flow on the smoke distribution and first of fire spreading.  

Main conclusion: No huge difference in comparing other real-scale test and effects as, the fire size was too small compared to a large cross-section of a tunnel. 

2nd Benelus tunnel,  

Netherlands, 2002 

(Ingason et al., 2015a) 

872 5.1 50 heptane, car, van, HGV mock-up 3-26 14 HRR, T, m, �̇�𝑟
′′, v, OD,  New road tunnel, sprinklers 

Main purpose: Assessing the tenability conditions for escaping, and the efficiency of detections for escaping motorists in the tunnel. 

Main conclusions: (1) Back-layering of smoke was prevented by 3 m/s for all cases; (2) An open deluge system decreased drastically the temperature profiles; 

and (3) Deluge sprinkler nozzles reduced gas temperatures significantly, and the magnitude of fire spread was also reduced. 

Runehamar tunnel, 

Norway 2003 (Ingason 

et al., 2015b), 2013 

(Ingason et al., 2015a) 

1600 4.7-5.1 32-47 
Cellulose, plastic, furniture, and 

wood pallets 
70-203 4 

HRR, T, CO, CO2, O2, HCN, H2O, 

OD, �̇�𝑟
′′ 

Disused road tunnel 

Main purpose: Fire spread in HGV cargo loads, effect of longitudinal ventilation, toxic gases, fire spread, firefighting, and temperature development. 

Main conclusion: (1) Pulsing phenomenon was first observed in the 2003 test; and (2) Early activation of FFFS was able to prevent the fire spreading and reduce 

the temperature profiles.  

The METRO project, 

Sweden, 2009-2012 

(Ingason et al., 2015a, 

2012) 

276 ~ 6.9 ~ 44 Train carriage, and petrol 76-77 - HRR, T, Smoke, �̇�𝑟
′′, CO, CO2, O2,  Real tunnel in Sweden 

Main purpose: Focusing on many parameters; Deigning fires, Evacuation, Fire control, Smoke control, Extraordinary strain, and rescue. 

Main conclusions: (1) The luggage and open- or closed-door condition are also one of the important factors exacerbating fire development; (2) The design of 

ventilation system should consider a fast fire growth rate with a peak of 60 MW; (3) Evacuation models should consider the behavior of sequence model, the 

affiliative model, social influence, and theory of affordances; and (4) Both the pressurizing supply air system and the mechanical exhaust system are effective. 

Brunsberg, Sweden, 

2011 (Beard and 

Carvel, 2012) 

276 6.9 44 Metro car 77 2 HRR, T, CO, CO2, O2, OD, �̇�𝑟
′′ Disused rail tunnel 

Main purpose: Investigating the effect of fire and combustion materials’ spreading in the early stage. 

Main conclusion: Information of fire spreading, temperature profiles, and HRRs used tor evacuation tests and analysis test. 

Carleton lab, 2011 

(Ingason et al., 2015a) 

37 5.5 55 Train and subway car 32-55 2 HRR, T, CO, CO2, O2 Lab. facility 

Main purpose: Determining the fire development and HRR of a rail car and subway car. 

Main conclusion: The fire spreading is significantly affected by how many windows were open or air were drawn into the car. 

Singapore test, 2011-

12 

(Cheong et al., 2014) 

600 5.2 37 HGV mock-up 150 7 Nozzle K-factor, HRR, T, TST tunnel 

Main purpose: Investigating the effect of fire suppression on the HRR and tunnel ventilations, to reduce the risk of vehicular fire spread 

Main conclusion: Early activation of low-pressure deluge fire system suppression can reduce HRR substantially and significantly affect CO production. 

San Pedro tunnel, 

Spain, 2012-13 

(Ingason et al., 2015a) 

600 5.2 37 HGV mock-up 150 1 HRR, T, CO, CO2, O2, OD, �̇�𝑟
′′ TST tunnel 

Main purpose: Investigating the effect of Fixed Fire Fighting System (FFFS) such as nozzles, pipes, and pumps. 

Main conclusions: (1) FFFS plays an important role in reducing HRR, but at the same time it still worked during the firefighting; (2) In the case of diesel pool 

fires, it showed a tendency to burn up once again to burn diesel remaining in the pool; and (3) The maximum HRR was reached after activation of the FFFS. 
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Table 3. Key data of Real- or full-scale tunnel experiments (Feng et al., 2020; F. Guo et al., 2019; Hu et al., 2008, 2006; 

Liu et al., 2017; Wang et al., 2015; Yu et al., 2018; Zhou et al., 2019). 

Reference 
Length 

[m] 

Width 

[m] 

Height 

[m] 

DH 

[m] 

HRR 

[MW] 

�̇�∗ 

[-] 

𝑽𝒄 

[m/s] 

𝑽∗ 

[-] 

Vsm 

[m/s] 

Guo et al. (2019) 

(Buxton test, 1995)  
- 2.74 2.44 238 

0.204 0.0059 0.908 0.188 

- 

0.606 0.0176 1.438 0.298 

1.04 0.0303 1.363 0.282 

1.29 0.0375 1.4 0.290 

0.57 0.0166 1.037 0.215 

1.23 0.0358 1.387 0.287 

0.204 0.0059 0.757 0.157 

Guo et al. (2019) 

(Yuanjiang test, 

2006) 

- 10.8 7.2 8.4 

1.8 0.0088 1.75 0.193 

- 
3.2 0.0156 2 0.220 

Guo et al. (2019) 

(Memorial test, 1995) 
- 7.6 7.86 7.75 

9.3 0.0461 1.85 0.212 

- 
13.1 0.0649 2.27 0.26 

13.9 0.0688 1.92 0.22 

17.7 0.0877 2.32 0.266 

Liu et al. (2017) 1200 5.2 3.4 4.27 - 72-500 - - - 

Zhou et al. (2017b) 600 14 7 9.33 - - - - 0.02-0.65 

Hu et al. (2008) 
1032 

(2.1o) 
10.8 7.2 - 

0.18, 

0.32 
- - - - 

Zhou et al. (2019) 600 14 7 - 1 - - 
0.03-

025 
- 

Wang et al. (2015) - 12.35 5.75 2.6 7.5 - 4.65 3.6 - 

Yu et al. (2018) 
2.8 

(3.6o) 
9 4 - 1, 4 

589.6, 

2478 
- - 3 

Feng et al. (2020) 1000 5.4 4.4 - 7.5 - - - 2-3.7 

 

2.2. Model-scale experiments and data 

As the number of real-scale tunnel fire tests and measured data are limited, the next-best choice is model-

scale or reduced-scale experiments (Casey, 2020; Ingason et al., 2015a; Li and Liu, 2020). Because fire tests of 

smaller scales are easier to conduct, the number of these tests is much larger than that of real-scale tests (see 

examples in Fig. 4). Through these model-scale tests, the effect of tunnel size and geometry, as well as the fire 

behaviors, such as the temperature distribution, HRR, and flame height, have been more extensively studied 

than full-scale tests. Fig. 5 shows a research map categorized by the key research parameters, and Table 4 lists 

the general information and data of selected model-scale tunnel fire over the last 10 years. Because of the 

massive amount of model-scale tunnel fire tests, only selected tests with detailed test information are presented, 

and a more detailed review can be found in (Beard and Carvel, 2012; Beard, 2009; Carvel, 2019; Ingason et al., 

2015a; Li and Liu, 2020).  

Particularly, the impact of fan type (ventilation conditions), burner location, and tunnel shape on tunnel fire 

has also attracted much attention. In addition, many fire tests of various scales have been carried out to quantify 

critical factors related to evacuation, such as the back-layering conditions, e.g. (Q. Guo et al., 2019; Hu et al., 

2008; Ingason and Zhen, 2010), ceiling jet flow, e.g. (Cong et al., 2019; Kashef et al., 2013; Oka and Imazeki, 

2014a), and critical ventilation velocity (Atkinson and Wu, 1997; Lee and Ryou, 2005; Vauquelin, 2005). In 

terms of the tunnel firefighting, studies have shown that fire suppression devices (Li et al., 2019; Sarvari and 

Mazinani, 2019; Sun et al., 2016), such as the sprinkler system, could be affected by obstacles, blockage, and 

wall construction material, e.g. (Cong et al., 2017; Huang et al., 2019b; Fei Tang et al., 2017a). Undoubtedly, 

for any fire protection system, it is always a challenge to adequately balance between cost and fire safety issues. 
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Fig. 4. Examples of model-scale tunnel fire test apparatus (a) 1:40 scale model with varying slope (Lin et al., 2019), (b) 

1:25 scale model (Chaabat et al., 2020), (c) 1:20 scale model with various aspect ratio (Baek et al., 2017), (d) 1:13 scale 

model (Shafee and Yozgatligil, 2018), (e) 1:10 scale model (Gong et al., 2016), and (f) 1:5 scale model (Chow et al., 2016).  

 
Fig. 5. Footprints of experiments regarding fire itself and tunnels
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Table 4. General information and data of selected model-scale tunnel fire over the last 10 years. 

Authors/ 

Projects 

Tunnel 

scale 

Length 

[m] 

Height 

[m] 

A  

[m2] 

Slope 

[o] 

Fire 

source 

HRR  

[kW] 

Ventilation velocity 

[m/s] 
Considered parameter 

Oka et al. (2010) - - 1-1.5 - 5-40 
Heptane/ 

Methanol 
9.6/7.3 - 

- Response time of a fixed Temp. 

- Sprinkler, ceiling jet flow 

Chow et al. (2010)  1:50 - 0.25 0.0665 5-25 Propanol 0.097 - - Effect of slope on longitudinal ventilation  

Li et al. (2011)  - 
12 5.75 0.0625 - Propane 4.3 ~ 6 

0.05 ~ 0.5 
- Temperature, HRR, and Geometry 

- Longitudinal ventilation  12 3.93 0.102 -  2 ~ 11.5 

Ji et al. (2011)  1:8 7.5 0.6 0.9 - Methanol 0.9 ~ 12.6 - 
- Smoke on ceilings in a subway station 

- Max smoke temperature 

Ji et al. (2012)  1:6 6 0.88 1.76 - Methanol 3.38 ~ 29.57 - - Different transverse fire, and max. Temp. 

Kashef et al. (2013)  1:15 
15 

0.32 0.224 - Propane 
5.74 ~ 11.48 

- 
- Ceiling Temp. 

- Smoke diffusion with natural ventilation 17 3.2 ~ 14.5 

Hu et al. (2013) - 6 0.8 1.04 0, 3, 5 LPG  20 ~120 0, 0.3, 0.6, 0.9, 1.2 Slope effect 

Fan et al. (2013)  1:6 6 2 1.76 - Methanol 3.38 ~ 29.57 Natural ventilation Transverse smoke Temp. 

Lee et al. (2012)  - 7 

0.6 0.36 

- Gasoline 

4.05 ~ 5.81 

- 
Obstacle effect on ventilation, and critical 

velocity 

0.4 0.24 4.25 ~ 8.26 

0.6 0.36 8.54 ~ 10.75 

0.4 0.24 9.5 ~ 16.01 

Ura et al. (2014) 1:12 18 0.5 0.54 - Heptane 30 ~ 130 Natural ventilation Roof opening, buoyancy, smoke thickness 

Oka et al. (2014a)  - - 
2.5 7.25 

0-10 Heptane 
9.5 ~ 47.4 

- 
- Ceiling jet in case of inclined tunnels 

- Temp., and velocity distribution 10.5 9.8 20 ~ 146.6 

Tanaka et al. (2015)  1:5 42 1 2 - Heptane 85 ~ 253 0.79 ~ 0.95 - Hybrid ventilation strategy  

Tang et al. (2016) 1:6 72 1.3 1.95 - LPG 30 ~ 50 0 ~ 1.2 - Effect of ceiling extraction 

Fan et al. (2016)  1:20 10 

0.25 0.075-0.15 

- 

Heptane, 

Wood, 

Plastic 

155 ~ 215 

63 ~ 106.8 

145 ~ 172 

- 
- Ventilation velocity on ceiling gas Temp., 

- Heat Flux, and geometry effect 
0.4 

0.12, 0.18, 

0.24 

Chen et al. (2017)  1:9 8 0.8 0.48 - Methanol - - Sealing ratio, Geometry effect 

Zhao et al. (2018)  1:15 13 0.48 0.1536 - 
Porous 

gas burner 

0, 0.17, 0.22, 

0.3, 0.35, 0.4 

2.92, 4.31, 5.79, 7.07, 

8.45 

Fire-induced Temp. in a longitudinal 

ventilation metro tunnel 

Tanaka et al. (2018)  1:20 10 0.25 1 - Propane 

0.73 ~ 0.74 0.24 ~ 0.4 

- Thermal properties of wall materials 

- Critical velocity and Back-layering 

1.32 ~ 1.38 0.28 ~ 0.58 

2.98 ~ 3 0.39 ~ 0.59 

7.1 ~ 7.17 0.52 ~ 0.71 

11.91 ~ 11.97 0.55 ~ 0.81 
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Tang et al. (2019) 1:20 8 0.44 0.1496 - - 3.7, 4.54, 5.38 0, 0.5, 0.75, 1, 1.5, 2, 2.5 Ceiling extraction velocity, HRR 

Lin et al. (2019)  1:20 20.8 0.23 0.1035 0 ~ 5 Methanol 
2.8, 5.6, 11.2, 

16.8 
- Slopes on the self-extinction 

Peng et al. (2019)  
1:20 20.8 0.23 0.1035 0, 1, 5 Methanol 

2.8, 5.6, 11.2, 

16.8 
0, 0.1, 0.3 Slope effect, Self-extinguishing 

Huang et al. (2019a) 1:15 
29.46, 

9.23 
0.355 

0.1331, 

0.1686, 

0.2396 

- 
Gas 

burner 

1.72, 2.59, 

3.45, 4.31, 

5.18, 6.04 

0,0.25 ~ 0.91 Bifurcation effect 

Zhang et al. (2019)  1:15 - 0.075 - - Methanol 1 ~ 23 0.258, 0.387, 0.516 
Longitudinal ventilation and lateral smoke 

extraction  

Tang et al. (2020) 1:8 8 1 2 - Propane 20.2 ~ 50.4 - 
Wall-attached fire with various burner 

aspect ratios 

Wang et al. (2020) 1:10 8 0.6 0.3 - Propane 1.25 ~ 6.25 - Double fires with different distance 

Yao et al. (2019a) 1:40 - - - - 
Propane, 

Heptane 
0.4 ~ 3.2 - Self-extinction, and geometry effect 

Liu et al. (2020) 
- 20 1.5 - - Diesel 

8.94, 26.84, 

59.64 
- Geometry effect 

Chen et al. (2020) 
1:10 10 0.6 0.6 - Propane 15.9 ~ 95.7 0, 0.2, 0.4, 0.6, 0.8, 1 

- Bifurcation structure effect 

- Branch and a longitudinal ventilation 

Chaabat et al. (2020) 1:25 8.4 0.36 0.0648 - 
Air with 

Helium 
0.11 ~ 0.71 - 

- Transverse ventilation, exhaust vents 

effect 

- Rectangular damper effect 

 

Table 5. A list of scaling correlations for the model tunnel (Ingason and Zhen, 2010; Quintiere, 1989), where subscripts “F” and “M” represent full-scale and model-scale, 

respectively. 

Parameters Scaling correlation 

HRR [kW] �̇�𝐹 = �̇�𝑀(𝐿𝐹/𝐿𝑀)
5/2 

Mass loss rate [kg/s] �̇�𝐹 = �̇�𝑀(𝐿𝐹/𝐿𝑀)
5/2 

Velocity [m/s] 𝑣𝐹 = 𝑣𝑀(𝐿𝐹/𝐿𝑀)
1/2 

Time [s] 𝑡𝐹 = 𝑡𝑀(𝐿𝐹/𝐿𝑀)
1/2 

Temperature [K] 𝑇𝐹 = 𝑇𝑀 

Heat flux [kW/m2] �̇�𝐹
′′ = �̇�𝑀

′′(𝐿𝐹/𝐿𝑀)
1/2 
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For the design of model-scale tests, the key issue is the calculation of similarity to guarantee that the results 

from the scaled model present those of real-scale tests. The most groundbreaking study in this aspect was the 

propose of “scaling law” (Quintiere, 2020, 1989). Table 5 lists the classical scaling-law relationships of key fire 

parameters, including HRR, velocity, and temperature between model- and real-scale fire tests. These formulas 

incorporate the influences of both material properties and gas flow conditions, based on the controlling non-

dimensional numbers of Froude (Fr), Reynolds (Re), and Richardson (Ri) numbers.  

The Froude similarity law is used when the number of Reynolds is quite large, the turbulence condition is 

prevailing, and the buoyancy is dominant. Similar to the compartment fire, Fr number has been most widely 

used in the buoyancy-controlled fire cases, although the turbulence intensity and thermal radiation cannot be 

explicitly scaled. By the combination with the density ratio of smoke, the effect of stratification can be correlated 

with a Ri number or modified Fr number. This approach has been adopted by many researchers (Ingason, 2008; 

Ingason and Zhen, 2010) and used to study fan performance, backdraft, back-layering, critical velocity, plug-

holing phenomenon, etc. More details are discussed in Section 3.  

3. Database for existing tunnel-fire research 

Fig. 6 shows the key parameters that used to describe the tunnel shape, geometry, ventilation condition, as 

well as the characteristics of fire and smoke. In this section, the data of seven most widely studied tunnel-fire 

parameters in the literature, namely, the HRR, flame length, maximum ceiling temperature, smoke layer 

thickness, critical ventilation velocity for smoke, and the smoke back-layering length, and plug-holing will be 

summarized to form a database. 

 
Fig. 6. Diagram for key parameters in tunnel fire research, (a) tunnel shape, (b) ventilation, (c) verticl shaft, and (d) 

tunnel fire and smoke.  

3.1. Fire heat release rate in tunnel 

Heat release rate (HRR) is one of the most important parameters in fire to describe the size and severity of 

the fire, which is also applied to the tunnel fire. The value of HRR is also closely related to other parameters, 

such as flame length and critical ventilation velocity. Because the primary fuel load in the tunnel is the vehicle 

and goods, for these real-scale tests, the fire source often uses real burning vehicles or simulated by liquid pool 

fires or gas burners, based on the measurements of the vehicle fire. The peak heat release rate (pHRR) of vehicle 

depends on the type of vehicle (small, large, electrical vehicles, etc.) and ventilation conditions, which requires 

the burning of full-scale vehicles (see Fig. 2).  

Table 6 summaries the value of pHRR of burning different types and numbers of vehicles in open and 

confined spaces (e.g. parking lots, underground spaces, and tunnels). In general, the pHRR is 1-5 MW for small 

passage cars (Ingason, 2001; Okamoto et al., 2009; Sun et al., 2020), 1-10 MW for large passage cars (Edith, 

1996; Mohd Tohir and Spearpoint, 2013; Okamoto et al., 2009), 10-50 MW for buses and HGVs (Bettelini et 

al., 2016; Hammarström et al., 2008; Steinert, 1994), and 300-430 MW for oil tankers (Larson et al., 1983). 
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Table 6. The pHRR from burning different types and numbers of vehicles in open and confined spaces, where * means 

not conducted in tunnel, engine displacements of small and large passenger cars are 1,500 cc and 3,000 cc, respectively. 

References Types of vehicle HRR [MW] Conditions 

Okamoto et al. (2009) * 
small passenger car 3.5 Four full-scale fire experiments using small 

passenger cars for varying location of fires large passenger car 4.2 

Shipp et al. (1995) * small passenger car 8 
Using calorimeter hoods for investigating full‐

scale vehicle fires  

Ingason (2001) 

small passenger car 2.5 HRR are densely caused by many other factors, 

such as ventilation performance, ceiling 

temperatures, as the fire test was performed in a 

real tunnel (Park et al., 2019). 

large passenger car <5 

2 passenger cars 3.5-10 

Park et al. (2019) * 

small passenger car 3.5 Using a large-scale cone calorimeter, which can 

be applicable up to 20 MW, and 1500cc real 

vehicles in large space, not in a tunnel 
2 passenger cars 6 

Mangs et al. (1994) * small passenger car 1.5-2 Using an oxygen calorimetry hood with heptane 

Edith (1996) * 

small passenger car  4.1 

Using different types and numbers of passenger 

car inside closed parking lot. 

large passenger car 8.3 

2 small passenger cars 7.5 

2 large passenger cars 8.3 

Steinert (1994) 

various types of 

passenger cars 
1.7-4.6 Experiments in a parking lot with the front 

window open 
2 or 3 passenger cars 5.6-8.9 

Bus with 40 seats 34 EUREKA 499 project 

Ingason et al. (2015a) 2 small passenger cars 
3 Ventilation effect on HRR  

4.6 Fixed ventilation performance of 6 m/s 

Mohd et al. (2013) * 

small passenger car 1.8-4 
Various experiments for the initial ignition 

location and various size of vehicles 
large passenger car 1.5-8.8 

SUV 0.5-1.5 

Hammarström et al. 

(2008) * 
Bus with 49 seats 25 

Using a large good calorimeter which can be 

applicable 10 MW and gas burner for ignition. 

Haack (1998) 

(EUREKA 499 test)  
Mock-up HGV/HGV 23/128  

Bettelini et al. (2016)  

(Mont Blanc test) 
HGV 23 trailer contains 400 kg margarine 

Ingason et al. (2015a)  

(2nd Benelux test) 
HGV 13,19,16 

Focusing on ventilation performances with a 

range of 0.5m/s to 5 m/s 

Ingason et al. (2005) 

(Runehamar test) 
mock-up HGV-trailer 66-202 2.8-3.2 m/s of initial longitudinal ventilation rates 

Larson et al. (1983) 

(Caldecott test) 
tanker fires 300-430 

Simulate gasoline tanker accident, assuming 430 

MW full-scale fire, but knowledge about the 

effect of ventilation in the event of such a large 

fire was still unclear. 

Hansen (2015) mining vehicle 16-30 Mining vehicle test in a tunnel 

 

In the model-scale tunnel fire tests, burning a full-scale vehicle is clearly inappropriate. Instead, researchers 

often use the well-controlled gas fuel burner and liquid fuel fire to mimic the burning of vehicles. Then, the 

characteristic HRR and pHRR can be set based on the nondimensional analysis (see Table 5), depending on the 

real-scale HRR, as well as the shape and scale of the tunnel model. The typical HRR of typical model-scale 

tunnel fire tests are summarized in Table 4. 
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3.2. Flame length  

The flame length refers to a characteristic size of the flame (Drysdale, 2011). For the tunnel fire, the flame 

height (𝐻𝑓) of a non-impinging flame (see Fig. 6d) and the flame (extension) length (𝐿𝑓) of a impinging flame 

(Fig. 7) are most widely used and studied. Both are key parameters, because it not only indicates the fire HRR 

and turbulent behavior but also determines the fire spread rate and fire impact on the structure. Previous studies 

showed that fire flame length could be correlated with burner size and proposed a widely accepted formula of 

𝐿𝑓/𝐷~1.7 (Blinov and Khudiakov, 1961). Thomas et al. (1961) did several wood crib experiments taking into 

account the density of fuel and volume flow. Steward (1970) established a theory based on conservation 

equations, which was further simplified by Fang (1973). McCaffrey (1979) proposed to calculate the flame 

length by separating the whole flame into a continuous flame region and an intermittent flame region. Table 7 

summaries the empirical correlations for flame height (𝐻𝑓) if it does not reach the ceiling. 

 
Fig. 7. (a) Diagram of flame (extension) length when flame impinges the tunnel ceiling, and (b) photo of the flame 

impinging in a tunnle.  

Table 7. Derived formulas for investigating on flame height in an open space.  

Authors/Projects Proposed equation Conditions 

Blinov (1957) 
𝐻𝑓

𝐷
∝ 1.7 Flames above circular pans of burning liquids 

Thomas et al. (1961)  
𝐻𝑓

𝐷
∝ [

𝜌𝑣2

𝐷5
]

𝑛

 
Considered the cold fuel density and volume flow 

rate, and exponent 𝑛 is around 0.3  

Thomas (1963)  𝐻𝑓 = 18�̇�
2/5 �̇� fuel flow rate 

Fang (1973) 

𝐻𝑓

𝐷
∝

𝐾

24/5
= 𝐹𝑟1/5 

𝐻𝑓 = 0.37𝐾�̇�
2/5 

𝐹𝑟 =
(�̇�/𝐴)2

𝜌𝑎
2𝑔𝐷

 

A0 is the source area rrD2/4 

26 < K < 60 based on the data 

McCaffrey (1979)  𝐻𝑓 = 𝐶�̇�
2/5 

C = 0.08, in continuous flame region 

C = 0.20, in intermittent flame region 

Heskestad (2016) 𝐻𝑓 = 0.23�̇�2/5 − 1.02𝐷 Suitable for turbulent diffusion flames 

 

For the flame extension length (𝐿𝑓), Rew et al. (1999) proposed a method of considering the ceiling jet in 

unconfined ceilings, while this method cannot be applied to scenarios where flame length is substantially large. 

Recent studies on the flame length of a tunnel fire are mainly focus on flame extension length (i.e., the length 

of ceiling jet flame), and numerous equations are proposed to estimate the flame extension length, e.g. (Gao et 

al., 2017; Ji et al., 2015a; Lattimer et al., 2013; Wan et al., 2017). Typically, the flame extension length can be 

expressed in the nondimensional form with a characteristic length (𝐿), such as the diameter of the flame (𝐷) and 

the height of tunnel (𝐻), as  

𝐿𝑓

𝐿
= 𝛼(�̇�

∗
)
𝑛
                                                                        (1) 
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where 𝛼 and 𝑛 are fitting coefficient. Table 8 summaries the empirical correlations for the flame extension 

length (𝐿𝑓) in the confined space that are used often in tunnel fire.  

Table 8. Derived formulas for investigating on flame height in a confined space.  

Authors/Projects Proposed equation Conditions 

You et al. (1979) 
𝐿𝑓

𝐷
= 0.502 (

𝐻𝑓𝑟 −𝐻𝑒𝑓

𝐷
)
0.957

 𝐻𝑓𝑟  is free flame height 

Hasemi et al. 

(1997) 

𝐿𝑓

𝐷
= 2.58�̇�∗

2
5(𝐻 𝐷⁄ )2/5 − 𝐻 𝐷⁄  �̇�∗ =

�̇�

𝜌𝑎𝐶𝑝𝑇𝑎𝑔
1/2𝐷5/2

 

Rew et al. (1999)  𝐿𝑓 = 0.02 (
�̇�

120
) (

𝑉

10
)
−0.4

 
Cannot apply in real tunnels as the size of the tunnel 

did not into account. 

Lönnermark et al. 

(2006) 

𝐿𝑓 =
1370�̇�0.8𝑉−0.4

(𝑇𝑓 − 𝑇𝑎)
3/2
𝐻3/2

 

Considered air velocity 

Primarily used in the ceiling jets in unconfined 

ceilings, which has limitation to apply for all 

situations. 

Ingason et al. 

(2010) 

𝐿𝑓

𝐻
= 4.3�̇�∗ �̇�∗ =

�̇�

𝜌𝑎𝐶𝑝𝑇𝑎√𝑔𝐻𝑒𝑓𝐴
 

Ding et al. (2012) 
𝐿𝑓

𝐷
= 1.62�̇�∗

2
5 �̇�∗ =

�̇�

𝜌𝑎𝐶𝑝𝑇𝑎𝑔
1/2𝐷5/2

 

Lattimer (2013) 
𝐿𝑓

𝐻𝑒𝑓
= 3.1�̇�∗

2
5 − 1 �̇�∗ =

�̇�

𝜌𝑎𝐶𝑝𝑇𝑎𝑔
1/2𝐻5/2

 

Zhang et al. (2014) 
𝐿𝑓

𝐷
= 24.49 [

(𝐻𝑓𝑟 − 𝐻𝑒𝑓)𝑢

𝐻𝑓𝑟√𝑔𝐻𝑒𝑓
] 

For cylindrical flame shape hypothesis 

𝐻𝑓𝑟is free flame height 

Gao et al. (2015)  

𝐿𝑓 + 𝐻𝑒𝑓

𝐻𝑒𝑓
= {

2.0�̇�∗
1
2, longitudinal 

3.0�̇�∗
2
5,transverse  

 
For fire flush with sidewall 

𝐿𝑓 + 𝐻𝑒𝑓 is total flame extension length 

𝐿𝑓 + 𝐻𝑒𝑓

𝐻
= 1.6�̇�∗

2
5 For fire at the longitudinal centerline is symmetrical 

𝐿𝑓

𝐷
= 3.0�̇�∗

2
5 in the open �̇�∗ =

�̇�

𝜌𝑎𝐶𝑝𝑇𝑎𝑔
1/2𝐷5/2

 

𝐿𝑓

𝐷
= 3.2�̇�∗

1
2 wall fire without ceiling 

Ji et al. (2015a) 

𝐿𝑓 + 𝐻𝑒𝑓

𝐻𝑒𝑓
= 1.02�̇�𝐵𝐻𝑒𝑓

∗1.25 + 1 

Longitudinal length of ceiling jet flame  

�̇�𝐵𝐻𝑒𝑓
∗ =

�̇�

𝜌𝑎𝐶𝑝𝑇𝑎𝑔
1/2𝐵𝐻𝑒𝑓

3/2
 

𝐵 is pan edge perpendicular to the sidewall 

Wan et al. (2017) 
𝐿𝑒𝑓

6𝐷 + 2𝑆
= {

4.29�̇�𝐺
∗ 0.46,open space 

2.50�̇�𝐺
∗ 0.42,for tunnel  

 
For two flames, S is burner spacing (m) 

�̇�𝐺
∗ =

2�̇�∗

(6+2𝑆/𝐷)5/2
 for group flames 

Zhang et al. 

(2017) 

𝐿𝑓

𝐻
= 2.84�̇�𝐻𝑚

∗∗0.53 
�̇�𝐻𝑚
∗∗  is non-dimensional HRR, which related to 

volume of a free flame, angle and other shape factors. 

Gao et al. (2017)  

𝐿𝑓𝑚𝑎𝑥

𝐷
= 3.3�̇�𝑒𝑓

∗1/4
 (Maximum length) 

𝐿𝑓𝑎𝑣𝑔

𝐷
= 2.3�̇�𝑒𝑓

∗1/4
 (Average length) 

�̇�𝑒𝑓
∗ =

�̇�𝑒𝑓

𝜌𝑎𝐶𝑝𝑇𝑎𝑔
1/2𝐷5/2

 

Qiu et al. (2018) 

𝐿𝑓𝑡

𝐷
= 104.02 (

𝐻𝑓𝑟−𝐻/cos 𝜃

𝐻𝑓𝑟
) �̇�𝑓𝑢𝑒𝑙

∗∗   

0.199 ≤ �̇�𝐹
∗ ≤ 0.427,  

0.3 ≤ 𝑉 ≤ 1.8 

𝐿𝑓𝑡 total extension lengths of up and down stream 

𝜃 flame tilt angle (degree); 𝐻𝑓𝑟  free flame height 

�̇�𝐹
∗ =

�̇�𝑓𝑢𝑙𝑒

𝜌𝑎∆𝐻𝑎(𝑔𝐻)
1/2𝑤𝐷

, ∆𝐻𝑎 heat released per kg of air 

consumed (kJ/kg) 
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3.3. Maximum ceiling gas temperature  

The maximum ceiling gas temperature is a significant parameter in tunnel fire research, and a lot of related 

studies have been done in last serval decades. Alpert (1975) firstly investigated the maximum smoke 

temperature beneath ceiling and proposed equations to estimate the maximum ceiling gas temperature in an 

unconfined ceiling. Then, Kurioka et al. (2003) conducted tests on both the model scale and real scale, 

considering the parameters of the tunnel cross-section area, HRR, and mechanical ventilation speed. The flame 

tilt, flame height, maximum gas temperature, and the flame location were measured. An empirical correlation 

in the form of exponential function considering those parameters was then proposed (Kurioka et al., 2003), and 

excellent predictions were obtained (Meng et al., 2017; Tang et al., 2019). Li et al. ( 2011; 2012) conducted 

model-scaled tunnel fire tests taking into account the influences of HRR, longitudinal ventilation speed, and 

tunnel geometries. However, the effect of slope, which is regarded as a decisive factor affecting the temperature 

distribution, was not considered. To address the slope effect, more tests were performed in tunnels with a scale 

factor of 1:20 (Hu et al., 2013). Until recently, studies showed that many factors, such as bifurcation of structure, 

portal sealing and blockage also have remarkable effect on maximum temperature under the forced ventilation 

condition (Huang et al., 2019a, 2019b, 2018). 

The correlation between the maximum temperature and other parameters has been explored by many 

researchers. They proposed many empirical formulas or models to calculate the maximum gas temperature rise 

beneath the ceiling in recent years, e.g. (Hu et al., 2013; Ji et al., 2011; Li et al., 2011; Fei Tang et al., 2017b; 

Tang et al., 2018a), most of their models can be expressed as 

∆𝑇𝑚𝑎𝑥 = 𝛼
�̇�2/3

𝐻𝑒𝑓
5/3
                                                                        (2) 

where coefficient 𝛼 usually around 16.9 to 17.9 (Yao et al., 2018). Table 9 summarizes the formula proposed 

to calculate the highest ceiling temperature varying with variables of HRR, tunnel geometry, Fr, Re, and 

ventilation performances. 

 

Table 9. Derived formulas for investigating maximum temperature 

References Proposed equation Conditions 

Alpert (1975) ∆𝑇𝑚𝑎𝑥 = 𝑇𝑎 + 16.9
�̇�2/3

𝐻5/3
  

Heskestad et al. 

(1979)  
∆𝑇∗ = {

6.3                                       
 

(0.188 + 0.313𝑟/𝐻)−4/3
   

𝑟

𝐻
≤ 0.2
 

0.2 < 𝑟/𝐻 < 4.0

 ∆𝑇∗ =
∆𝑇/𝑇𝑎

�̇�∗2/3
, �̇�∗ =

�̇�

𝜌𝑎𝑇𝑎𝐶𝑝𝑔𝐻
5/2

 

Kurioka et al. 

(2003)  
∆𝑇𝑚𝑎𝑥 = 𝛾𝑇𝑎 (

�̇�∗2/3

𝐹𝑟1/3
)

𝜀

 

�̇�∗
2
3

𝐹𝑟
1
3

< 1.35, 𝑟 = 1.77, 𝜀 =
6

5
 

�̇�∗
2
3

𝐹𝑟
1
3

> 1.35, 𝑟 = 2.54, 𝜀 = 0 

Li et al. 

(2011;2012)  
∆𝑇𝑚𝑎𝑥 =

{
 
 

 
 17.5

�̇�2/3

𝐻𝑒𝑓
5/3

, 𝑉∗ ≤ 0.19

 
�̇�

𝑉𝑏𝑓
1
3𝐻

𝑒𝑓

5
3

, 𝑉∗ > 0.19

 

𝑉∗ = 𝑉/(
�̇�𝑐𝑔

𝑏𝑓𝜌𝑎𝑐𝑝𝑇𝑎
)1/3 

∆𝑇 < 1350 K 

(in case of horizontal tunnel) 

Ji et al. (2011) ∆𝑇𝑚𝑎𝑥 = 16.9
�̇�2/3

𝐻𝑒𝑓
5/3

(0.299𝑒−0.793𝑑/𝐻𝑒𝑓 + 1) 𝑑: distance between fire to end wall 

Ji et al. (2012) 

 
∆𝑇𝑚𝑎𝑥 = 17.9

�̇�2/3

𝐻𝑒𝑓
5/3

(1.096𝑒−14.078𝑑/(
𝑤
2
) + 1) 

For different transverse fire locations.  

𝑑 is distance between the fire and the 

sidewall. 
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Fan et al. (2013) ∆𝑇𝑚𝑎𝑥 = 17.9
�̇�2/3

𝐻𝑒𝑓
5/3

(1.096𝑒−14/(
𝑤
2
) + 1) (0.893𝑒−3.7𝑑𝑓/𝑤 + 0.107) 

𝑑 is distance between the fire and the 

sidewall, 𝑑𝑓 is the distance away 

from the fire. 

Hu et al. (2013)  ∆𝑇𝑚𝑎𝑥 =

{
 
 

 
 (1 − 0.061𝛽)17.5

�̇�2/3

𝐻𝑒𝑓
5/3

, 𝑉∗ ≤ 0.19

(1 − 0.067𝛽)
�̇�

𝑉𝑏𝑓
1/3𝐻𝑒𝑓

5/3
, 𝑉∗ > 0.19

 
𝑉∗ = 𝑉 (

𝑄�̇�𝑔

𝑏𝑓𝜌𝑎𝑐𝑝𝑇𝑎
)

1/3

⁄  

(correction for the slope) 

Gao et al. (2014) 

 
∆𝑇𝑚𝑎𝑥 = {

1000�̇�∗1/2 , 0.22<
𝑑

𝐻𝑒𝑓
<1.11  

1318�̇�∗1/2 (safety door)

 �̇�∗ = �̇� 𝜌𝑎𝑐𝑝𝑇𝑎√𝑔𝐻𝑒𝑓
5⁄  

Ji et al. (2015b) 
∆𝑇𝑚𝑎𝑥
𝑇𝑎

= �̇�
∗0.56

(2.37 + 0.89𝑒16.10𝛽)𝑒
(−0.05−166.38𝛽2.31)(

𝑟
𝐻
)
 
𝑟 is distance from the fire source to 

the measuring point. 

Meng et al. (2017)  ∆𝑇𝑚𝑎𝑥 = {
1.256𝑇𝑎�̇�

∗3.65  (screen door) 

1.256𝑇𝑎�̇�
∗2.92 (safety door)

 �̇�∗ = �̇� 𝜌𝑎𝑐𝑝𝑇𝑎√𝑔𝐻𝑒𝑓
5⁄  

Tang et al.(2017)  ∆𝑇𝑚𝑎𝑥 =

{
 
 
 
 
 

 
 
 
 
 
�̇� 𝑉 (

𝐷

2
)

1
3
𝐻
𝑒𝑓

5
3⁄ ,                𝑉∗ > 0.19, 𝑣 = 0

(0.49𝑣∗ + 0.73)�̇�

𝑉 (
𝐷
2
)

1
3
𝐻𝑒𝑓

5
3

, 𝑉∗ > 0.19,0.5 ≤ 𝑣 ≤ 2.2

17.5 �̇� 𝐻𝑒𝑓

5
3⁄ ,                     𝑉∗ ≤ 0.19, 𝑣 = 0

(0.49𝑣∗ + 0.73)�̇�

𝑉 (
𝐷
2
)

1
3
𝐻
𝑒𝑓

5
3

, 𝑉∗ ≤ 0.19,0.5 ≤ 𝑣 ≤ 2.2

 

𝑣 is ceiling extraction velocity (m/s). 

𝑣∗ is dimensionless ceiling extraction 

velocity. 

𝑣∗ =
𝑣

√𝑔𝐻𝑒𝑓
 

𝑉∗ = 𝑉 (
𝑄�̇�𝑔

𝑏𝑓𝜌𝑎𝑐𝑝𝑇𝑎
)

1/3

⁄  

 

Zhou et al. 

(2017a) 
∆𝑇𝑚𝑎𝑥 = 17.5

�̇�2/3

𝐻𝑒𝑓
5/3

(2.19𝑒−16.42𝑑/(
𝑤
2
) + 0.97) , 𝑉∗ ≤ 0.19 

For different transverse fire locations.  

𝑑 is distance between the fire and the 

sidewall. 

Tang et al. 

(2018a) 

 

∆𝑇𝑚𝑎𝑥 = (−30.7
𝑣𝐴𝑠ℎ

√𝑔𝐻𝑒𝑓
+ 1) {9.35𝑒[−0.45(𝑛−1)]11.49} ∗

�̇�2/3

𝐻𝑒𝑓
5/3

 

Rectangular-source fires, with two-

point extraction.  

𝑣 is ceiling extraction velocity (m/s). 

𝑛 is burner aspect ratio. 

Huang et al. 

(2018) 
∆𝑇𝑚𝑎𝑥 =

{
 
 

 
 (0.965 + 0.352 (

ℎ

𝐻
))17.5

�̇�2/3

𝐻𝑒𝑓
5/3

, �̇� ≤ 50𝑀𝑊

(0.946 − 0.097 (
ℎ

𝐻
)) 17.5

�̇�2/3

𝐻𝑒𝑓
5/3
,   �̇� > 50𝑀𝑊

 

h is sealing height. 
ℎ

𝐻
 is sealing ratio. 

𝑉∗ ≤ 0.19, 

Huang et al. 

(2019a) 
∆𝑇𝑚𝑎𝑥 =

{
 
 
 
 

 
 
 
 

2.5

(

 
�̇�

𝑇𝑎𝑐𝑝𝜌𝑎√𝑔(0.95𝐻𝑒𝑓 − 𝑧0)
5

)

 

2.5

, 𝑉∗ ≤ 0.19

 

𝑎

(

 
 
1.71𝑉′

−
5
6

(

 
�̇�

𝑇𝑎𝑐𝑝𝜌𝑎√𝑔𝐻𝑒𝑓
5

)

 

2
3

)

 
 

𝑏

, 𝑉∗ > 0.19

 

𝑉∗ = 𝑉/(
�̇�𝑐𝑔

𝑏𝑓𝜌𝑎𝑐𝑝𝑇𝑎
)

1/3

 

{
 
 

 
 
𝑎 = 1.332 − 3.548 sin 𝛼

+9.889 sin2 𝛼
 

𝑏 = 0.979 − 4.464 sin 𝛼
+13.833 sin2 𝛼

 

𝛼: dimensionless expression 

𝑧0: virtual origin height (m) 

Huang et al. 

(2019b) 
∆𝑇𝑚𝑎𝑥 = (15.336 − 3.398

𝑙

𝐻𝑒𝑓
(

𝑉

√𝑔𝐻𝑒𝑓
)

1/3

)
�̇�
2/3

𝐻𝑒𝑓
5/3

 
l is distance between fire source and 

blockage (m). 

Tang et al. (2019)  

With ceiling smoke extraction: 

 ∆𝑇𝑚𝑎𝑥 = {
(0.71𝑣∗ + 1)33.55 �̇�2/3 𝐻𝑒𝑓

5/3
⁄ , 𝑣∗ ≤ 0.55

(−0.33𝑣∗ + 1.57)33.55 �̇�2/3 𝐻𝑒𝑓
5/3

⁄ , 𝑣∗ > 0.55
 

∆𝑇𝑚𝑎𝑥 = 33.55 �̇�2/3 𝐻𝑒𝑓
5/3

⁄  (no ceiling smoke extraction) 

𝑣 is ceiling extraction velocity(m/s). 

𝑣∗is dimensionless ceiling extraction 

velocity. 

𝑣∗ = 𝑣 √𝑔𝐻⁄  
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3.4. Critical ventilation velocity of back-layering 

The smoke ventilation capability remains the central issue for tunnel fire safety. The critical velocity of 

smoke ventilation (𝑉𝑐) is defined as the minimum longitudinal ventilation velocity that prevents the upstream 

movement of the combustion product from fire. In cases where the ventilation speed is too weak to prevent the 

smoke flows backward, the so-called back-layering phenomenon occurs. Fig. 8 shows a schematic diagram of 

smoke ventilation and back-layering phenomenon. Since the fire smoke or emission gases are usually toxic, the 

main research goal in this area is to optimize the design of tunnel ventilation systems for safe evacuation. 

 
Fig. 8. Schematic diagrams of the critical velocity for smoke back-layering; (a) back-layering occurs under weak 

ventilation, and (b) smoke stays in one side of the fire under strong ventilation. 

Thomas (1968) defined a term of the critical Froude number (𝐹𝑟𝑐) as the ratio of the buoyancy force of 

smoke flow to the inertial force of ventilation airflow. Based on the definition, he first developed the critical 

Froude theory and suggested that ideally the smoke backflow disappears when the critical Froude number equals 

to 1. However, later results of a reduced-scale tunnel (Calvin K Lee et al., 1979) showed that the critical Froude 

number ranged from 4.5 to 6.7, if the dimensionless HRR (𝑄∗) was larger than 1.3 (Kennedy and Parsons, 1996). 

Therefore, a constant critical Froude number may not be suitable for all tunnel fire scenarios. Oka et al. (1995) 

conducted a small-scale experiment to obtain the relationship between critical velocity and HRR considering 

the effect of burner size, based on which a new dimensionless equation was then proposed. Subsequently, Wu 

et al. (2000) conducted another five tests with fixed tunnel height while varying hydraulic diameter. However, 

it should be kept in mind that in these tests (Oka and Atkinson, 1995; Wu and Bakar, 2000), water spray devices 

were used to protect the model tunnel, which may enhance the heat loss of smoke flow and decrease the 

buoyancy force head, and hence cause a lower test value of critical velocity. Other parameters influencing the 

critical velocity of tunnel geometry (Li et al., 2010; Wu and Bakar, 2000), blockage (Zinoubi and Ben, 2019) 

fire size (Oka and Atkinson, 1995), and tunnel slope (Kennedy and Parsons, 1996) were also investigated.  

The aspect ratio of tunnel width over tunnel height is another important factor influencing critical velocity, 

and some studies also adopted hydraulic diameter as the characteristic length. In fact, tunnel height and width 

mainly influenced the vertical plume and transverse smoke, respectively. However, they are equivalent in the 

calculation of hydraulic diameter. The term of hydraulic diameter cannot reflect the influencing mechanism of 

tunnel shape. To tackle this problem, Kunsch (2002) proposed a theoretical model that was based on Alpert’s 

work on ceiling jets (Alpert, 1975) but also included the aspect ratio. Li et al. (2010; 2017) proposed a model 

based on a set of model-scaled tests and corresponding numerical simulation. Weng et al. (2015) also proposed 

a model to predict critical velocity with model scale tests and CFD simulations. Table 10 lists test details on 

studying 𝑉𝑐𝑟, and Table 11 summarizes the derived empirical correlations.  
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Table 10. General information and data of tunnel fire tests to investigate the critical velocity. 

Parameters 
Length 

[m] 

Width 

[m] 

Height 

[m] 

Aspect 

Ratio 

Slope  

[o] 

Fuel/Fire 

[kW] 

Ventilation 

[m/s] 

𝑽𝒄  

[m/s] 

Longitudinal 

ventilation (Oka 

and Atkinson, 

1995)  

15 0.274 0.244 1.12 - 
Propane 

1-78 
0.12-0.52 0.16-0.27 

Slope effect  

(Atkinson and 

Wu, 1997) 

15 0.274 0.244 1.12 0-10 

Propane, 5  

0.4-2 

0.67-0.75 

13.5 0.65-0.71 

26.9 0.64-0.69 

Geometry of 

cross-section  

(Wu and Bakar, 

2000)  

15 

0.136 

0.25 

0.544 

- 
Propane  

1.5-30 
- 

0.43-0.48 

0.25 1 0.39-0.6 

0.5 2 0.37-0.65 

1 4 0.34-0.65 

Channel 

dimension 

(Vauquelin, 2005)  

- 0.5 0.25 2 0-10 0.1-10 - 0.35-0.51 

Geometry of 

aspect ratio (Lee 

and Ryou, 2005)  

 

10.4 

0.6 0.3 0.5 

- 
Ethanol  

2.47-12.3 
- 

0.4-0.54 

0.5 0.333 0.667 0.42-0.55 

0.4 0.4 1 0.45-0.59 

0.333 0.5 1.5 0.45-0.61 

0.3 0.4 2 0.47-0.64 

Geometry of 

tunnel width 

(Vauquelin and 

Wu, 2006)  

 

18 

0.136 0.25 0.544 

- 
Propane 

1.4-28 
- 

0.34-0.43 

0.25 0.25 1 0.4-0.46 

0.5 0.25 2 0.475-0.56 

1 0.25 4 0.478-0.6 

Longitudinal 

ventilation 

(Roh et al., 2008)  

10 0.4 0.4 1 - 
Heptane,  

2.23-15.6 
0-1.68 2.82-4.12 

Correlation 

between back-

layering 

(Li et al., 2010)  

12 

0.25 0.25 1 

- 

Propane 

0.7-16.7 
- 

0.33-0.67 

0.45 0.393 0.11 2-18.4 0.43-0.82 

Critical velocity 

near exits (Tsai et 

al., 2011)  

4 0.6 0.6 1 - 
Gasoline  

0-9 
- 0.28-0.62 

Obstacle effect  

(Lee and Tsai, 

2012)  

 

7 

0.6 0.6 

1 - 

Gasoline 

4.05-8.26 
0-10 

0.32-0.62 

0.4 0.4 8.54-16.01 0.43-0.85 

Slope effect  

(Chow et al., 

2015)  

 

8 1.5 1 1.5  

0 

Gasoline 

32.6-48.1 
1-1.5 

1.7-1.9 

2 2-2.2 

4 2.2-2.6 

5 2.5-2.8 

6 2.8-3.2 

Ceiling exhaust 

vent (Tang et al., 

2018b)  

 

8 0.34 0.44 0.77 - 
Propane, 

1.5-18 

0-2.7 

(ceiling) 
0.25-8.1 
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Table 11. Derived formulas for investigating critical velocity 

References Critical velocity  Conditions and comments 

Thomas (1968)  𝑉𝑐 = 𝑘(
𝑔�̇�𝑎

′

𝜌𝑎𝐶𝑝𝑇𝑔
)1/3 

Considered the effect of ventilation velocity and the HRR 

k is a constant and was determined from suitable experiments 

Hinkley (1970)  𝑉𝑐 = 𝐾
′(
𝑔�̇�𝑐𝑇𝑔

𝜌𝑎𝐶𝑝𝑇𝑎
2𝑤
)1/3 

𝐾′ = 0.8 is determined from experimental data of hot gas layers 

in short corridors without ventilation velocity. 

Heselden 

(1976) 
𝑉𝑐 = 𝐶𝐾(

𝑔�̇�𝑐𝑇𝑔

𝜌𝑎𝐶𝑝𝑇𝑎
2𝑤
)1/3 𝐾 = 0.8 

Danziger et al. 

(1982)  
𝑉𝑐 = 0.606(

𝑔�̇�𝑐𝐻

𝜌𝑎𝐶𝑝𝑇𝑔𝐴
)1/3 

This model is based on the researches by Lee et al. (C. K Lee et 

al., 1979) and Feizlmayr (Feizlmayr, 1976), in which when Fr is 

less than 4.5, where the smoke back-layering can be stopped 

Oka et al. 

(1995)  

𝑉∗ = 𝐾𝑣 (
�̇�∗

0.12
)

1/3

     (�̇�∗ ≤ 0.12) 

𝑉∗ = 𝐾𝑣                     �̇�
∗ > 0.12) 

0.22 < 𝐾𝑣 < 0.38, �̇�∗ =
�̇�

𝜌𝑎𝐶𝑝𝑇𝑎𝑔
1
2𝐻

5
2

,, 𝑉∗ =
𝑉

√𝑔𝐻
 

Kv is varied according to the types of fuel 

Kennedy et al. 

(1996)  
𝑉𝑐 = 𝐾𝑔𝑘(

𝑔�̇�𝑐𝐻

𝜌𝑎𝐶𝑝𝑇𝑔𝑤
)1/3 

Kg is a grade correction factor for slope, and k = 0.61 is 

calculated based on a modified Froude number equal to 4.5 

Wu et al. 

(2000)  
𝑉∗ = 0.4[0.2]−

1
3[�̇�∗]

1
3    (�̇�∗ ≤ 0.2) 

𝑉∗ = 0.4,                           (�̇�∗ > 0.2) 

𝑄∗ =
�̇�

𝜌𝑎𝐶𝑝𝑇𝑎𝑔
1/2𝐻5/2

, 𝑉∗ =
𝑉

√𝑔𝐻
 

Considered critical velocity and the hydraulic diameter of the 

tunnel (Li et al., 2010). 

Kunsch (2002)  𝑉∗ = 1.52(�̇�∗)1/3
√𝐶1 + (𝐶1 − 𝐶2)6.13�̇�

∗2/3

1 + 6.13(�̇�∗)2/3
 

𝐶1 =
1−

0.1𝐻

𝑤

1+
0.1𝐻

𝑤

[1 +
0.1𝐻

𝑤
− 0.015 (

𝐻

𝑤
)
2

]  

𝐶2 = 0.574 [
1 − 0.1𝐻/𝑤

1 + 0.1𝐻/𝑤
] [1 − 0.2(𝐻/𝑤)] 

- Theoretical analysis of smoke movement in a tunnel without 

the effect of ventilation based on Alpert’s theory (Alpert, 1975) 

of ceiling jets under unconfined ceilings. 

Lee et al. 

(2005)   
𝑉𝑐 = 0.73𝐴𝑠

0.2√𝑔𝐻(
�̇�

𝜌𝑎𝐶𝑝𝑇𝑎√𝐴𝑠𝑔𝐻
5
)1/3 

Considered the effect of aspect ratio of tunnel and vertical shaft, 

and 𝐴𝑠 is aspect ratio. 

Hu et al. (2008) 𝑉𝑐 = [𝐶𝐾𝑔𝐻𝛾�̇�
∗
2𝜀
3 (𝑔𝐻𝑒𝑓)

𝜀
3]
1/(2+2𝜀)

 

𝐹𝑟 = 𝑉2 𝑔𝐻𝑒𝑓 ,⁄ 𝐶𝐾 =0.2-0.4  

�̇�∗
2
3 𝐹𝑟

1
3⁄ < 1.35, 𝛾 = 1.77, 𝜀 =

6

5
,  

�̇�∗
2
3 𝐹𝑟

1
3⁄ > 1.35, 𝛾 = 2.54, 𝜀 = 0 

Li et al. (2010)  𝑉∗ = {
0.81𝑄∗1/3, �̇�∗ ≤ 0.15

  0.43,               �̇�∗ > 0.15
 �̇�∗ =

�̇�

𝜌𝑎𝐶𝑝𝑇𝑎𝑔
1/2𝐻5/2

, 𝑉∗ =
𝑉

√𝑔𝐻
  

Yi et al. (2014) 𝑉𝑐 = (1 − 0.034𝛽)𝑉𝑐,0 

𝑉𝑐,0 is critical velocity of the corresponding horizontal 

tunnel. 

𝛽 is tunnel slope in % (correction for the slope). 

Weng et al. 

(2015) 
𝑉∗ = 0.82�̇�∗

1/3
 𝑄∗ =

�̇�

𝜌𝑎𝐶𝑝𝑇𝑎𝑔
1/2�̅�5/2

, 𝑉∗ =
𝑉

√𝑔�̅�
  

Li et al. (2017) 𝑉∗ = {
0.81(𝐴𝑠)

−1/12𝑄∗1/3, �̇�∗ ≤ 0.15𝐴𝑠
−
1
12

         0.43,                   �̇�∗ > 0.15𝐴𝑠
−
1
12

 

�̇�∗ =
�̇�

𝜌𝑎𝐶𝑝𝑇𝑎𝑔
1/2𝐻5/2

, 𝑉∗ =
𝑉

√𝑔𝐻
, 𝐴𝑠 = 𝑤/𝐻 

Aspect ratios of 1 and 1.15 for critical velocity and back-

layering length with FDS simulation. 

Jiang et al. 

(2018b) 
𝑉𝑐−𝑜𝑏 = (1 − 0.545𝜑)𝑉𝑐 

𝑉𝑐−𝑜𝑏 is critical velocity with blockage. 

𝜑 is blockage ratio (correction for the blockage effect). 

Tang et al. 

(2018b) 
𝑉∗

∗
= {

0.81𝑄∗
∗1/3, �̇�∗ ≤ 0.13

  0.42,        �̇�∗ > 0.13
 

Considering the effect of ceiling extraction. 

𝑄∗
∗
=

�̇�−𝑐𝑝�̇�∆𝑇𝑚𝑎𝑥

𝜌𝑎𝐶𝑝𝑇𝑎𝑔
1/2�̅�5/2

, 𝑉∗ =
𝑉

√𝑔�̅�
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Typically, there are two ways to represent the critical velocity of smoke ventilation, that is, the dimensional 

and the non-dimensional forms as 

𝑉𝑐 = 𝐾(
𝑔�̇�𝑐

𝜌𝑎𝐶𝑝𝑇𝑤
)

1/3

,       𝑉∗ = 𝐾�̇�∗
1/3
                                                            (3) 

The selected empirical correlations are drawn in Fig. 9 for comparison, where both (a) dimensional form (𝑉𝑐) 

and (b) non-dimensional form (𝑉∗ ) are presented in comparison. As the parameters considered in various 

equations are different, for clear displaying, the aspect ratio and the hydraulic diameter were set as 0.25 and 16, 

respectively (Lee and Ryou, 2005), and the values of all the other parameters were set based on the work by Wu 

et al. (2000). Basically, most of the empirical correlations following the scaling law in terms of the Froude 

number can calculate the characteristic values of speed and length.  

 
Fig. 9. Predicted results based on proposed empirical correlations (Danziger and Kennedy, 1982; Hinkley, 1970; Lee 

and Ryou, 2005; Li et al., 2010; Oka and Atkinson, 1995; Wu and Bakar, 2000). 

3.5. Back-layering length 

The back-layering is generally defined as a phenomenon in which smoke flows in the direction of ventilation 

despite the operation of fans, and it has a negative effect on refugees. However, smoke stratification downstream 

of the fire source may be disrupted in most tunnel fire scenario when the ventilation velocity approached critical 

velocity. A lower ventilation rate called “confinement velocity” was introduced to prevent the smoke backflow 

at a certain distance and to keep certain stratification (Vauquelin and Telle, 2005). The relationship between 

back-layering length (Lb) and ventilation velocity (V) has been widely studied (Chow et al., 2015; Deberteix et 

al., 2001; Li et al., 2010; Thomas, 1958; Vantelon et al., 1991) considering different parameters, including Ri, 

HRR, and dimensions. The schematic diagram for the back-layering phenomenon was illustrated in Fig. 8. 

Thomas (1958) proposed the concept of back-layering for the first time and modified the Froude number to 

consider the effect of friction resistance on the smoke back-layering distance. Vantelon et al. (1991) suggested 

the dimensionless back-layering distance as 0.3 times of the Richardson number. Deberteix et al. (2001) carried 

out a set of fire tests in a model of the Paris metro and claimed a linear relationship between dimensionless 

back-layering length and 1/3 power of the Richardson number. However, in this model, the back-layering length 

was given as a negative value when the HRR was zero.  

Li et al. (2010) proposed equations to calculate the dimensionless back-layering length based on model 

scale tests. Chen et al. (2015) and Tang et al. (2016) modified the equations proposed by Li et al. (2010) 

considering the combination of ceiling extraction system and longitudinal ventilation system, and the relative 

position of the vent and the fire source. Zhang et al. (2016) also prosed a model to predict the back layering 

length including the factor of blockage ratio metro train length. Based on a large number of experiments, various 

equations were proposed to calculate the dimensionless back-layering distance (Chow et al., 2015; Guo et al., 

2019). Tables 12 and 13 show the general information of these experimental tests and the empirical equations 

developed, respectively. 
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Table 12. Tests and data related to the back-layering length, where Lb and Hsh are the back-layering length and shaft 

height, respecitvely. 

Parameters 
Length 

[m] 

Height 

[m] 

Width 

[m] 

Aspect 

Ratio 

Fire source 

[kW] 

Ventilation 

[m/s] 

Lb (Hsh)  

[m] 

Channel 

dimensions  

(Vauquelin, 2005)  

10 0.25 0.5 2 
Air and Helium 

0.1-10 
- - 

Ventilation effect 

(Ingason and Zhen, 

2010) 

10 

(±20o) 
0.3 0.4 

1.33 

 

Wood crib 

0-110 
0.33-0.87 0.15 ~ 2.2 

Critical velocity 

(Li et al., 2010)  
12 

0.25 0.25 1 0.7-16.7 
- 

- 

- 0.393 0.45 0.11 2-18.4 

Ventilation 

velocity, T, and �̇�′′ 

(Fan et al., 2016)  

- 

0.25 0.3 1.2 

Heptane 

155 ~ 215 

63 ~ 106.8 

145 ~ 172 

0 ~ 0.67 

0 ~ 0.25 

0.25 0.45 1.8 0 ~ 0.25 

0.25 0.6 2.4 0.5 ~ 0.75 

0.4 0.3 0.75 0.5 ~ 0.75 

0.4 0.45 1.125 2.5 ~ 2.25 

0.4 0.6 1.5    > 3.75 

Velocity  

(Wang et al., 2018)  
72 1.3 1.5 1 

LPG 

30, 40, 50 

NVS  

0.3, 0.5 
7-20 

Ambient pressure, 

w/o train blockage 

(Wu et al., 2018)  

12 0.5 
0.25-

0.45 
0.5-0.9 

Propane, 

40-160 
0.4-0.7 0-2.5 

Natural ventilation, 

large ceiling 

openings (Guo et 

al., 2019)  

20.8 0.5 1.2 2.4 

Heptane, 6.9 

NVS 

5.8-8.5 (0) 

25.8 5.2-5.8 (0.35) 

49 5-5.2 (0.5) 

57.6 4-5 (0.65) 

159 3.2-4.3 (0.8) 

Table 13. Derived formulas for investigating back-layering distance 

Authors Smoke back-layering distance Comments 

Thomas (1958)  𝐿𝑏
∗ =

𝐿

𝐻
∝
1

𝐹𝑟
=

𝑔𝐻�̇�

𝜌𝑎𝑐𝑝𝑇𝑠𝑚𝑉
3𝐴

  

Vantelon et al. 

(1991)  
𝐿𝑏
∗ ∝ 𝑅𝑖′

0.3
 𝑅𝑖′ =

𝑔�̇�

𝜌𝑎𝑐𝑝𝑇𝑎𝑉
3𝐻

 

Deberteix et al. 

(2001)  𝐿𝑏
∗ = 7.5(𝑅𝑖

1
3 − 1) 𝑅𝑖 =

𝑔𝐷∆𝑇

𝑇𝑎𝑉
2

 

Hu et al. (2008) 
𝐿𝑏 = ln [𝐾2 (

𝐶𝐾𝐻

𝑉2
)] 0.019⁄  

 

𝐶𝐾 0.2-0.4, 𝐾2 = 𝑔𝛾 (�̇�∗
2

3 𝐹𝑟
1

3⁄ )
𝜀

 

𝐹𝑟 = 𝑉2 𝑔𝐻𝑒𝑓⁄  

�̇�∗
2
3 𝐹𝑟

1
3⁄ < 1.35, 𝛾 = 1.77, 𝜀 =

6

5
 

�̇�∗
2
3 𝐹𝑟

1
3⁄ > 1.35, 𝛾 = 2.54, 𝜀 = 0 

Ingason et al. 

(2010) 
𝐿𝑏
∗ = 17.3 ln(0.4 𝑉∗⁄ ) 𝑉∗ = 𝑉 √𝑔𝐻⁄  

Li et al. (2010)  𝐿𝑏
∗ =

{
 
 

 
 
18.5 ln(

0.81�̇�∗
1
3

𝑉∗
),    �̇�∗ ≤ 0.15

18.5 ln (
0.43

𝑉∗
),             �̇�∗ > 0.15 

 
𝑉∗ =

𝑉

√𝑔𝐻
 

�̇�∗ = �̇�/(𝜌𝑎𝑐𝑝𝑇𝑎𝑔
1/2𝐻5/2) 

Chow et al. 

(2015)   
𝐿𝑏 = −

1

𝐾
𝑙𝑛 [

𝑉2

𝑔ℎ

1

𝛾(�̇�∗2/3/𝐹𝑟1/3)𝜀
]  
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Weng et al. (2015) 𝐿𝑏
∗ = 7.13 ln (

�̇�∗

𝑉∗3
) − 4.36 

𝑉∗ =
𝑉

√𝑔�̅�
 

�̇�∗ = �̇�/(𝜌𝑎𝑐𝑝𝑇𝑎𝑔
1/2�̅�5/2) 

 

Chen et al. 

(2015) 
𝐿 = {

18.5𝐻ln(0.81𝑄∗∗1/3/𝑣∗∗),    𝑄∗∗ ≤ 0.15

18.5𝐻ln(0.43/𝑣∗∗)      𝑄∗∗ > 0.15
 

effect of ceiling extraction upstream  

𝑄∗∗ =
�̇�0 − 𝑐𝑝𝑉𝑆∆𝑇𝑚𝑎𝑥𝑒

−
𝛼𝐷
𝑐𝑝�̇�

𝑑

𝜌0𝑐𝑝𝑇0𝑔
1
2𝐻

5
2

 

𝑣∗∗ =
𝑣 + 𝜌𝑉𝑆/2𝐴𝜌0

√𝑔𝐻
 

Zhang et al. 

(2016) 
𝐿𝑏
∗ =

{
 
 

 
 𝐿𝑏

𝐻
= 6.956 ln(

1.712�̇�∗
1
3

𝑉∗ (1 − 𝜑)⁄
) , �̇�∗

1
3 ≤ �̇�𝐿=𝐿𝑇

∗1/3

𝐿𝑇

𝐻
+ 19.342 ln (

0.935�̇�𝑏−𝑇
∗1/3

𝑉∗
) , �̇�∗

1
3 > �̇�𝐿=𝐿𝑇

∗1/3
 

 

�̇�𝐿=𝐿𝑇
∗
1
3 =

0.584 ∙ 𝑉∗

(1 − 𝜑)
exp(

𝐿𝑇
𝐻

6.956
) 

𝐿𝑇 metro train length (m) 

�̇�𝐿=𝐿𝑇
∗  Critical dimensionless HRR 

�̇�𝑏−𝑇
∗  dimensionless HRR of virtual fire 

source at the rear of metro train  

3.6. Smoke layer thickness  

Fig. 6(d) shows the schematic diagram of the smoke layer thickness. The determination of the smoke layer 

thickness plays a vital role in fire safety engineering as it affects the occurrence of plug-holing phenomena, fan 

performance adjustment, and tunnel geometry effect. Cooper et al. (1982) proposed a method named N-

percentage rule to distinguish the interface between the layers of smoke and fresh air. However, it is tricky for 

the choosing of the value N, and it is inapplicable for cases where the gas at the lower part of an enclosed space 

is heated to be higher than the ambient temperature. Jassens et al. (1992) proposed to use the height of the smoke 

layer interface Zi, which can be adjusted with the vertical temperature. Gao et al. (2016) conducted model scale 

tests and proposed the buoyancy frequency method to estimate the smoke layer thickness. However, all above 

methods can only be used to determine the interface between the smoke layer and ventilation airflow based on 

temperature vertical distribution. To predict the smoke layer thickness, Xu et al. (2019) proposed an empirical 

equation based on a set of scaled model tests with nature ventilation condition. Table 14 summarizes all methods 

for calculating the smoke layer thickness. 

Table 14. Derived formulas for investigating smoke layer thickness. 

Authors Proposed formulas 

Cooper et al. (1982)  𝑇𝑖 − 𝑇𝑎 = (𝑇𝑚𝑎𝑥 − 𝑇𝑎)𝑁/100  (10 < 𝑁 < 30) 

Jassens et al. (1992)  
𝑍𝑖 =

𝑇𝑎(𝐼1𝐼2 − 𝐻
2)

 𝐼1 + 𝐼2𝑇𝑎
2 − 2𝑇𝑎𝐻

,    𝐼1 =
𝐻 − 𝑍𝑖
𝑇𝑢

+
𝑍𝑖
𝑇𝑎
= ∫ (

1

𝑇(𝑧)
) 𝑑𝑧

𝐻

0

 

𝐼2 =
𝐻−𝑍𝑖

𝑇𝑢
+ 𝑍𝑖𝑇𝑎 = ∫ (𝑇(𝑧))𝑑𝑧

𝐻

0
,      𝑁 = 100(𝑇(𝑍𝑖) − 𝑇1)/(𝑇𝑢 − 𝑇𝑖)  

He et al. (1998)  

𝑟 = 𝑟𝑢 + 𝑟𝑙 ,      𝑟(𝐻𝑖) = min (𝑟𝑡)   

𝑟𝑢 =
1

(𝐻 − 𝐻𝑖)
2
∫ 𝑇(𝑧)𝑑𝑦
𝐻

𝐻𝑖

∫
1

𝑇(𝑧)
𝑑𝑦

𝐻

𝐻𝑖

, 𝑟𝑙 =
1

𝐻𝑖
2∫ 𝑇(𝑧)𝑑𝑦

𝐻𝑖

0

∫
1

𝑇(𝑧)
𝑑𝑦

𝐻𝑖

0

 

 

Gao et al. (2016)  𝑁𝐿 = (−𝑔𝑇𝑎
𝜕(1/𝑇)

𝜕𝑧
)

1/2

 

Xu et al. (2019)  𝑑 = 1.24 (
�̇�𝑠𝑚

(𝑤/𝐻)2
)
1/3

− 0.13      (natural ventilation) 
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3.7. Plug-holing 

Natural Ventilation System (NVS) has been widely adopted in tunnels due to high cost-effectiveness. 

However, this type of system may not be applied to all scenarios affecting by fire size, HRR, tunnel and shaft 

cross-section areas, and hydraulic diameter. Particularly, when the lower fresh air layer mixes with the upper 

smoke layer, the plug-holing phenomenon occurs near the shaft region, as shown in Fig. 10.  

However, very limited studies have been carried out in this area until the recent 10 years, such as Ji. et al. 

(2012) and Beak et al. (2017) (see Fig. 5). In their method, the Froude number and the Richardson number were 

modified as the ratio of inertia force over the smoke and buoyancy force of vertical shaft, and the ratio of 

buoyancy force of vertical shaft over inertia force of smoke, respectively. Hinkley (1970) also proposed a 

method of using modifying the Froude number to identify this phenomenon without considering the effect of 

the geometry of a shaft, which was further considered by Spratt et al. (1974). However, the effect of the position 

of the vertical shaft was not taken into account in previous studies except in a test conducted by Takeuchi et al. 

(2017) using a 1:20 scale tunnel model. 

 
Fig. 10. Conceptual diagram of the plug-holing phenomenon 

Thus, the new determine the occurrence of the phenomenon considering the effect of the vertical shaft (J. 

Ji et al., 2012). Table 15 summarizes the studies on the plug-holing phenomenon focusing on the criterion of 

identifying the occurrence of this phenomenon. The main information and correlation of the experimental data 

is shown in Table 16.  

Table 15. Data experimented to investigate the plug-holing phenomena 

Parameters 
Length 

[m] 

Depth 

[m] 

Aspect 

Ratio 

wsh 

[m] 

Dsh 

[m] 

Hsh  

[m] 

Fire source 

[kW] 

Ventilation 

condition 

Shaft height  

(J. Ji et al., 2012)  
6 2 - 0.3 0.3 0 - 1 

Methanol 

7-53 
NVH 

Cross-section AR, HRR  

(Baek et al., 2017)  
7 

0.3 - 

0.54 
0.56-1 0.15 0.06 0.1-0.18 

n-Heptane 

1.2 - 10.1 
NVH 

Location of vertical shaft  

(Takeuchi et al., 2017)  
5 0.5 - - - 0.06, 0.25 

Propane 

1.5 - 4.4 
NVH 

Exhaust vent  

(Jiang et al., 2018a)  
22 0.6 - 

7.5 

(vent) 

20 

(vent) 
- 

Methanol 

2.8-16.8 

Exhaust 

vent 

Table 16. Criteria of critical number and empirical correlations for plug-holing phenomenon 

References 
Critical 

Number 

Non-dimensional 

analysis 
Conditions 

Hinkley (1970) Ri < 1.8 
∆𝜌𝑔𝐻𝑠ℎ𝐴𝑠ℎ

𝜌𝑠𝑚𝑉𝑠𝑚
2 𝑑𝑠𝑚𝑤𝑠ℎ

 

Simple vents without chimney effect in a 

shopping mall, where the effect of the tunnel 

shape was not a parameter 

Ji et al. (2012) Ri < 1.4 
∆𝜌𝑔𝐻𝑠ℎ𝐴𝑠ℎ
𝜌𝑠𝑜𝑉𝑠𝑚

2 𝑑𝑠𝑚𝑤𝑠ℎ
 

Small-scale tunnel for considering the effect of 

HRR and the height of natural ventilation. 

𝜌𝑠𝑜 density of smoke without smoke exhaust 
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Baek et al. 

(2017) 
Fr > 2.75 

𝜌𝑠𝑚𝑉𝑐
2𝑑𝑠𝑚𝑤

𝜌𝑎𝑔𝐻𝑠ℎ(
1
𝑇𝑎
−

1
𝑇𝑠𝑚

)𝑑𝑠ℎ𝑤𝑠ℎ

 
Small-scale tunnel for considering the effect of 

HRR and the aspect ratio of tunnel 

𝑑𝑠ℎ depth of shaft 

Takeuchi et al. 

(2017) 
Ri < 0.3 

∆𝜌𝑔𝐻𝑠ℎ𝐴𝑠ℎ
𝜌𝑠𝑚𝑉𝑠𝑚

2 𝑑𝑠𝑚𝑤
 

Effect of vertical shaft location for distinguish 

the occurrence of plug-holing 

Jiang et al. 

(2018a) 
Fr < 1.8 

𝑉𝑠𝑚𝐴𝑠ℎ

(
𝑔∆𝑇
𝑇𝑎

)1/2𝑑𝑠𝑚
5/2

 
 

Experimental study under the exhaust vent 

 

4. Application of machine learning on tunnel fires 

The growing number of underground tunnels inevitably increases the risk of tunnel fire incidents. To reduce 

the frequency of massive fire accidents in tunnel and the damage caused by fire, it is necessary to discover the 

fire incident as quickly as possible (Muhammad et al., 2018). The earlier sensing technologies were primarily 

based on point sensors for heat, gas, flame, and smoke flows. Very limited studies have been conducted on 

tunnel fire detection using AI methods. Xue (2010) built up a three-layer ANN to identify the fire in tunnels 

using the information of temperature smoke density and density of CO measured by sensors. The neural network 

was trained using numerical simulation results. The accuracy, generalization ability, and correct recognition rate 

were demonstrated. The application of ANN in detecting tunnel fire is promising. In our previous work (Wu et 

al., 2020a, 2020b), AI method successfully identified the fire source and predicted the fire evolution in tunnel. 

A LSTM-RNN model and a large CFD dataset of tunnel fire were adopted to train the smart system.  

Today, various types of fire detection technologies have been adopted for tunnel fire safety, such as remote 

monitoring, high-resolution sensor, thermal imaging, and data-driven high-performance computing (Jevtić and 

Blagojević, 2014). Particularly, as cameras are often installed to monitor the situation inside the tunnel, ideally, 

these real-time images can quickly detect and continuously monitor the fire (Gaur et al., 2020). However, their 

reliability is still questionable, because of (1) poor image quality caused by the low visibility in the tunnel and 

low camera contrast, and (2) scene complexity due to moving cars and lights. Han and Lee (2009; 2007) used 

consecutive images captured by video and then separated fire flame from the lights in tunnels using edge slop 

density function and then removed the noises in images using the median filtering method to detect fire. They 

also realized the real-time detection of tunnel fire and smokes by image processing techniques, including 

movement detection, edge detection, and color information. Today, the smart firefighting system is an emerging 

fire research area, but it is still far from mature for real applications in tunnel. For any smart fire engineering 

system, a sufficient and reliable database is required to reduce the false alarm and provide reasonable fire 

forecast (Grant et al., 2015; Wu et al., 2020a), and the prospective of using this database in smart firefighting is 

illustrated in Fig. 10.   

 

Fig. 10. The prospective of using this database for smart firefighting in tunnel. 
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4.1. Database establishment 

Big data features in three aspects: volume, variety, and velocity (Chi et al., 2016). To enable the training of 

AI models in engineering applications, forming an organized database is the first step. Due to its complex nature, 

it is still challenging to properly store, manage, maintain, and analyze a big database. In general, the 

establishment of the database is a multi-step task, that is, 

(1) Data collection: search all available literature and extract all useful data from these documents,  

(2) Data preprocessing: remove outliers, data quality check, remove noises, and filtering, and 

(3) Data mining: extract valuable information.  

Herein, we propose a framework to organize all available data of fire engineering into a standard format. As a 

demonstration, the established tunnel-fire database in this work is publicly available on Github: 

https://github.com/PolyUFire/Tunnel_Fire_Database. 

Data collection. For a typical fire test or numerical fire simulations, a number of parameters are commonly 

measured (see Table 4), and the data can be classified into two main categories,  

(I) Sensor data: such as the temperature by thermocouples or other heat detectors, the presence of smoke by 

smoke detectors, CO and CO2 by gas detectors, and heat flux by a radiometer or plate thermometer. 

Sensors are often installed at one or many locations for long-term measurement. In other words, sensor 

data are often time sequences of point or line measurements, which have both spatial and temporal 

dimensions.  

(II) Visual data: such as the video from CCTV and infrared (IR) cameras, and satellite images (in large-scale 

urban and wildland fires). For numerical simulations, the visual data refer to the contours and videos 

generated from computational results. These time-sequence image data can directly show the real-time 

scene and scale of the fire, evacuation process, distributions of smoke and temperature, and firefighting 

activities. Compared to sensor data, the visual data are 2-D or 3-D in nature that are several orders of 

magnitude larger.  

Based on the data available, there are two AI methods, i.e., sensor-based method and vision-based method. 

Today, most of the existing fire research only provide the limited and processed sensor data in the report and 

publication. Often, only selected data are presented in the form of plots, while the raw measurement data are 

not listed in the table or documented available to the public. Comparatively, the video data are even rare, due to 

the large data size and complexity in the further data processing.     

 Currently, the database can only be established with all available sensor data that can be accessed online, 

such as journal publications and technical reports. A thorough literature review is required to feed the database. 

For example, Sections 2 and 3 demonstrate the process of literature review, and all documents were categorized 

into seven key parameters, namely, flame length, maximum temperature, smoke layer thickness, critical velocity, 

back-layer length, and plug-holing. After then, all related experimental data were extracted from these 

documents. To enforce a convenient data search, all raw images in the original documents are presented with a 

detailed description of data. 

Data mining and sharing. Since the fire process is generally complex and influenced by multiple factors, 

it is essential to provide adequate test information before the data process. Because most of the existing fire test 

data initially are not produced and presented under the principle of sharing, it is extremely challenging to extract 

all the necessary information and data from the accomplished and on-going tests, as well as to make a fair 

comparison among existing data.  

4.2. Framework of fire database 

To maximize the usage of valuable existing data and facilitate the database establishment of future fire tests, 

we propose a framework and guideline for data collection in fire tests. Using the tunnel fire test as an example, 

the data collection should include: 

1) Structure and test information. Studies should report the basic settings of the fire tests, including the 
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scaling factor, tunnel size, ventilation system, tunnel construction material, and on-site weather conditions 

(ambient temperature, humidity, and wind). 

2) Fire information. Fire location, fire geometrical dimension, components of combustible material, amount 

of burning materials should be given. 

3) Sensor information. Apart from the arrangement of all the sensors and other measuring devices, more 

information on sensor type, measuring range, delay time, and frequency or interval of data collection need 

to be provided. 

4) Special-temporal sensor data. The measured data obtained from sensors during whole stages of fire, 

including pre-fire ignition, fire development, decay, and firefighting should be provided. 

5) Video data. The fire phenomena should be recorded by various video cameras. All video data should 

include a detailed description of the location, environmental and personal information, and time sequence 

of different fire processes and critical events, such as the ignition, fire spread, ventilation, and suppression. 

6) Imperfection data. Some researchers prefer not to provide imperfect data due to the unnormal 

measurement, missing, or other reasons. However, it is highly encouraged to provide all data, because 

those data not only could be treated with technics, such as filling and filtering, but also provide crucial 

experiences for other researchers and future tests. 

Once the raw data are collected and documented, it is crucial to analyze the data by utilizing preprocessing 

methods. Measuring devices, human factors, and fire impacts may cause noises, redundancies, and outliers to 

the data collected. Thus, those collected data need to be inspected and processed. With the limited amount of 

experimental data in the literature, the experimental data were directly extracted from the available documents, 

and no further processing was conducted to guarantee the authenticity of the database. The procedure of the 

database generation follows: 

1) Extract all available basic information based on the proposed data collection framework, 

2) Extract testing results in the form of a table, figure, and supplemental material, and 

3) Organize extracted data of various sources into tables with consistent data format and metadata. 

Take the current database of flame length in tunnel fire as an example. Information related to the tunnel and 

fire data were first extracted from the literature, as listed in Table 6. Then, individual results of the flame length 

were acquired from the authors of the literature or extracted from plots one by one. Afterward, form the database 

of flame length by giving a table composed of eleven columns from left to right, showing the scaling factor of 

the tests, the HRR of fire, tunnel length, width and height, the velocity of wind in the tunnel, the type of the 

combustible material, the location of the fire, the measured flame length, the related reference, and comments, 

respectively. The last two columns served to further check the data source. Each row of the table describes a 

testing data point extracted from the corresponding source. Note that not all the information illustrated in the 

guideline was extracted for the database. It is mainly because lots of information is missing for most of these 

documents. Thus, it is important and urgent for researchers to have a standard guideline to present their scientific 

findings, and it should also be a community effort to enforce the data collection and improve the guideline. 

Essentially, the data stored in the current database served as the first step for further studies. More valuable 

results can be gained by analyzing these data. For instance, the distribution of temperature in the tunnel can be 

recognized from the sensor data that were measured at various locations. Similarly, the shape and motion of the 

fire flame and smoke could be approximately identified by analyzing the time series data of temperature. The 

database also provides a macroscopic overview of all studies achieved and to be achieved.  

The review of the current database further reveals a critical problem, that is, most of the literature only 

reports steady-state quantities, such as HRR, temperature profiles, ventilation condition, and smoke layers, 

because these steady-state values are easy to report, analyze, and extrapolate. For any fire process, there is a 

transient process before any steady state could be achieved. Although most of these transient raw data are 

recorded during the tests, these data were rarely documented, analyzed, and presented to the fire community. It 

is mainly because the amount of these transient data is tremendous, and they are difficult to analyze and visualize 
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and cannot provide useful engineering correlations like those in Tables 5, 7, 8, 10, 12, and 14 for steady-state 

values. Consequently, the community is still lack of knowledge about the time scale for fire development and 

critical events in the tunnel and other structures. Therefore, the data collection and documentation for transient 

fire processes are significantly important to achieve any capacity of fire forecast. Also, studies and data on fire 

spread in tunnels are in high demand, because most of the existing fire tests use the fixed fire sources. The 

overview points out the potential research directions in future tunnel fire tests. 

4.3. A case study on tunnel fire forecasting 

In this section, an example is given to illustrate the application of machine learning on tunnel fire safety 

engineering using a big database. Here, no expertise knowledge of the critical velocity is input to the AI model 

before training. A conventional multilayer perception (machine-learning) model is established to predict the 

critical velocity in a tunnel considering multiple factors related to tunnel dimension and HRR. The Python code 

and the database used for predicting the critical velocity is also open access in Github.  

As a demonstration, the database is generated from four empirical equations in Table 11 (Li et al., 2010; 

Tang et al., 2018b; Weng et al., 2015; Wu and Bakar, 2000). Note that these empirical equations were fitting 

correlations, so that they essentially represent a large amount of experimental data. Fig. 12 shows the parameters 

influencing the critical velocity considered in previous studies, that is, length, width and height of the tunnels, 

hydraulic diameter, and HRR. The tunnel geometries and the range of HRR listed in Table 17 are from available 

tunnel fire tests. Hydraulic diameter describing the characteristic length of tunnel can be calculated with the 

tunnel dimensions. It should be noted that for the second series of test conducted by Li et al. (2010), tunnel 

height is regarded as characteristic length. One series of the values of these parameters produces one training 

sample. To enrich the training of database with all available data, more training samples can be generated by 

interpolation between the range of these parameters. An interval of 0.05 kW was adopted for all the tests. Finally, 

a database including 3,482 training samples was formed. 

Table 17. General information and parameters of tunnels for demonstration. 

References L 

[m] 

w 

[m] 

H 

[m] 

DH 

[m] 

�̇�  

[kW] 

�̇� interval 

[kW] 

Wu et al. (2000) 15 

0.136 0.25 0.176 

1.5-30 

0.05 

0.25 0.25 0.25 

0.5 0.25 0.333 

1 0.25 0.4 

Li et al. (2010) 12 
0.25 0.25 0.25 0.7-16.7 

0.45 0.393 0.393 2-18.4 

Weng et al. (2015) 15 0.48 0.54 0.508 1.59-12.38 

Tang et al. (2018b) 8 0.34 0.44 0.384 1.5-18 

 
Fig. 12. Parameters of the tunnel for demonstration. 

w

H

Critical velocity ( )

Buoyance
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Fig. 13 illustrates the generation of the training database. The raw dataset was stored in a matrix, in which 

the columns represent the parameter information, and the rows represent the varieties of these parameters in 

each case. Each case was labeled the actual value of critical velocity calculated from equations in Table 9. The 

labels are individually normalized to make them have the same range between 0 and 1 with the min-max 

normalization function (Komer et al., 2014). It is to avoid the condition that the features having more extensive 

ranges would dominate the computation of similarity (Aksoy and Haralick, 2001). Then, labeled cases were 

randomly divided into training, validation, and test sets with a ratio of 0.6, 0.2, and 0.2, respectively. The training 

dataset was utilized for training the ANN model. 

 
Fig. 13. Establishment of database and training of the ANN model. 

Fig. 14 shows the architecture of the 3-layer ANN model adopted in this study. The first two layers each 

have 6 neurons, which is equal to the number of parameters. The neuron in the output layer gives the prediction 

of the critical velocity. Nonlinear activation function “Tanh” is adopted for each layer. The whole model was 

trained by minimizing the loss function of mean squared error (MSE). The optimizer “adam” was chosen to tie 

together the coefficients to be updated and the loss function. Note that alternative loss functions, activation 

functions, and optimizers can also be adopted if applicable. The coefficient of determination R2 was adopted for 

the evaluation of the trained model. R2 is a scale-free parameter, meaning that it is independent of the exact 

differences of predictions, and the performance of models can be directly evaluated compared with this value. 

 

 
Fig. 14. The variations of (a) loss, and (b) R2 during the training process, and (c) Comparison between predicted and 

actual values 

Fig. 14(a) shows the evolvements of the loss function. As expected, the loss of the model decreases 

drastically with training epochs. After training for 20 epochs, the model has already converged with a loss of 

6e-5, which demonstrates the sufficiency of the pre-set training epoch number of 100. The validation loss shows 

a similar trend with the training loss. No overfitting phenomenon was observed in this study, which could be 
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attributed to the simplicity of the current predicting task. Fig. 14(b) shows the evolvement of R2 with the increase 

of epochs. Both the training and validation R2 attained a value approaching 100 soon after training. After a slight 

fluctuation at an early stage, R2 kept almost unchanged at 99.99%. Fig. 14(c) compares the predicted and actual 

value of critical velocity in tunnels. All the data points align with the diagonal line, showing the excellent 

performance of the trained ANN model in the prediction of critical velocity. Though this case study is simple, 

the capability of artificial intelligence methods in solving problems related to fire safety engineering has been 

demonstrated. 

5. Conclusions  

In light of the recent advances in big data and artificial intelligence, this paper aims to establish a database 

that contains all existing experimental data of tunnel fire, based on an extensive literature review on tunnel fire 

tests. This database summarizes seven key quantities of tunnel fire, namely, heat release rate, flame length, 

maximum ceiling temperature, smoke layer thickness, critical ventilation velocity, back-layering length, and 

plug-holing. This database is open access at GitHub. The test conditions, experimental phenomena, and data of 

each literature work were organized and categorized in a standard format that could be conveniently accessed 

and continuously updated. Based on this database, machine learning is applied to successfully predict the critical 

ventilation velocity of a tunnel fire as a demonstration.  

The review of the current database reveals more valuable information and hidden problems in the 

conventional collection of test data. In general, the existing data on tunnel fire research is still not sufficient to 

form a reliable database in support of smart firefighting. Particularly, the video data, imperfect data, and 

transient data are lacking, and there is no standard procedure to collect and organize the data in the fire 

community. This review proposes a framework and guideline for data collection in future tunnel fire research. 

The established database and methodology will promote the application of artificial intelligence and smart 

firefighting in tunnel fire safety. 
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